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Postrestoration colonization suggests slow regeneration,
plant translocation barriers, and other host/symbiont
lessons during the United Nations’ Decade on
Ecosystem Restoration
Lisa M. Markovchick1,2,3,4 , Elena A. Schaefer2,5, Tessa Deringer2, Zsuzsi I. Kovacs1,2,
Ron J. Deckert1,2, Jamie Yazzie2, Aalap Dixit6, Jeffrey R. Propster7, Adair Patterson1,8,
Kevin R. Hultine9, Kevin Grady10, Gerard J. Allan1,2, Thomas G. Whitham1,2, Catherine A. Gehring1,2

Mycorrhizal restoration benefits are widely acknowledged, yet factors underpinning this success remain unclear. To illuminate
when natural regeneration might be sufficient, we investigated the degree mycorrhizal fungi would colonize Populus fremontii
(Fremont cottonwood) 2 years after the restoration of a riparian corridor, in the presence of an adjacent source. We compared
colonization levels across plant populations and ecotypes, and from trees in the planted area to those in natural source populations.
Four findings contribute to the theory and application of host–symbiont interactions. (1) Median ectomycorrhizal colonization of
trees in the planted area was less than one-tenth of that within natural source populations (p < 0.05), suggesting that even with
adjacent intact habitat, sluggish regeneration would make proactive mycorrhizal restoration beneficial. (2) Within the planted
area, median ectomycorrhizal and arbuscule colonization of trees sourced from greater distances were less than one-third of that
for trees sourced locally (p < 0.05), suggesting translocation poses barriers to symbioses. (3) Changes in colonization did not align
with plant ecotypes, suggesting that geographic scales of selection for plants and fungi differ. (4) Slight increases inmedianmycor-
rhizal colonization (from 0% to 5%) were strongly correlated with increased survival for the plant provenance with lowest sur-
vival (r2 = 46% and rs = 48%, p < 0.05), suggesting mycorrhizae are particularly beneficial when plants are under stress
(including translocation-induced stress). This study is novel in demonstrating that mycorrhizal regeneration is slow even in the
presence of adjacent intact habitat, and that when colonization could seem negligible, it may still have biological significance.
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Implications for Practice

• Mycorrhizal restoration is often recommended for highly
degraded areas isolated from intact native habitat, yet our
results suggest that it would be helpful following distur-
bance even when intact habitats are nearby.

• Assisted migration of plants is increasingly considered as
a strategy to boost restoration outcomes under climate
change, but our results indicate that the success of this
approach may be limited if appropriate fungal symbionts
are not available.

• Even small increases in colonization may improve plant
survival under stress.

• As a result, restoration of diverse, native mycorrhizal
fungi, paired with plants and site conditions, could mean-
ingfully increase restoration success during the UN’s
Decade on Ecosystem Restoration, even in situations
when it might have been considered unnecessary.
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Introduction

As the United Nations’ Decade on Ecosystem Restoration
begins, climate change related increases in natural disturbances
such as drought, heat waves, and wildfire are amplifying the
need for restoration and regeneration of natural ecosystems
(Parks & Abatzoglou 2020; National Academies of Sciences,
Engineering, and Medicine 2020; Fargione et al. 2021). How-
ever, appropriate planting material resources have been declin-
ing, limiting the ability to scale up restoration activities
(Wheeler et al. 2015; National Academies of Sciences, Engi-
neering, and Medicine 2020; Fargione et al. 2021). We examine
strategies for addressing these challenges which are rarely con-
sidered in tandem: mycorrhizal symbioses, the assisted migra-
tion of plants, and the interaction between them.

Multiple studies show that proactive restoration of diverse,
native mycorrhizal fungal communities boosts restoration out-
comes (e.g. Wubs et al. 2016; Neuenkamp et al. 2019; Policelli
et al. 2020), particularly following disturbances known to nega-
tively impact mycorrhizal fungi, such as pollution, land-use
changes, invasion by certain exotic species, and even manage-
ment activities such as pesticide application (e.g. Egerton-
Warburton &Allen 2000; Meinhardt & Gehring 2012; Helander
et al. 2018). Yet, many questions about the application of this
method, and the principles underlying its success, remain. For
example, few studies examine the conditions under which the
proactive restoration of mycorrhizal fungi is unnecessary. It
could be reasonably assumed, e.g. that in at least some cases,
mycorrhizal fungi would either naturally regenerate from nearby
habitat remnants, or be available on planting material, or both.
Although few studies address these questions, Pankova et al.
(2018) found that the natural regeneration of mycorrhizal fungi
after a single fungicide application had not restored the mycor-
rhizal inoculum potential of the soil, or corresponding plant out-
comes, to reference levels even after 5 years. Similarly, two
studies specifically examining mycorrhizal fungal communities
on planting material versus those in natural ecosystems sug-
gested that greenhouse plants have different and less diverse
mycorrhizal communities than those growing in natural popula-
tions (Sykorova et al. 2007; Southworth et al. 2009). Neither
study explicitly examined the implications of this for field trans-
plantation. However, since every change in plant host, fungal
partner, and environment can elicit changes in symbiotic out-
comes (e.g. Rillig & Mummey 2006), it seems likely that green-
house mycorrhizal communities may not provide the same suite
of benefits that fully diverse, native mycorrhizal communities
found in natural environments would. Some studies suggest
that forest thinning may decrease and shift ectomycorrhizal
fungi (EMF) if gaps are 5–6 m (e.g. Parsons et al. 1994).
However, the effects could be due to other factors, such as
the conditions created by forest thinning, rather than to dis-
persal limitations (Varenius et al. 2017), making the implica-
tions for replanting and restoration projects unclear without
studies that specifically address this question. We could find
no studies specifically addressing how proximate mycorrhi-
zal source populations in the field would need to be in order
to sufficiently provide natural regeneration of mycorrhizal

fungi in a restored or replanted area within the short term
(a year or two).

In addition to the planting material shortages and restoration
challenges posed by climate change, climate changes may also
outpace the ability of plants to adapt or migrate to appropriate
climate envelopes via natural dispersal (Whitham et al. 2020).
Thus, translocating plant species or populations from warmer
locations has been suggested as a tool to boost restoration suc-
cess and promote more rapid adaptation under climate change
(Etterson et al. 2020; Gomory et al. 2020; S!aenz-Romero et al.
2020). However, translocation of plant populations can still
result in neutral to negative outcomes compared to those for
local populations (Tiscar et al. 2018; Cooper et al. 2019; Simler
et al. 2019) if the traits of the translocated populations are not
well-matched to the planting site (Ikeda et al. 2017; Cooper
et al. 2019; Blasini et al. 2021). Regional intraspecific plant
adaptations, such as tolerance of frost or drought, can be of par-
ticular concern, due to increased variability in the temperature
extremes (at both ends of the spectrum) associated with climate
change (Montwe et al. 2018). For example, Fremont cotton-
woods have developed contrasting physiological strategies,
known as ecotypes, to survive extreme heat (Sonoran Desert
or SD ecotype) or frost (Mogollon Rim or MR ecotype; Hultine
et al. 2020; Blasini et al. 2021, 2022) that could interact with, or
pose challenges to translocation.

These two restoration considerations (mycorrhizal symbioses
and translocation) are rarely examined in tandem: there is an
urgent need for multi-species studies to address the implications
of assisted migration for interspecies interactions (Bucharova
2017; Remke et al. 2020, 2022). An organism’s ability to adapt
is likely dependent on the traits of the organism and its micro-
biome (sometimes referred to as the holobiont, a discrete ecolog-
ical unit; Zilber-Rosenberg & Rosenberg 2008; Bordenstein &
Theis 2015; Whitham et al. 2020). Research shows the impor-
tance of interactions between plant, fungi, and soil, emphasizing
the need to consider mycorrhizal symbioses and soil sources
in conjunction with plant source populations (Johnson
et al. 2010, 2014; Rua et al. 2016), and demonstrates that com-
plete reversals of results are possible when additional factors
are considered in studies (Bailey & Whitham 2007). Yet, host–
symbiont relationships are largely absent in studies of assisted
migration (e.g. Etterson et al. 2020; Cooper et al. 2019; S!aenz-
Romero et al. 2020), leaving important questions about how
assisted migration influences host–symbiont interactions,
including the geographic scales relevant to both plants and
fungi, unanswered.

To address these knowledge gaps, we utilized a common gar-
den experiment in a replanted riparian corridor after land con-
version to agriculture. Riparian areas in the southwestern
United States are of special conservation concern because they
support 60–75% of the wildlife on less than 2% of the land area
(Poff et al. 2012) and have suffered extreme losses of at least
90% (Zaimes 2007). Fremont cottonwoods (Populus fremontii)
are a useful study species due to the extensive knowledge of
their ecotypes, genetics, and eco-physiology (Ikeda et al. 2017;
Cooper et al. 2019; Blasini et al. 2022), their strong associations
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with both ectomycorrhizal and arbuscular fungi from a young
age (EMF and AMF, respectively; Brundrett et al. 1996; Gehr-
ing et al. 2006; Meinhardt & Gehring 2012), and their rapid
growth and foundational nature in riparian ecosystems
(Whitham et al. 2020, 2020).

We investigated the timeliness and effectiveness of natural
mycorrhizal regeneration with an adjacent intact habitat that
could serve as a source of mycorrhizal fungal propagules, the
impact of assisted migration, and how these factors interacted
to affect plant performance. Specifically, we examined whether
mycorrhizal colonization in replanted areas approximated that in
two natural populations, 2 years after replanting. Studies sug-
gest that appropriate mycorrhizal inoculation is beneficial and
needed after restoration from agriculture (Koziol &Bever 2017),
but typically do not address whether nearby habitat remnants
could act as sufficient mycorrhizal sources in the short term.
Thus, we investigated whether natural recruitment of mycorrhi-
zal fungi from an adjacent habitat remnant (and planting mate-
rial source) could provide replanted trees with mycorrhizal
colonization levels similar to those in the reference sites (plant-
ing material source populations) within 2 years. One of the
planting material source populations was adjacent to the exper-
imental site and water flowing through this extant natural popu-
lation was used to irrigate the replanted site (for convenience,
since water sources are rare in this remote, arid region), provid-
ing an additional potential vector for mycorrhizal regeneration.
We also investigated whether the establishment of mycorrhizal
associations would differ by transfer distance or ecotype and
evaluated the correlation of colonization results with growth
and survival. Transfer distance was measured by changes in
temperature between source populations and planting sites to
reflect changes experienced with assisted migration, and for
consistency with studies comparing phenological and eco-
physiological changes along the same temperature change gra-
dient (e.g. Cooper et al. 2019; Blasini et al. 2021, 2022). We
examined differences by ecotype to be consistent with studies
showing that adaptive syndromes associated with ecotypes
determine major plant physiological differences (Blasini
et al. 2021, 2022). We hypothesized that: (1) mycorrhizal colo-
nization of planted trees would be comparable to colonization in
the natural source populations due to the adjacent remnant hab-
itat and source; (2) colonization of planted trees would be
highest for trees sourced from the adjacent natural population
and lowest for trees sourced from the contrasting ecotype; and
(3) plant survival and growth in the planted area would be
positively correlated with levels of EMF and AMF coloniza-
tion. Results from this study have important implications for
both the fundamental scientific understanding of host–
symbiont interactions and translocation, and to restoration
applications.

Methods

Source Material and Study Sites

The Agua Fria common garden, previously described by Cooper
et al. (2019) and Hultine et al. (2020), comprises 1.2 ha at

Horseshoe Ranch within the Agua Fria National Monument in
Black Canyon City, Arizona, U.S.A. The common garden was
planted after an agricultural legacy of at least 50 years
(Cornerstone Environmental 2015), and is near the climatic
and elevational mid-point of Fremont cottonwoods. Cuttings
from 16 populations across the climatic gradient of Fremont cot-
tonwoods within Arizona were collected from trees at least 20 m
apart during the 2013–2014 winter, propagated in the green-
house, and planted at the Agua Fria common garden when
approximately 1 year old, in October 2014. Replicates of geno-
types were planted randomly within population plots, which
appear in random order within each of four blocks (Fig. S1).
Blocks of population plots were replicated four times. Due to
the aridity of the region and remote location, trees were drip-
irrigated during the growing season with river water that first flo-
wed through the adjacent Agua Fria natural cottonwood
population.

For this study, we focused on a subset of living trees in the
common garden sourced from three natural populations repre-
senting two contrasting ecotypes (Agua Fria [SD], Jack Rabbit
[MR], and Cibola [SD]) and compared them to a subset of trees
located within two of the planting material source populations,
one from each of the ecotypes (Agua Fria [SD] and Jack Rabbit
[MR]; Table 1; Fig. 1). To inform understanding of how tree age
and time since planting impact on results, older trees planted
adjacent to the common garden (within the historic ranch house
compound) were also sampled (Fig. 2).

Trees in the common garden were approximately 3 years of
age and approximately 2 m tall at the time of root sampling
(almost 2 years after planting), while trees located within the
natural populations were of unknown age and approximately
6 m tall. Trees from within the ranch house compound were at
least 30 years of age and approximately 6 m tall. No trees were
inoculated with mycorrhizal fungi.

Climate and soil data for the common garden and source
populations can be found in Table 1. The ecotypes (Sonoran
Desert [SD] and Mogollon Rim [MR]) and the absolute differ-
ence in mean annual temperature between tree source and plant-
ing locations (MAT transfer distance) are used in graphs to
depict scales of selection on plant adaptations that might be
expected to affect mycorrhizal symbiosis (Cooper et al. 2019;
Blasini et al. 2022).

Soil Samples

To understand whether any differences in mycorrhizal coloniza-
tion among sites might be related to soil properties, soil samples
were collected to provide descriptive information on soil charac-
teristics. Soil texture, electrical conductivity (EC), pH, %C, %N,
and%Pmeasurements were conducted on soil samples collected
from the soil surface (0–5 cm depth) in the common garden
(n = 6), and at the two natural populations representing both
ecotypes, Agua Fria (Sonoran Desert; SD ecotype) and Jack
Rabbit (Mogollon Rim; MR ecotype; n = 2 and n = 3, respec-
tively). Details of soil characterization methods can be found
in Supplement S1.
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Table 1. Climate and soil characteristics for the common garden experimental site and planting material natural source populations. aEcotype abbreviations for
planting material source populations are as follows: trees from the warmer Sonoran Desert (SD) ecoregion and trees from the cooler Mogollan Rim (MR) ecor-
egion (Blasini et al. 2021, 2022). Trees planted at the Agua Fria common garden experiment experienced climatic conditions within the range of the SD ecotype,
but consisted of trees sourced from both ecotypes. bClimate data for 2016–2018 is from PRISM Climate Group (2020). Climate abbreviations are as follows:
mean annual temperature (MAT), precipitation (PPT), and vapor pressure deficit (VPD). cMAT transfer is calculated as the absolute difference between the
MAT at the tree’s source population and theMATwhere the trees were planted at the common garden. dUSDA soil series, soil content, and soil pH is fromUSDA,
Natural Resources Conservation Service (2020). eSalinity, pH,%C,%N,%P, and ribbon test results are from soil samples collected during the study, as described
in the Methods section. fRoots and soil samples were not available for the Cibola natural population.

Population Type
Common Garden Experiment Natural Populations

Population Agua Fria Agua Fria Jack Rabbit Natural Cibolaf

Ecotypea — SD MR SD
MAT (!C)b 18.4 18.4 14.2 22.1
MAT transfer (!C)c — 0 4.2 3.7
Latitude 34.259688 34.257657 34.989867 33.36077
Longitude "112.057859 "112.064022 "110.622894 "114.69856
Elevation (m) 988 988 1,507 70
Mean PPT (cm)b 35 35 15.7 7.4
Max VPD (hPa)b 18.4 18.4 27.6 34.1
Soil seriesd Gila Soils Barkerville Cobbly

Sandy Loam
Ives Soils Lagunita Loamy Sand

Soil contentd 39% sand,
37% silt, 24% clay

68% sand,
20% silt, 13% clay

71% sand,
17% silt, 13% clay

81% sand,
17% silt, 3% clay

pHd — 7 8.2 8.2
pHe 7.40–8.48 6.81–6.95 6.75–7.98 —
Salinity (μS)e 103–166 99–375 104–441 —
% Ce 1.39–1.69 1.61–3.46 0.8–2.86 —
% Ne 0.14–0.15 0.12–0.26 0.01–0.12 —
% Pe 0.08–0.17 0.08–0.10 0.03–0.06 —

Ribbon teste Silt loam; loam Silt loam; loam; loamy sand Silt loam; silt clay loam —

Figure 1. Map and photos of the three natural populations across the climatic and elevational gradient from which trees in this study were sourced. Sonoran
Desert ecotype locations, Cibola andAgua Fria, are in shown in red and pink. TheMogollon Rim ecotype location is shown in blue. Themid-elevation location of
Agua Fria is also the location of the Agua Fria common garden. Photos by Lisa Markovchick and Kevin Grady.
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Survival and Growth Measurements for Planted Trees

Survival and diameter at root crown for trees planted in the Agua
Fria common garden were sampled approximately 1 year
(January 2016) and 2 years (December 2016) after planting.
For these metrics, we focus on trees from the same garden
blocks, populations, and genotypes during the same time frame
roots were sampled. This yielded 134 trees for whom survival
could be evaluated during year 2 (50 from Cibola, 44 from Agua
Fria, and 40 from Jack Rabbit).

Growth was assessed for trees that survived from year 1 to
year 2 (n = 109). Calipers were used to measure diameter at root
collar (DRC). Area at root collar (ARC; Supplement S2) was
calculated from DRC (ARC = 2πr2, where r = DRC/2).
Growth was calculated as the standardized difference in ARC
from year 1 to year 2 ([ARC for year 2 " ARC for year
1]/ARC for year 1).

Root Sampling

During the autumn of 2016 (between year 1 and year 2 survival
and growth measurements), fine roots within the drip line of
each cottonwood tree in the root study were gathered from the
four cardinal directions and traced from larger roots radiating
from the base of each tree, stored on ice, and frozen at "20!C
within 6 hours of collection. In the common garden, three to
six replicates of at least four genotypes from each source popu-
lation were used (n = 65, with 31 from Jack Rabbit, 15 from
Agua Fria, and 19 from Cibola). To provide reference coloniza-
tion rates for cottonwood trees growing in the same natural
populations from which common garden trees were sourced,
and in older trees planted near the garden, roots were sampled

in the same manner from cottonwood trees in the Agua Fria
and Jack Rabbit natural populations (n = 4 each), and trees
planted in the ranch house compound adjacent to the common
garden (n = 3).

Colonization Surveys

EMF root tips were counted under a dissecting scope using the
gridline intersection method (Brundrett et al. 1996). Over
7,700 gridline intersections were evaluated and 1,226 mycorrhi-
zal root tips were counted. Representative root tips for each mor-
photype were placed in extraction tubes for DNA sequencing.
Extremely low mycorrhizal colonization in the common garden,
where the majority of samples were collected to address translo-
cation questions, resulted in limited EMF community data.
Molecular analyses were conducted on roots tips representative
of the morphotypes seen for descriptive purposes, but insuffi-
cient data were available for a statistical comparison of
community data.

Separate root subsamples were cleared and stained, and eval-
uated for AMF hyphae, vesicles, and arbuscules using a com-
pound microscope and the gridline intersection method
(Brundrett et al. 1996). Care was taken to identify dark septate
endophytes (DSEs; nonmycorrhizal root fungi that have no spe-
cialized exchange structure) separately, as indicated by mela-
nized septate hyphae. Over 7,600 gridline intersections were
evaluated and 6,253 AMF and DSE organs were counted. Char-
acterization of AMF colonization can include arbuscules,
vesicles, and aseptate hyphae. However, we focus on arbus-
cule colonization in many of the graphs and statistics because
arbuscules are the crucial transfer organ between fungus and
plant, more comparable to what is represented by an EMF

Figure 2. Map and photos of areas compared at Agua Fria: the Agua Fria natural population, the ranch house compound with existing older trees, and common
garden experiment. Colors indicate those used in Figure 3 (with the Agua Fria natural population in white, the ranch house in gray, and the common garden in dark
gray) (Photos by L. Markovchick).
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root tip (which harbors the EMF exchange organ, the Hartig
net). We followed the methods of Lamit et al. (2016) for mor-
photyping and sequencing of EMF root tips except that we
used a modified primer set to reduce nontarget amplification.
Full fungal taxonomic identification details can be found in
Supplement S3.

Statistical Analyses

All statistical analyses were conducted in R version 4.0.3
(R Core Team 2020). Individual trees were used as an indepen-
dent experimental unit (similar to Grady et al. 2011) because
plants were randomly planted across the garden, environmental
heterogeneity was relatively low within the garden, and in
exploratory data analyses both genotype and garden block failed
to add significantly to statistical models. We used Bartlett’s
test for equal variance (also sensitive to non-normal distribu-
tions; McDonald 2014) via the bartlett.test() function in base
R. Nonparametric tests were used due to small, uneven sam-
ple sizes and failed homogeneity of variance tests. Overall
differences in colonization and growth were analyzed with
Welch’s analysis of variance via the oneway.test() function
in base R with the var.equal=FALSE setting, and post hoc
pairwise comparisons were made using the Tukey–Kramer
test using the TukeyHSD() function in base R
(McDonald 2014). As our sample size was below 1,000
(McDonald 2014), we utilized Fisher’s exact test in base R
using the fisher_test() function in the rstatix library
(Kassambara 2013) to test if the binomial survival data dif-
fered among population groups in the garden. Post hoc Fish-
er’s exact tests with Bonferroni adjustments for multiple
tests were used to test pairwise comparisons using the pair-
wise_fisher_test() function in the rstatix library.

To investigate if the proportions of EMF root tips and AMF
arbuscules were associated with survival, percent survival and
median combined colonization (colonization of EMF root tips
plus AMF arbuscules) were summarized by garden block, pop-
ulation, and genotype and compared. This was accomplished
using both linear regression (the lm() and geom_smooth() func-
tions) and Spearman’s rank correlation (cor.test() function with
the method=‘spearman’ setting) in base R.

Results

Soil Characteristics

As soil metrics were intended to be descriptive, simple value
ranges are reported and qualitatively compared. The ranges of
pH, salinity, %C, %N, and %P for the common garden and
natural source populations often overlap (Table 1). The larg-
est difference seen was between the common garden and the
Jack Rabbit natural population for %P (a metric that other
studies suggest can be very high while not indicative of plant
available P or AMF growth; Propster & Johnson 2015;
Stevens et al. 2018).

Hypothesis 1: Colonization of Planted Trees Versus Natural
Populations

EMF colonization of trees significantly differed among the nat-
ural population, ranch house compound, and garden
(F = 11.06, df = 2, 4.2, p < 0.05; Table S1; Fig. 3). Post hoc
pairwise comparisons revealed that EMF colonization in the nat-
ural populations was significantly higher than that in either the
ranch house area or the common garden (p < 0.01 and
p < 0.001, respectively), while higher colonization in the ranch
house compound than in the garden was marginally significant
(p < 0.10). The hypothesis (1) that mycorrhizal colonization of
replanted trees 2 years postplanting would be comparable to that
in natural source populations was not supported for EMF
(Fig. 3). Differences in overall AMF, AMF arbuscule, and
DSE colonization between planting locations were not large
enough to be significant (Table S1; Fig. 3).

Hypothesis 2: Colonization of Trees From Different Populations
Within the Garden

EMF and arbuscule colonization of trees in the garden differed
across populations (F = 15.31, df = 2, 27.05, p < 0.001 and
F = 5.79, df = 2, 30.98, p < 0.01, respectively). Post hoc pair-
wise comparisons revealed that EMF and arbuscule colonization

Figure 3. Box and whisker plots showing medians and 25th and 75th
percentiles for EMF colonization (top) and arbuscule colonization (bottom)
in trees from the natural source populations, ranch house compound, and the
common garden. Different letters across box and whisker plots indicate
significant differences (typically at α = 0.05, with the exception that
asterisks [*] between pairs indicate significant differences at α = 0.10). Full
statistical results can be found in Tables S1 and S2.
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both differed significantly among groups, highest in the locally
sourced trees, and significantly lower in trees sourced from more
remote locations (p < 0.05 and p < 0.001, respectively; Table S2;
Fig. 4). However, colonization was not lowest in trees from the
contrasting ecotype: arbuscule colonization did not differ between
trees from the two remote locations, and EMF colonization rates
in trees from the Jack Rabbit population (contrasting ecotype to
the planting site) were significantly higher than in trees from the
Cibola population (same ecotype as the planting site). DSE and
overall AMF colonization did not differ significantly among popu-
lations in the garden (Table S2; Fig. 4 for AMF). The hypothesis
(2) that trees frommore remote locations would show reduced col-
onization was supported for both EMF and AMF arbuscule coloni-
zation, but trees sourced from the contrasting ecotype (compared to
the planting site) did not show reduced colonization.

Hypothesis 3: Correlation of Survival and Growth With
Mycorrhizal Colonization

Survival to year 2 differed significantly between populations
(p < 0.001; Table S2; Fig. 4). Post hoc pairwise comparisons

revealed trees from the warmer source population, Cibola,
demonstrated significantly lower survival than the cooler Jack
Rabbit or the local Agua Fria populations (p < 0.001 for both;
Table S2; Fig. 4).

Growth from year 1 to year 2 significantly differed between
populations planted in the common garden (F = 6.80, df = 2,
163.33, p < 0.01). Post hoc pairwise comparisons revealed that
Jack Rabbit demonstrated significantly higher growth than
either the local Agua Fria or the Cibola population (p < 0.001
and p < 0.01, respectively; Table S2; Fig. 4).

There was a significant and strong relationship between tree sur-
vival rates and median colonization rates (EMF + arbuscule;
adjusted r2 = 46%, F = 4.93, df = 5, 18, p < 0.01, and rs = 48%,
p < 0.05, for linear regression and Spearman’s rank correlation
coefficient, respectively). As can be seen in Figure 5, the relation-
ship between survival and colonization for struggling trees from
the warmer Cibola population drives this relationship (t = "3.661,
p < 0.01 and t = 3.21, p < 0.01 for the population and population
by colonization interaction, respectively).

The hypothesis (3) that mycorrhizal colonization would be
significantly correlated with survival and growth, was partially

Figure 4. Common garden EMF colonization (top left) and presence of arbuscules (bottom left) of a subset of trees for which roots were sampled; population
level survival through the second growing season, and growth of trees during the second growing season after planting (right) for trees sourced from three natural
populations, presented by theMAT of the source populations andMAT transfer distance to the common garden. Populations in blue belong to the Mogollon Rim
(MR) ecotype and adaptive syndrome described by Blasini et al. (2021), while the populations in red and pink belong to the Sonoran Desert (SD) ecotype and
adaptive trait syndrome. Box and whisker plots show the median, 25th and 75th percentiles (boxes). Different letters across source populations represent
significant differences between populations. Full statistical results can be found in Tables S1 and S2.
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supported. For the population of planted trees struggling most,
mycorrhizal colonization was strongly and significantly corre-
lated with survival.

Mycorrhizal Taxonomic Identifications

Taxonomic identifications from natural population EMF root
tips are shown in Table 2. The two most abundant morphotypes
in the root samples (Dark Knobs and Black Fingers) were Tri-
choloma populinum and two species of Tomentella, respec-
tively. Other taxa represented in natural populations included a
species of Amanita and a species of Sebacina.

Discussion

In this study, EMF colonization of cottonwood trees 2 years
postplanting after historical agriculture was well below that in

natural source populations for either ecotype. Yet, trees in the
planted area from the local population still showed significantly
higher EMF and AMF arbuscule colonization than trees sourced
remotely, but decreased colonization did not align with the con-
trasting plant ecotype as expected. Despite low levels of coloni-
zation in trees from the warmer population with the lowest
survival rates, colonization and survival demonstrated a strong
positive association for this one, struggling population. These
results illuminate several underlying concepts of mycorrhizal
symbioses and have practical implications for restoration and
assisted migration.

Slow Regeneration Makes Mycorrhizal Restoration Important
Even Near Adjacent Habitat Remnants

A key element of novelty in this study is our contribution to
understanding the limitations of natural mycorrhizal recruitment

Figure 5. The significant, positive relationship between survival rates and median combined colonization (EMF + AMF arbuscules) for trees in the struggling
Cibola population (in red). Although colonization rates were often lowest in this population that was struggling to survive more than the other two populations,
even minimal colonization rates were associated with increased survival. The relationship was not significant for the other two populations, which already had
quite high survival rates overall. Regression lines are shown in ecotype colors, and SDs for the regressions are shown in gray.

Table 2. Operational taxonomic unit information. Examples of somemorphotype appearances can be seen in Figure S2. aSequences for OTUswere submitted to
GenBank (Sayers et al. 2022) resulting in the listed accession numbers. bFor all reference names in the table, the e-values were zero. cThis number represents the
percentage of the OTU sequence that overlaps the reference sequence. dReference accession selected conservatively, by excluding models and uncultured sam-
ples. Full taxonomic identification details can be found in Supplement S3.

Location
Morphotype

Name OTU Name
Accession No.

of OTUa
GenBank Reference

Nameb
Query
Coverc

Percent
Identity

Reference
Accession No.d

Jack Rabbit Natural
Population

Black Finger Tomentella 1 OQ576093 Tomentella
laterita

97% 94.77% KP783474.1

Black Finger Tomentella 2 OQ576094 Tomentella sp.
O41

97% 94.06% AJ534912.1

Agua Fria Natural
Population

White Finger Sebacina 1 OQ576092 Sebacina epigaea 100% 98.52% KF000427.1
Dark Knob Tricholoma 1 OQ576095 Tricholoma

populinum
97% 100.00% JN019602.1

White Mass Amanita 1 OQ576091 Amanita sp.
“sp-AZ28”

97% 98.69% MN204485.1
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and recovery even with sources nearby. Based on our results,
low recruitment of EMF seems to be a factor underlying the suc-
cess of proactively restoring diverse, native mycorrhizal fungal
communities (summarized in Neuenkamp et al. 2019). Our
study suggests that dispersal limitations may be operating even
when the sources of disturbance are local, and it might reason-
ably be assumed that mycorrhizal spores could disperse on wind
and water to swiftly regenerate postdisturbance. This concurs
with decreases in ectomycorrhizal species diversity found with
increasing isolation of mycorrhizal tree islands (Peay
et al. 2010), reviews of the effects of clear-cut logging (Jones
et al. 2003), and results showing that spore dispersal is often
limited to less than 5 m correlated with rain rates and events
(De-Wei 2005). As drought events become more frequent,
prolonged, and widespread in some parts of the world due to
climate change, EMF dispersal limitations may become increas-
ingly relevant.

Tree age could be suggested as an alternative cause for
reduced EMF colonization levels in the planted area. However,
the higher colonization rates found in the natural populations
in the current study are similar to those found in young cotton-
woods and other Salicaceae plants within relatively short time
periods when fungi are available or provided (e.g. Gehring
et al. 2006; Nara 2006; Meinhardt & Gehring 2012). Also, data
from the older trees found in the similarly disturbed, adjacent
ranch house compound (30+ years old) show EMF colonization
only marginally higher than trees in the common garden (3 years
old), and still significantly below those in natural populations.
This suggests that while tree age or time since planting could
have an effect, it is certainly not the only factor.

Elevated nutrient levels, precluding the need for mycorrhizal
nutrient mining services, could be another potential explanation
of low EMF colonization rates in the planted area. However, this
seems unlikely given the soil nutrient results, which are often
roughly comparable between the common garden and the natu-
ral populations or similar in the common garden to those found
in other studies. In addition, mycorrhizal fungi are known to
provide a variety of services besides nutrient mining, such as
help with water access and water use efficiency (e.g. Querejeta
et al. 2006; Egerton-Warburton et al. 2008) and pest regulation
(Reddy et al. 2006; Karst et al. 2015).

The lack of significant differences between common garden
and natural population for AMF arbuscule colonization may
reflect the agricultural history of the area (Maltz & Trese-
der 2015; Hart et al. 2017). Yet, proactive restoration of diverse
native mycorrhizal communities following agriculture have
improved outcomes even in predominantly AMF systems
(e.g. Koziol & Bever 2017), and Grünfeld et al. (2022) found
distances of 55 and 90 cm (versus 2 cm) between plants reduced
AMF colonization in the greenhouse, suggesting similar con-
straints on native diversity and dispersal may be relevant for
AMF, though not revealed here by colonization counts.

Hultine et al. (2020) provides some evidence that EMF colo-
nization of Mogollon Rim ecotype trees in the common garden
may have increased to levels more similar to those in natural
populations (with average colonization in the range of 50–60%
instead of the median 2–12% we found) after 5 years. However,

Hultine et al. (2020) had a small sample size (n = 5 for each eco-
type) and did not provide a direct comparison (e.g. no informa-
tion on arbuscule colonization was reported, and not all
populations in the current study were sampled). This result and
results from other literature (Jones et al. 2003; Peay
et al. 2010; Pankova et al. 2018) suggest that overcoming
mycorrhizal dispersal limitations may take several years and
may be largely dependent on whether colonized plants are
located close enough to planted or regenerating plants to touch
their roots. Future studies could further confirm dispersal limita-
tions as an underlying mechanism leading to the need for mycor-
rhizal restoration by comparing mycorrhizal inoculation
potential and mycorrhizal colonization of trees of the same age
planted within natural populations and revegetated areas.

Translocation Creates Mismatches Between Host and
Symbiont Provenances

Despite low colonization in tree roots from the common garden
overall, more locally sourced trees demonstrated significantly
higher EMF and AMF arbuscule colonization than their counter-
parts from more remote locations. These findings are consistent
with other literature, predominantly fromAMF systems, demon-
strating that plants and fungi are coadapted to each other and site
conditions (Johnson et al. 1992, 2010, 2014). In tandem with
existing literature, our study indicates that even when native
mycorrhizal fungi are available, they may be less compatible
with translocated plants. Given the ability of mycorrhizal fungi
to support plant resiliency to multiple stressors (e.g. Augé
et al. 2015; Rivero et al. 2018; Coban et al. 2022), maintaining
and enhancing these relationships seems increasingly crucial
under climate change, particularly as interest in plant transloca-
tion as a tool for climate adaptation increases (Handler
et al. 2018).

Geographic Scales of Selection for Plants and Their Mycorrhizal
Symbionts Differ

Contributing novelty to this study, results indicate that selection
forces on mycorrhizal symbioses are operating at a different
scale than for plants. In our study, mycorrhizal colonization
results do not align with the idea that the most extreme differ-
ences should be found in trees from the contrasting ecotype to
the planting location, as would be found for tree physiology
(Blasini et al. 2021, 2022). Instead, assisted migrant trees from
the same ecotype as the common garden (SD) had even lower
median rates of EMF colonization than translocated trees from
the contrasting ecotype (MR), and arbuscule colonization rates
were similarly low for both remotely sourced populations com-
pared to locally sourced trees. This finding suggests that selec-
tion forces on optimal mycorrhizal symbioses are operating at
a different geographic scale than for plant adaptive trait syn-
dromes. For instance, primary differences in physiology may
be determined at the regional level by climatic differences, fol-
lowed by smaller differences at the population level (Blasini
et al. 2021), while differences in EMF or AMF compatibility
may be determined by a suite of factors that vary on a different
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scale, including microclimates and soil variables. This finding
affirms the concept that tighter fidelity on ecological time scales
would be necessary to consider hosts and microbiomes as holo-
bionts, extends this concept to geographical scales, and suggests
that hosts and their microbiomes are better described as ecolog-
ical communities (Douglas & Werren 2015). This finding also
suggests that identifying optimal sources for mycorrhizal resto-
ration should not rely on the factors and geographic scales used
to determine plants appropriate for a given restoration site or that
determine plant adaptive strategies or ecotypes.

Mycorrhizal Symbioses May Be Most Beneficial to Plants Under
Stress, Including Translocation Stress

The strong correlation between survival and colonization rates
in trees from the source population with lowest survival rates
concurs with the idea that the beneficial effects of mycorrhizal
symbioses are particularly large during an “ecological crunch”
(Wiens 1977). For example, AMF are generally known to
increase stomatal conductance, but this effect increases with
the severity of the drought (Ruíz-S!anchez et al. 2011; Worchel
et al. 2013; Augé et al. 2015). The magnitude of mycorrhizal
benefits to host plants has been similarly correlated with salt
stressor severity (Rivero et al. 2018). Our findings suggest that
this correlation between plant stressor strength and the strength
of mycorrhizal benefits to the plant may extend to stresses
induced by assisted migration.

As multiple stressors increase under climate change, findings
regarding the correlation between plant stressor strength and the
strength of mycorrhizal symbiosis benefits also suggest that
mycorrhizal symbioses may become increasingly important.
Our study builds on this concept, suggesting that even when col-
onization levels low and one might be inclined to view symbio-
ses unimportant, they may still have crucial biological
significance. Indeed, in concert with previous studies, this find-
ing suggests that inoculating assisted migrant plants with appro-
priate, diverse mixes of native mycorrhizal fungi could optimize
their chances at new locations. Additional research is needed to
determine the optimal mixes of native mycorrhizal fungi for this
purpose, given studies reflecting the coadaptation of plants and
fungi to each other and to site conditions (Johnson et al. 1992,
2010, 2014). For example, optimal mixes might include mycor-
rhizal fungi from the plant source populations (as in Remke
et al. 2020, 2022), from relatively undisturbed habitat remnants
near the planting site, from the planting site itself, or a mix.

Importance of Including Interspecies Interactions in
Management and Restoration Studies

Soil microbiota are often key to supporting crucial ecosystem
services and to the swift adaptation needed under climate change
(Wilkinson & Dickinson 1995; Coban et al. 2022). Mismatches
in aboveground and belowground biodiversity and conservation
needs, and reports of declines in mycorrhizal fungi due to a vari-
ety of disturbances (Arnolds 1988; Lilleskov et al. 2002; Mein-
hardt & Gehring 2012; Helander et al. 2018; Cameron
et al. 2019) highlight the need to consider mycorrhizal fungi

and microbiota in management, restoration, and climate adapta-
tion (Bucharova 2017). Our findings reiterate this point and
highlight the urgency of this need during the climate and biodi-
versity crises. If the full diversity of the mycobiome and micro-
biome is not conserved, restored, and maintained resulting in its
continued decline (e.g. Baird & Pope 2021; Mueller et al. 2022),
many plants may lack their optimal symbionts in the future,
resulting in cascading effects on the abilities of ecosystems to
adapt to multiple stressors. Conversely, targeting the mainte-
nance and support of the full diversity of the microbiome during
land management, regeneration, restoration, and plant transloca-
tion could provide ecosystems with the highest chance of adapt-
ing at the pace of climate change and optimize the services
provided by remaining natural areas. This approach also has
the advantage of being aligned with the goals, ethics, and stan-
dards of ecological restoration (Gann et al. 2019), and being
consistent with United Nations’ Principles for Ecosystem Resto-
ration (FAO et al. 2021).
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