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Abstract—Federated learning (FL) trains a global learning model by using a central server to collaborate with multiple decentralized
clients. In a wireless network, the data transmission latency between a client and the FL server is substantially affected by signal
quality dynamics and bandwidth allocation. FL clients require synchronized communication at each round to update their models
simultaneously, which makes bandwidth allocation methods for conventional wireless tasks infeasible to use. Existing bandwidth
allocation studies for FL mainly focused on allocating bandwidth of one bandwidth provider without cost. In this paper, we consider a
more practical and challenging problem: how to assign the bandwidth to clients under multiple wireless providers to minimize the FL
round length (i.e., the latency that FL finishes one round of model training and updating) with bandwidth capability and cost
constraints? We propose a model that maps the problem into a new variant of the knapsack problem, called multi-dimensional max-min
multiple knapsacks (MDM 3KP). Based on MDM 3KP, we create an iterative solution to find the client assignment and bandwidth
allocation that minimizes the FL round length. Comprehensive simulation results show that the solution reduces the FL round length by
up to 70.8% compared with other benchmarks.
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✦

1 INTRODUCTION

The development of wireless networks enables more ma-
chine learning applications to the mobile computing. As
a decentralized approach to machine learning, federated
learning (FL) coordinates clients via a centralized server to
work together towards training a global machine learning
model [1]. However, deploying FL as the application on
wireless network confronts dynamic wireless environment
and limited wireless resources [2]. It urgently motivates
people to develop novel wireless resource management
strategies for FL.

Most existing wireless resource allocation algorithm
(e.g., [3], [4] for video buffering network) have been de-
signed for conventional wireless network systems. They
cannot be used in a network that supports FL. Specifically,
at each round of FL, a client involves downloading the
global model, computing the new local model, and upload-
ing the local model to the server that computes the new
global model for the next round [1], [5]. All clients must
be synchronized towards updating the global model and
one round ends only when the slowest client finishes its
job. This is a unique requirement to design efficient com-
munication mechanisms for FL [6]–[8]. A way to improve
the communication efficiency is to improve the uploading
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and downloading efficiency [9]. In wireless networking, a
client with low signal-to-noise ratio (SNR) suffers a low
transmission rate [10], and thus spends a longer time on
model downloading and uploading. An intuitive way to
improve the transmission efficiency is to allocate more band-
width to the client. However, the total available bandwidth
of the wireless bandwidth provider is limited. Though some
studies propose to use asynchronous FL to avoid the slowest
client, it requires larger computational demand on both
clients and central server [11]. Asynchronous FL usually as-
sumes bounded delay, which is impractical [12]. Therefore,
we aim to design a wireless communication algorithm for
synchronous FL. Given the total limited bandwidth, it is
necessary to allocate a bandwidth to each client and avoid
let some clients waste time to wait for synchronization.

Although existing studies have taken the bandwidth
into consideration, they generally assume that there is one
wireless bandwidth provider to allocate the bandwidth to
the clients [9], [13], [14]. In many real-world scenarios,
bandwidth providers are usually base stations or wireless
access points, which can be owned by multiple wireless
service providers (e.g., Google Fi, a mobile virtual network
operator, can automatically switch between multiple carri-
ers’ facilities [15]) and have different bandwidth capabilities
(e.g., WiFi 5/6 and 4/5G) and cost constraints (e.g., the
monetary cost of data usage). It is important to consider
these practical wireless resource conditions to maximize the
transmission efficiency. A common performance metric for
FL is the round length, which is defined as the total time
to finish one round of FL (including the computational
time and the communication time in one FL round). In
this regard, the communication time due to information ex-
change of FL critically depends on the bandwidth allocaton
in wireless networking, which is our focus in this paper.
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Despite substantial efforts [16]–[18] that have been
focused on wireless resource allocation across different
providers, most of them do not consider the problem of
dynamic bandwidth allocation to minimize the FL round
length. In particular, these existing methods were designed
for conventional tasks over wireless networking and do not
consider the synchronized communication model under FL.
Though the cost budget can limit bandwidth usage, existing
methods do not consider the cost constraints [19], [20]. As
a result, a more practical and general problem remains to
be fully studied: how to assign the bandwidth to clients
under multiple wireless providers to minimize the FL round
length under bandwidth capability and cost constraints?
The problem consists of two coupled parts: (i) which client is
assigned to which provider and (ii) How much bandwidth
should be given to a client by a provider.

In this paper, we focus on the wireless resource alloca-
tion problem under an FL over wireless network scenario
by designing efficient client bandwidth allocation under
multiple bandwidth providers with bandwidth and cost
constraints. We study how clients should be assigned to
bandwidth providers and how much bandwidth should
they get in order to minimize the FL round length. We
show that the straightforward formulation of the problem
leads to a complicated, non-linear, non-convex, combina-
torial problem that is NP-hard (in contrast to the known
bandwidth allocation problem under one provider that can
be solved efficiently by a bisection algorithm in logarithmic
time [14]). We propose a model that maps this optimiza-
tion problem into a new variant of the knapsack prob-
lem, called multi-dimensional max-min multiple knapsacks
(MDM 3KP). Based on MDM 3KP, we create an iterative
solution to find the client assignment and bandwidth al-
location that minimizes the FL round length. We evalu-
ate the proposed MDM 3KP solution via comprehensive
simulations and demonstrate that under various wireless
network settings, the proposed solution is able to reduce
the FL round length by up to 67.2% compared with other
bandwidth allocation algorithms.

Our main contributions are summarized as follows.

• We formulate the client bandwidth allocation problem
under multiple wireless bandwidth providers and take
into consideration the bandwidth cost constraints in
practical wireless FL scenarios.

• We map the bandwidth allocation problem into a pro-
posed MDM 3KP framework and then create an iter-
ative solution to solve the problem. The solution is
shown to converge in a limited number of iterations.

• We conduct comprehensive simulations to show the
proposed MDM 3KP is able to substantially reduce the
FL round length and improve the efficiency of FL over
wireless networking under various conditions.

The organization of the remainder of this paper is as
follows. Section 2 presents the background and the models
of FL over wireless networking. Section 3 formulates our
research problem and motivation of solution design. Sec-
tion 4 shows the mapping from the original optimization
problem to the MDM 3KP framework and describes the
proposed solution. Section 5 demonstrates and discusses the
simulation results. Finally, we summarize the related work
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Fig. 1: Multiple wireless bandwidth providers are available
for clients in FL.

in Section 6 and conclude this paper in Section 7.

2 BACKGROUND AND SYSTEM MODELS

In this section we briefly discuss how FL works over wire-
less networking, and introduce each procedure of FL over
wireless networking. In a typical model of FL, the clients
and the central server jointly train a global model by a
distributed approach. FL clients have different contributions
toward the global model, which can significantly impact the
convergence rate and training accuracy. Therefore, the cen-
tral server usually adopts a client scheduling algorithm to
select a fraction of clients for training [21], [22]. Since differ-
ent clients have different computing capabilities, local data
sizes, and SNRs, client scheduling impacts the computation
time and transmission time. This incurs the challenge of
synchronization and minimization of the FL round length.
In the wireless communication domain, a client finishing
the data transmission quickly will help reduce the FL round
length, bandwidth allocation thus play a critical role in
reducing the FL round length by improving the wireless
communication efficiency in FL data exchange.

As shown in Fig. 1, we consider an FL over wireless
networking scenario, in which a set of wireless bandwidth
providers I = {1, 2, ..., I} is available to FL clients J =
{1, 2, ..., J} for their model data exchange with the central
server. Note that J is necessarily the set of all nodes in
the network, but is the set determined by an existing client
scheduling algorithm [21], [22] to participate the FL process.
We assume in this paper that J are already known and
focus on the follow-on bandwidth allocation problem. For
each client, we must assign it to a bandwidth provider at
the beginning of an FL round. The clients will download
the global model, then train and update their local models.
The FL round finishes once the server finishes computing
the new global model.

The FL round length is the time duration of finishing
one FL round, which depends on the slowest client in the
wireless network as the fast clients have to wait for the
slowest client. Given J by a client scheduling algorithm that
aims to maximize the learning performance, our objective is
to minimize the model data communication delay in terms
of the FL round length by properly assigning clients to
bandwidth providers and allocate them with proper band-
width. Before we proposed the design for minimization, it
is necessary to model all the time duration components that
constitute the FL round length.

• Download Transmission (DT). sDT
j is the downloaded

model size for the j-th client. Although sDT
j is usually
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the same for each client in FL, we adopt this notation for
the generality of modeling. At each round, each client
will be assigned to a provider and obtain bandwidth
from it. {κi} is the set of indices of clients that are
assigned to i-th provider. bi,j is the assigned bandwidth
value of i-th provider to j-th client. We have bi,j ̸= 0
when j ∈ {κi} and bi,j = 0 when j /∈ {κi}. In other
words, a client can only be assigned to one provider and
obtain the bandwidth for communication, and cannot
connect to two or more providers at the same time.
RDT

i,j is the SNR of the download channel from the i-
th provider to the j-th client. The DT time based on the
Shannon capacity is written as

tDT
i,j =

sDT
j

bi,j log2(1 +RDT
i,j )

, j ∈ κi. (1)

• Local Computation (LC). This is the local model train-
ing time. It is decided by the computing capability, data
size, and FL algorithm. The incurred LC time for j-
client is denoted as tLC

j .
• Upload Transmission (UT). sUT

j is the local model
upload data size and RUT

i,j is the SNR of the upload
channel from the j-th client to the i-th provider. We
write the UT time as

tUT
i,j =

sUT
j

bi,j log2(1 +RUT
i,j )

, j ∈ κi. (2)

• Global Computation (GC). This is the time required
by the server to perform model aggregation, which
depends on the server’s capability. We write the GC
time as a constant tGC .

Accordingly, the FL round length is denoted as

max
i∈I,j∈κi

(tDT
i,j + tLC

j + tUT
i,j + tGC). (3)

3 BANDWIDTH ALLOCATION UNDER MULTIPLE
PROVIDERS

In this section, we first state and formulate our research
problem, then discuss the direction of creating the iterative
solution to our formulation with detailed steps. We sum-
marize major symbols used in our problem formulation in
Table 1.

3.1 Problem Statement and Formulation

Based on the modeling in Section 2, our objective is to find
the best client-provider assignment {κi} and bandwidth
values {bi,j} for all clients and bandwidth providers such
that we can minimize the FL round length (3). The mini-
mization is round-based, which is not affected by the com-
putation and convergence (e.g, number of iterations) factors
over rounds. Since the global computation time tGC is not
affected by {bi,j} and κi in (3), the objective is equivalent
to minimizing maxi∈I,j∈κi (tDT

i,j + tLC
j + tUT

i,j ), where the
model download and upload times tDT

i,j and tUT
i,j are critical

to the value of FL round length.
In real-world scenarios, multiple bandwidth providers

are usually available to clients. It is beneficial to assign
clients to appropriate providers during wireless resource

TABLE 1: Notations.

Variable Meaning
I bandwidth provider set
I total number of providers
J scheduled client set
J total number of clients
F cost constraint of the system
fi cost at i-th provider
B

′
i available bandwidth at i-th provider

B
′
i available bandwidth at i-th provider

bi,j bandwidth allocated to j-th client by i-th provider
Bi used bandwidth in an iteration
κi clients assigned to i-th provider
{bi,j} optimal bandwidth allocation in an iteration
{κi} optimal client assignment in an iteration
wi,j mapped j-th client weight at i-th provider
pi,j mapped j-th client price at i-th provider
t∗i optimal FL round length of i-th provider in an

iteration

allocation for various performance gains [18], [23], espe-
cially in large-scale wireless networks. In addition, a client
can have different SNRs to different providers and the cost
of using the bandwidth and data transmission (e.g., the
monetary cost of data in practice) can also be different. All
these factors will affect the value of tDT

i,j and tUT
i,j . As a

consequence, different from existing studies on bandwidth
allocation for FL [9], [13], [14], we consider a more practical
yet complicated scenario by adding multiple bandwidth
providers and the cost constraint to bandwidth allocation
for FL over wireless networking. Specifically, we formulate
the problem as the following optimization

Objective: min
bi,j , κi

max
i∈I, j∈κi

(tDT
i,j + tLC

j + tUT
i,j ). (4)

Subjective to: κm ∩ κn = ∅ ∀m,n ∈ I and m ̸= n, (5)
bi,j = 0 ∀ j /∈ κi, (6)∑
i∈I

(fi
∑
j∈κi

bi,j) ≤ F, (7)∑
j∈κi

bi,j ≤ B
′

i ∀i ∈ I, (8)

where constraint (5) means that any client cannot be as-
signed to more than one provider at the same time within
one round. Constraint (6) shows the j-th client does not
obtain any bandwidth from the i-th provider if it is not
assigned to the provider. Constraint (7) limits the cost of to-
tally allocated bandwidths within the maximum cost budget
F and fi is a cost factor for the i-th provider. In a real-world
scenario, the cost in constraint (7) is usually a monetary cost
and associated with the usage of bandwidth. Constraint (8)
means that the total allocated bandwidth cannot exceed a
provider’s maximally available bandwidth B

′

i .

3.2 Solution Design: Motivation and Overview
In conventional FL wireless network model with one band-
width provider, the bandwidth allocation can be solved by a
bisection algorithm in logarithmic time [14]. Solving (4) for
{κi} and {bi,j} in our model involves both combinatorial
optimization (to obtain {κi}) and continuous optimization
(to obtain {bi,j}), which is in fact NP-hard because of the
following reason: If (7) is removed, and bi,j , ∀i ∈ I is
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a constant value, then (4) is a known NP-hard multiple
knapsack problem [24], [25]. Adding more constraints and
making bi,j a variable will make (4) equivalently NP-hard.
Therefore, it is not practical to analytically find out the
optimal solution.

Our strategy to solve (4) is to separate it into sub-
problems that are easier to solve towards minimizing the
FL round length. Firstly, we look at the situation where
{κi} is known. Given a fixed, known set of {κi}, problem
(4) degenerates into a continuous optimization-only sub-
problem without any combinatorial optimization. In this
sub-problem, suppose that we can design an approach
to find {bi,j}. Then, we define another sub-problem, in
which we keep trying to update the values of {κi} (and
accordingly finding new values of {bi,j}) to progressively
reduce the FL round length. Thus, our strategy is an iterative
approach including two sub-problems: (i) solving (4) given
{κi} and (ii) updating new values of {κi}. In the following,
we describe the proposed approaches to these two sub-
problems separately.

3.2.1 Solving (4) given {κi}
In this sub-problem, {κi} is known and (4) is similar to a
single-provider allocation problem in [14]. However, (4) still
has a budget constraint (7) across multiple providers and
we cannot directly solve this sub-problem using multiple
rounds of a single-provider allocation algorithm.

Given {κi}, problem (4) degenerates into the problem
that finds the allocation of {bi,j} to minimize the FL round
length. However, the allocation of {bi,j} in different band-
width providers is interconnected with each other because
of constraint (7). As a result, we aim to decompose the
bandwidth allocation problem of multiple providers into
multiple independent single-provider problems. To this end,
we denote the total bandwidth usage of the i-th provider
by Bi =

∑
j∈κi

bi,j , where Bi is determined by us before
we allocate bi,j . It is clear that the usage cannot exceed
the provider’s bandwidth limit, i.e., Bi ≤ B′

i. Suppose
we know the values of {Bi}, the joint allocation across
multiple providers will become multiple single-provider
allocation ones. As a recent study [14] constructed a model
and designed a bandwidth allocation solution under a single
bandwidth provider with a bandwidth budget, we can
leverage the results in [14] to solve the bandwidth allocation
for the i-th provider, if its budget {Bi} is given.

In particular, knowing both {κi} and {Bi}, we denote by
t∗i the minimum FL round length under the i-th bandwidth
provider. It is found in [14] that every client in {κi} should
have the same sum of upload time, download time, and
local computation time to obtain t∗i , which is written as

t∗i = tLC
j + αi,j/bi,j ∀j ∈ κi, (9)

where αi,j =
sDT
j

log2(1+RDT
i,j )

+
sUT
j

log2(1+RUT
i,j )

; and the optimal
bandwidth allocation is

bi,j =
αi,j

t∗i − tLC
j

∀j ∈ κi. (10)

Given a value of Bi for a single provider, we can use (9)
and (10) to solve the bandwidth allocation for the provider.
As a result, with {κi} known, the original optimization (4)

can be simplified as a problem of allocating total band-
widths {Bi} to multiple providers, which is formulated as

Objective: min
Bi

max
i∈I

t∗i . (11)

Subjective to: Bi < B
′

i ∀i ∈ I, (12)∑
i∈I

(fiBi) ≤ F. (13)

There is no analytical solution to the problem (11) as it is
a discrete minimax problem [26]–[29]. Heuristic derivative-
free optimization has been adopted to solve (11). Common
methods, such as genetic algorithms, Nelder-Mead, and par-
ticle swarm [30]–[32], are not readily adopted here as they
are usually focused on solving a min or max optimization
instead of the more complicated minimax problem. As such,
we adopt the grid search to find the best {Bi} to solve (11).
The searching bounds of {Bi} can be set empirically and
depend on the size of {κi}. Intuitively, we should assign a
large search range for a provider if it has to support more
users. Note that the computational complexity of the grid
search is not the bottleneck for the overall solution.

3.2.2 Iteratively updating {κi}
In the first sub-problem, we can solve the multiple provider
allocation if we have a fixed set of {κi}. In this second sub-
problem, we aim to update {κi} such that we can gradually
have new combinations of {κi} that achieve a better FL
round length.

Since finding a new set of {κi} belongs to combinatorial
optimization, our approach is to map and adapt this sub-
problem into a new variant of the knapsack problem [24].
The knapsack problem aims to solve the Max-Min combina-
torial optimization problem. It involves multiple knapsacks
and its goal is to maximize the knapsack which has minimal
cumulative profit. Although it is difficult to directly map the
problem in (4) into a standard knapsack problem [24], we
can also find some similarity between these two problems.
For example, assigning each client to a bandwidth provider
is similar to place each item in a knapsack. Furthermore,
the capacity of the i-th knapsack is similar to the total
bandwidth usage of the i-th provider Bi. This motivates
us to design a new type of the knapsack model and enable
the mapping. Our proposed model takes {Bi} as the input
and yields a solution of {κi}. We will present our proposed
approach to solve the second sub-problem in details in the
next section.

3.2.3 Summary and Initialization
Fig. 2 shows the overview of our proposed iterative solution
to (4) with two steps: 1) In the first sub-problem, under
tentative values of {κi}, we find the optimal values of {Bi};
2) In the second sub-problem, we use the {Bi} found in
Step 1 to find an updated set of {κi} and the FL round
length. Then, we go back to Step 1 and repeat iteratively
until we can no longer obtain a better FL round length.

As Fig. 2 shows, the client assignment {κi} is always
updated from a previous one in each FL round. We should
assign initial values of {κi} at startup and then initialize
{Bi}. We propose two different initialization approaches
(Random and SNR-based) to initialize {κi}.
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Fig. 2: Overview of the iterative solution

• Random. We can always randomly assign clients to
bandwidth providers and produce the initial version of
{κi}. The random initialization can be used as a baseline
for performance comparison.

• SNR-based. As SNR is one of the most critical factors
to be considered for resource allocation in wireless commu-
nication. We can initially assign each client to the provider
whose signal has the highest SNR such that the client should
obtain the best data rate and delay from the provider. To
avoid overly imbalanced assignment (e.g., all clients are
initially assigned to one provider in rare cases), we set a
limit on the number of clients that can be assigned to each
provider. When a provider reaches the bandwidth limit, it
would be unavailable for initial assignment. Specifically, as
j increases from 1 to J , the initialization assigns the j-th
client to the i∗-th provider with i∗ = mini∈Ij

αi,j , where Ij
is the set of providers that are still available for assignment
after the first j − 1 clients have been assigned.

4 CLIENT ASSIGNMENT: FORMULATION AND SO-
LUTION

In this section, we describe how to determine the client
assignment {κi} in the second sub-problem towards the
iterative solution to (4), which is shown in Fig. 2. We first
propose a multi-dimensional max-min multiple knapsacks
(MDM 3KP) model to formulate the sub-problem of updat-
ing client assignment {κi}, and then describe our solution
to the proposed problem. We do the mapping because
MDM 3KP can help us to update {κi} more efficiently.

4.1 MDM 3KP Formulation

We can find that there is some similarity between this
sub-problem and the max-min multiple-knapsack problem
(M3KP) as well as multi-dimensional multiple knapsack
problem (MDMKP) [24], [25], [33]. In Fig. 3, we illustrate
the analogy and mathematical similarity between the three
problems. For example, MDMKP consists of multiple knap-
sacks and the items have different weights and profits
when they are placed in different knapsacks, but it is not
a max-min problem. M3KP is a max-min problem, but items
always have the same weight and profit when placed in
different knapsacks. In particular, given items in standard
M3KP, every item has a weight and a profit with a ca-
pacity constraint that limits the cumulative weight. The
objective function aims to find a solution of placing items
in knapsacks that can maximize the cumulative profit of the
items. The similarity between M3KP and our sub-problem
includes (i) both of them belong to the minimax problem
involving combinatorial optimization; (ii) assigning clients
to bandwidth providers is similar to placing items in knap-
sacks; and (iii) the capacity constraint in M3KP is similar
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Fig. 3: Analogy between assignment and knapsack prob-
lem

to constraint (12). Therefore, it motivates us to propose a
knapsack-modeling approach to solve the sub-problem.

However, there is no immediate mapping to the knap-
sack problem without appropriately specifying the weights
and profits. Moreover, our modeling (11) leads to multiple
weights and profits for each client because of multiple
bandwidth providers, which differ from the same weight
and profit modeling for each client in each knapsack in
M3KP. As a result, we propose a new MDM 3KP model to
formulate our sub-problem.

Objective: max min
i∈I

∑
j∈J

pi,jxi,j . (14)

Subjective to:
∑
j∈J

wi,jxi,j ≤ Bi ∀i ∈ I, (15)∑
i∈I

xi,j = 1 ∀j ∈ J , (16)

xi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J , (17)

where (15) denotes the cumulative weight cannot exceed
the capacity of the i-th knapsack Bi; and xi,j = 1 if the j-th
client connects to the i-th provider, and 0 otherwise. Now,
the key to enable the mapping is to find an approach to
obtain weights wi,j and profits pi,j for the j-th client to the
i-th bandwidth provider.

1) Choosing weight wi,j : In MDM 3KP, every knapsack
can only store a limited number of items because the ca-
pacity bounds the cumulative weight from above. In this
sub-problem, every provider should also communicate with
a limited number of clients because {Bi} limits the total
bandwidth usage. The larger bi,j a client has, the more
weight it should have. This similarity inspires us to use bi,j
to decide wi,j , i.e., wi,j of the j-th client to the i-th provider
is calculated by wi,j = bi,j . Note that as shown in Fig. 2, in
each iteration, the solution to the first sub-problem produces
the values of bi,j . As a result, we can use this value as the
weight when we solve the second sub-problem.

In this way, we obtain the weight wi,j of the j-th client
when the client is assigned to the i-th provider. We also need
to calculate the weight wk,j for the k-th provider (k ∈ I
that the j-th client is not assigned to and k ̸= i), where the
solution to the first sub-problem does not provide. To this
end, we consider such a question: in which situation may
the j-th client be assigned to {κk} instead of {κi}?

We propose to find the result by SNR. Given {κk} and
{Bk}, we can find the client in {κk} which has the closest
SNR to the j-th client’s SNR, i.e., finding the y-th client
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such that y = miny |αk,j − αk,y|. Since they have the closest
SNRs, the j-th client is likely to use the closest bandwidth
if we replace the y-th client in {κk} with the j-th client.
This replacement is likely to have the minimum change to
the FL round length. Then, we can compute the bandwidth
allocation bk,j using the replacement set {κk} ∪ {j}−{y},
and set the weight as wk,j = bk,j . By using this way, we can
obtain the weights of the j-th client to all providers.

2) Choosing profit pi,j : With the optimization structure
similarity between our sub-problem and MDM 3KP, the
objective of our sub-problem is to minimize the FL round
length in contrast to the objective of MDM 3KP to maximize
the profit. This inspires us to use an inversely proportional
model to map the FL round length in our problem into the
profit in MDM 3KP.

To build this model, we first consider the impact of
assigning the j-th client to the i-th provider. It is clear when
the FL round length for the i-th provider will increase when
the j-th client is added. A very large increase value indicates
that it may be not a good choice to assign the j-th client to
the i-th provider. It should also indicate in the MDM 3KP
problem that placing the j-th item in the i-th knapsack is a
low profit allocation. Therefore, we define the profit as the
reciprocal of the FL found length increase value.

In particular, given {κi} and {Bi}, we use (9) to calculate
t∗i , then remove the j-th client from {κi}, compute the new
FL round length t̃∗i , and finally define the profit as

pi,j =
1

t∗i − t̃∗i

To obtain pk,j ∀k ∈ I and k ̸= i, we adopt the way
similar to choosing the weights: we first replace the y-th
client which has the closest SNR the j-th client’s SNR, then
calculate the profit as pk,j = 1

t∗k−t̃∗k
.

After we obtain the full list of weights and profits for
every client, we introduce our approach to solve MDM 3KP
in the next subsection.

We note that the mapping uses heuristic approximation
to sacrifice the solution optimality (which is generally in-
tractable) for a feasible solution to this NP-hard problem.
Obtaining the inapproximability of an approximation al-
gorithm is necessary for evaluating the loss of optimality
[34]. However, inapproximability of the max-min multiple
knapsacks problem is not well explored in existing studies
[24], [25]. Therefore, the evaluation on the optimality of
mapping may not be feasible and we use simulations to
evaluate the performance of the proposed solution.

4.2 Solution Approach
The proposed MDM3KP problem is a more complicated
variant of the known M3KP problem, where it is NP-Hard
and no proper solution to directly map [24], [25]. Therefore,
we create our solution based on adapting the branch and
bound algorithm for M3KP in [24].

4.2.1 Algorithm Design
The branch and bound algorithm is designed based on
the tree structure, which is commonly used to solve the
combinatorial optimization problem, such as the multiple
knapsack problem [35]. We illustrate the client assignment

1 2

1 2 1 2

j=1

j=2

i=1 i=2

Children

Bandwidth Provider

Client

Root

Fig. 4: Tree Structure. Every circle is a node. Two nodes
in dotted rectangle are the children of upper node. The red
path means the first client is assigned to the second provider,
while the 2nd client is assigned to the first provider.

using a tree structure: 1) layer of the tree: the j-th layer of
the tree shows the possible assignment of the j-th client. The
client is assigned to one of the providers; 2) node of the tree:
a node on the j-th layer of the tree represents a choice of
a bandwidth provider out of the total I providers for the
j-th client. Each node has pi,j and wi,j . As a result, a path
from the root to a leaf in the tree forms a candidate group
of client selection {κi}. Fig. 4 shows an example with I = 2
providers and J = 2 clients and a selection path: starting
from the root, client 1 is first assigned to provider 2, and
then client 2 is assigned to provider 1.

The known branch and bound method in [24] cannot be
directly used to solve our MDM3KP problem, in which a
client has different weight and profit values when the client
is assigned to a different bandwidth provider. We adapt
the branch and bound algorithm in [24] to MDM3KP and
improve its performance.

The number of nodes in the tree increases exponential
with increasing the number of I and J . For large values of I
and J , it becomes computationally difficult to enumerate all
possible paths in the tree to maximize the profit. To design
a feasible solution, we first introduce the two following
definitions.
Definition 1. (Minimum cumulative profit) Nodes in dif-

ferent layers are connected to form a path. A path is
a client assignment {κi} for every bandwidth provider.
Given a path, the cumulative profit of i-th bandwidth
provider is the sum of pi,j of all i-th nodes on the path.
The minimum cumulative profit is the minimum in all
providers’ cumulative profits on the path.

Fig. 5 shows an example for {κi} selections with their
cumulative profits: the first client with profit p1,1 and the
second one with p1,2 are assigned to the first provider that
has a cumulative profit of p1,1 + p1,2; and the third client
with p2,3 is assigned to the second provider that has a
cumulative profit of p2,3. Then, the minimum cumulative
profit is min{p1,1 + p1,2, p2,3}.
Definition 2. (Conditional upper bound) A conditional up-

per bound of the node is an upper bound of the mini-
mum cumulative profit of the node and all its descen-
dants.

Based on the two definitions, we use the two tree-
pruning strategies in branch and bound to reduce the set
of possible path candidates.
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1

𝑚𝑖𝑛{𝑝1,1 + 𝑝1,2,𝑝2,3} 

 

j=2

j=1

Root

1-st client is assigned to 1-st provider

2-nd client is assigned to 1-st provider

3-rd client is assigned to 2-nd provider

Fig. 5: Concept of minimum cumulative profit.

Pruning Strategy 1: Remove all nodes that violate con-
straint (15).

Pruning Strategy 2: Remove a node and all its descen-
dants if the conditional upper bound of the node is lower
than the lower bound of maxmini∈I

∑
j∈J pi,jxi,j in (14),

• Finding a lower bound: We can leverage the
method in [24] to compute the lower bound
of maxmini∈I

∑
j∈J pi,jxi,j in (14). In particular,

we search for a candidate of {κi} that makes
maxmini∈I

∑
j∈J pi,jxi,j as large as possible such that

we have a tight bound. We adopt the local search as a
method to find such a candidate of {κi}.

• Finding a conditional upper bound: Choose a node as
well as its path (i.e., the path from the root to the node
in the tree). According to the solution to the M3KP
problem [24], we denote (i) the cumulative profit at the
node for the i-th knapsack to be Pi, ∀i ∈ I , (ii) the
upper bound of the possible increase of the cumulative
profit as ϕi, ∀i ∈ I , and (iii) the upper bound of the pos-
sible increase of the cumulative profit of the surrogate
relaxation as ϕ0 [24], [35]. Surrogate relaxation unites
multiple knapsacks and their capacities into a single
knapsack thus a single knapsack problem is obtained.
The problem of surrogate relaxation (18) is a max-
min linear programming problem with linear coupled
constraints. Specifically, the conditional upper bound of
a node is formulated as

Objective: max
∆Pi

min
∀i∈I

(Pi +∆Pi). (18)

Subject to:
∑
∀i∈I

∆Pi ≤ ϕ0, (19)

0 ≤ ∆Pi ≤ ϕi, ∀i ∈ I, (20)

where we need to find ∆Pi such that the upper bound
min∀i∈I(Pi +∆Pi) is as large as possible. Based on Pi,
ϕi and ϕ0, [24] computes a conditional upper bound
for a node. However, the solution is only limited to a
two-dimensional space, which cannot be used in our
MDM 3KP scenario with more than two providers. To
solve (18) in a higher dimensional space, a lexicographic
minimax approach [36] is adopted here.

By using the MDM 3KP based solution with the two pruning
strategies, we can effectively solve the second subprob-
lem. As a result, we show the overall iterative solution of
bandwidth allocation and client assignment under multiple
bandwidth providers in Algorithm 1.

Algorithm 1 The Iterative Solution.

1: Input: Weight wi,j ; Profit pi,j , i ∈ I and , j ∈ J ;
Capacity Bi, i ∈ I ; ϵ

2: Output: X; FL round length
3: wi,j = wi,j × ϵ
4: Initialize X as I × J zero matrix. It is the matrix of xi,j

5: Initialize empty set D
6: D ← D ∪X
7: for j = 1 to J do
8: for X ∈ D do
9: for i ∈ I do

10: xi,j of X← 1
11: D ← D ∪X
12: xi,j of X← 0

13: for X ∈ D do
14: If X violates any one of the 2 strategies
15: D ← D −X
16: for X ∈ D do
17: Calculate FL round length of X by (9)
18: Return: X with minimal FL round length and its FL

round length

Note that we associate an empirical parameter ϵ with
the weight wi,j in Algorithm 1. As wi,j = bi,j for given κi

in our mapping, the sum of wi,j in κi is exactly equal to the
capacity Bi, which may limit the search directions in the tree
due to the constraint

∑
j∈κi

≤ Bi. We choose ϵ ∈ [80%, 95%]
as a relaxation parameter to create more search possibilities
in the tree.

4.2.2 Low-Complexity Version of MDM 3KP Solution
The complexity of the MDM 3KP solution which is based
on branch and bound grows substantially with the number
of providers. Although there are usually not too many
providers available in an area, it is still worth further reduc-
ing the complexity of the MDM 3KP solution when there
are more providers for clients to choose. To this end, we
design a low-complexity version of the solution by dividing
the optimization with more than two providers into sev-
eral subproblems, each of which has a certain amount of
providers. Specifically, the division methods are composed
of the following steps:

1) Initializing client assignment by the SNR-based
method.

2) Given {κi}, according to (11), we solve {Bi} as the
initialization of {Bi}.

3) Dividing all I providers to ⌈I/S⌉ groups of S providers
(the last group has I − S⌈I/S⌉). For example, when
I = 5 and S = 2, the 5 providers are divided into 3
groups: the first group includes providers 1 and 2; the
second group includes providers 3 and 4, and the last
group only contains provider 5. In practice, S is usually
2 or 3 as there are usually a limited number of providers
available. The budget F is also divided. Specifically, the
divided budget of group k is

∑
m∈Mk

Bmfm, where
Mk is the set of provider indices in group k.

4) For each group, at each iteration, we solve (4) individu-
ally by the MDM 3KP approach, and then obtain the FL
round length of each group. As a result, the FL round
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length of the original problem is the maximal FL round
length among all groups.

Theoretically, the complexity of MDM 3KP solution can
grow exponentially, which is considered to be the worst
case. The low-complexity version via dividing can reduce
the base of the exponential growth and accordingly reduces
the overall complexity when there are a relatively large
number of bandwidth providers available in the network.

4.3 Complexity Analysis
In the following, we adopt the commonly used average case
approach [37], [38] to measure the time complexity of the
branch and bound algorithm for MDM 3KP.

The calculation of the time complexity is as follows: 1)
The number of MDM 3KP iteration in Fig. 2 is set to be L. 2)
The complexity of sorting profit/weight ratio is O(JlogJ).
3) After the profit/weight ratio is sorted, MDM 3KP begins
to expand nodes. Without pruning, the total expanded
nodes in the tree in each iteration is I(IJ − 1)/(I − 1). We
use parameter β1 to show the percentage of pruned nodes
thus the total number of expanded nodes in each iteration
of MDM 3KP is β1I(I

J − 1)/(I − 1). 4) Every expanded
node is tested by the two strategies. The complexity of
pruning strategy 1 is O(IJ) + O(I) = O(IJ) as O(IJ)
is needed to compute the cumulative weight of each node
and O(I) is the worst case to find the cumulative weight
that violates the capacity. 5) To compute the complexity of
pruning strategy 2: first, we find the complexity of finding
the lower bound. The 2-opt local search method is applied
with complexity of O(J2) [39]; then, each node needs at
most I × O(J) = O(IJ) to find Φ0 and Φi, and solving
(18) incurs the complexity of O(I). Overall, the complexity
of finding the conditional upper bound is O(IJ) at each
node. 6) There are IJ−β2 remaining nodes as the output
of MDM 3KP at each iteration. We need to calculate the FL
round length of each node and find the minimum. Since the
bisection method has complexity O(log2(γ2 − γ1)/ζ) [40]
(γ and ζ are input parameters for bisection method), the
complexity to find minimum is IJ−β2 ×O(log2(γ2−γ1)/ζ).

Based on the analysis, the overall complexity of
MDM 3KP is O(LIJ+2−β1J + LIJ−β2 log2(γ2 − γ1)/ζ). For
the low-complexity version, I is replaced by S in the com-
plexity notation.

5 SIMULATION EVALUATION

In section, we conduct comprehensive simulations to eval-
uate the effectiveness of our proposed method. We first
introduce the setups, then present and discuss the results.

5.1 Performance Benchmark and Parameter Settings
Benchmarks: We consider FL bandwidth allocation algo-
rithms in Table 2 for the performance comparison purpose.
We note that these existing algorithms may be designed not
limited to bandwidth allocation, but we only use their band-
width allocation parts for comparisons. Since their algo-
rithms are not designed for multiple bandwidth providers,
we assume that a client is assigned with a provider based
on the best SNR, which is common in today’s wireless
networks.

TABLE 2: Benchmark methods for performance comparison.

Name Essential Methodology
FedCS Allocating bandwidths to clients based on the

uniform distribution [22].
HybridFL Allocating bandwidths to clients based on the

Gaussian distribution [41].
J-CSBA Allocating bandwidth proportional to individ-

ual round length [9].
O-RANFed Optimal allocation under single provider with

minimum bandwidth constraint for clients [42].
CSIBA Latency constrained optimal allocation for sig-

nal provider, plus uniform allocation if there is
excess bandwidth [43].

Random Our proposed MDM 3KP solution with random
initialization of client assignment.

SNR MDM 3KP with SNR-based initialization.

Evaluation Metric: We use the FL round length as
our performance metric and define the length reduction
ratio R as the performance improvement of the SNR-based
MDM 3KP solution over other benchmarks; i.e.,

R = (L∗ − LSNR)/L∗, (21)

where LSNR is defined as the FL round length achieved
by the SNR-based MDM 3KP solution and L∗ denotes the
length by other benchmarks.

FL Networking Settings: We adopt the following de-
fault basic settings in our simulations and will evaluate
the performance of our proposed solution under a range
of parameter values. We note that we follow the similar
SNR and transmission rate setups in the literature related
to wireless resource allocation for FL [14], [44].

• Download Transmission SNR RDT
i,j for the j-th client

follows a uniform distribution in [5, 25] dB in differ-
ent rounds. For the j-th client within each round, its
SNR variance among different bandwidth providers is
uniformly distributed in [80%, 120%].

• From the j-th client towards the i-th bandwidth
provider, the Upload Transmission SNR RUL

i,j = ρRDT
i,j

with ρ uniformly distributed in [80%, 120%].
• Local Computation time tLC

j for the j-th client follows
a uniform distribution in [0.03, 0.07] seconds for each
round [14].

• We set data size sDT
j = sUT

j in the same round for
the j-th client, and every client has the same data size
in the same round. The data size follows a uniform
distribution of [0.3, 0.5] Mbits in different rounds [14],
[42], [45].

• We obtain the simulation results averaging over 200
runs for each scenario. We choose the default parameter
settings as follows: I = 2, J = 20. F = 13.2, f1 = 1,
f2 = 1.2. B

′

1 = 7.4 MHz, B
′

1 = 6.6 MHz. These de-
fault values are chosen such that the data transmission
time is comparable to the FL computation time in the
network.

• The limit of the SNR-based initialization is set to be
3/(2I) as discussed in Section 3.2.3, and S = 2 for
the evaluation of the low-complexity version in Sec-
tion 4.2.2.
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Fig. 9: FL round length of MDM 3KP and all benchmarks under various cost budgets.

5.2 Results
In the following, we show the performance of MDM 3KP
under various settings. In order to show the advantage
of the proposed MDM 3KP, we organize and present the
simulation results as follows. We first show how the internal
setups of MDM 3KP affects its performance (in terms of
the reduction of FL round length and the efficiency) in
Section 5.2.1. Then, we show the advantages of MDM 3KP
over other benchmarks under the default scenario in Section
5.2.2, and under scenarios with different costs and band-
widths in Section 5.2.3. Finally, we add more bandwidth
providers in Section 5.2.4 to show that MDM 3KP still main-
tains its performance compared to other benchmarks.

5.2.1 Performance vs number of iterations of MDM 3KP
In this experiment, we show how the proposed MDM 3KP
solution performs with different setups (e.g., number of
iterations and choice of initialization) used in its algorithm.

Fig. 6 shows the performance vs number of iterations of
MDM 3KP. When the MDM 3KP solution starts with ei-
ther Random or SNR-based initialization proposed in Sec-
tion 3.2.3, the FL round length (with its standard deviation
shown) decreases as the number of iterations increases. In
addition, the SNR-based initialization generally leads to a
shorter FL length and a faster convergence rate than the
Random initialization. For example, the SNR-based initial-
ization decreases from 0.39 seconds to 0.35 seconds, with the
ratio 8.6%. The Random initialization decreases from 0.42
seconds to 0.36 seconds, with the ratio 14.6%. The difference
between the two types of initialization varies from 0.031 to
0.003 at different iterations.

Fig. 7 box-plots the number of remaining nodes for
branch and bound in the tree constructed in our MDM 3KP
solution for each iteration. We can observe that over the
iterations, the mean number of nodes of the tree first in-
creases from around 100000, and then converges at less
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than 200000. This means that as the algorithm progresses,
it finds more possible solution values and keeps checking
the values to find a solution that approaches the nearly
optimal point. Compared with 220, we prune 80% to 90%
nodes. It is also noted in Fig. 7 that the allocation with
SNR-based initialization has more nodes in the tree than
Random-Based, indicating that the SNR-based initialization
is more likely to have a better solution than Random-based.

5.2.2 Comparison with Different Benchmarks

Next, we show the advantage of MDM 3KP over the bench-
marks under the default scenario. Fig. 8 compares the FL
round length between MDM 3KP with SNR-based and Ran-
dom initializations in comparison with other benchmarks.
We can see from the figure that the first 5 benchmarks
adopted from others have FL round length of 0.69 seconds
to 0.43 seconds; in contrast, MDM 3KP with SNR-based ini-
tialization achieves the best performance with 0.34 seconds
and Random initialization has 0.35 seconds. The results
of Fig. 8 show the performance advantage of MDM 3KP
for bandwidth allocation for FL in the simulated wireless
network with default settings. For example, the length re-
duction ratio of MDM 3KP with SNR-based initialization
over HybridFL is 50.7% and over O-RANFed is 20.9%.

5.2.3 Performance under Various Cost Budgets

Fig. 8 shows the initial advantage of MDM 3KP under our
default scenario with a fixed cost budget. We now compare
MDM 3KP with other benchmark algorithms under various
cost budgets. In particular, we measure the FL round length
reduction by MDM 3KP in comparison with other bench-
marks under a range of cost budget values B′

1, B′
2 and F

(with I = 2 and J = 18) in Fig. 9. From the figure, we
can see that overall, MDM 3KP with either SNR-based or
random initialization has the performance advantage over
other benchmarks. The results of SNR-based initialization
are generally better than Random initialization. For exam-
ple, when F = 9, B′

1 = 2 and B′
2 = 5, the FL round

length of HybridFL is 1.56 seconds, and MDM 3KP can
reduce the length by 64.6% and 62.8% to 0.55 and 0.59
seconds with the SNR-based and Random initializations,
respectively. Meanwhile, SNR-based initialization is 6.8%
better than Random initialization.

Table 3 shows the FL round length reduction ratios of
SNR-based MDM 3KP over Random initialization and 5
benchmarks. It is observed from the table that MDM 3KP
can achieve a length reduction ratio up to 66.5% under a
wide range of cost budget values. The reduction ratio can
be as low as 13.3% when F = 15, B

′

1 = B
′

2 = 9. Generally
the reduction is higher than 25%. Table 3 also shows that
the SNR-based initialization is generally better than the
Random initialization.

The results of Fig. 9 and Table 3 are obtained with the
default values of cost factors f1 = 1.0 and f2 = 1.2. We
also evaluate the impacts of cost factors on the FL round
length of MDM 3KP with SNR-based initialization in Fig. 10.
In particular, we fix I = 2, J = 18, B

′

1 = 3.5, B
′

2 = 5, and
F = 9 and vary the values of f1 and f2 from 0.7 to 1.3. We
observe that the FL round length is reduced effectively by
MDM 3KP for all pairs of f1 and f2. For example, when f1 =

f2 = 0.7, the FL round length of J-CSBA is 0.67 seconds and
SNR-based MDM 3KP is 0.43 seconds. When f1 = f2 = 1.3,
the FL round length of O-RANFed is 0.65 seconds and SNR-
based MDM 3KP is 0.45 seconds. Generally, the reduction
ratio varies between 59.3% and 28.7%. As a result, Fig. 10
demonstrates the uniform benefits achieved by MDM 3KP
under a range of cost factor values.

5.2.4 Performance with More Providers
Now we evaluate the advantage of using MDM 3KP over
existing benchmarks in the scenarios of three and four
wireless service providers. We adopt the low-complexity
version of the MDM 3KP solution in Section 4.2.2 to reduce
the computational complexity of MDM 3KP.

Fig. 11 compares the FL round lengths of MDM 3KP
and 5 benchmarks under a three-provider scenario with
parameters F = 13.8, f1 = 1, f2 = 1.1, f3 = 1.2, B

′

1 = 3.4,
B

′

2 = 5.2, B
′

3 = 4.5. Generally, we can observe from
the figure that MDM 3KP is able to substantially reduce
the FL round lengths, leading to length reduction ratios
ranging from 35.1% to 57.7%. For example, when there
are J = 32 clients, the length of HybridFL is 1.22 seconds
and MDM 3KP with SNR-based initialization is 0.52 seconds
(i.e., a reduction of 57.4%). SNR-based initialization is gen-
erally better than the Random initialization.

Fig. 12 shows the FL round lengths of MDM 3KP and
other benchmarks under four providers with parameters
F = 18.1, f1 = 1, f2 = 1.19, f3 = 1.09, f4 = 0.9,
B

′

1 = 2.1, B
′

2 = 5.89, B
′

3 = 6.38, B
′

4 = 2.39. When the low-
complexity version is applied, we can see similar results:
MDM 3KP outperforms other benchmarks and achieves the
length reduction ratios of 50.2% to 70.8%. Both SNR and
random initialization can converge to nearly the same FL
round length. Fig. 11 and Fig. 12 show that MDM 3KP
can always have stable performance when the number of
bandwidth providers is increasing.

In addition, when we change from S = 2 to S = 1 in
the low-complexity version, we observe 40% to 43% per-
formance degradation, which means reducing the overall
problem into multiple single-provider allocation problems
is too coarse and leads to quite a sub-optimal solution. Thus,
we need to set at least S = 2 for low-complexity MDM 3KP.

In summary, our simulation shows that the proposed
MDM 3KP solution is more efficient to reduce the FL round
length than all benchmark methods that were designed
without taking into account multiple bandwidth providers
and cost constraints. The results show that MDM 3KP
achieves 13.3% to 70.8% reduction under a wide range of
scenarios with different bandwidth and cost constraints as
well as numbers of service providers.

6 RELATED WORK

In this section, we summarize studies that are related to the
wireless resource management methods for FL. It has been
shown that simply removing some slow clients can lead to
a biased scheduling that may impact the quality of the FL
model [22], [46]. Thus, allocating more wireless resources
for slow clients is a more feasible solution in wireless
networking. Inefficient allocation can lead to a bottleneck
on the wireless communication side of FL [14], [19].
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TABLE 3: The FL round length reduction ratios of SNR-based MDM 3KP over Random initialization and 5 benchmarks.

F = 9 F = 11
B′

1 (MHz): 2 3.5 5 2 4 6
B′

2 (MHz): 2 3.5 5 2 3.5 5 2 3.5 5 2 4 6 2 4 6 2 4 6
Random (%): 3.6 2.7 6.8 0.2 0.1 -3.8 -3.0 0.1 2.0 1.3 3.1 9.6 0.5 1.1 2.3 -5.7 -0.1 -2.8
FedCS (%): 50.0 58.6 59.8 57.3 50.9 55.8 62.1 51.7 53.3 49.4 60.0 63.6 60.3 52.4 52.8 64.4 52.0 43.1
HybridFL (%): 55.0 63.4 64.6 61.0 53.9 58.1 64.7 56.9 58.1 54.6 63.1 66.5 62.7 54.3 57.2 67.2 56.3 49.9
J-CSBA (%): 27.4 39.5 44.6 37.5 34.9 40.8 45.8 37.0 39.4 28.2 42.0 46.8 42.4 35.9 38.6 47.0 39.2 27.9
O-RANFed (%): 24.8 39.9 49.5 38.6 27.0 34.4 51.0 30.0 33.3 26.3 44.2 53.5 44.9 26.4 31.5 53.8 33.0 16.6
CSIBA (%): 42.0 48.9 56.0 44.6 45.5 48.2 50.4 45.7 49.8 39.6 49.1 53.7 49.2 44.2 48.9 54.1 45.4 37.7

F = 13 F = 15
B′

1 (MHz): 3 5 7 3 6 9
B′

2 (MHz): 3 5 7 3 5 7 3 5 7 3 6 9 3 6 9 3 6 9
Random (%): 0.8 1.9 5.3 0.1 1.1 0.7 -0.1 0.0 -2.2 0.4 4.3 6.4 1.6 1.4 7.6 -9.6 0.4 6.8
FedCS (%): 50.6 56.0 60.2 53.9 50.0 52.4 60.6 50.6 44.0 53.0 57.3 62.7 61.0 49.5 44.6 60.8 46.8 39.7
HybridFL (%): 55.4 60.2 63.3 58.6 54.3 56.8 64.0 54.7 50.5 56.6 60.2 63.8 62.5 54.1 50.1 63.9 51.7 46.0
J-CSBA (%): 31.8 41.2 46.8 39.0 36.0 41.0 45.6 38.7 31.5 34.5 43.1 49.5 45.5 37.9 33.4 48.1 36.0 28.2
O-RANFed (%): 25.2 37.7 48.3 35.1 25.5 30.2 47.3 28.4 17.8 28.4 41.5 53.5 45.6 24.5 22.8 52.5 23.2 13.3
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Fig. 10: FL round length of MDM 3KP
and other benchmarks under various f1
and f2. (From left to right: f1 = 0.7, 1,
1.3.)
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Fig. 11: FL round length of MDM 3KP
and benchmarks under three
providers.
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Fig. 12: FL round length of MDM 3KP
and benchmarks under four
providers.

Our algorithm happens after client scheduling proce-
dure. It is complementary to the client scheduling and
focuses on how to efficiently assign bandwidth and its
provider to each client. Bandwidth allocation and client as-
signment play two important roles in wireless communica-
tion, which is a bottleneck on the communication efficiency
in FL [14].

Bandwidth allocation: Bandwidth allocation approaches
have been proposed to improve the service efficiency over
wireless networking [3], [4], [9], [13], [14], [20], [44], [47]–
[52]. Although bandwidth allocation algorithms [3], [4], [52]
have been proposed for conventional wireless applications,
they cannot be readily adapted to FL because they do not
have synchronized communication model under FL. To im-
prove the FL communication efficiency, a typical bandwidth
allocation solution is to optimize the bandwidth usage
among all clients with a focus on the client with the worse
SNR that can lead to the worst data transmission time [9],
[13], [14], [20], [44], [47]–[51]. For example, the work in [14]
optimized the bandwidth allocation of multiple FL services
when it is necessary to consider the fairness of different ser-
vices. A Markov decision process was considered in [9] for
joint client scheduling and bandwidth allocation. The study
in [47] considered the trade-off between the FL accuracy and
the wireless latency when allocating the bandwidth. The

work in [13] increased the FL learning rate by optimizing
the bandwidth of the wireless network and client scheduling
policy. Most of them focused on single bandwidth provider
and did not fully consider the cost of bandwidth offered
by the provider. In this work, we consider a more practical
and complicated scenario, where FL clients are able to select
different providers according to their costs and design the
MDM 3KP solution to minimize the FL round length under
this scenario.

Client assignment: Existing studies also considered the
client assignment problem in wireless networks to improve
the quality of network service [16]–[18], [23], [53], [54].
For example, the work of [23] proposed a deep learning
framework to minimize the energy consumption of cloud
computing queue by client assignment, which is subject to
the delay constraint. However, the pretrained deep learning
framework can only obtain client assignment for the delay
tolerant sequential packets queue, not the communication of
FL. The work of [18] adopted a machine learning approach
to minimize the energy and time consumption in FL for
balloon networks by adjusting the client assignment in order
to meet the client needs. Most studies did not deal with the
bandwidth allocation or cost problems. Our work can be
considered as a systematic study of assigning bandwidth
from each provider to every client in a wireless network
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to minimize the FL round length with practical cost con-
straints.

7 CONCLUSION

This paper studies the joint problem of the client assignment
and the bandwidth allocation, which aims to minimize the
round length for FL over wireless networking. We propose
an approach that maps the challenging problem into a
new MDM 3KP model and create an iterative algorithm to
solve the problem. Our simulation results show that the
proposed MDM 3KP solution can converge fast with realistic
parameters and achieve a much shorter FL round length
compared with other bandwidth allocation benchmarks.
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