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HIGHLIGHTS

e Soil exposure affected gut and lung
microbiome composition and changes
were  driven by the family
Lachnospiraceae

e Cytokine and chemokine genes were
generally upregulated in the soil
exposed mice

e The lung shapes microbiome diversity;
soil exposure alters lung gene expression
with no effect on viral load or weight
loss.
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ABSTRACT

There is increasing evidence that early life microbial exposure aids in immune system maturation, more recently
known as the “old friends” hypothesis. To test this hypothesis, 4-week-old mice were exposed to soils of
increasing microbial diversity for four weeks followed by an intranasal challenge with either live or heat inac-
tivated influenza A virus and monitored for 7 additional days. Perturbations of the gut and lung microbiomes
were explored through 16S rRNA amplicon sequencing. RNA-sequencing was used to examine the host response
in the lung tissue through differential gene expression. We determined that compared to the gut microbiome, the
lung microbiome is more susceptible to changes in beta diversity following soil exposure with Lachnospiraceae
ASVs accounting for most of the differences between groups. While several immune system genes were found to
be significantly differentially expressed in lung tissue due to soil exposures, there were no differences in viral
load or weight loss. This study shows that exposure to diverse microbial communities through soil exposure
alters the gut and lung microbiomes resulting in differential expression of specific immune system related genes
within the lung following an influenza challenge.
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1. Introduction

We are just beginning to understand how early life exposure to
diverse bacterial communities train the immune system. This early life
training plays a critical role in screening and facilitating appropriate
responses to external stimuli. For instance, urban living, a western diet,
and antibiotic use are all associated with a decrease in microbial di-
versity (Sonnenburg and Sonnenburg, 2019). All three of these factors
have steadily increased in the United States and Europe while coinciding
with an increase in atopic disease. In contrast, previous research has
shown that lifestyles associated with rural environments with higher
microbial exposure via soil results in a lower risk for developing allergic
diseases (Ruokolainen et al., 2017) and murine asthma models show
that soil exposure-induced increases in microbial diversity decrease
experimental asthma symptoms (Ottman et al., 2018).

Exposure to diverse microbial communities has also been demon-
strated to modulate the immune response to acute infectious diseases.
Previous studies have measured the immune response following an
influenza challenge that either utilized antibiotics to decrease gut mi-
crobial diversity (Gonzalez-Perez and Lamouse-Smith, 2017; Gonzalez-
Perez et al., 2016; Abt et al., 2012) or a fecal transplant to increase gut
microbial diversity (Rosshart et al., 2017). These studies have consis-
tently shown that mice with greater gut diversity had a less severe
response to infection. Thus, these studies indicate that it is beneficial to
the host to harbor a diverse gut microbiome prior to exposure to
influenza.

Influenza severity and mortality are driven by excessive pulmonary
inflammation and pro-inflammatory cytokine production (Bradley-
Stewart et al., 2013). It is believed that environmentally acquired
microbiota can help to modulate the immune response to influenza, and
thereby prevent an excessive immune response. Several studies have
suggested mechanisms for this gut microbiome driven immune modu-
lation. Lin et al. (Lin et al., 2020) showed that environment can
outweigh genetics as an immunological driver by comparing the effect of
rewilding of mice versus Atg16117104/T316A  At916117316A4/+ and Nod2 ™/~
genetic variants on variation in T cell populations. Zhou et al. (Zhou
et al., 2016) found significantly lower total serum immunoglobulin E
level in mice upon exposure to soils. Despite data supporting associa-
tions between gut microbiota and immune responses, more recent
research suggests that in the lung, lung microbial communities may have
a more dominant effect on lung immune activation than gut commu-
nities. This is evidenced by data showing that baseline inflammatory
cytokine levels, as markers of immune activation, were more strongly
correlated with variation in lung microbiome than the gut microbiome
(Dickson et al., 2018). Therefore, when considering microbiome effects
on lung immune responses, a greater focus is needed on changes in the
lung microbiome that direct lung immunity effects.

While soil exposure has been shown to influence allergic inflam-
mation and cytokine release, to date no study has addressed the impact
of soil exposure on acute pulmonary infection responses or the effect of
exposure to different soils with varying levels of microbial diversity (e.g.
urban vs rural soil) in juvenile mice. In this study, we test the hypothesis
that host gene expression in response to an influenza challenge will be
modulated by soil exposure. To explore this, we exposed mice to one of
several different soil types for five weeks (before, during and after an
influenza challenge), and monitored changes in the fecal and lung
microbiomes by longitudinal 16S amplicon sequencing and RNA-Seq to
determine immune system homeostasis alterations based on urban vs.
rural soil exposure and their effects following influenza infection. This
study provides evidence for how individual microbial exposure may be
influencing immune system homeostasis and its implications for acute
pulmonary infection.
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2. Methods
2.1. Study design and sample collection

This study was completed with the approval of Duke University
Institutional Animal Care and Use Committee (IACUC) under protocol
A102-18-04. Male 4-week-old BALB/c mice were split evenly into one of
four cohorts: Control, River, Pine, and Road. The Control mice were
raised with standard corn cob bedding whereas the remaining mice were
raised with clean bedding amended with 300 mL of one of three different
types of soil. The soil exposure continued throughout the experiment
and 300 mL of new soil was added with bi-weekly cage changes. The
soils used to amend the cage bedding were characterized as having high
(Pine), medium (River), and low (Road) microbial diversity. The River
and Pine soil were collected from Duke Forest and the Road soil was
collected adjacent to Highway 15-501 in Chapel Hill, North Carolina.
The GPS locations for the soil sample sites are available in the supple-
mental material (Supplemental Table 1). Prior to introduction into the
cages, the soils were screened via PCR for mouse pathogens (Supple-
mental Table 2). The soils were collected all at once and divided into
300 mL aliquots, and stored sealed at 4 °C until added to the cages. To
reduce cross contamination between cages, the mice were placed in
isolator cages and gloves were changed between handling mice from
different environmental exposure. All mice were given a standard diet
and the cages were distributed reverse osmosis treated water through a
centralized Lixit® system that was fed to each cage in parallel.

After 32 days of standard rearing with amended soils, the mice were
exposed via intra-nasal instillation to either live influenza A (PR8) virus
or heat inactivated (HI) virus at a concentration of 250 PFUs in 40 pL.
The original virus stock was purchased from Charles River (Norwich, CT,
Cat# 10100374). Heat inactivation was achieved by heating aliquots at
60 °C for 1 h and immediately cooled on ice prior to —80 °C storage. The
heat inactivation was confirmed by infecting MDCK cells with the HI or
PR8 virus at 10 multiplication of infection. There were plaques observed
with the PR8 virus while the HI virus had no effect. To achieve the 250
PFU concentration, a plaque assay was performed with 10-fold serial
dilutions plated on confluent MDCK cells in duplicate. Then after virus
PFU was calculated from the assay the stock solution was appropriately
diluted. Additionally, the PR8 stock has been utilized in prior studies
(Drury et al., 2023; Vose et al., 2021) and HI virus was utilized to ensure
the observed inflammatory/immune response was due to an active
infection. Mice were initially weighed at time of HI or PR8 exposure and
subsequently on days 3, 5, and 7 post exposure, then euthanized. Day 7
post exposure was chosen as the final timepoint as it is when the in-
flammatory response is most robust. The mice were anesthetized with
isoflurane and euthanized with 250 pL of urethane at 250 mg/mL. Then,
a bronchoalveolar lavage (BAL) with a 1x PBS solution was performed
as previously described (Tighe et al., 2018). The BAL fluid was centri-
fuged to collect the cells and the supernatant was removed. The cells
were then treated with 0.5 mL 1x RBC lysis buffer and resuspended in
0.5 mL PBS. Total cell counts were collected with a Cellometer K2
(Nexcelom Biosciences, Lawrence, MA). A 100 pL sample of the cells
were then placed on a cytospin 4 (Thermo Scientific, Waltham, MA),
dried and stained with Hema 3 and examined under a light microscope
to define the total number of macrophages, leukocytes, eosinophils, and
neutrophils. The right superior and inferior lung lobes were used for
RNA-Seq and viral qPCR while the right middle lobe was used for DNA
sequencing. All tissue samples were flash frozen in liquid nitrogen and
stored at —80 °C until further processing. The study utilized 24 mice
divided equally into the soil by HI or PR8 exposure groups (n = 3) and
then repeated with two more 24 mouse cohorts twice, giving a final total
sample size of 72. Fig. 1 depicts a summary of the study.

Fecal samples were collected at days 0, 14 and 35 (3 days post HI or
PR8 exposure). Each mouse was placed into a large cup, weighed, and
then kept until at least two fecal pellets were collected. The cups were
cleaned with a 0.5 % hydrogen peroxide solution between the weighing



A.W. McCumber et al.

Increasing bedding microbial diversity

Control Road River Pine
“o|c| RN e
« 3 %

Influenza Exposure

Heat inactivated virus  [_| Live (PR8) virus

Fig. 1. Pictorial representation of the study cohorts/design. Each box repre-
sents one cage with three mice housed per cage. The bedding conditions are
indicated by the difference in background shading (control, low (road), medium
(river), and high (pine) microbial diversity soil bedding). The red outline in-
dicates those mice that were exposed to a live influenza virus (PR8), the non-
outlined mice were exposed to heat inactivated (HI) virus.

of each mouse. Approximately 1 g of bedding from each cage were also
collected on the same days that fecal samples were collected (days 0, 14,
and 35). After collection, these samples were stored in microcentrifuge
tubes at —80 °C until sample DNA was extracted.

2.2. Extraction of genomic DNA, RNA and sequencing

Total genomic DNA was extracted from each sample using a phenol/
chloroform extraction protocol outlined in the Supplemental Material.
The isolated DNA was used as a template for PCR amplification of the V4
region of the 16S rRNA gene (515F FWD: GTGYCAGCMGCCGCGGTAA;
806R REV: GGACTACNVGGGTWTCTAAT, Earth Microbiome Project).
Samples were prepared using the standard Illumina workflow protocol
for 16S amplicon library preparation (Illumina, San Diego, California).
Then 250 bp paired-end sequencing was performed on an S-Prime
flowcell with an Illumina NovaSeq 6000 at the Duke Sequencing and
Genomic Technologies Core Facility (Duke University, Durham, NC).

Raw FASTQ files were quality filtered, trimmed, denoised, merged,
checked for chimeras, and assigned taxonomy to generate amplicon
sequence variants (ASVs) using DADA2 (Callahan et al., 2016). Taxo-
nomic assignments for the 16S amplicons were made using the Silva
v138 database (Quast et al., 2013). Contaminating sequences were
detected from negative control samples and removed using the package
Decontam (Davis et al., 2018). Further sequences were removed if they
were present in more than two of the eight blank samples with more
than three reads per blank sample.

Total RNA was extracted from whole lung tissue using a RNeasy kit
(Qiagen, Hilden, Germany) with the following modifications. Prior to
beginning the standard RNeasy protocol, TRIzol™ (Invitrogen, Wal-
tham, MA) was added to the sample at 1 mL per 0.1 g. The sample was
then homogenized with a tissue-tearor on ice for 1 min. Then 0.2 mL of
chloroform was added per mL of TRIzol™, the sample was shaken
vigorously, and allowed to sit at room temperature for 3 min. After
sitting, the sample was centrifuged at 10,000 xg for 18 min at 4 °C. The
top aqueous phase was then removed and utilized for the RNeasy
extraction protocol.

At the end of the extraction, the eluate was split into two: one half
was used for RNA-Seq and the other was used for cDNA synthesis for the
gqPCR assay. A library of 24 lung RNA extractions was sequenced in
duplicates. The Duke Sequencing and Genomic Technologies Core Fa-
cility (Duke University, Durham, NC) performed RNA-Seq library
preparation and sequencing. Libraries were prepared using the KAPA
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Stranded mRNA kit (Roche, Basel, Switzerland) from 24 of the lung RNA
samples with 3 mice representing each environment-flu exposure con-
dition. RNA-Seq libraries were sequenced on an S-Prime flowcell with an
Ilumina NovaSeq 6000 to generate 50 bp paired-end reads. The cDNA
was synthesized using the High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Waltham, MA). Then 20 pL qPCR reactions
were run on a Bio-Rad CT1000 with the following reaction mixture: 4 pL
of cDNA, 0.5 pL 10 pM Forward and Reverse Primers, 5.5 pL molecular
grade water, and 2x SYBR Green PCR Master Mix. The primers were
designed to target the matrix protein 1 of influenza A (van Elden et al.,
2001) with the following sequences: forward 5’-GGACTGCAGCGTA-
GACGCTT-3' and reverse 5’-CATCCTGTTGTATATGAGGCCCAT-3'.

2.3. Data analysis

All data analysis was performed using the R v4.0.3 programming
language. Several R packages were used for data analysis including:
dada2 v1.18 (Callahan et al., 2016) for creating amplicon sequence
variants, phyloseq v1.34 (McMurdie and Holmes, 2013) for generating
ordination plots and computing alpha and beta diversity, stats for
running statistical analyses, microbiome v1.12 (Lahti, 2017) for center
log ratio transformations, and ggplot2 v3.3.5 (Wickham, 2016) for the
generation of visual plots. Analysis of Compositions of Microbiomes
with Bias Correction (ANCOM-BC) v1.0.5 was used to identify differ-
entially abundant ASVs and functional pathways (Lin and Peddada,
2020). PERMANOVA and Bray-Curtis distances were calculated using
vegan v2.5-7 (Jari Oksanen et al., 2018).

Normality of alpha diversity values for richness and Shannon was
confirmed using the Shapiro-Wilk test before subsequent statistical
testing. For those normally distributed data, significance testing with
ANOVA was performed followed by pairwise testing with Tukey’s HSD.
Since species richness for the cage bedding samples was not normally
distributed, these were log transformed prior to ANOVA and pairwise
testing. Also, fecal microbiome samples’ species richness was not nor-
mally distributed and normality could not be achieved with a trans-
formation so the non-parametric Wilcoxon Ranked Sign test with False
Discovery rate (Benjamini-Hochberg) corrected values was used. Sta-
tistical significance in microbial communities between groups was
tested for significance via homogeneity of dispersion and PERMANOVA
(Anderson, 2017) calculated using Bray-Curtis distances. Functional
pathways were predicted using PICRUSt2 v2.4.0 (GM, D., et al., 2020).

The RNA-Seq FASTQ files were quality filtered with fastq-mcf
(Aronesty, 2013), then mapped to the Genome Reference Consortium
Mouse Build 38 (Consortium, 2020) using STAR v2.7.6a (Dobin et al.,
2013). DESeq2 v1.30.1 (Love et al., 2014) was then used to identify
differentially expressed genes. Genes were considered differentially
expressed if they met the criteria of an adjusted p value <0.1 and a log 2-
fold change >1. Pathway analysis was performed using the gage v 2.38.3
(Luo et al.,, 2009) R package to identify Gene Ontology (GO) (Gene
Ontology, 2021; Ashburner et al., 2000) terms and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways (Kanehisa and Goto, 2000;
Kanehisa, 2019; Kanehisa et al., 2021) with significantly different
expression between groups.

2.4. Code and data availability

The code used to generate results can be accessed via GitHub through
the following url: https://github.com/alexmccumber/mouseenv. The
RNA-Seq data discussed in this publication have been deposited in
NCBI's Gene Expression Omnibus (Ron Edgar and Lash, 2002) and are
accessible through GEO Series accession number GSE215292 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE215292).” The
16S rRNA data have been deposited with links to BioProject accession
number PRINA865133 in the NCBI BioProject database (https://www.
ncbi.nlm.nih.gov/bioproject/).
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3. Results
3.1. Cage environment diversity is influenced by the introduction of soil

Prior to their introduction into the mouse cages, an initial charac-
terization of the soils with PERMANOVA indicated that there was a
significant difference in community composition between the soil
microbiomes (R? = 0.27, p < 0.001). The diversity and richness profiles
were as expected, with Pine soils having the highest Shannon diversity
and richness and the Road soils having the lowest (Supplemental Fig. 1A
and B). ANOVA results indicate that there was not a significant differ-
ence in Shannon diversity by soil type (p = 0.16) but there was a sig-
nificant difference in richness by soil type (p = 0.02). Pairwise testing for
richness showed that the Pine soils had significantly higher richness
than the Road soils (p = 0.016).

Of all the soil, fecal and lung microbiome samples, the lungs had the
least overall richness with 2101 unique ASVs identified. The fecal
samples had 3866 unique ASVs and the soil samples had the highest
number with 49,143 ASVs. A summary of the total ASVs and sequencing
depth for the sample types is provided in Supplementary Table 3. For
both the lung and fecal samples, the top 5 phyla at day 14 were Pro-
teobacteria, Verrucomicrobiota, Actinobacteriota, Bacteriodota, and
Firmicutes. These five phyla made up the majority (>95 %) of the lung
and fecal microbiomes. The top 5 phyla in soil samples at day 14 were
Proteobacteria, Planctomycetes, Acidobacteria, Acintobacteria, and
Firmicutes, with a significant proportion of the soil ASVs (>25 %)
belonging to phyla other than these top five (Fig. 2). Differences in soil
exposures were not found to affect growth rates of the mice during the
five-week growth period (data not shown).

For the day 14 and 35 cage bedding samples, the overall variance in
community composition between soil types remained similar to the
initial characterization as indicated by PERMANOVA (R? = 0.26, p <
0.001). Unlike the fresh soils, ANOVA indicated that Shannon diversity
was significantly different by bedding type (p = 0.05, Supplemental
Fig. 2A). Pairwise testing of Shannon diversity showed that Road
bedding had significantly higher diversity than Control bedding (p =
0.05); however, the River vs. Control comparison was not significant (p-
value = 0.06). For richness, the values were log transformed to meet the
assumption of normality prior to running ANOVA. Like Shannon di-
versity comparisons, pairwise testing of log transformed richness
showed that Road bedding had significantly higher richness than Con-
trol bedding (p = 0.02, Supplemental Fig. 2B) but Pine vs. Control was
not significantly different (p-value = 0.08).

Fecal Lung Soll

Ctrl Pine RiverRoad Ctrl Pine River Road Ctrl Pine River Road

1

o

0

Phylum

Other

o
~
(4]

Proteobacteria
Planctomycetota
Verrucomicrobiota
Acidobacteriota

Actinobacteriota

Mean relative abundance
o
(4]
o

Bacteroidota

o
N}
A

Firmicutes

0.00

Fig. 2. Mean relative abundance of the top 5 most abundant phyla from each
sample type for the lung, day 14 fecal, and day 14 soil exposure type. Those
phyla not in the top 5 most abundant were group together as Other.
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3.2. Soil and influenza exposure influence beta but not alpha diversity in
the lung

To examine whether influenza exposure, comparison of the live vs.
heat inactivated virus groups, or cage bedding affected alpha diversity of
the lung microbiome, we compared the richness and Shannon diversity
index for the lung microbiomes of mice in each exposure group; we did
not observe a significant group difference for either metric. We explored
differences in bacterial communities among the treatment groups using
ordination plots and PERMANOVA. While there was no obvious clus-
tering by soil type on the NMDS plot (Supplemental Fig. 3), statistical
testing using PERMANOVA revealed significant differences in commu-
nity compositions by soil exposure (p < 0.001, R> = 0.11). The PER-
MANOVA test also showed that PR8 exposure and the interaction
between PR8 exposure and soil exposure was significant (p < 0.001).
PR8 exposure only accounted for a small amount of the overall variance
in the lung microbiome (R2=10.03). A greater amount of the variance in
the microbiome due to PR8 exposure depends on the soil exposure (RZ =
0.08) and cage effects (R? = 0.36). To further explore if cage diversity
influenced lung microbiome diversity, the Pearson correlation coeffi-
cient was calculated between the Shannon diversity index of day 35 cage
samples and the corresponding lung tissue microbiome samples. There
was no correlation found with either the HI or PR8 exposed group which
suggests that lung diversity and richness are independent of environ-
mental diversity.

3.3. The gut microbiome is more resistant to changes from soil exposure
than the lung

We found that soil and PR8 exposure both resulted in statistically
significant differences in gut microbiome between treatment groups. As
with the lungs, we assessed the effects of soil exposure and time on the
alpha diversity of the gut microbiome by evaluating the richness and
Shannon diversity index for the gut microbiomes of mice in each
exposure group. ANOVA showed that soil (p < 0.001), time (p = 0.007),
PR8 (p = 0.003), and the interaction between soil, PR8 and time (p =
0.019) had a significant effect on the Shannon diversity index. There
were no other significant interaction effects. Pairwise testing with
Tukey’s HSD showed that the Shannon diversity index was significantly
higher in all soil exposed groups compared to Control (p < 0.001);
comparisons among the soil types found that the River exposed mice had
significantly higher values for Shannon diversity index than the Road
exposed mice (p = 0.008). Pairwise testing for the effect of time found
that the Shannon diversity index was significantly higher for day 14
compared to day 0 (p = 0.007), but not 35; and the PR8 exposed cohort
had significantly lower Shannon diversity index compared to the HI
cohort. Soil exposure had a statistically significant effect on richness of
the mouse fecal microbiome. Pairwise testing with a Wilcoxon test
showed that the median for each soil was significantly different from
Control (p < 0.05, Bonferroni corrected), but there were no significant
differences between soil groups. The PR8 exposed cohort had gut
microbiomes with significantly lower richness than the HI exposed
cohort (p = 0.01).

For the effects of soil and time on the between-sample differences for
the gut, an NMDS plot showed no observable, distinct clustering. Sta-
tistical testing using PERMANOVA revealed that there are significant
differences in community compositions by the main effects of soil
exposure (p < 0.001, R? = 0.07), time (p < 0.001, R? = 0.05), and PR8
exposure (p < 0.001, R?=0.01) (Supplemental Fig. 4). The interaction
effects of soil by time (p < 0.001, R% = 0.06) and soil by flu (p < 0.001,
R? = 0.05) were also significant. There was also a significant and large
effect by cage (p < 0.001, R? = 0.37).

Overall, the variance attributed to soil exposure and PR8 in the gut
was much lower than that of the lungs, suggesting that the lung
microbiome is more susceptible to alterations due to soil and PR8
exposure.
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3.4. Lachnospiraceae ASVs drive differences in both lung and gut
microbiome composition as detected by ANCOM-BC

Analysis of Compositions of Microbiomes with Bias Correction
(ANCOM-BC) was used to identify differentially abundant ASVs in each
soil exposed lung microbiome compared to the Control group. The
number of differentially abundant species varied by soil exposure. The
Pine soil exposed group had 31 differentially abundant ASVs (Table 1).
Several of these were Firmicutes and 22 belong to the Family Lachno-
spiraceae. The same pattern was observed in the Road soil exposed
group, which had 70 differentially abundant ASVs, 38 of which were
Lachnospiraceae. The River soil exposed group had 57 differentially
abundant ASVs; 35 belonging to Lachnospiraceae. Thus, differences in
lung microbiome composition appear to be largely driven by ASVs from
the Lachnospiraceae family. However, ANOVA indicated there was no
overall difference in Lachnospiraceae abundance in the lung microbiome
after the data were aggregated at the family level and centered log-ratio
(CLR) transformed.

To determine whether soil microbiome composition differences may
lead to microbiome differences in the lung, ANCOM-BC was again used
to identify differentially abundant ASVs between the Control bedding
and the soil amended bedding for the day 14 and 35 samples. Then, the
list of differentially abundant bedding ASVs was cross referenced with
the list of differentially abundant lung ASVs. Only 4 ASVs were signifi-
cantly different in both the lung and the cage bedding for the Pine soil
exposed samples. A similar pattern was observed with the Road and
River soil exposed samples, with 1 and 5 significant ASVs in both lung
and cage bedding samples, respectively. This result suggests that the
significant differences in ASVs in the cage bedding microbiomes are not
present in the lung microbiome of mice.

Similar to the lung microbiome, ANCOM-BC determined that most of
the differentially abundant ASVs in the fecal microbiome belong to the
family Lachnospiraceae (Table 1). ANCOM-BC identified 148 signifi-
cantly different ASVs in the Pine soil exposed fecal microbiome. A total
of 37 ASVs were significant in both the fecal and soil samples, with 21
belonging to Lachnospiraceae. ANCOM-BC also identified 133 differen-
tially abundant ASVs in the River exposed fecal samples (65 Lachno-
spiraceae), and 166 in the Road soil exposed samples (60
Lachnospiraceae). Unlike the lung Lachnospiraceae, there was a signifi-
cant difference in the CLR transformed values of the Control group
compared to the River and Road exposed soil group (p < 0.05, Tukey’s
HSD), but not the Pine exposed group (p = 0.08, Supplemental Fig. 5).
The Pine soil exposed group was also significantly different from the
River exposed group (p = 0.01).

3.5. No differences in weight loss, viral load, or immune cell counts by soil
exposure were observed

The weight of the mice was recorded on days 3, 5, and 7 following
intranasal influenza exposure. The HI virus exposed group did not lose
significant weight over time, while the PR8 group lost significant weight
from initial influenza exposure to day 7 (Supplemental Fig. 6). There

Table 1

The number of significant lung microbiome ASVs identified by ANCOM-BC in
lung only or both lung and cage bedding samples (for the combined HI and PR8
exposed groups within each soil condition). The number in parentheses is the
number of those ASVs that are Lachnospiraceae.

Sig. host ASVs Sig. host and bedding ASVs

(Lachnospiraceae) (Lachnospiraceae)
Pine 31 (22) 4(2)
Lung Road 70 (38) 1(0)
River 57 (35) 5(4)
Pine 148 (72) 37 (21)
Gut Road 166 (60) 16 (0)
River 133 (65) 4(2)
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was no significant difference in weight lost by soil exposure. Infection
was confirmed with qPCR as the PR8 group had a significantly higher
viral load compared to the HI challenged group (Supplemental Fig. 7).
There was no significant difference in viral load by soil type.

At 7 days post influenza exposure, we determined cell counts of
macrophages and neutrophils in the collected BAL fluid (Fig. 3). For
macrophages, there were a significant effects for both independent
variables soil and PR8 exposure as determined by ANOVA (p < 0.05)
with the PR8 exposed group having a higher macrophage count
compared to the HI exposed group. However, neither the interaction
between PR8 exposure and soil exposure nor any pairwise comparisons
were significant. For neutrophils, there was a significant effect of PR8
exposure, with the PR8 exposed group having a higher neutrophil count
compared to the HI exposed group, but neither soil (p = 0.09) nor the
interaction between soil and live influenza (p = 0.08) reached signifi-
cance as measured by ANOVA.

3.6. Soil exposure alters the inmune response to influenza exposure

To determine if there were significant changes in gene expression
from soil exposure, RNA was extracted and sequenced from the whole
lung tissue of 24 mice at 7 days post PR8 or HI exposure, 3 from each soil
by exposure group. With this data we identified gene expression specific
to PR8 influenza exposure by comparing the HI and PR8 groups to the
Control cohort. We also identified gene expression patterns that were
specific to certain soil exposure groups. Principal component analysis of
the differential expression data shows significant separation along the x-
axis between the HI and PR8 exposed groups (Fig. 4). Within each of the
PR8 and HI exposed groups, there was further clustering by soil expo-
sure. Comparisons of the number of differentially expressed genes reflect
the patterns observed in the PCA plot. Within the HI exposed group,
there were no differentially expressed genes for the Road soil exposed
group compared to the Control. The Pine and River soil exposed groups
displayed differentially expressed genes; however, there were no GO
terms or KEGG pathways with significantly different expression. We
identified 61 biological process GO terms with differential expression
between the PR8-Pine group and the PR8-Standard bedding group,
several of which are immune system processes or related functions (e.g.
B cell activation) that were upregulated. The full list of GO terms and
KEGG pathways can be found in the GitHub repository.

Comparing the gene expression between the PR8-River and HI-River
treated mice identified 186 biological process GO terms that were
upregulated in the PR8-River treated mice. Several of these GO terms
represented immune system processes or related functions. This com-
parison also identified four KEGG pathways upregulated in PR8-River
treated mice including cytokine-cytokine interactions and cell cycling.

Compared to the Control group, the Pine soil exposed group had
significantly downregulated inflammation associated genes (HIF3A and
FGFBP1) but significantly upregulated CX3CL1, a gene suspected to
regulate leukocyte adhesion and migration. The River soil exposed
group had several upregulated interleukin genes: IL2RG, IL11, IL18BP,
IL4RA, IL3RA, IL1ORA, and IL12B. However, ILI7RD was down-
regulated. Several chemokines were also upregulated: CXCR3, CXCL12,
CSCL16, and CCL5, while CCL17 and TAFA1 were downregulated. The
River soil exposed group was also significantly upregulated in the gene
known to inhibit hemagglutinin mediated viral entry of influenza A,
IFITM3 (Bailey et al., 2012) (Supplemental Fig. 8). Table 2 summarizes
the total number of differentially expressed genes by soil exposure type
for either the HI, PR8, or change in expression from the HI to PR8 (Delta)
groups.

3.7. Soil exposure alters the functional profile of the gut microbiome
To determine whether the functional profile of the gut microbiome

changes upon Soil exposure, PICRUSt2 was used to predict metagenome
function. PICRUSt2 uses the amplicon sequence to infer a community
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Fig. 3. Box and whisker plots of the total number of A) macrophages and B) neutrophils counted per mL of bronchioalveolar lavage fluid by soil and heat inactivated
(HI) or live influenza (PR8) virus exposure. For the boxplots, the middle line represents the median, the upper and lower boxes represent the first and third quartiles,

the lines represent the minimum and maximum, and individual points are outliers.
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Fig. 4. Principle component graph of the DESeq2 normalized lung tissue RNA-seq data count matrix for each sample. Color indicates soil exposure group and shape
represents either heat inactivated (HI) or live influenza (PR8) virus exposure. Principal component (PC) 1 captures 93 % of the variance while PC2 captures 2 % of

the variance.

Table 2

Total number of differentially expressed genes from RNA-seq data from the lung
tissue samples identified by DESeq2 by soil exposure type relative to control for
either the heat inactivated (HI), live influenza (PR8) virus exposure, or change in
expression from the HI to PR8 (Delta) groups.

HI PR8 Delta
Pine 225 407 144
River 41 1884 1226
Road 0 28 0

metagenome, which is then used to infer the MetaCyc (Caspi et al.,
2014) pathway abundances. A principal component graph of the CLR
transformed inferred MetaCyc pathway abundances was created to
visualize differences in the predicted metagenomes (Supplemental
Fig. 7). Overall, PERMANOVA showed soil exposure resulted in signif-
icant differences in pathways (p < 0.05) and accounted for approxi-
mately 7.5 % of MetaCyc pathway variance. As the pathway data are
compositional, ANCOM-BC was used to identify pathways that are
differentially abundant. There were 44 MetaCyc pathways that were
significantly different for the Pine soil exposed group compared to
Control, most of which were for amino acid or sugar metabolism. For the
Road soil exposed group there were 71 significantly different pathways
and all belonged to the quinol and quinone biosynthesis superclass. The
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River soil exposed group had 41 significantly differentially abundant
pathways. Like the Pine and Road exposure groups, several of the River
soil exposure groups identified pathways were amino acid and sugar
metabolism as well as quinol and quinone biosynthesis pathways. In
addition, there were three pathways that were of potential interest due
to the observed differential immune response: L-glutamate degradation
VIII (to propanoate), (S)-propane-1,2-diol degradation, and 2-methylci-
trate cycle II (propanoate degradation). The first two pathways belong to
the superclass “fermentation to short-chain fatty acids” and the third to
“propanoate degradation”, compounds of interest due to their potential
to regulate immune system function. The model coefficients for
ANCOM-BC indicate that while the (S)-propane-1,2-diol degradation
pathway is present in greater abundance in the Pine soil exposed sam-
ples, the 2-methylcitrate cycle II (propanoate degradation) is lower in
River soil exposed mice (Table 3). L-glutamate degradation VIII (to
propanoate) was lower in all three soil exposed mice compared to the
Control mice.

4. Discussion

Soil exposure can alter the functional profile of animal microbiomes
by changing community compositions which, in turn, alters the immune
response to a viral challenge. Soil exposure significantly impacted the
composition of both the gut and lung microbiomes and these differences
seem to have been driven by the family Lachnospiraceae. We found that
11 % of the variance of lung microbiome composition can be accounted
for by different soil exposures, and that this soil exposure effect was
greater on the lungs than the gut. This was expected given previous
observations that the lung microbiome is mostly comprised of transient
members, while in the gut newly introduced bacteria not only have to
survive passage through the stomach but also must outcompete native
taxa to establish themselves as part of the host microbiome (Corcoran
et al., 2005). Additionally, the gut is known to have higher alpha di-
versity, so even if soil microbes became established in both sites, the
effect of this alteration is likely to be less impactful on the gut (Dickson
et al., 2017). We were able to observe changes in the gut microbiome
over time through longitudinal fecal sampling, which was not possible
for the lungs; however, time accounted for less gut microbiome variance
than soil exposure. This is not a surprising result as known regulators of
gut microbiome composition, such as diet, remained constant. In
humans, longitudinal metagenomic and culturing studies have shown
that >50 % of the members of the gut microbiome are retained for at
least 1 year (Faith et al., 2013; Schloissnig et al., 2013; Hildebrand et al.,
2021).

While we observed an impact of soil exposure on overall lung
microbiome composition, soil exposures did not seem to have a signif-
icant effect on the alpha diversity of lung microbiomes: neither Shannon
diversity nor richness of the lung microbiome correlated with the cage
bedding microbiome diversity or richness. A similar trend has been
observed in a horse model, where grazing at pasture or being housed
indoors did not impact Shannon diversity or richness of the lung
microbiome (Fillion-Bertrand et al., 2019). Similarly, Megahed et al.
(Megahed et al., 2019) found no difference in Hill diversity or Chaol
richness in the lung microbiome of pigs grown with slatted flooring
compared to standard straw bedding. Though neither of these studies
provided samples of environmental diversity, these results show that the
lung microbiome diversity and richness may not be significantly altered

Table 3
ANCOM-BC beta coefficients for the mouse fecal samples PICRUSt2 inferred
pathways by soil exposure type (stars indicate significance).

Pathway Pine River Road
(S)-propane-1,2-diol degradation 1.76* 1.31 1.10
1-Glutamate degradation VIII (to propanoate) —1.38 -1.11 —1.64
2-Methylcitrate cycle II (propanoate degradation) —0.67 —0.35 —0.95*
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by environmental differences and remains at a steady state, though in-
dividual membership within the lung microbiome changes with envi-
ronmental exposures. Thus, these data suggest that the lung is able to
regulate microbiome diversity independent of the environment but not
community composition.

Firmicutes was the dominant phylum in all lung and fecal samples
regardless of soil exposure. ANCOM-BC suggests that ASVs from the
Firmicutes based family Lachnospiraceae drive most of the compositional
differences we observed between microbiomes and that these changes
were a result of differences in soil exposure. While there were several
individual Lachnospiraceae ASVs different between lung microbiomes by
soil exposure, this study found no observable pattern between the soil
exposure and Control groups’ CLR of Lachnospiraceae in the lung
microbiome. However, Lachnospiraceae were in greater abundance in
the fecal microbiome of the Control group compared to all the soil
exposed groups. This is in line with a previous study that found Lach-
nospiraceae was lower in relative abundance in the gut microbiome of
mice that were exposed to soil compared to controls (Ottman et al.,
2018). Lachnospiraceae are spore-forming, common gut and soil micro-
biome members (Huang et al., 2019; Li et al., 2019). In a study classi-
fying gut bacteria by dispersal strategies, Hildebrand et al. (Hildebrand
et al., 2021) identify Lachnospiraceae as heredipersistent, or a group that
is inheritable from parent to child but also has a high turnover rate in the
gut and is dependent upon a continuous cycle of reinfection. Considering
most of the differentially abundant ASVs were originally identified in
the day 0 fecal microbiomes, the results suggest that the soils may play a
role in selection of specific Lachnospiraceae ASVs as they cycle through
the host and environment where some soils may provide a distinct
advantage to a particular Lachnospiraceae ASV. Overall, this family is
highly diverse and thought to be mainly gut associated and there is
currently no known literature to suggest which mechanisms may be
causing this selection.

Lachnospiraceae are currently of interest as they are known to pro-
duce short chain fatty acids (SCFAs) that are thought to be beneficial to
host health (Vacca et al., 2020). One of these SCFAs, propionate, has
been shown to reduce lung inflammation, potentially acting through the
gut-lung axis (Liu et al., 2021). In a sterile lung injury model in mice, the
gut microbiomes associate with lower inflammation had higher abun-
dances of Lachnospiracae (Tian et al., 2019). Lachnospiraceae has been a
topic of particular interest in immunocompromised populations. In HIV
patients, airways with higher Lachnospiraceae have been associated with
lower bacterial burden and reduced expression of TNF-o and matrix
metalloproteinase-9 (Iwai et al., 2014). The presence of Lachnospiraceae
in the lungs has also been associated with longer duration of ventilator
days and acute respiratory distress syndrome (Dickson et al., 2020). The
presence of Lachnospiraceae in the mouse lung microbiome may be a
reasonable expectation since coprophagy may provide a direct route of
introduction for feces associated bacteria into the lung.

While soil exposure did not confer any specific protective or sus-
ceptible role in terms of weight loss or viral titers following PR8 vs. HI
exposure, soil exposure significantly affected gene expression. The role
the microbiome plays in the host immune response is complex and its
mechanisms are an active area of research. Bradley et al. (Bradley et al.,
2019) found that interferon levels decreased after giving mice antibi-
otics, facilitating earlier entry of influenza viral particles into epithelial
cells. This effect was reversed after a fecal transplant, implicating the gut
microbiome in the regulation of an important antiviral host system. In
the present study, a similar effect was observed for Interferon Induced
Transmembrane Protein 3 (IFITM3) expression. While baseline levels of
IFITM3 were not significantly different between any of the different soil
exposure groups, overall IFITM3 had higher expression levels in soil
exposed groups compared to the Control group. Further, IFITM3
expression has been shown to be positively correlated with antibody
development following an influenza infection (Lei et al., 2020). Thus,
our data suggest that while soil exposure may not play a role in pro-
tection against acute influenza infection in this model system, soil
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exposure may potentially impact long term immune development and
response to re-infection. This observation is consistent with the broader
understanding that taking antibiotics lowers antibody titers (Zimmer-
mann and Curtis, 2018) and that microbiome diversity may play a role
in vaccine efficacy rates (McCoy et al., 2019). Importantly, Hagan et al.
(Liu et al., 2021) showed antibiotic administration prior to influenza
vaccine administration impaired antibody binding to HIN1 in human
subjects with low pre-existing antibody titers while Ichinohe et al.
(Hagan et al., 2019; Ichinohe et al., 2011) found that mice treated with
antibiotics had lower influenza specific antibody titers 2-weeks post
infection. Both these studies utilized broad spectrum antibiotics that
would likely kill Lachnospiraceae. In mice, the relative abundance of
Lachnospiraceae has previously been positively associated with antibody
titers following a rabies vaccine (Zhang et al., 2020). This relationship
merits further investigation as there continue to be trends between
Lachnospiraceae and antibody development. There are limitations to our
data that complicate interpretation: gene expression data was collected
at a single time point, so while higher expression of IFIT3 expression at 7
days post exposure is believed to be beneficial, it is possible that higher
IFIT3 expression is due to a delayed clearance of the viral infection
compared to the other groups. However, the lack of difference in viral
titers between the soil exposure groups suggests that this is not the case.

Along with an upregulated interferon gene, indicating increased
antiviral activity, cytokine and chemokine genes were generally also
upregulated in the soil exposed mice. This finding is consistent with a
previous study where some OTUs, including a Lachnospiraceae OTU,
were positively associated with serum cytokine and chemokine levels
(Bartley et al., 2017). While we are not aware of any study concerning
the role of the lower respiratory tract microbiome, bacteria in the upper
respiratory tract (Kaul et al., 2020) and gut (Rosshart et al., 2017) have
been shown to regulate influenza inflammation. Several of the genes
previously inferred to be modulated by upper respiratory tract and gut
microbiome are anti-inflammatory cytokines or cytokine associated
genes including: interleukin 4 (IL4RA), interleukin 10 (ILI10RA), and
interleukin 11 (IL11). This finding is consistent with the Rosshart et al.
(Rosshart et al., 2017) study which found higher IL10 protein levels in
the lung tissue of mice that were given a fecal transplant from a wild
mouse (that would have had direct contact with soils) compared to lab-
reared mice at four days post influenza exposure. The inferred upregu-
lation of the propionate production pathway in the gut microbiome of
the River soil exposed mice supports a role for the gut microbiome in
regulating the immune response. This inferred upregulation appears to
be mainly driven by Lachnospiraceae ASVs that had significantly higher
abundance in the River soil exposed mice. The inferred upregulation of
propionate production could be driving the upregulation of anti-
inflammatory genes and increase in neutrophils that we observed in
this group. Previously, Tian et al. (Tian et al., 2019) found that Lach-
nospiraceae relative abundance was positively correlated with gut pro-
pionate concentrations, which reduced lung inflammation following a
lung ischemia reperfusion injury in mice. In another mouse model, the
authors showed that intratracheal exposure to higher propionate con-
centrations resulted in greater lung injury due to reduced beneficial
inflammation following a Staphylococcus aureus pneumonia challenge.
Thus, while preventing excessive inflammation may be beneficial to
prevent lung injury following influenza exposure, it could leave the host
more susceptible to bacterial co-infection. This is potentially important
clinically as secondary bacterial infections are a significant cause of
increased mortality and morbidity in influenza patients (Morris et al.,
2017).

There are several limitations to this study. The introduction of
different soils into cage bedding was designed to model living in
different environments with different microbial communities of
different complexity; as with all models, this one was imperfect. While
the microbial communities of the soils differed prior to introduction into
cage bedding (Supplemental Fig. 9), they became more similar over time
and the alpha diversity of each decreased. There are several possible
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explanations, including colonization of cage bedding by the fecal pellet
microbial community and the loss of specific taxa after being removed
from the supportive environment provided by their natural ecosystem.
Further, we have not investigated the possibility that abiotic factors in
soil samples may have affected the mice. As for the differential gene
expression data, it is possible that the microbiome is impacting the ki-
netics of immune responses following the virus. This could lead to early
or delayed gene responses. Therefore, by sampling only one time point,
which was the point of peak inflammation, it is possible that changes in
kinetics would not be observed.

We cannot rule out the possibility that contamination during pro-
cessing contributed to some of the observed community variation. We
took particular caution to include several negative control samples, but
lungs have very low microbial biomass and are particularly susceptible
to contamination (Drengenes et al., 2019).. Future studies should
attempt to measure total microbial burden, which is likely an important
consideration in studying the lung microbiome.

Because not all Lachnospiraceae produce SCFAs, a follow-up experi-
ment with shotgun metagenomic sequencing may be able to elucidate
this family’s role in SCFA production by not only improving taxonomic
resolution to distinguish SCFA-producing taxa from non-producing taxa,
but also by directly quantifying the relative abundance of SCFA pathway
genes. Lastly, conducting the lung lavage to retrieve immune cells for
phenotyping may have altered the lung microbiome community, and
therefore may have altered communities observed at the final timepoint.

5. Conclusions

Alterations in host lung gene expression and the gut and lung
microbiomes following soil and influenza exposure were assessed. Key
findings from this study are that the lung regulates microbiome diversity
independent of the environment but not community composition and
soil exposure influenced gene expression in the lungs but had no effect
on viral load or weight loss. Lachnospiraceae ASVs accounted for a sig-
nificant proportion of the differences between gut and lung microbiomes
as detected by ANCOM-BC and their relationship with the host and its
immune system development/maturation  warrants further
investigation.
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