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• Soil exposure affected gut and lung 
microbiome composition and changes 
were driven by the family 
Lachnospiraceae 

• Cytokine and chemokine genes were 
generally upregulated in the soil 
exposed mice 

• The lung shapes microbiome diversity; 
soil exposure alters lung gene expression 
with no effect on viral load or weight 
loss.  
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A B S T R A C T   

There is increasing evidence that early life microbial exposure aids in immune system maturation, more recently 
known as the “old friends” hypothesis. To test this hypothesis, 4-week-old mice were exposed to soils of 
increasing microbial diversity for four weeks followed by an intranasal challenge with either live or heat inac
tivated influenza A virus and monitored for 7 additional days. Perturbations of the gut and lung microbiomes 
were explored through 16S rRNA amplicon sequencing. RNA-sequencing was used to examine the host response 
in the lung tissue through differential gene expression. We determined that compared to the gut microbiome, the 
lung microbiome is more susceptible to changes in beta diversity following soil exposure with Lachnospiraceae 
ASVs accounting for most of the differences between groups. While several immune system genes were found to 
be significantly differentially expressed in lung tissue due to soil exposures, there were no differences in viral 
load or weight loss. This study shows that exposure to diverse microbial communities through soil exposure 
alters the gut and lung microbiomes resulting in differential expression of specific immune system related genes 
within the lung following an influenza challenge.  
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1. Introduction 

We are just beginning to understand how early life exposure to 
diverse bacterial communities train the immune system. This early life 
training plays a critical role in screening and facilitating appropriate 
responses to external stimuli. For instance, urban living, a western diet, 
and antibiotic use are all associated with a decrease in microbial di
versity (Sonnenburg and Sonnenburg, 2019). All three of these factors 
have steadily increased in the United States and Europe while coinciding 
with an increase in atopic disease. In contrast, previous research has 
shown that lifestyles associated with rural environments with higher 
microbial exposure via soil results in a lower risk for developing allergic 
diseases (Ruokolainen et al., 2017) and murine asthma models show 
that soil exposure-induced increases in microbial diversity decrease 
experimental asthma symptoms (Ottman et al., 2018). 

Exposure to diverse microbial communities has also been demon
strated to modulate the immune response to acute infectious diseases. 
Previous studies have measured the immune response following an 
influenza challenge that either utilized antibiotics to decrease gut mi
crobial diversity (Gonzalez-Perez and Lamouse-Smith, 2017; Gonzalez- 
Perez et al., 2016; Abt et al., 2012) or a fecal transplant to increase gut 
microbial diversity (Rosshart et al., 2017). These studies have consis
tently shown that mice with greater gut diversity had a less severe 
response to infection. Thus, these studies indicate that it is beneficial to 
the host to harbor a diverse gut microbiome prior to exposure to 
influenza. 

Influenza severity and mortality are driven by excessive pulmonary 
inflammation and pro-inflammatory cytokine production (Bradley- 
Stewart et al., 2013). It is believed that environmentally acquired 
microbiota can help to modulate the immune response to influenza, and 
thereby prevent an excessive immune response. Several studies have 
suggested mechanisms for this gut microbiome driven immune modu
lation. Lin et al. (Lin et al., 2020) showed that environment can 
outweigh genetics as an immunological driver by comparing the effect of 
rewilding of mice versus Atg16l1T3I6A/T3I6A, Atg16l1T3I6A/+ and Nod2−/−

genetic variants on variation in T cell populations. Zhou et al. (Zhou 
et al., 2016) found significantly lower total serum immunoglobulin E 
level in mice upon exposure to soils. Despite data supporting associa
tions between gut microbiota and immune responses, more recent 
research suggests that in the lung, lung microbial communities may have 
a more dominant effect on lung immune activation than gut commu
nities. This is evidenced by data showing that baseline inflammatory 
cytokine levels, as markers of immune activation, were more strongly 
correlated with variation in lung microbiome than the gut microbiome 
(Dickson et al., 2018). Therefore, when considering microbiome effects 
on lung immune responses, a greater focus is needed on changes in the 
lung microbiome that direct lung immunity effects. 

While soil exposure has been shown to influence allergic inflam
mation and cytokine release, to date no study has addressed the impact 
of soil exposure on acute pulmonary infection responses or the effect of 
exposure to different soils with varying levels of microbial diversity (e.g. 
urban vs rural soil) in juvenile mice. In this study, we test the hypothesis 
that host gene expression in response to an influenza challenge will be 
modulated by soil exposure. To explore this, we exposed mice to one of 
several different soil types for five weeks (before, during and after an 
influenza challenge), and monitored changes in the fecal and lung 
microbiomes by longitudinal 16S amplicon sequencing and RNA-Seq to 
determine immune system homeostasis alterations based on urban vs. 
rural soil exposure and their effects following influenza infection. This 
study provides evidence for how individual microbial exposure may be 
influencing immune system homeostasis and its implications for acute 
pulmonary infection. 

2. Methods 

2.1. Study design and sample collection 

This study was completed with the approval of Duke University 
Institutional Animal Care and Use Committee (IACUC) under protocol 
A102–18-04. Male 4-week-old BALB/c mice were split evenly into one of 
four cohorts: Control, River, Pine, and Road. The Control mice were 
raised with standard corn cob bedding whereas the remaining mice were 
raised with clean bedding amended with 300 mL of one of three different 
types of soil. The soil exposure continued throughout the experiment 
and 300 mL of new soil was added with bi-weekly cage changes. The 
soils used to amend the cage bedding were characterized as having high 
(Pine), medium (River), and low (Road) microbial diversity. The River 
and Pine soil were collected from Duke Forest and the Road soil was 
collected adjacent to Highway 15–501 in Chapel Hill, North Carolina. 
The GPS locations for the soil sample sites are available in the supple
mental material (Supplemental Table 1). Prior to introduction into the 
cages, the soils were screened via PCR for mouse pathogens (Supple
mental Table 2). The soils were collected all at once and divided into 
300 mL aliquots, and stored sealed at 4 ◦C until added to the cages. To 
reduce cross contamination between cages, the mice were placed in 
isolator cages and gloves were changed between handling mice from 
different environmental exposure. All mice were given a standard diet 
and the cages were distributed reverse osmosis treated water through a 
centralized Lixit® system that was fed to each cage in parallel. 

After 32 days of standard rearing with amended soils, the mice were 
exposed via intra-nasal instillation to either live influenza A (PR8) virus 
or heat inactivated (HI) virus at a concentration of 250 PFUs in 40 μL. 
The original virus stock was purchased from Charles River (Norwich, CT, 
Cat# 10100374). Heat inactivation was achieved by heating aliquots at 
60 ◦C for 1 h and immediately cooled on ice prior to −80 ◦C storage. The 
heat inactivation was confirmed by infecting MDCK cells with the HI or 
PR8 virus at 10 multiplication of infection. There were plaques observed 
with the PR8 virus while the HI virus had no effect. To achieve the 250 
PFU concentration, a plaque assay was performed with 10-fold serial 
dilutions plated on confluent MDCK cells in duplicate. Then after virus 
PFU was calculated from the assay the stock solution was appropriately 
diluted. Additionally, the PR8 stock has been utilized in prior studies 
(Drury et al., 2023; Vose et al., 2021) and HI virus was utilized to ensure 
the observed inflammatory/immune response was due to an active 
infection. Mice were initially weighed at time of HI or PR8 exposure and 
subsequently on days 3, 5, and 7 post exposure, then euthanized. Day 7 
post exposure was chosen as the final timepoint as it is when the in
flammatory response is most robust. The mice were anesthetized with 
isoflurane and euthanized with 250 μL of urethane at 250 mg/mL. Then, 
a bronchoalveolar lavage (BAL) with a 1× PBS solution was performed 
as previously described (Tighe et al., 2018). The BAL fluid was centri
fuged to collect the cells and the supernatant was removed. The cells 
were then treated with 0.5 mL 1× RBC lysis buffer and resuspended in 
0.5 mL PBS. Total cell counts were collected with a Cellometer K2 
(Nexcelom Biosciences, Lawrence, MA). A 100 μL sample of the cells 
were then placed on a cytospin 4 (Thermo Scientific, Waltham, MA), 
dried and stained with Hema 3 and examined under a light microscope 
to define the total number of macrophages, leukocytes, eosinophils, and 
neutrophils. The right superior and inferior lung lobes were used for 
RNA-Seq and viral qPCR while the right middle lobe was used for DNA 
sequencing. All tissue samples were flash frozen in liquid nitrogen and 
stored at −80 ◦C until further processing. The study utilized 24 mice 
divided equally into the soil by HI or PR8 exposure groups (n = 3) and 
then repeated with two more 24 mouse cohorts twice, giving a final total 
sample size of 72. Fig. 1 depicts a summary of the study. 

Fecal samples were collected at days 0, 14 and 35 (3 days post HI or 
PR8 exposure). Each mouse was placed into a large cup, weighed, and 
then kept until at least two fecal pellets were collected. The cups were 
cleaned with a 0.5 % hydrogen peroxide solution between the weighing 
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of each mouse. Approximately 1 g of bedding from each cage were also 
collected on the same days that fecal samples were collected (days 0, 14, 
and 35). After collection, these samples were stored in microcentrifuge 
tubes at −80 ◦C until sample DNA was extracted. 

2.2. Extraction of genomic DNA, RNA and sequencing 

Total genomic DNA was extracted from each sample using a phenol/ 
chloroform extraction protocol outlined in the Supplemental Material. 
The isolated DNA was used as a template for PCR amplification of the V4 
region of the 16S rRNA gene (515F FWD: GTGYCAGCMGCCGCGGTAA; 
806R REV: GGACTACNVGGGTWTCTAAT, Earth Microbiome Project). 
Samples were prepared using the standard Illumina workflow protocol 
for 16S amplicon library preparation (Illumina, San Diego, California). 
Then 250 bp paired-end sequencing was performed on an S-Prime 
flowcell with an Illumina NovaSeq 6000 at the Duke Sequencing and 
Genomic Technologies Core Facility (Duke University, Durham, NC). 

Raw FASTQ files were quality filtered, trimmed, denoised, merged, 
checked for chimeras, and assigned taxonomy to generate amplicon 
sequence variants (ASVs) using DADA2 (Callahan et al., 2016). Taxo
nomic assignments for the 16S amplicons were made using the Silva 
v138 database (Quast et al., 2013). Contaminating sequences were 
detected from negative control samples and removed using the package 
Decontam (Davis et al., 2018). Further sequences were removed if they 
were present in more than two of the eight blank samples with more 
than three reads per blank sample. 

Total RNA was extracted from whole lung tissue using a RNeasy kit 
(Qiagen, Hilden, Germany) with the following modifications. Prior to 
beginning the standard RNeasy protocol, TRIzol™ (Invitrogen, Wal
tham, MA) was added to the sample at 1 mL per 0.1 g. The sample was 
then homogenized with a tissue-tearor on ice for 1 min. Then 0.2 mL of 
chloroform was added per mL of TRIzol™, the sample was shaken 
vigorously, and allowed to sit at room temperature for 3 min. After 
sitting, the sample was centrifuged at 10,000 xg for 18 min at 4 ◦C. The 
top aqueous phase was then removed and utilized for the RNeasy 
extraction protocol. 

At the end of the extraction, the eluate was split into two: one half 
was used for RNA-Seq and the other was used for cDNA synthesis for the 
qPCR assay. A library of 24 lung RNA extractions was sequenced in 
duplicates. The Duke Sequencing and Genomic Technologies Core Fa
cility (Duke University, Durham, NC) performed RNA-Seq library 
preparation and sequencing. Libraries were prepared using the KAPA 

Stranded mRNA kit (Roche, Basel, Switzerland) from 24 of the lung RNA 
samples with 3 mice representing each environment-flu exposure con
dition. RNA-Seq libraries were sequenced on an S-Prime flowcell with an 
Illumina NovaSeq 6000 to generate 50 bp paired-end reads. The cDNA 
was synthesized using the High-Capacity cDNA Reverse Transcription 
Kit (Applied Biosystems, Waltham, MA). Then 20 μL qPCR reactions 
were run on a Bio-Rad CT1000 with the following reaction mixture: 4 μL 
of cDNA, 0.5 μL 10 μM Forward and Reverse Primers, 5.5 μL molecular 
grade water, and 2× SYBR Green PCR Master Mix. The primers were 
designed to target the matrix protein 1 of influenza A (van Elden et al., 
2001) with the following sequences: forward 5’-GGACTGCAGCGTA
GACGCTT-3′ and reverse 5’-CATCCTGTTGTATATGAGGCCCAT-3′. 

2.3. Data analysis 

All data analysis was performed using the R v4.0.3 programming 
language. Several R packages were used for data analysis including: 
dada2 v1.18 (Callahan et al., 2016) for creating amplicon sequence 
variants, phyloseq v1.34 (McMurdie and Holmes, 2013) for generating 
ordination plots and computing alpha and beta diversity, stats for 
running statistical analyses, microbiome v1.12 (Lahti, 2017) for center 
log ratio transformations, and ggplot2 v3.3.5 (Wickham, 2016) for the 
generation of visual plots. Analysis of Compositions of Microbiomes 
with Bias Correction (ANCOM-BC) v1.0.5 was used to identify differ
entially abundant ASVs and functional pathways (Lin and Peddada, 
2020). PERMANOVA and Bray-Curtis distances were calculated using 
vegan v2.5-7 (Jari Oksanen et al., 2018). 

Normality of alpha diversity values for richness and Shannon was 
confirmed using the Shapiro-Wilk test before subsequent statistical 
testing. For those normally distributed data, significance testing with 
ANOVA was performed followed by pairwise testing with Tukey’s HSD. 
Since species richness for the cage bedding samples was not normally 
distributed, these were log transformed prior to ANOVA and pairwise 
testing. Also, fecal microbiome samples’ species richness was not nor
mally distributed and normality could not be achieved with a trans
formation so the non-parametric Wilcoxon Ranked Sign test with False 
Discovery rate (Benjamini-Hochberg) corrected values was used. Sta
tistical significance in microbial communities between groups was 
tested for significance via homogeneity of dispersion and PERMANOVA 
(Anderson, 2017) calculated using Bray-Curtis distances. Functional 
pathways were predicted using PICRUSt2 v2.4.0 (GM, D., et al., 2020). 

The RNA-Seq FASTQ files were quality filtered with fastq-mcf 
(Aronesty, 2013), then mapped to the Genome Reference Consortium 
Mouse Build 38 (Consortium, 2020) using STAR v2.7.6a (Dobin et al., 
2013). DESeq2 v1.30.1 (Love et al., 2014) was then used to identify 
differentially expressed genes. Genes were considered differentially 
expressed if they met the criteria of an adjusted p value <0.1 and a log 2- 
fold change >1. Pathway analysis was performed using the gage v 2.38.3 
(Luo et al., 2009) R package to identify Gene Ontology (GO) (Gene 
Ontology, 2021; Ashburner et al., 2000) terms and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 2000; 
Kanehisa, 2019; Kanehisa et al., 2021) with significantly different 
expression between groups. 

2.4. Code and data availability 

The code used to generate results can be accessed via GitHub through 
the following url: https://github.com/alexmccumber/mouseenv. The 
RNA-Seq data discussed in this publication have been deposited in 
NCBI’s Gene Expression Omnibus (Ron Edgar and Lash, 2002) and are 
accessible through GEO Series accession number GSE215292 (https:// 
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215292).” The 
16S rRNA data have been deposited with links to BioProject accession 
number PRJNA865133 in the NCBI BioProject database (https://www. 
ncbi.nlm.nih.gov/bioproject/). 

Fig. 1. Pictorial representation of the study cohorts/design. Each box repre
sents one cage with three mice housed per cage. The bedding conditions are 
indicated by the difference in background shading (control, low (road), medium 
(river), and high (pine) microbial diversity soil bedding). The red outline in
dicates those mice that were exposed to a live influenza virus (PR8), the non- 
outlined mice were exposed to heat inactivated (HI) virus. 
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3. Results 

3.1. Cage environment diversity is influenced by the introduction of soil 

Prior to their introduction into the mouse cages, an initial charac
terization of the soils with PERMANOVA indicated that there was a 
significant difference in community composition between the soil 
microbiomes (R2 = 0.27, p < 0.001). The diversity and richness profiles 
were as expected, with Pine soils having the highest Shannon diversity 
and richness and the Road soils having the lowest (Supplemental Fig. 1A 
and B). ANOVA results indicate that there was not a significant differ
ence in Shannon diversity by soil type (p = 0.16) but there was a sig
nificant difference in richness by soil type (p = 0.02). Pairwise testing for 
richness showed that the Pine soils had significantly higher richness 
than the Road soils (p = 0.016). 

Of all the soil, fecal and lung microbiome samples, the lungs had the 
least overall richness with 2101 unique ASVs identified. The fecal 
samples had 3866 unique ASVs and the soil samples had the highest 
number with 49,143 ASVs. A summary of the total ASVs and sequencing 
depth for the sample types is provided in Supplementary Table 3. For 
both the lung and fecal samples, the top 5 phyla at day 14 were Pro
teobacteria, Verrucomicrobiota, Actinobacteriota, Bacteriodota, and 
Firmicutes. These five phyla made up the majority (>95 %) of the lung 
and fecal microbiomes. The top 5 phyla in soil samples at day 14 were 
Proteobacteria, Planctomycetes, Acidobacteria, Acintobacteria, and 
Firmicutes, with a significant proportion of the soil ASVs (>25 %) 
belonging to phyla other than these top five (Fig. 2). Differences in soil 
exposures were not found to affect growth rates of the mice during the 
five-week growth period (data not shown). 

For the day 14 and 35 cage bedding samples, the overall variance in 
community composition between soil types remained similar to the 
initial characterization as indicated by PERMANOVA (R2 = 0.26, p <
0.001). Unlike the fresh soils, ANOVA indicated that Shannon diversity 
was significantly different by bedding type (p = 0.05, Supplemental 
Fig. 2A). Pairwise testing of Shannon diversity showed that Road 
bedding had significantly higher diversity than Control bedding (p =

0.05); however, the River vs. Control comparison was not significant (p- 
value = 0.06). For richness, the values were log transformed to meet the 
assumption of normality prior to running ANOVA. Like Shannon di
versity comparisons, pairwise testing of log transformed richness 
showed that Road bedding had significantly higher richness than Con
trol bedding (p = 0.02, Supplemental Fig. 2B) but Pine vs. Control was 
not significantly different (p-value = 0.08). 

3.2. Soil and influenza exposure influence beta but not alpha diversity in 
the lung 

To examine whether influenza exposure, comparison of the live vs. 
heat inactivated virus groups, or cage bedding affected alpha diversity of 
the lung microbiome, we compared the richness and Shannon diversity 
index for the lung microbiomes of mice in each exposure group; we did 
not observe a significant group difference for either metric. We explored 
differences in bacterial communities among the treatment groups using 
ordination plots and PERMANOVA. While there was no obvious clus
tering by soil type on the NMDS plot (Supplemental Fig. 3), statistical 
testing using PERMANOVA revealed significant differences in commu
nity compositions by soil exposure (p < 0.001, R2 = 0.11). The PER
MANOVA test also showed that PR8 exposure and the interaction 
between PR8 exposure and soil exposure was significant (p < 0.001). 
PR8 exposure only accounted for a small amount of the overall variance 
in the lung microbiome (R2 = 0.03). A greater amount of the variance in 
the microbiome due to PR8 exposure depends on the soil exposure (R2 =

0.08) and cage effects (R2 = 0.36). To further explore if cage diversity 
influenced lung microbiome diversity, the Pearson correlation coeffi
cient was calculated between the Shannon diversity index of day 35 cage 
samples and the corresponding lung tissue microbiome samples. There 
was no correlation found with either the HI or PR8 exposed group which 
suggests that lung diversity and richness are independent of environ
mental diversity. 

3.3. The gut microbiome is more resistant to changes from soil exposure 
than the lung 

We found that soil and PR8 exposure both resulted in statistically 
significant differences in gut microbiome between treatment groups. As 
with the lungs, we assessed the effects of soil exposure and time on the 
alpha diversity of the gut microbiome by evaluating the richness and 
Shannon diversity index for the gut microbiomes of mice in each 
exposure group. ANOVA showed that soil (p < 0.001), time (p = 0.007), 
PR8 (p = 0.003), and the interaction between soil, PR8 and time (p =
0.019) had a significant effect on the Shannon diversity index. There 
were no other significant interaction effects. Pairwise testing with 
Tukey’s HSD showed that the Shannon diversity index was significantly 
higher in all soil exposed groups compared to Control (p < 0.001); 
comparisons among the soil types found that the River exposed mice had 
significantly higher values for Shannon diversity index than the Road 
exposed mice (p = 0.008). Pairwise testing for the effect of time found 
that the Shannon diversity index was significantly higher for day 14 
compared to day 0 (p = 0.007), but not 35; and the PR8 exposed cohort 
had significantly lower Shannon diversity index compared to the HI 
cohort. Soil exposure had a statistically significant effect on richness of 
the mouse fecal microbiome. Pairwise testing with a Wilcoxon test 
showed that the median for each soil was significantly different from 
Control (p < 0.05, Bonferroni corrected), but there were no significant 
differences between soil groups. The PR8 exposed cohort had gut 
microbiomes with significantly lower richness than the HI exposed 
cohort (p = 0.01). 

For the effects of soil and time on the between-sample differences for 
the gut, an NMDS plot showed no observable, distinct clustering. Sta
tistical testing using PERMANOVA revealed that there are significant 
differences in community compositions by the main effects of soil 
exposure (p < 0.001, R2 = 0.07), time (p < 0.001, R2 = 0.05), and PR8 
exposure (p < 0.001, R2 = 0.01) (Supplemental Fig. 4). The interaction 
effects of soil by time (p < 0.001, R2 = 0.06) and soil by flu (p < 0.001, 
R2 = 0.05) were also significant. There was also a significant and large 
effect by cage (p < 0.001, R2 = 0.37). 

Overall, the variance attributed to soil exposure and PR8 in the gut 
was much lower than that of the lungs, suggesting that the lung 
microbiome is more susceptible to alterations due to soil and PR8 
exposure. 

Fig. 2. Mean relative abundance of the top 5 most abundant phyla from each 
sample type for the lung, day 14 fecal, and day 14 soil exposure type. Those 
phyla not in the top 5 most abundant were group together as Other. 
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3.4. Lachnospiraceae ASVs drive differences in both lung and gut 
microbiome composition as detected by ANCOM-BC 

Analysis of Compositions of Microbiomes with Bias Correction 
(ANCOM-BC) was used to identify differentially abundant ASVs in each 
soil exposed lung microbiome compared to the Control group. The 
number of differentially abundant species varied by soil exposure. The 
Pine soil exposed group had 31 differentially abundant ASVs (Table 1). 
Several of these were Firmicutes and 22 belong to the Family Lachno
spiraceae. The same pattern was observed in the Road soil exposed 
group, which had 70 differentially abundant ASVs, 38 of which were 
Lachnospiraceae. The River soil exposed group had 57 differentially 
abundant ASVs; 35 belonging to Lachnospiraceae. Thus, differences in 
lung microbiome composition appear to be largely driven by ASVs from 
the Lachnospiraceae family. However, ANOVA indicated there was no 
overall difference in Lachnospiraceae abundance in the lung microbiome 
after the data were aggregated at the family level and centered log-ratio 
(CLR) transformed. 

To determine whether soil microbiome composition differences may 
lead to microbiome differences in the lung, ANCOM-BC was again used 
to identify differentially abundant ASVs between the Control bedding 
and the soil amended bedding for the day 14 and 35 samples. Then, the 
list of differentially abundant bedding ASVs was cross referenced with 
the list of differentially abundant lung ASVs. Only 4 ASVs were signifi
cantly different in both the lung and the cage bedding for the Pine soil 
exposed samples. A similar pattern was observed with the Road and 
River soil exposed samples, with 1 and 5 significant ASVs in both lung 
and cage bedding samples, respectively. This result suggests that the 
significant differences in ASVs in the cage bedding microbiomes are not 
present in the lung microbiome of mice. 

Similar to the lung microbiome, ANCOM-BC determined that most of 
the differentially abundant ASVs in the fecal microbiome belong to the 
family Lachnospiraceae (Table 1). ANCOM-BC identified 148 signifi
cantly different ASVs in the Pine soil exposed fecal microbiome. A total 
of 37 ASVs were significant in both the fecal and soil samples, with 21 
belonging to Lachnospiraceae. ANCOM-BC also identified 133 differen
tially abundant ASVs in the River exposed fecal samples (65 Lachno
spiraceae), and 166 in the Road soil exposed samples (60 
Lachnospiraceae). Unlike the lung Lachnospiraceae, there was a signifi
cant difference in the CLR transformed values of the Control group 
compared to the River and Road exposed soil group (p < 0.05, Tukey’s 
HSD), but not the Pine exposed group (p = 0.08, Supplemental Fig. 5). 
The Pine soil exposed group was also significantly different from the 
River exposed group (p = 0.01). 

3.5. No differences in weight loss, viral load, or immune cell counts by soil 
exposure were observed 

The weight of the mice was recorded on days 3, 5, and 7 following 
intranasal influenza exposure. The HI virus exposed group did not lose 
significant weight over time, while the PR8 group lost significant weight 
from initial influenza exposure to day 7 (Supplemental Fig. 6). There 

was no significant difference in weight lost by soil exposure. Infection 
was confirmed with qPCR as the PR8 group had a significantly higher 
viral load compared to the HI challenged group (Supplemental Fig. 7). 
There was no significant difference in viral load by soil type. 

At 7 days post influenza exposure, we determined cell counts of 
macrophages and neutrophils in the collected BAL fluid (Fig. 3). For 
macrophages, there were a significant effects for both independent 
variables soil and PR8 exposure as determined by ANOVA (p < 0.05) 
with the PR8 exposed group having a higher macrophage count 
compared to the HI exposed group. However, neither the interaction 
between PR8 exposure and soil exposure nor any pairwise comparisons 
were significant. For neutrophils, there was a significant effect of PR8 
exposure, with the PR8 exposed group having a higher neutrophil count 
compared to the HI exposed group, but neither soil (p = 0.09) nor the 
interaction between soil and live influenza (p = 0.08) reached signifi
cance as measured by ANOVA. 

3.6. Soil exposure alters the immune response to influenza exposure 

To determine if there were significant changes in gene expression 
from soil exposure, RNA was extracted and sequenced from the whole 
lung tissue of 24 mice at 7 days post PR8 or HI exposure, 3 from each soil 
by exposure group. With this data we identified gene expression specific 
to PR8 influenza exposure by comparing the HI and PR8 groups to the 
Control cohort. We also identified gene expression patterns that were 
specific to certain soil exposure groups. Principal component analysis of 
the differential expression data shows significant separation along the x- 
axis between the HI and PR8 exposed groups (Fig. 4). Within each of the 
PR8 and HI exposed groups, there was further clustering by soil expo
sure. Comparisons of the number of differentially expressed genes reflect 
the patterns observed in the PCA plot. Within the HI exposed group, 
there were no differentially expressed genes for the Road soil exposed 
group compared to the Control. The Pine and River soil exposed groups 
displayed differentially expressed genes; however, there were no GO 
terms or KEGG pathways with significantly different expression. We 
identified 61 biological process GO terms with differential expression 
between the PR8-Pine group and the PR8-Standard bedding group, 
several of which are immune system processes or related functions (e.g. 
B cell activation) that were upregulated. The full list of GO terms and 
KEGG pathways can be found in the GitHub repository. 

Comparing the gene expression between the PR8-River and HI-River 
treated mice identified 186 biological process GO terms that were 
upregulated in the PR8-River treated mice. Several of these GO terms 
represented immune system processes or related functions. This com
parison also identified four KEGG pathways upregulated in PR8-River 
treated mice including cytokine-cytokine interactions and cell cycling. 

Compared to the Control group, the Pine soil exposed group had 
significantly downregulated inflammation associated genes (HIF3A and 
FGFBP1) but significantly upregulated CX3CL1, a gene suspected to 
regulate leukocyte adhesion and migration. The River soil exposed 
group had several upregulated interleukin genes: IL2RG, IL11, IL18BP, 
IL4RA, IL3RA, IL10RA, and IL12B. However, IL17RD was down
regulated. Several chemokines were also upregulated: CXCR3, CXCL12, 
CSCL16, and CCL5, while CCL17 and TAFA1 were downregulated. The 
River soil exposed group was also significantly upregulated in the gene 
known to inhibit hemagglutinin mediated viral entry of influenza A, 
IFITM3 (Bailey et al., 2012) (Supplemental Fig. 8). Table 2 summarizes 
the total number of differentially expressed genes by soil exposure type 
for either the HI, PR8, or change in expression from the HI to PR8 (Delta) 
groups. 

3.7. Soil exposure alters the functional profile of the gut microbiome 

To determine whether the functional profile of the gut microbiome 
changes upon Soil exposure, PICRUSt2 was used to predict metagenome 
function. PICRUSt2 uses the amplicon sequence to infer a community 

Table 1 
The number of significant lung microbiome ASVs identified by ANCOM-BC in 
lung only or both lung and cage bedding samples (for the combined HI and PR8 
exposed groups within each soil condition). The number in parentheses is the 
number of those ASVs that are Lachnospiraceae.    

Sig. host ASVs 
(Lachnospiraceae) 

Sig. host and bedding ASVs 
(Lachnospiraceae) 

Lung 
Pine 31 (22) 4 (2) 
Road 70 (38) 1 (0) 
River 57 (35) 5 (4) 

Gut 
Pine 148 (72) 37 (21) 
Road 166 (60) 16 (0) 
River 133 (65) 4 (2)  
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metagenome, which is then used to infer the MetaCyc (Caspi et al., 
2014) pathway abundances. A principal component graph of the CLR 
transformed inferred MetaCyc pathway abundances was created to 
visualize differences in the predicted metagenomes (Supplemental 
Fig. 7). Overall, PERMANOVA showed soil exposure resulted in signif
icant differences in pathways (p < 0.05) and accounted for approxi
mately 7.5 % of MetaCyc pathway variance. As the pathway data are 
compositional, ANCOM-BC was used to identify pathways that are 
differentially abundant. There were 44 MetaCyc pathways that were 
significantly different for the Pine soil exposed group compared to 
Control, most of which were for amino acid or sugar metabolism. For the 
Road soil exposed group there were 71 significantly different pathways 
and all belonged to the quinol and quinone biosynthesis superclass. The 

Fig. 3. Box and whisker plots of the total number of A) macrophages and B) neutrophils counted per mL of bronchioalveolar lavage fluid by soil and heat inactivated 
(HI) or live influenza (PR8) virus exposure. For the boxplots, the middle line represents the median, the upper and lower boxes represent the first and third quartiles, 
the lines represent the minimum and maximum, and individual points are outliers. 

Fig. 4. Principle component graph of the DESeq2 normalized lung tissue RNA-seq data count matrix for each sample. Color indicates soil exposure group and shape 
represents either heat inactivated (HI) or live influenza (PR8) virus exposure. Principal component (PC) 1 captures 93 % of the variance while PC2 captures 2 % of 
the variance. 

Table 2 
Total number of differentially expressed genes from RNA-seq data from the lung 
tissue samples identified by DESeq2 by soil exposure type relative to control for 
either the heat inactivated (HI), live influenza (PR8) virus exposure, or change in 
expression from the HI to PR8 (Delta) groups.   

HI PR8 Delta 

Pine  225  407  144 
River  41  1884  1226 
Road  0  28  0  
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River soil exposed group had 41 significantly differentially abundant 
pathways. Like the Pine and Road exposure groups, several of the River 
soil exposure groups identified pathways were amino acid and sugar 
metabolism as well as quinol and quinone biosynthesis pathways. In 
addition, there were three pathways that were of potential interest due 
to the observed differential immune response: L-glutamate degradation 
VIII (to propanoate), (S)-propane-1,2-diol degradation, and 2-methylci
trate cycle II (propanoate degradation). The first two pathways belong to 
the superclass “fermentation to short-chain fatty acids” and the third to 
“propanoate degradation”, compounds of interest due to their potential 
to regulate immune system function. The model coefficients for 
ANCOM-BC indicate that while the (S)-propane-1,2-diol degradation 
pathway is present in greater abundance in the Pine soil exposed sam
ples, the 2-methylcitrate cycle II (propanoate degradation) is lower in 
River soil exposed mice (Table 3). L-glutamate degradation VIII (to 
propanoate) was lower in all three soil exposed mice compared to the 
Control mice. 

4. Discussion 

Soil exposure can alter the functional profile of animal microbiomes 
by changing community compositions which, in turn, alters the immune 
response to a viral challenge. Soil exposure significantly impacted the 
composition of both the gut and lung microbiomes and these differences 
seem to have been driven by the family Lachnospiraceae. We found that 
11 % of the variance of lung microbiome composition can be accounted 
for by different soil exposures, and that this soil exposure effect was 
greater on the lungs than the gut. This was expected given previous 
observations that the lung microbiome is mostly comprised of transient 
members, while in the gut newly introduced bacteria not only have to 
survive passage through the stomach but also must outcompete native 
taxa to establish themselves as part of the host microbiome (Corcoran 
et al., 2005). Additionally, the gut is known to have higher alpha di
versity, so even if soil microbes became established in both sites, the 
effect of this alteration is likely to be less impactful on the gut (Dickson 
et al., 2017). We were able to observe changes in the gut microbiome 
over time through longitudinal fecal sampling, which was not possible 
for the lungs; however, time accounted for less gut microbiome variance 
than soil exposure. This is not a surprising result as known regulators of 
gut microbiome composition, such as diet, remained constant. In 
humans, longitudinal metagenomic and culturing studies have shown 
that >50 % of the members of the gut microbiome are retained for at 
least 1 year (Faith et al., 2013; Schloissnig et al., 2013; Hildebrand et al., 
2021). 

While we observed an impact of soil exposure on overall lung 
microbiome composition, soil exposures did not seem to have a signif
icant effect on the alpha diversity of lung microbiomes: neither Shannon 
diversity nor richness of the lung microbiome correlated with the cage 
bedding microbiome diversity or richness. A similar trend has been 
observed in a horse model, where grazing at pasture or being housed 
indoors did not impact Shannon diversity or richness of the lung 
microbiome (Fillion-Bertrand et al., 2019). Similarly, Megahed et al. 
(Megahed et al., 2019) found no difference in Hill diversity or Chao1 
richness in the lung microbiome of pigs grown with slatted flooring 
compared to standard straw bedding. Though neither of these studies 
provided samples of environmental diversity, these results show that the 
lung microbiome diversity and richness may not be significantly altered 

by environmental differences and remains at a steady state, though in
dividual membership within the lung microbiome changes with envi
ronmental exposures. Thus, these data suggest that the lung is able to 
regulate microbiome diversity independent of the environment but not 
community composition. 

Firmicutes was the dominant phylum in all lung and fecal samples 
regardless of soil exposure. ANCOM-BC suggests that ASVs from the 
Firmicutes based family Lachnospiraceae drive most of the compositional 
differences we observed between microbiomes and that these changes 
were a result of differences in soil exposure. While there were several 
individual Lachnospiraceae ASVs different between lung microbiomes by 
soil exposure, this study found no observable pattern between the soil 
exposure and Control groups’ CLR of Lachnospiraceae in the lung 
microbiome. However, Lachnospiraceae were in greater abundance in 
the fecal microbiome of the Control group compared to all the soil 
exposed groups. This is in line with a previous study that found Lach
nospiraceae was lower in relative abundance in the gut microbiome of 
mice that were exposed to soil compared to controls (Ottman et al., 
2018). Lachnospiraceae are spore-forming, common gut and soil micro
biome members (Huang et al., 2019; Li et al., 2019). In a study classi
fying gut bacteria by dispersal strategies, Hildebrand et al. (Hildebrand 
et al., 2021) identify Lachnospiraceae as heredipersistent, or a group that 
is inheritable from parent to child but also has a high turnover rate in the 
gut and is dependent upon a continuous cycle of reinfection. Considering 
most of the differentially abundant ASVs were originally identified in 
the day 0 fecal microbiomes, the results suggest that the soils may play a 
role in selection of specific Lachnospiraceae ASVs as they cycle through 
the host and environment where some soils may provide a distinct 
advantage to a particular Lachnospiraceae ASV. Overall, this family is 
highly diverse and thought to be mainly gut associated and there is 
currently no known literature to suggest which mechanisms may be 
causing this selection. 

Lachnospiraceae are currently of interest as they are known to pro
duce short chain fatty acids (SCFAs) that are thought to be beneficial to 
host health (Vacca et al., 2020). One of these SCFAs, propionate, has 
been shown to reduce lung inflammation, potentially acting through the 
gut-lung axis (Liu et al., 2021). In a sterile lung injury model in mice, the 
gut microbiomes associate with lower inflammation had higher abun
dances of Lachnospiracae (Tian et al., 2019). Lachnospiraceae has been a 
topic of particular interest in immunocompromised populations. In HIV 
patients, airways with higher Lachnospiraceae have been associated with 
lower bacterial burden and reduced expression of TNF-α and matrix 
metalloproteinase-9 (Iwai et al., 2014). The presence of Lachnospiraceae 
in the lungs has also been associated with longer duration of ventilator 
days and acute respiratory distress syndrome (Dickson et al., 2020). The 
presence of Lachnospiraceae in the mouse lung microbiome may be a 
reasonable expectation since coprophagy may provide a direct route of 
introduction for feces associated bacteria into the lung. 

While soil exposure did not confer any specific protective or sus
ceptible role in terms of weight loss or viral titers following PR8 vs. HI 
exposure, soil exposure significantly affected gene expression. The role 
the microbiome plays in the host immune response is complex and its 
mechanisms are an active area of research. Bradley et al. (Bradley et al., 
2019) found that interferon levels decreased after giving mice antibi
otics, facilitating earlier entry of influenza viral particles into epithelial 
cells. This effect was reversed after a fecal transplant, implicating the gut 
microbiome in the regulation of an important antiviral host system. In 
the present study, a similar effect was observed for Interferon Induced 
Transmembrane Protein 3 (IFITM3) expression. While baseline levels of 
IFITM3 were not significantly different between any of the different soil 
exposure groups, overall IFITM3 had higher expression levels in soil 
exposed groups compared to the Control group. Further, IFITM3 
expression has been shown to be positively correlated with antibody 
development following an influenza infection (Lei et al., 2020). Thus, 
our data suggest that while soil exposure may not play a role in pro
tection against acute influenza infection in this model system, soil 

Table 3 
ANCOM-BC beta coefficients for the mouse fecal samples PICRUSt2 inferred 
pathways by soil exposure type (stars indicate significance).  

Pathway Pine River Road 

(S)-propane-1,2-diol degradation  1.76*  1.31  1.10 
L-Glutamate degradation VIII (to propanoate)  −1.38  −1.11  −1.64 
2-Methylcitrate cycle II (propanoate degradation)  −0.67  −0.35  −0.95*  
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exposure may potentially impact long term immune development and 
response to re-infection. This observation is consistent with the broader 
understanding that taking antibiotics lowers antibody titers (Zimmer
mann and Curtis, 2018) and that microbiome diversity may play a role 
in vaccine efficacy rates (McCoy et al., 2019). Importantly, Hagan et al. 
(Liu et al., 2021) showed antibiotic administration prior to influenza 
vaccine administration impaired antibody binding to H1N1 in human 
subjects with low pre-existing antibody titers while Ichinohe et al. 
(Hagan et al., 2019; Ichinohe et al., 2011) found that mice treated with 
antibiotics had lower influenza specific antibody titers 2-weeks post 
infection. Both these studies utilized broad spectrum antibiotics that 
would likely kill Lachnospiraceae. In mice, the relative abundance of 
Lachnospiraceae has previously been positively associated with antibody 
titers following a rabies vaccine (Zhang et al., 2020). This relationship 
merits further investigation as there continue to be trends between 
Lachnospiraceae and antibody development. There are limitations to our 
data that complicate interpretation: gene expression data was collected 
at a single time point, so while higher expression of IFIT3 expression at 7 
days post exposure is believed to be beneficial, it is possible that higher 
IFIT3 expression is due to a delayed clearance of the viral infection 
compared to the other groups. However, the lack of difference in viral 
titers between the soil exposure groups suggests that this is not the case. 

Along with an upregulated interferon gene, indicating increased 
antiviral activity, cytokine and chemokine genes were generally also 
upregulated in the soil exposed mice. This finding is consistent with a 
previous study where some OTUs, including a Lachnospiraceae OTU, 
were positively associated with serum cytokine and chemokine levels 
(Bartley et al., 2017). While we are not aware of any study concerning 
the role of the lower respiratory tract microbiome, bacteria in the upper 
respiratory tract (Kaul et al., 2020) and gut (Rosshart et al., 2017) have 
been shown to regulate influenza inflammation. Several of the genes 
previously inferred to be modulated by upper respiratory tract and gut 
microbiome are anti-inflammatory cytokines or cytokine associated 
genes including: interleukin 4 (IL4RA), interleukin 10 (IL10RA), and 
interleukin 11 (IL11). This finding is consistent with the Rosshart et al. 
(Rosshart et al., 2017) study which found higher IL10 protein levels in 
the lung tissue of mice that were given a fecal transplant from a wild 
mouse (that would have had direct contact with soils) compared to lab- 
reared mice at four days post influenza exposure. The inferred upregu
lation of the propionate production pathway in the gut microbiome of 
the River soil exposed mice supports a role for the gut microbiome in 
regulating the immune response. This inferred upregulation appears to 
be mainly driven by Lachnospiraceae ASVs that had significantly higher 
abundance in the River soil exposed mice. The inferred upregulation of 
propionate production could be driving the upregulation of anti- 
inflammatory genes and increase in neutrophils that we observed in 
this group. Previously, Tian et al. (Tian et al., 2019) found that Lach
nospiraceae relative abundance was positively correlated with gut pro
pionate concentrations, which reduced lung inflammation following a 
lung ischemia reperfusion injury in mice. In another mouse model, the 
authors showed that intratracheal exposure to higher propionate con
centrations resulted in greater lung injury due to reduced beneficial 
inflammation following a Staphylococcus aureus pneumonia challenge. 
Thus, while preventing excessive inflammation may be beneficial to 
prevent lung injury following influenza exposure, it could leave the host 
more susceptible to bacterial co-infection. This is potentially important 
clinically as secondary bacterial infections are a significant cause of 
increased mortality and morbidity in influenza patients (Morris et al., 
2017). 

There are several limitations to this study. The introduction of 
different soils into cage bedding was designed to model living in 
different environments with different microbial communities of 
different complexity; as with all models, this one was imperfect. While 
the microbial communities of the soils differed prior to introduction into 
cage bedding (Supplemental Fig. 9), they became more similar over time 
and the alpha diversity of each decreased. There are several possible 

explanations, including colonization of cage bedding by the fecal pellet 
microbial community and the loss of specific taxa after being removed 
from the supportive environment provided by their natural ecosystem. 
Further, we have not investigated the possibility that abiotic factors in 
soil samples may have affected the mice. As for the differential gene 
expression data, it is possible that the microbiome is impacting the ki
netics of immune responses following the virus. This could lead to early 
or delayed gene responses. Therefore, by sampling only one time point, 
which was the point of peak inflammation, it is possible that changes in 
kinetics would not be observed. 

We cannot rule out the possibility that contamination during pro
cessing contributed to some of the observed community variation. We 
took particular caution to include several negative control samples, but 
lungs have very low microbial biomass and are particularly susceptible 
to contamination (Drengenes et al., 2019).. Future studies should 
attempt to measure total microbial burden, which is likely an important 
consideration in studying the lung microbiome. 

Because not all Lachnospiraceae produce SCFAs, a follow-up experi
ment with shotgun metagenomic sequencing may be able to elucidate 
this family’s role in SCFA production by not only improving taxonomic 
resolution to distinguish SCFA-producing taxa from non-producing taxa, 
but also by directly quantifying the relative abundance of SCFA pathway 
genes. Lastly, conducting the lung lavage to retrieve immune cells for 
phenotyping may have altered the lung microbiome community, and 
therefore may have altered communities observed at the final timepoint. 

5. Conclusions 

Alterations in host lung gene expression and the gut and lung 
microbiomes following soil and influenza exposure were assessed. Key 
findings from this study are that the lung regulates microbiome diversity 
independent of the environment but not community composition and 
soil exposure influenced gene expression in the lungs but had no effect 
on viral load or weight loss. Lachnospiraceae ASVs accounted for a sig
nificant proportion of the differences between gut and lung microbiomes 
as detected by ANCOM-BC and their relationship with the host and its 
immune system development/maturation warrants further 
investigation. 
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