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Abstract
This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic
waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023)
[5], extending the stability results for homogeneous electromagnetic (EM)waveguides
to the non-homogeneous case. The analysis is done using perturbation techniques for
self-adjoint operators eigenproblems.We show that the non-homogeneous EMwaveg-
uide problem is well-posed with the stability constant scaling linearly with waveguide
length L . The results provide a basis for proving convergence of a Discontinuous
Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultra-
weak variational formulation for the resulting modified system of Maxwell equations,
see Part 1.

Keywords Electromagnetic waveguides · Well-posedness analysis · Perturbation of
self-adjoint eigenvalue problems

Mathematics Subject Classification (2010) 78A50 · 35Q61

1 Introduction

This is the second part of our work devoted to the stability and well-posedness analysis
of electromagnetic (EM) waveguides; see [5] for an introduction and the motivation
for our work. In Part 1 of this work, we considered the homogeneous waveguide only,
and we showed that the operator corresponding to the first-order system of Maxwell
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equations is bounded below with a constant scaled inversely with the length L of the
waveguide (L is proportional to the number of wavelengths),

(
‖E‖2 + ‖H‖2

) 1
2 ≤ CL

(
‖∇ × E − iωH‖2 + ‖∇ × H + iωE‖2

) 1
2
,

where i = √−1, ω denotes the angular frequency of the light, and C is a positive
constant. We use the formalism of closed operators; the electric/magnetic field (E, H)

pair comes from the domain of the operator. A simple perturbation argument, given
at the end of [5], shows that for a sufficiently small perturbation1 of the dielectric
constant (or relative permittivity) ε = 1 + δε, the operator remains bounded below
but the linear dependence of the stability constant upon L is lost. In fact, the smallness
of perturbation δε is expressed in terms of constant CL; hence, the larger the length
L , the smaller δε must be.

Step-index fibers In this paper, we extend our stability result to non-homogeneous EM
waveguides. This case has importance in modeling a large number of EM waveguide
applications, such as optical amplifiers which are used to achieve high-power laser out-
puts very efficiently [6, 8]. A typical optical fiber model is the double-clad step-index
fiber—a cylindrical EM waveguide where the cross-section (or transversal domain)
consists of a silica-glass fiber core surrounded by a silica-glass inner cladding and an
outer polymer cladding (see Fig. 1a). The material refractive index n is slightly higher
in the core than in the inner cladding which enables the propagation of core-guided
transverse modes. Consequently, the permittivity ε = ε(x, y, z), which depends on
the material refractive index n = n(x, y, z), is discontinuous at the core-cladding
interface ∂�core := {(x, y, z) : x2 + y2 = r2core} of a step-index fiber, as illustrated
in Fig. 1b. Analogously, the material contrast at the inner-outer cladding interface
∂�clad := {(x, y, z) : x2+ y2 = r2clad} enables propagation of cladding-guided modes
by total internal reflection at the glass-polymer interface.

We note that it is a common assumption in engineering literature to consider ε

differentiable. Indeed, it is often the case that simplified models of EM waveguide
applications (e.g., some beam propagation models) entirely neglect the fact that ε is
not differentiable.More recently, partly thanks to the increased computing capabilities,
it has become possible to numerically solve EM waveguide models of realistic length
based directly on the Maxwell equations [2–4] thereby avoiding such simplifying
assumptions. We emphasize that the analysis in this paper considers discontinuous
material parameters and is therefore directly applicable to step-index fibers.

Contributions Extending the stability analysis to the non-homogeneous waveguide
problem turns out to be rather non-trivial. We begin by rewriting the Maxwell system
in terms of four unknowns: transversal – Et , Ht , and longitudinal – E3, H3 compo-
nents of electric and magnetic fields. Assuming the exponential ansatz eiβz in the
(longitudinal) z-direction, we obtain a non-standard eigenvalue problem for propa-
gation constant β. Upon eliminating E3, H3, we obtain a more standard system of

1 We use a non-dimensional version of the equations.
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Fig. 1 a Schematic of a small section of a double-clad step-index fiber, taken from [1]; b transversal profile
of the relative permittivity ε = ε(r) in a double-clad step-index fiber

second-order equations (in x, y) with a non-self-adjoint operator, even for the homo-
geneous case. Only in the last step, after elimination of Ht (or Et ), we obtain a more
standard E-eigenvalue problem for Et , and the corresponding H -eigenvalue problem
for Ht . The operators in the E- and H -eigenvalue problems for the homogeneous
case turn out to be self-adjoint. This leads to the determination of an orthonormal
eigenbasis and corresponding spectral decomposition which, upon the substitution
into the original first-order system, decouples the original system into systems of first-
order ordinary differential equations (ODEs). Stability analysis for the ODEs and the
spectral decomposition argument led to the final result in [5].

In the non-homogeneous case, the operators in the E- and H -eigenvalue problems
are not self-adjoint but they represent perturbations of self-adjoint operators. This
invites the application of the classical2 perturbation analysis for self-adjoint operators
[7] that we pursue in this paper. The arguments are far from trivial, as we lose the con-
venient orthonormal basis argument and have to resort to a series of non-orthonormal
(perturbed) eigenvectors. The decoupling argument then involves adjoint operators
which need to be analyzed as well. As always with the perturbation argument, the
analysis is formal; we proceed under the assumption that the non-orthogonal series
converge as needed. In the computation of the mass matrix for the perturbed eigenvec-
tors, we neglect the quadratic (in δε) terms and consider the linearized mass matrix
only.

Outline The structure of the paper is as follows. We begin in Section 2 with
the derivation of the various eigenvalue problems and relations between them. In
Section 3, we develop the classical perturbation argument to compute the perturbed E
and H eigenvectors and their counterparts for the adjoint problems. In Section 4, we
arrive at our first main result; we reduce the problem to a system of decoupled systems
of small subsystems of two ODEs for the coefficients in the spectral representations
of Et and Ht . Upon further reduction to a single second-order ODE, we arrive at

2 Dating back to Lord Rayleigh.
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essentially the same ODE problem as in the analysis of the homogeneous waveguide.
This leads to the final estimates of Et , Ht (and their curls) in terms of the right-hand
side and to our final result presented in Section 5. We finish with short conclusions in
Section 6. Finally, Appendix 1 provides additional algebraic results from the per-
turbation analysis. In the main body of the paper, we proceed under the customary,
simplifying assumption that all perturbed eigenvalues are distinct. In Appendix 1
though, we provide additional details for the case of multiple eigenvalues as it is in
the case of the step-index fiber.

In the end, our main stability result is identical with the one for the homogeneous
waveguide: we show the scaling of the stability constant with length L . The (formal)
perturbation analysis necessitates the assumption of a small perturbation but only
in the L∞-norm. Nowhere in our analysis do we require the dielectric constant to
be differentiable, a common assumption in the engineering literature. The presented
analysis thus applies to step-index fibers.

2 Eigensystems

Let Et , E3 denote the transversal (a 2D vector), and longitudinal (a scalar) components
of a 3D vector field E . The 3D curl operator applied to vectors (Et , 0) and (0, E3)

generates a 2D scalar-valued operator curl, and a 2D vector-valued operator ∇×,

curl Et = curl(E1, E2) := ∂E2

∂x
− ∂E1

∂ y
, ∇ × E3 := (

∂E3

∂ y
,−∂E3

∂x
) .

We will be using the following 2D identities derived easily from their corresponding
3D counterparts:

ez × (ez × Et ) = −Et ,

ez × (∇ × E3) = ∇E3 , ez × ∇E3 = −∇ × E3,

curl(ez × Et ) = div Et , div(ez × Et ) = − curl Et .

(2.1)

For instance,

ez×Et = ez×(Ex , Ey) := (−Ey, Ex ) (= (0, 0, 1)×(Ex , Ey, 0) = (−Ey, Ex , 0)) .

The 3D Maxwell equations,

∇ × E − iωH = f , ∇ × H + iωεE = g ,

are accompanied with perfect electrical conductor (PEC) boundary conditions (BCs):
n×E = 0 on the lateral boundary and at z = 0,with a non-localDirichlet-to-Neumann
(DtN) BC applied at z = L , see Part I of this work. The original system of equations
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translates into: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇ × E3 + ez × ∂
∂z Et − iωHt = ft ,

curl Et − iωH3 = f3,

∇ × H3 + ez × ∂
∂z Ht + iωεEt = gt ,

curl Ht + iωεE3 = g3 .

(2.2)

Multiplying the first and third equations by iω ez×, we obtain:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇iωE3 − ∂
∂z iωEt + ω2 ez × Ht = iω ez × ft ,

curl Et − iωH3 = f3,

∇iωH3 − ∂
∂z iωHt − ω2 ez × εEt = iω ez × gt ,

curl Ht + iωεE3 = g3 .

(2.3)

Let D denote the 2D transversal domain of the waveguide. The eigensystem corre-
sponding to the first-order system operator, and eiβz ansatz in z, looks as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Et ∈ H0(curl, D), E3 ∈ H1
0 (D),

Ht ∈ H(curl, D), H3 ∈ H1(D),

iω∇E3 + ω2ez × Ht = −ωβEt ,

curl Et − iωH3 = 0,

iω∇H3 − ω2ez × εEt = −ωβHt ,

curl Ht + iωεE3 = 0 .

(2.4)

And the system corresponding to the adjoint and eiγ z ansatz in z is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ft ∈ H(div, D), F3 ∈ H1(D),

Gt ∈ H0(div, D), G3 ∈ H1
0 (D),

∇ × F3 + ω2ez × εGt = −ωγ Ft ,

iω(div Ft − εG3) = 0,

∇ × G3 − ω2ez × Ft = −ωγGt ,

iω(divGt + F3) = 0 .

(2.5)
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Eliminating E3 and H3 from system (2.4), we obtain a simplified but second-order
system for Et , Ht only:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Et ∈ H0(curl, D), curl Et ∈ H1(D),

Ht ∈ H(curl, D), 1
ε
curl Ht ∈ H1

0 (D),

−∇( 1
ε
curl Ht ) + ω2ez × Ht = −ωβEt ,

∇(curl Et ) − ω2ez × εEt = −ωβHt .

(2.6)

Similarly, eliminating F3 andG3 from system (2.5), we obtain a simplified but second-
order system for Ft ,Gt only:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ft ∈ H(div, D), 1
ε
div Ft ∈ H1

0 (D),

Gt ∈ H0(div, D), divGt ∈ H1(D),

−∇ × divGt + ω2ez × εGt = −ωγ Ft ,

∇ × ( 1
ε
div Ft ) − ω2ez × Ft = −ωγGt .

(2.7)

One can check that the operator in (2.7) corresponds to the adjoint of the operator
in (2.6). Notice how the boundary conditions (BCs) on E3,G3 have been inherited by
curl Ht and div Ft .

Reduction to single variable eigensystems Assume β �= 0. Solving (2.6)2 for Ht ,
we get

Ht = − 1

ωβ
[∇ curl Et − ω2ez × εEt ],

curl Ht = ω

β
curl(ez × εEt ) = ω

β
div εEt .

(2.8)

Substituting this into (2.6)1, we obtain an eigenvalue problem for Et alone:

⎧⎨
⎩

Et ∈ H0(curl, D), curl Et ∈ H1(D), 1
ε
div εEt ∈ H1

0 (D),

∇ × curl Et − ω2εEt − ∇( 1
ε
div εEt ) = −β2Et .

(2.9)

Similarly, solving (2.6)1 for Et gives

Et = − 1

ωβ
[−∇(

1

ε
curl Ht ) + ω2ez × Ht ],

curl Et = −ω

β
curl(ez × Ht ) = −ω

β
div Ht .

(2.10)
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Substituting this into (2.6)2, we obtain an eigenvalue problem for Ht alone:

⎧⎨
⎩

Ht ∈ H(curl, D) ∩ H0(div, D), 1
ε
curl Ht ∈ H1

0 (D), div Ht ∈ H1(D),

ε∇ × ( 1
ε
curl Ht ) − ω2εHt − ∇(div Ht ) = −β2Ht .

(2.11)

Note that the BC n × Et = 0 implies the BC n · Ht = 0. We proceed in the same way
with the adjoint. Solving (2.7)2 for Gt leads to

Gt = − 1

ωγ
[∇ × (

1

ε
div Ft ) − ω2ez × Ft ],

divGt = ω

γ
div(ez × Ft ) = −ω

β
curl Ft ,

(2.12)

and substituting this into (2.7)1, we obtain an eigenvalue problem for Ft alone:

⎧⎨
⎩

Ft ∈ H0(curl, D) ∩ H(div, D), 1
ε
div Ft ∈ H1

0 (D), curl Ft ∈ H1(D),

∇ × curl Ft − ω2εFt − ε∇( 1
ε
div Ft ) = −γ 2Ft .

(2.13)

Note that the BC n · Gt = 0 implies the BC n × Ft = 0. Similarly, solving (2.7)1 for
Ft , yields

Ft = − 1

ωβ
[−∇ × divGt ) + ω2ez × εGt ],

div Ft = −ω

β
div(ez × εGt ) = −ω

β
curl εGt ,

(2.14)

and substituting this into (2.7)2, we obtain an eigenvalue problem for Gt alone:

⎧
⎨
⎩
Gt ∈ H0(div, D), divGt ∈ H1(D), 1

ε
curl εGt ∈ H1

0 (D),

∇ × ( 1
ε
curl εGt ) − ω2εGt − ∇(divGt ) = −γ 2Gt .

(2.15)

Lemma 1 The following holds:

(a) Let (−ωβ, (Et , Ht )) be an eigenpair for system (2.6). Then, (−β2, Et ) solves (2.9),
and (−β2, Ht ) solves (2.11).

(b) Conversely, if (−β2, Et ) is an eigenpair for (2.9), and we define Ht by

Ht = 1

ω(±β)

(
−∇ curl Et + ω2ez × εEt

)
,

then (−ω(±β), (Et , Ht )) is an eigenpair for system (2.6). Each eigenpair for (2.9)
generates two eigenpairs for (2.6).

(c) Similarly, if (−β2, Ht ) is an eigenpair for (2.11), and we define Et by

Et = 1

ω(±β)

(
∇(

1

ε
curl Ht ) − ω2ez × Ht

)
,
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then (−ω(±β), (Et , Ht )) is an eigenpair for system (2.6). Each eigenpair
for (2.11) generates two eigenpairs for (2.6).

Proof We have already proved (a). To prove (b), one checks that the formula for Ht

and (2.9) imply (just algebra) equation (2.6)1. Same procedure to prove (c). 	

In particular, Lemma 1 implies that eigenproblems (2.9) and (2.11) have the same

eigenvalues β2.

Lemma 2 The following holds:

(a) Let (ωγ, (Ft ,Gt )) be an eigenpair for system (2.7). Then, (−γ 2,Gt ) solves (2.15)
and (−γ 2, Ft ) solves (2.13).

(b) Conversely, if (−γ 2, Ft ) is an eigenpair for (2.13), and we define Gt by

Gt = 1

ω(±γ )

(
−∇ × (

1

ε
div Ft ) + ω2ez × Ft

)
,

then (ω(±γ ), (Ft ,Gt )) is an eigenpair for system (2.7). Each eigenpair for (2.13)
generates two eigenpairs for (2.7).

(c) Similarly, if (−γ 2,Gt ) is an eigenpair for (2.15), and we define Ft by

Ft = 1

ω(±γ )

(
∇ × divGt − ω2ez × εGt

)
,

then (ω(±γ ), (Ft ,Gt )) is an eigenpair for system (2.7). Each eigenpair for (2.15)
generates two eigenpairs for (2.7).

In particular, Lemma 2 implies that the eigenproblems (2.13) and (2.15) have the
same eigenvalues γ 2.

Lemma 3 (−β2, Et ) is an eigenpair for problem (2.9) if and only if (−β2, ez × Et )

is an eigenpair for (2.15). Similarly, (−β2, Ht ) is an eigenpair for problem (2.11) if
and only if (−β2, ez × Ht ) is an eigenpair for (2.13). In particular, this implies that
all four individual eigenproblems share the same eigenvalues.

Proof Use identities (2.1). 	


3 A perturbation analysis

In this section, we will use the classical perturbation theory for self-adjoint operators
to analyze two eigenvalue problems:

• the electric eigenvalue problem (2.9)

∇ × curl Et − ω2εEt − ∇(
1

ε
div εEt ) = −β2Et (E problem) (3.1)
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• and the magnetic eigenvalue problem (2.11)

ε∇ × (
1

ε
curl Ht ) − ω2εHt − ∇(div Ht ) = −γ 2Ht (H problem) . (3.2)

We have already argued that the problems share the same eigenvalues. Problem (3.1)
is a perturbation of a self-adjoint eigenvalue problem for the electric field representing
the homogeneous waveguide,

∇ × curl E − ω2E − ∇(div E)︸ ︷︷ ︸
=:AE

= −β2E, (3.3)

where E = Et . We have learned in [5] that the problem admits two families of
eigenvectors:

Ei = ∇ × ψi , β2
i = ω2 − μi ,

E j = ∇φ j , β2
j = ω2 − λ j ,

(3.4)

where (μi , ψi ) and (λ j , φ j ) are Neumann and Dirichlet eigenpairs for the Laplace
operator. We will consistently use indices i and j to denote the two families. Prob-
lem (3.2) is a perturbation of a self-adjoint eigenvalue problem for the magnetic field
representing the homogeneous waveguide,

∇ × curl H − ω2H − ∇(div H)︸ ︷︷ ︸
=:BE

= −γ 2 H , (3.5)

where H = Ht = Gt . The problem admits two families of eigenvectors:

Hi = ∇ψi , β2
i = ω2 − μi ,

Hj = ∇ × φ j , β2
j = ω2 − λ j ,

(3.6)

where (μi , ψi ) and (λ j , φ j ) denote again theNeumann andDirichlet eigenpairs for the
Laplace operator. Whenever we distinguish between the two families of eigenvectors,
we will consistently use indices i and j or k and l to denote them. The two unperturbed
problems look the same but they differ in the boundary conditions. The corresponding
perturbed eigenpairs are

(−β2 − δβ2, E + δE), (−γ 2 − δγ 2, H + δH) .

3.1 Perturbation analysis for the E eigenvalue problem

Wewill present now in detail the analysis for the first perturbed problem. The operator
A is self-adjoint in L2(D), so its eigenvalues are real and the eigenvectors form an
L2-orthonormal basis. Consider now a perturbation,

ε := 1 + δε, E := E + δE, β2 := β2 + δβ2,

123
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where E = Et . Inserting these perturbations into (3.1) and linearizing, we obtain the
corresponding linearized problem:

A(δE) + β2δE = ω2δεE −∇(δε div E) +∇ div(δεE) −δβ2E (δE problem).
(3.7)

Consider now problem (3.3) and (3.7) for a specific eigenpair 3 (−β2
i , Ei ). Represent-

ing the perturbation in eigenbasis E j , we have

δEi =
∑
j

(δEi , E j )E j ,

A(δEi ) =
∑
j

(δEi , E j )(−β2
j )E j ,

(A(δEi ), Ek) =
∑
j

(−β2
j )(δEi , E j ) (E j , Ek)︸ ︷︷ ︸

=δ jk

= (−β2
k )(δEi , Ek) .

Taking the L2-product of (3.7) with Ek , we obtain

(−β2
k )(δEi , Ek) = −β2

i (δEi , Ek) − δβ2
i (Ei , Ek)︸ ︷︷ ︸

=δik

+ω2(δεEi , Ek) − (∇(δε div Ei ), Ek) + (∇ div(δεEi ), Ek) ,

or,

(β2
i −β2

k )(δEi , Ek)+δβ2
i δik = ω2(δεEi , Ek)−(∇(δε div Ei ), Ek)+(∇ div(δεEi ), Ek) . (3.8)

Assumption AWe assume now that the eigenvalues are distinct (simple). This is a
customary assumption in the perturbation argument to simplify the presentation. The
case of multiple eigenvalues is more complicated and is discussed in Appendix 1.

Under the assumption of distinct (simple) eigenvalues, for k = i , we get a formula
for the perturbation δβ2

i :

δβ2
i = ω2(δεEi , Ei ) + (δε div Ei , div Ei ) − (div(δεEi ), div Ei ) . (3.9)

For k �= i , formula (3.8) allows us to compute perturbation δEi ; the i-th component
of δEi comes from a normalization argument.

Assumption B We scale the perturbed eigenvectors by the condition

(δEi , Ei ) = 0 . (3.10)

Note that this scaling assumption is reasonable. Normalization ‖Ei + δEi‖2 = 1 plus
linearization imply that �(δEi , Ei ) = 0. Scaling complex-valued vectors allows also

3 We do not distinguish now between the two families of eigenvectors.
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Table 1 Mass term (δE, E) for different families of eigenvectors

Ek = ∇ × ψk El = ∇φl

δEi = δ(∇ × ψi )
ω2(δεEi , Ek )

μk − μi

(ω2 − λl )(δεEi , El )

λl − μi

δE j = δ(∇φ j )
ω2(δεE j , Ek )

μk − λ j

(ω2 − λl )(δεE j , El ) + λ jλl (δεφ j , φl )

λl − λ j

for fixing a phase, i.e., multiplying the vector with an arbitrary eiθ factor. Selecting a
proper θ we can always make the imaginary part of (δEi , Ei ) vanish as well. See also
the discussion in Section 4.

We have:

(β2
i − β2

k )(δEi , Ek) = ω2(δεEi , Ek) + (δε div Ei , div Ek) − (div(δεEi ), div Ek) .

Linearized mass matrices We shall now compute linearized mass matrices for the
E-eigenproblem, and the two families of eigenvectors. Table 1 presents the results for
the (δEi , E j ) term.

We can now compute the linearized mass matrix:

(δEi , E j ) + (Ei , δE j ) = (δEi , E j ) + (δE j , Ei ) .

The second term is obtained by swapping indices in Table 1 and changing the order of
the arguments in the L2-inner products to account for conjugation. For instance, for
the first term,

ω2(δεEi , Ek)

μk − μi
→ ω2(δεEk, Ei )

μi − μk
→ ω2(δεEi , Ek)

μi − μk
.

Table 2 presents selected (those that we will need) elements of the linearized mass
matrix.

Curl-curl coupling Let Ei + δEi be the perturbed eigenvectors for the electric eigen-
problem.

(curl δEi , curl E j ) + (curl Ei , curl δE j ) .

Table 2 Linearized mass matrix
(δEi , Ek ) + (Ei , δEk ) for
different families of eigenvectors

Ek = ∇ × ψk El = ∇φl

Ei = ∇ × ψi 0 not needed

E j = ∇φ j not needed −(δεE j , El )

123
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We have:

δEi =
∑
k

(δEi , Ek)Ek (summation over both curls and grads),

curl δEi =
∑
k

(δEi ,∇ × ψk)μkψk (summation over curls only).

Hence,

(curl δEi , curl E j ) = (∑
k

(δEi ,∇ × ψk)μkψk , curl E j
)

=

⎧
⎪⎨
⎪⎩

∑
k

(δEi ,∇ × ψk)(μkψk , μ jψ j ) = (δEi ,∇ × ψ j )μ j if E j = ∇ × ψ j

0 if E j is a gradient.

As for the linearized mass matrix, we need to evaluate only the interaction for Ei

and E j being curls only or grads only. Consequently, the linearized curl-curl mass
matrix is non-zero only if both eigenvectors are curls, and it is equal to

(δEi , E j )μ j +(Ei , δE j )μi = μ j
ω2(δεEi , E j )

μ j − μi
+μi

ω2(δεEi , E j )

μi − μ j
= ω2(δεEi , E j )

(3.11)
for Ei = ∇ × ψi , E j = ∇ × ψ j .

3.2 Perturbation analysis for the H eigenvalue problem

The linearized problem is:

BδH + γ 2δH = −δε ∇ × curl H − ∇ × (δε curl H) + ω2δε H − δγ 2 H ,

where the operator B is formally the same as operator A for the E problem (but the
BCs are different). Performing the same analysis as for the E problem, we get

(γ 2
i − γ 2

k )(δHi , Hk) + δγ 2
i δik = ω2(δεHi , Hk) − (δε∇ × curl Hi , Hk) + (∇ × (δε curl Hi ), Hk) .

(3.12)
Under Assumption A of distinct (simple) eigenvalues, for k = i , we get a formula for the pertur-
bation δγ 2

i :

δγ 2
i = ω2(δεHi , Hi ) − (δε∇ × curl Hi , Hi ) + (∇ × (δε curl Hi ), Hi ) . (3.13)

For k �= i , formula (3.12) allows us to compute the perturbation δHi ; the i-th com-
ponent of δHi comes from a normalization assumption.
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Table 3 Linearized mass matrix
(δHi , Hk ) + (Hi , δHk ) for
different families of eigenvectors

Hk = ∇ψk Hl = ∇ × φl

Hi = ∇ψi 0 not needed

Hj = ∇ × φ j not needed (δεHj , Hl )

Assumption C We assume
(δHi , Hi ) = 0 . (3.14)

Assumption C implies that the perturbed eigenvector Hi + δHi is (approximately)
of length one, see the discussion in Section 4.

After integrating the last term in (3.12) by parts, we obtain

(γ 2
i −γ 2

k )(δHi , Hk) = ω2(δε Hi , Hk)−(δε∇×curl Hi , Hk)+(δε curl Hi , curl Hk) .

The computations of the (required) elements of the linearized stiffness matrices are
fully analogous to those for the electric eigenvalue problem. Table 3 presents selected
(those that we need) elements of the linearized mass matrix.

Finally, the curl-curl linearized mass matrix for the grad eigenvectors vanishes, and
for the curl eigenvectors Hi = ∇ × φi , Hj = ∇ × φ j the entries look as follows:

(curl δHi , curl Hj )+ (curl Hi , curl δHj ) = (δHi , Hj )λ j + (Hi , δHj )λ j

= λ j

λ j − λi

⎡
⎢⎢⎣ω2(δεHi , Hj ) − (δε∇ × curl Hi , Hj )︸ ︷︷ ︸

=λi (δεHi ,Hj )

+ (δε curl Hi , curl; Hj )︸ ︷︷ ︸
=λiλ j (δεφi ,φ j )

⎤
⎥⎥⎦

+ λi

λi − λ j

[
ω2(δεHj , Hi ) − λ j (δεHj , Hi ) + λ jλi (δεφ j , φi )

]

= ω2(δεHi , Hj ) + λiλ j (δεφi , φ j ) .

(3.15)

4 Stability analysis

We return to system (2.3). We test the first equation with Ft and the third equation
with Gt , n · Gt = 0 on ∂D, to obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(iωE3, div Ft ) + ω2(ez × Ht , Ft ) − ∂
∂z iω(Et , Ft ) = iω (ez × ft , Ft ),

curl Et − iωH3 = f3,

−(iωH3, divGt ) − ω2(ez × εEt ,Gt ) − ∂
∂z iω(Ht ,Gt ) = iω (ez × gt ,Gt ),

curl Ht + iωεE3 = g3 .

Note that, when integrating by parts the first terms, we have used the fact that E3 = 0
and n · Gt = 0 on ∂D. Solving the second and fourth equations in (2.2) for E3 and
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H3, we get

E3 = 1

iωε
g3 − 1

iωε
curl Ht , H3 = − 1

iω
f3 + 1

iω
curl Et .

Substituting this into the first and the third equations, we obtain a system of two
variational equations for Et , Ht :
{

( 1
ε
curl Ht , div Ft ) + ω2(ez × Ht , Ft ) − ∂

∂z iω(Et , Ft ) = iω (ez × ft , Ft ) + ( 1
ε
g3, div Ft ),

−(curl Et , divGt ) − ω2(ez × εEt ,Gt ) − ∂
∂z iω(Ht ,Gt ) = iω (ez × gt ,Gt ) − ( f3, divGt ) .

(4.1)
The variational eigenvalue problem

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Et ∈ H0(curl, D), Ht ∈ H(curl, D),

( 1
ε
curl Ht , div Ft ) + ω2(ez × Ht , Ft ) = −ωβ(Et , Ft ),

−(curl Et , divGt ) − ω2(ez × εEt ,Gt ) = −ωβ(Ht ,Gt ),

∀Ft ∈ H(div, D), ∀Gt ∈ H0(div, D) ,

is equivalent to the eigenproblem (2.6). Similarly, switching the roles of (Et , Ht )

and (Ft ,Gt ) above, we obtain the adjoint variational eigenvalue problem, which is
equivalent to (2.7).

Consider now system (4.1). We expand the unknowns into a series of the perturbed
eigenvectors:

Et =
∑
i

αi Et1,i +
∑
j

τ j Et2, j ,

Ht =
∑
i

δi Ht1,i +
∑
j

η j Ht2, j ,

where αi , τ j , δi , η j are functions of z, and

Et1,i = ∇ × ψi + δEt1,i , Et2, j = ∇φ j + δEt2, j ,

Ht1,i = ∇ψi + δHt1,i , Ht2, j = ∇ × φ j + δHt2, j

are the two E and H families of (perturbed) eigenvectors. Let

Ft1,i = ∇ × ψi + δFt1,i , Ft2, j = ∇φ j + δFt2, j ,
Gt1,i = ∇ψi + δGt1,i , Gt2, j = ∇ × φ j + δGt2, j

be the corresponding families of perturbed adjoint eigenvectors.

Scaling of the eigenvectors The unperturbed E eigenvectors are scaled to provide an
orthonormal basis, i.e., ‖∇ × ψi‖ = ‖∇φ j‖ = 1. This implies that the unperturbed
H eigenvectors are also unit vectors as ‖∇ψi‖ = ‖∇ × ψi‖, etc. The unperturbed F
and G eigenvectors coincide with the E and H eigenvectors. We learned in Section 3
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that the perturbations δEt1,i are scaled by the condition (δEt1,i ,∇ × ψi ) = 0. This
implies that the perturbed eigenvector is, up to the linearization, a unit vector as well,

(∇ × ψi + δEt1,i , ∇ × ψi + δEt1,i ) ≈ (∇ × ψi , ∇ × ψi ) + (∇ × ψi , δEt1,i ) + (δEt1,i , ∇ × ψi ) = 1 .

The same comment applies to all remaining perturbed eigenvectors. Note additionally
that the bi-orthogonality condition (Ei , Fi ) = 1 is also (approximately) satisfied,

(∇ × ψi + δEt1,i ,∇ × ψi + δFt1,i ) ≈ (∇ × ψi , ∇ × ψi )︸ ︷︷ ︸
=1

+ (∇ × ψi , δFt1,i )︸ ︷︷ ︸
=0

+ (δEt1,i ,∇ × ψi )︸ ︷︷ ︸
=0

= 1 .

Decoupling the equations Let −β2 be an eigenvalue for eigenproblems (2.9)
and (2.11) with the corresponding eigenvectors Et , Ht scaled as discussed above.
In order to invoke Lemma 1(b), we have to replace Ht with cHt where the constant c
is computed by comparing the eigenvector cHt with Ht given by relation (2.8),

cHt = 1

ωβ
[−∇ curl Et + ω2ez × εEt ] .

The pair (Et , cHt ) constitutes then an eigenvector for system (2.6) corresponding to
root β of β2 selected in such a way that eiβz represents an outgoing wave.4 We proceed
similarly with the adjoint eigenvectors. Let−γ 2 be an eigenvalue for problems (2.13)
and (2.15) with the corresponding eigenvectors Ft , Ht . After scaling the second com-
ponent, the pair (Ft , dGt ) constitutes an eigenvector for system (2.7) corresponding to
a root γ of γ 2. The constant d is obtained5 by comparing dGt withGt given by (2.12),
cf. Lemma 2,

dGt = 1

ωβ
[−∇ × (

1

ε
div Ft ) + ω2ez × Ft ] .

Case β2 �= γ 2 This implies β �= γ . Multiplying system (2.6) with the pair (Ft , dGt ),
we obtain the bi-orthogonality condition,

c(BHt , Ft ) + d(CEt ,Gt ) = 0,

where B and C denote the operators on the left-hand side of (2.6). But testing with the
adjoint eigenpair (Ft ,−dHt ) (corresponding to the eigenvalue −γ �= β), we obtain
also

c(BHt , Ft ) − d(CEt ,Gt ) = 0.

Consequently, we have,

(BHt , Ft ) = 0 and (CEt ,Gt ) = 0 .

4 The choice depends upon the ansatz in time.
5 We learn in Appendix 1 that d is real.
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Case β2 = γ 2 and β = γ Multiplying system (2.6) with the pair (Ft ,Gt ), we obtain

c(BHt , Ft ) + d(CEt ,Gt ) = −ωβ[1 + cd].

Testing with the adjoint eigenpair (Ft ,−dGt ) (corresponding to the eigenvalue−γ �=
β), we obtain also

c(BHt , Ft ) − d(CEt ,Gt ) = 0.

Consequently, we have

θ := (BHt , Ft ) = −ωβ

2c
[1 + cd] and ν := (CEt ,Gt ) = −ωβ

2d
[1 + cd] .

Theorem 1 Testing in (4.1) with (Ft1,i , dGt1,i ) and with (Ft2,i , dGt2,i ), we obtain a
decoupled system of ODEs for the coefficients αi , δi :

{
θ1δi − iωα′

i = r1(z) := (iω ez × ft , Ft1,i ) + (
1

ε
g3, div Ft1,i ),

ν1αi − iωδ′
i = r2(z) := (iω ez × gt ,Gt1,i ) − ( f3, divGt1,i ),

(4.2)

and for the coefficients τi , ηi :

{
θ2ηi − iωτ ′

i = s1(z) := (iω ez × ft , Ft2,i ) + (
1

ε
g3, div Ft2,i ),

ν2τi − iωη′
i = s2(z) := (iω ez × gtGt2,i ) − ( f3, divGt2,i ),

(4.3)

where θk , νk , k = 1, 2, are the values of the coefficients θ , ν for the two families of
eigenvectors.

We refer to Appendix 1, for the computation of the constants c, d, θ , ν using the
perturbation analysis, and the final values of θ , ν listed in Table 4. The constants take
different values for the two families of E and F eigenvectors. For the homogeneous
waveguide, the systems reduce to the ones in [5].

Remark 1 While we use the perturbation analysis to evaluate the constants c, d, θ , ν,
the decoupling result in Theorem 1 is general and valid for arbitrary ε.

5 Estimation of Et , H t and curl Et , curl H t

Recall that iωH3 = curl Et − f3. Estimating curl Et is thus equivalent to estimating
H3. Similarly, iωεE3 = − curl Ht − g3, so that estimating curl Ht is equivalent to
estimating E3.

Table 4 Coefficients δ and ν for
the two families of eigenvectors

First family Second family

θ + δθ −ω2 −β2 − ω2(δε ∇ψ, ∇ψ)

ν + δν β2 + λ2(δε φ, φ) ω2(1 + (δε ∇φ, ∇φ))
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5.1 Estimation of Et and H t with their spectral components

If the L2 massmatrix corresponding to the perturbed eigenvectors represents a bounded
operator in L2, then we can bound the L2-norm of Et with the sum of its spectral
components. More precisely,

‖Et‖2 ≤ 2

⎡
⎣‖

∞∑
i=1

αi Et1,i‖2 + ‖
∞∑
j=1

τ j Et1, j‖2
⎤
⎦

= 2 lim
N→∞

⎡
⎣(

N∑
i=1

αi Et1,i ,

N∑
k=1

αk Et1,k) + (

N∑
j=1

τ j Et2, j ,

N∑
l=1

τl Et2,l)

⎤
⎦

= 2 lim
N→∞

⎡
⎣

N∑
i,k=1

αiαk(Et1,i , Et1,k) +
N∑

j,l=1

τ jτl(Et2, j , Et2,l)

⎤
⎦

≤ lim
N→∞ 2C

⎡
⎣

N∑
i=1

|αi |2 +
N∑
j=1

|τ j |2
⎤
⎦

= 2C

⎡
⎣

∞∑
i=1

|αi |2 +
∞∑
j=1

|τ j |2
⎤
⎦

whereC is assumed to be independent of N . Note that we do not need any information
about the off-diagonal terms (Et1,i , Et2, j ). According to the formulas from Table 2,
we have C = 1 + ‖δε‖L∞(D).

Similarly,

‖Ht‖2 ≤ 2

⎡
⎣‖

∞∑
i=1

δi Ht1,i‖2 + ‖
∞∑
j=1

η j Ht2, j‖2
⎤
⎦

≤ 2C

⎡
⎣

∞∑
i=1

|δi |2 +
∞∑
j=1

|η j |2
⎤
⎦

where, by the results from Table 3, C = 1 + ‖δε‖L∞(D) as well.
After integrating in z, we get

∫ L

0
‖Et‖2 dz ≤ 2C

⎡
⎣

∞∑
i=1

∫ L

0
|αi |2 dz +

∞∑
j=1

∫ L

0
|τ j |2 dz

⎤
⎦ ,

∫ L

0
‖Ht‖2 dz ≤ 2C

⎡
⎣

∞∑
i=1

∫ L

0
|δi |2 dz +

∞∑
j=1

∫ L

0
|η j |2 dz

⎤
⎦ .

(5.1)
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5.2 Estimation of curl Et, curl H t with spectral components of Et, H t

By the same token, using (3.11), we obtain,

‖ curl Et‖2 ≤ 2

⎡
⎣‖

∞∑
i=1

αi curl Et1,i‖2 + ‖
∞∑
j=1

τ j curl Et2, j‖2
⎤
⎦

= 2 lim
N→∞

⎡
⎣(

N∑
i=1

αi curl Et1,i ,

N∑
k=1

αk curl Et1,k) + (

N∑
j=1

τ j curl Et2, j ,

N∑
l=1

τl curl Et2,l )

⎤
⎦

= 2 lim
N→∞

⎡
⎣

N∑
i,k=1

αiαk(curl Et1,i , curl Et1,k) +
N∑

j,l=1

τ j τl (curl Et2, j , curl Et2,l )

⎤
⎦

≈ 2
∞∑
i=1

(μi + ω2‖δε‖L∞(D))|αi |2 .

Note that, like for the homogeneous case, the perturbed gradients do not contribute
(the linearized perturbed curl mass matrix is zero).

Similarly, using formula (3.15),

‖ curl Ht‖2 ≤ 2

⎡
⎣‖

∞∑
i=1

αi curl Ht1,i‖2 + ‖
∞∑
j=1

τ j curl Ht2, j‖2
⎤
⎦

� 2
∞∑
i=1

(λi‖ε‖L∞(D) + ω2‖δε‖L∞(D))|ηi |2 .

Note again that the perturbed gradients do not contribute.

5.3 Estimation of spectral components˛i, ıi

We focus now on the ODE boundary-value problem (4.2) for the coefficients α and δ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(0) = 0, δ(L) =
√

ν
θ
α(L),

θδ − iωα′ = r1,

να − iωδ′ = r2,

(5.2)

where θ = θ1 and ν = ν1 are the coefficient values for the first family of eigenvectors.
Testing the second equation with δα, δα(0) = 0, integrating the derivative term by
parts, and utilizing the impedance BC, we obtain

iω(δ, δα′) = −ν(α, δα) + iωα(L)δα(L) + (r2, δα) .
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Testing the first equation with δα′ and using the formula above, we obtain the final
variational problem for the coefficient α:

⎧⎪⎪⎨
⎪⎪⎩

α(0) = 0

(α′, δα′) + κ2(α, δα) + κα(L)δα(L) = i
ω
(r1, δα′) − θ

ω2 (r2, δα)

∀ δα : δα(0) = 0

(5.3)

where κ = i
√

θν
ω

. For the homogeneous waveguide, κ = iβ and the equation coincides
with that derived in [5]. For the non-homogeneous waveguide,

κ = i
√

β2 + ω2(δε∇ψ,∇ψ) .

The perturbed κ is still of order β. As θ = θ1 = −ω2, the right-hand side reduces to

i

ω
(r1, δα

′) + (r2, δα) . (5.4)

The following lemma was proved in [5].

Lemma 4 Let I = (0, L). Consider two problems: Find q1, q2 ∈ H1
(0(I ) := {v ∈

H1(I ) : v(0) = 0} such that

(q ′
1, v

′) + λ2(q1, v) + λq1(L)v(L) = ( f , v) v ∈ H1
(0(I ),

(q ′
2, v

′) + λ2(q2, v) + λq2(L)v(L) = ( f , v′) v ∈ H1
(0(I ),

where f ∈ L2(I ). Then, denoting ‖q‖21,β := ‖q ′‖2 + β2‖q‖2, we have:
• Case (i): λ = iβ, β > 0. There exists a constant C > 0, depending only on a
lower bound for Lβ such that

‖q1‖21,β ≤ CL2‖ f ‖2,
‖q2‖21,β ≤ CL2β2‖ f ‖2.

• Case (ii): λ = β, β > 0. There exists a constant C > 0, depending only on a
lower bound for Lβ, such that

‖q1‖21,β ≤ Cβ−2‖ f ‖2 and hence ‖q1‖2 ≤ Cβ−4‖ f ‖2,
‖q2‖21,β ≤ C‖ f ‖2 and hence ‖q2‖2 ≤ Cβ−2‖ f ‖2 .

We will use Lemma 4 to estimate the L2-norms of coefficients α j , δ j by the L2-
norms of the right-hand sides r1, j , r2, j and, in turn, the L2(0, L)-norms of r1, j , r2, j by
the L2-norms of ft , f3, gt , g3. While the stability of propagating modes (Case (i) in
Lemma 4) implies the linear dependence of the stability constant upon L , the stability
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of evanescent modes (Case (ii) in Lemma 4) provides the desired asymptotic scaling

properties in terms of the eigenvalues |βi | ≈ μ
1
2
i , λ

1
2
i . Note that, since the number

of propagating modes is finite, their stability does not affect the asymptotic scaling
properties with |βi |. We will skip the dependence of the stability constants C upon L

but keep track of the dependence upon the eigenvalues |βi | ≈ μ
1
2
i , λ

1
2
i .

Estimation of α j We will consider the four terms contributing to the right-hand
side (5.4) and estimate the corresponding solutions α j , one at a time. By linearity, this
will imply the estimate for the ultimate coefficients α j .

Term 1 iω(ez × ft , Ft1, j ) contributing to r1. Skipping the factor iω, we have:

∑
j

∫ L

0
|α j |2 dz �

∑
j

∫ L

0
β−2
j |(ez × ft , Ft1, j + δFt1, j )|2 (Lemma 4(ii)2)

� 2
∑
j

∫ L

0
β−2
j [|(ez × ft , Ft1, j )|2 + |(ez × ft , δFt1, j )|2] (Young’s inequality)

� 2
∑
j

∫ L

0
|(ez × ft , Ft1, j )|2 (linearization, β−2

j � 1)

≤ 2
∫ L

0
‖ez × ft‖2 dz

= 2
∫ L

0
‖ ft‖2 dz .

Remark 2 Note that the application ofYoung’s inequality andneglection of the second-
order terms reduces the estimation of coefficients α j to the case of the homogeneous
waveguide. The ODE systems (4.2) and (4.3) are identical with those for the homoge-
neouswaveguide except for the values of θi , νi which are different but of the sameorder
as for the homogeneous system. Hence the estimation of coefficients αi , δi , τ j , η j in
the perturbed case is identical with the estimation for the homogeneous waveguide.
For the reader’s convenience, we estimate explicitly each term, repeating arguments
from [5].

Term 2 ( 1
ε
g3, div Ft1, j ) contributing to r1.

∑
j

∫ L

0
|α j |2 dz �

∑
j

∫ L

0
β−2
j |( 1

ε
g3, div(Ft1, j + δFt1, j ))|2 (Lemma 4(ii)2)

≤ 2
∑
j

∫ L

0
β−2
j [|( 1

ε
g3, div(Ft1, j ))|2 + |( 1

ε
g3, div(δFt1, j ))|2] (Young’s lemma)

� 2
∑
j

∫ L

0
|( 1

ε
g3, div(Ft1, j ))|2 (linearization, β−2

j � 1)

� 0 (div Ft1, j = 0)
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Term 3 iω(ez ×gt ,Gt1, j ) contributing to r2. We follow exactly the same reasoning
as for Term 1. Note that Lemma 4(ii)1 gives us even a better factor β−4.

Term 4 ( f3, divGt1, j ) contributing to r2.

∑
j

∫ L

0
|α j |2 dz �

∑
j

∫ L

0
β−4
j |( f3, div(Gt1, j + δGt1, j ))|2 (Lemma 4(ii)1)

≤ 2
∑
j

∫ L

0
β−4
j [|( f3, div(Gt1, j ))|2 + |( f3, div(δGt1, j ))|2] (Young’s lemma)

� 2
∑
j

∫ L

0
β−4
j |( f3, div(Gt1, j ))|2 (linearization)

� 2
∑
j

∫ L

0
β−4
j μ j |( f3, μ1/2

j ψ j )|2

� 2
∑
j

∫ L

0
β−2
j |( f3, μ1/2

j ψ j )|2 (β−2
j μ j ≈ O(1))

� 2
∑
j

∫ L

0
|( f3, μ1/2

j ψ j )|2 (β−2
j � 1)

� 2
∑
j

|( f3, μ1/2
j ψ j )|2 = 2‖ f3‖2 .

Estimation of curl Et In the estimation of curl Et , we need to estimate

∑
i

∫ L

0
(μi + ‖δε‖L∞(D))︸ ︷︷ ︸

∼β2
i

|αi |2 dz .

We follow exactly the same strategy as above. In all cases, we can accommodate the
extra μi ≈ β2

i factor.

Estimation of δ j The first equation of system (5.2) implies

ω2‖δ‖L2(I ) ≤ ω‖α′‖L2(I )) + ‖r1‖L2(I ) .

Estimation of the derivatives
∑

i ‖α′
i‖2L2(I ))

‖ is done in exactly the same way as for

αi ’s, except that Lemma 4(ii) delivers now less by a factor of β−2
j . However, we can

spare it in all of the four discussed cases. It remains to estimate r1. We proceed in the
same way as before.
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Term 1 (ez × ft , Ft1, j ) contributing to r1. We have:

∑
j

∫ L

0
|(ez × ft , Ft1, j + δFt1, j )|2

� 2
∑
j

∫ L

0
[|(ez × ft , Ft1, j )|2 + |(ez × ft , δFt1, j )|2] (Young’s inequality)

� 2
∑
j

∫ L

0
|(ez × ft , Ft1, j )|2 (linearization)

≤ 2
∫ L

0
‖ez × ft‖2 dz = 2

∫ L

0
‖ ft‖2 dz .

Term 2 ( 1
ε
g3, divGt1, j ) contributing to r1.

∑
j

∫ L

0
|(1

ε
g3, div(Ft1, j + δFt1, j ))|2

≤ 2
∑
j

∫ L

0
[|(1

ε
g3, div(Ft1, j ))|2 + |(1

ε
g3, div(δFt1, j ))|2] (Young’s lemma)

� 2
∑
j

∫ L

0
|(1

ε
g3, div(Ft1, j ))|2 (linearization)

� 0 (div Ft1, j = 0)

5.4 Estimation of spectral components �i,�i

Weuse exactly the same techniques to estimate the spectral components corresponding
to the second families of E and H eigenvectors.Wewill point out only to the differences
between the two cases. The ODE boundary-value problem (4.3) for the coefficients τ

and η takes the same form as system (5.2),

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β(0) = 0, η(L) =
√

θ2
θ1

β(L),

θη − iωβ ′ = s1,

νβ − iωη′ = s2,

(5.5)

where

s1 = (iω ez × ft , Ft2, j ) + (
1

ε
g3, div Ft2, j ),

s2 = (iω ez × gtGt2, j ) − ( f3, divGt2, j ) .
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The coefficients θ, ν are now different. By the results from Appendix 1 in the “Com-
putation of scaling coefficients c, d, θ, ν” section,

θ = θ2 = β2 + λ(δε λ
1
2 φ, λ

1
2 φ), ν = ν2 = ω2 + ω2(δε ∇φ,∇φ) .

This gives for the homogeneous waveguide κ = iβ, and for the non-homogeneous
case,

κ = i

√
(β2 + λ(δε λ

1
2 φ, λ

1
2 φ))(ω2 + ω2(δε ∇φ,∇φ))

ω

which is still iβ to leading order.
The first essential difference is the scaling in the right-hand side of the second-order

problem (5.3),

i

ω
(s1, δα

′) − θ

ω2 (s2, δα) = i

ω
(s1, δα

′) − (β2 + λ(δε λ
1
2 φ, λ

1
2 φ))

ω2 (s2, δα) .

The coefficient in front of s1 is the same as before, but the coefficient θ in front of s2
is now of order β2.

Estimation of τ j We now discuss the four terms contributing to the right-hand side
above.

Term 1 iω(ez × ft , Ft2, j ) contributing to s1. The estimate is identical with that for
αi . Skipping constant terms, we have:

∑
j

∫ L

0
|τ j |2 dz �

∑
j

∫ L

0
β−2
j |(ez × ft , Ft2, j + δFt2, j )|2 (Lemma 4(ii)2)

� 2
∑
j

∫ L

0
β−2
j [|(ez × ft , Ft2, j )|2 + |(ez × ft , δFt2, j )|2] (Young’s inequality)

� 2
∑
j

∫ L

0
|(ez × ft , Ft2, j )|2 (linearization, β−2

j � 1)

≤ 2
∫ L

0
‖ez × ft‖2 dz = 2

∫ L

0
‖ ft‖2 dz .
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Term 2 ( 1
ε
g3, div Ft2, j ) contributing to s1. The situation is now different as div Ft2, j = div grad φ j =

−λ jφ j .

∑
j

∫ L

0
|τ j |2 dz �

∑
j

∫ L

0
β−2
j |(1

ε
g3, div(Ft2, j + δFt2, j ))|2 (Lemma 4(ii)2)

≤ 2
∑
j

∫ L

0
β−2
j [|(1

ε
g3, div(Ft2, j ))|2 + |(1

ε
g3, div(δFt2, j ))|2] (Young’s lemma)

� 2
∑
j

∫ L

0
β−2
j |(1

ε
g3, div(Ft2, j ))|2 (linearization)

� 2
∑
j

∫ L

0
|(1

ε
g3, λ

1
2
j φ j ))|2 (β−2

j λ j � 1)

� ‖1
ε
g3‖2 � ‖g3‖2 .

Term 3 iω(ez × gt ,Gt2, j ) contributing to s2. We follow exactly the same reasoning as for Term
1. Lemma 4(ii)1 gives us a better factor β−4 but there is a factor of order β2 in front of s2.

Term 4 ( f3, divGt2, j ) contributing to s2. Compared with the estimate for α j , we lose again a
factor β−2

j due to the term in front of s2.

∑
j

∫ L

0
|τ j |2 dz �

∑
j

∫ L

0
β−2
j |( f3, div(Gt2, j + δGt2, j ))|2 (Lemma 4(ii)1)

≤ 2
∑
j

∫ L

0
β−2
j [|( f3, div(Gt2, j ))|2 + |( f3, div(δGt2, j ))|2] (Young’s lemma)

� 2
∑
j

∫ L

0
β−2
j |( f3, div(Gt2, j ))|2 (linearization)

� 2
∑
j

∫ L

0
β−2
j λ j |( f3, λ1/2j φ j )|2 (divGt2, j = −λφ j )

� 2
∑
j

∫ L

0
|( f3, λ1/2j φ j )|2 (β−2

j λ j ≈ O(1))

= 2‖ f3‖2 .

Estimation of η j From the first equation in system (5.5), we get

η = 1

θ
(iωβ ′ + s1) ⇒ ‖η‖2L2(I ) � 1

λ2
‖τ ′‖2L2(I ) + 1

λ2
‖s1‖2L2(I )

as |s1| ≈ λ. In order to estimate curl Ht , we need a more demanding estimate for

∑
j

λ j‖η j‖2L2(I ) �
∑
j

λ−1
j ‖τ ′

j‖2L2(I ) + λ−1
j ‖s1, j‖2L2(I ) .

In the estimation of the derivatives τ ′
j , we lose a factor of β2

j but we gain it back with the factor λ−1
j

above.We also need the additional factor when estimating the second term. The details are as follows.
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Term 1 (ez × ft , Ft2, j ) contributing to s1. This term in painless. We do not need the additional
factor λ−1

j ≈ β−2
j .

∑
j

∫ L

0
|(ez × ft , Ft2, j + δFt2, j )|2

� 2
∑
j

∫ L

0
[|(ez × ft , Ft2, j )|2 + |(ez × ft , δFt2, j )|2] (Young’s inequality)

� 2
∑
j

∫ L

0
|(ez × ft , Ft2, j )|2 (linearization)

≤ 2
∫ L

0
‖ez × ft‖2 dz = 2

∫ L

0
‖ ft‖2 dz .

Term 2 ( 1
ε
g3, divGt2, j ) contributing to s1. The presence of the additional factor is now essential.

∑
j

β−2
j

∫ L

0
|(1

ε
g3, div(Ft2, j + δFt2, j ))|2

≤ 2
∑
j

∫ L

0
β−2
j [|(1

ε
g3, div(Ft2, j ))|2 + |(1

ε
g3, div(δFt2, j ))|2] (Young’s lemma)

� 2
∑
j

β−2
j

∫ L

0
|(1

ε
g3, div(Ft2, j ))|2 (linearization)

� 2
∑
j

β−2
j λ j

∫ L

0
|(1

ε
g3, λ

1
2
j φ j ))|2 (div Ft2, j = −λ jφ j )

� 2
∑
j

∫ L

0
|(1

ε
g3, λ

1
2
j φ j ))|2 (β−2

j λ j � 1)

≤ 2‖1
ε
g3‖2 � ‖g3‖2 .

5.4.1 Final result

We arrive at our final result.

Theorem 2 Assume that ε = 1 + δε where the perturbation δε is sufficiently6 small in L∞-norm,
and that it vanishes near the boundary.7 Under the technical assumption that the eigenvalues of
the homogeneous waveguide are simple, there exists then a constant C > 0 such that under the
assumption of validity of the performed linearizations,

‖E‖2 + ‖H‖2 ≤ CL2
(
‖∇ × E − iωH‖2 + ‖∇ × H + iωεE‖2

)

for all (E, H) from the domain of the operator.

Remark 3 We have proved the theorem under the simplifying assumption of distinct (simple) eigen-
values β2

i of the homogeneous waveguide problem, see Assumption A in Section 3.1. Extending the
proof to the case of multiple eigenvalues requires techniques discussed in Appendix 1. We believe
(conjecture) that this is possible using the presented techniques although a presentation of it would

6 To justify the perturbation analysis.
7 See Assumption D in Appendix1
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add additional complexity to the already technical material. For a start, we mention that, in the case of
equal Dirichlet and Neumann Laplace eigenvalues, we cannot exclude the possibility of the perturbed
Maxwell eigenvalues being complex.

6 Conclusions

We have extended the stability analysis for homogeneous electromagnetic waveguides from [5] to the
case of a non-homogeneous waveguide with a perturbed dielectric constant ε = 1+ δε. The analysis
was done using the classical (formal) perturbation theory for eigenproblems involving a self-adjoint
operator under the assumption of ‘smallness’ of perturbation the δε but with no assumptions on
its derivatives. In particular, the results hold for discontinuous perturbations δε and are therefore
applicable to the case of step-index fibers.

Appendix 1. Perturbation analysis continued

In this section, we provide additional results obtained from the perturbation analysis. The results
below require the perturbation analysis for the adjoint F and G problems that follow the same lines
as for the E and H problems. We skip the details and present only the final results that were used in
Section 4.

Computation of scaling coefficients c, d, �, �

First family of eigenvectors

We first investigate perturbations of E, F eigenvectors ∇ × ψi and the corresponding H ,G eigen-
vectors ∇ψi .

Perturbations of coefficients c, d Let ∇ × ψ + δE and ∇ψ + δH be the perturbed E and H
eigenvectors corresponding to a perturbed eigenvalue β + δβ. Here ψ is a Neumann eigenvector of
the Laplacian, −�ψ = μψ , and β2 = ω2 − μ. The perturbed coefficient c + δc is defined by the
relation:

(c + δc)(∇ψ + δH) = β − δβ

ωβ2

[
−∇ curl(∇ × ψ + δE) + ω2ez × (1 + δε)(∇ × ψ + δE)

]
.

We first compute the value of c. Testing with ∇ψ , we get,

c = 1

ωβ
([−∇ (−�ψ)︸ ︷︷ ︸

=μψ

+ω2(ez × (∇ × ψ)︸ ︷︷ ︸
=∇ψ

],∇ψ) = 1

ωβ
[−μ + ω2]︸ ︷︷ ︸

=β2

= β

ω
.

Linearizing both sides, and testing with ∇ψ , we get,

δc (∇ψ,∇ψ)︸ ︷︷ ︸
=1

+c (δH ,∇ψ)︸ ︷︷ ︸
=0

= − δβ

ωβ2 (−∇ curl∇ × ψ + ω2∇ψ,∇ψ)︸ ︷︷ ︸
=β2

+ 1
ωβ

(−∇ curl δE + ω2ez × δE,∇ψ)︸ ︷︷ ︸
=0

+ 1
ωβ

ω2 (δε ez × (∇ × ψ),∇ψ)︸ ︷︷ ︸
=(δε∇ψ,∇ψ)

.
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In the end,

δc = − δβ

ω
+ ω

β
(δε∇ψ,∇ψ) .

Similarly, perturbation δd is defined by the relation:

(d+δd)(∇ψ +δG) ≈ β − δβ

ωβ2

[
−∇ × ((1 − δε) div(∇ × ψ + δF)) + ω2(ez × (∇ × ψ + δF))

]
.

This yields:

d = ω

β
and δd = −δβ

ω

β2 .

Perturbations of coefficients entering the decoupled system of equations We are now ready to
compute the perturbation of coefficient

θ = −ωβ

2c
[1 + cd] = −ωβ

2
[1
c

+ d] = −ω2 .

We have:

δθ = −ω

2
[1
c

+ d] δβ + ωβ

2

1

c2
δc − ωβ

2
δd

= −ω2

β
δβ + ω3

2β
[− δβ

ω
+ ω

β
(δε∇ψ,∇ψ)] + ω2

2β
δβ

= −ω2

β
δβ + ω4

2β2 (δε∇ψ,∇ψ) .

Finally, using formula (3.9) for δβ2 and utilizing δβ2 = 2β δβ, we obtain,

δθ = − ω4

2β2 (δε∇ × ψ,∇ × ψ) + ω4

2β2 (δε∇ψ,∇ψ) = 0 .

We proceed with the coefficient

ν = −ωβ

2d
[1 + cd] = −ωβ

2
[ 1
d

+ c] = −β2 .

We have:

δν = −ω

2
[ 1
d

+ c] δβ + ωβ

2

1

d2
δd − ωβ

2
δc

= −β δβ − β

2
δβ − ωβ

2
[− δβ

ω
+ ω

β
(δε∇ψ,∇ψ)]

= −β δβ − ω2

2
(δε∇ψ,∇ψ) .

Using again formula (3.9) for δβ2, we obtain,

δν = −ω2

2
(δε∇ × ψ,∇ × ψ) − ω2

2
(δε∇ψ,∇ψ) = −ω2(δε∇ψ,∇ψ) .
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Second family of eigenvectors

Next, we record the results for similar computations for perturbations of the second family of E, F
eigenvectors: ∇φ j and the corresponding H ,G eigenvectors ∇ × φ j .

c = −ω

β

d = −β

ω

θ = −ωβ

2c
[1 + cd] = β2

ν = −ωβ

2d
[1 + cd] = ω2 .

The perturbations are as follows:

δc = ω

β2 δβ − ω

β
(δε ∇φ,∇φ)

δd = δβ

ω
− λ2

ωβ
(δε φ, φ)

and,

δθ = β δβ + β3

2ω
δc − ωβ

2
δd

= β δβ − β2

2
(δε ∇ × φ,∇ × φ) + λ2

2
(δε φ, φ)

= λ2(δε φ, φ)

δν = ω2

β
δβ + ω3

2β
δd − ωβ

2
δc

= ω2

β
δβ − ω2λ2

2β2 (δε φ, φ) + ω2

2
(δε ∇φ,∇φ)

= ω2(δε ∇φ,∇φ) .

The results for both families are summarized in Table 4.

Are the perturbed eigenvaluesˇ2 + ıˇ2 Real?

We recall the main results concerning the E eigenvalues for the homogeneous waveguide obtained
in [5].

Lemma 5 Let (λi , φi ) and (μ jψ j ) denote the Dirichlet and Neumann eigenpairs of the Laplacian in
domain D. The eigenvalues β2

i are classified into the following three families.

(a) β2 = ω2 − μ j with μ j distinct from all λi . The corresponding eigenvectors are curls:

E = ∇ × ψ j ,

with multiplicity of β2 equal to the multiplicity of μ j .
(a) β2 = ω2 − λi with λi distinct from all μ j . The corresponding eigenvectors are gradients:

E = ∇φi ,
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with multiplicity of β2 equal to the multiplicity of λi .
(c) β2 = ω2 −μ j = ω2 −λi for μ j = λi . The corresponding eigenvectors are linear combinations

of curls and gradients:
E = a∇ × ψ j + b∇φi , a, b ∈ C ,

with multiplicity of β2 equal to the sum of multiplicities of μ j and λi .

Analogous results hold for the H eigenproblem (2.11).
In Section 3, under the assumption of distinct (simple) eigenvalues, we derived the following

formula for the perturbation of E eigenvalues and eigenvectors:

(β2
i −β2

k )(δEi , Ek)+ δβ2
i δik = ω2(δεEi , Ek)− (∇(δε div Ei ), Ek

)+ (∇ div(δεEi ), Ek
)
. (A.1)

For k = i , we obtain the formula for the perturbation δβ2
i :

δβ2
i = ω2(δεEi , Ei ) − (∇(δε div Ei ), Ei

)+ (∇ div(δεEi ), Ei
)
. (A.2)

The case of multiple eigenvalues will be discussed momentarily. We investigate now whether the
perturbed eigenvalues remain real. The first term on the right-hand side of (A.2) is always real. The
second term is real as well as,

−(∇(δε div Ei ), Ei
) = (

δε div Ei , div Ei
)
.

Assumption D: Perturbation δε is zero near the boundary ∂D.
We use the assumption to rewrite the third term as:

(∇ div(δεEi ), Ei
) = −( div(δεEi ), div Ei

)
.

Consider now the three cases discussed in Lemma 5. In the first case, Ei = ∇ × ψi , the term is zero.
For the second case, Ei = ∇φi , the term is:

−( div(δεEi ), div Ei
) = −( div(δε∇φi ),−λiφi

) = λi
(
div(δε∇φi ), φi

) = −λi (δε∇φi ,∇φi )

which is real aswell. This concludes the analysis for the casewhenDirichlet andNeumann eigenvalues
of the Laplace operator are distinct.

Multiple eigenvalues

The third case is the most difficult to analyze as we are dealing with a multiple eigenvalues. The
standard perturbation theory does not cover the case. Formula (A.2) is invalid for the case of amultiple
eigenvalue because the right-hand side may depend upon the choice of an eigenvector from the
eigenspace. Additionally, formula (A.1) does not allow to compute components of δEi corresponding
to other eigenvectors from the same eigenspace. Instead, we have to restrict the original perturbed
operator to the eigenspace corresponding to the multiple eigenvalues, and consider the perturbed
eigenvalue problem directly. Let us assume for simplicity that both λ = μ are simple eigenvalues,
i.e., we are dealing with a double eigenvalue β2 = ω2 − λ = ω2 − μ. Recall the linearized operator:

AεE := ∇ × curl E − ω2εE − ∇( 1
ε
div(εE))

≈ ∇ × curl E − ω2(1 + δε)E − ∇((1 − δε) div((1 + δε)E))

≈ ∇ × curl E − ω2E − ∇(div E)︸ ︷︷ ︸
=AE

+ ∇(δε div E) − ∇(div(δε)E) − ω2δεE︸ ︷︷ ︸
δA E

.

123



   35 Page 30 of 32

Let ψ, φ be Neumann and Dirichlet Laplace eigenvectors corresponding to a common eigenvalue
μ = λ, and let E1 = ∇ × ψ and E2 = ∇φ be the two eigenvectors spanning the two-dimensional
eigenspace corresponding to eigenvalue β2 = ω2 − λ of operator A. We have:

δA E1 = −∇( div(δεE1)
)− ω2δεE1

δA E2 = (∇(δε div∇φ)︸ ︷︷ ︸
=−λ∇(δεφ)

−(∇ div(δε∇φ)
)− ω2δε∇φ .

The perturbed operator restricted to the eigenspace in terms of its spectral components looks as
follows.

(
(δA E1, E1) (δA E1, E2)

(δA E2, E1) (δA E2, E2)

)
=

⎛
⎜⎜⎜⎝

−ω2 (δε∇ × ψ,∇ × ψ)︸ ︷︷ ︸
=:a

(λ − ω2) (δε∇ × ψ,∇φ)︸ ︷︷ ︸
=:c

−ω2 (δε∇ × ψ,∇φ)︸ ︷︷ ︸
=:c

(λ − ω2) (δε∇φ,∇φ)︸ ︷︷ ︸
=:b

−λ2 (δεφ, φ)︸ ︷︷ ︸
=:d

⎞
⎟⎟⎟⎠

Let further simplify the matrix notation to

(
A B
C D

)
.

The characteristic equation for perturbed eigenvalues δλ reads as follows.

(δβ2)2 − (δβ)(A + D) + (AD − BC) = 0

with the discriminant

� = (A + D)2 − 4(AD − BC) = (A − D)2 + 4BC .

This gives:
� = (−ω2a − (λ − ω2)b + λ2d)2 − 4ω2(λ − ω2)c2

= (ω2a + (λ − ω2)b − λ2d)2 − 4ω2(λ − ω2)c2 .

Can discriminant � be negative ? It is certainly positive for λ ≤ ω2. In other words, the propagating
modes remain propagating or become purely evanescent. However, for λ > ω2, it is difficult to
exclude the possibility of the discriminant becoming negative.8

The analysis of multiple eigenvalues can now easily be extended to the case of multiple Neumann
and Dirichlet eigenvalues for the Laplace operator. For simplicity, let us consider only the case of
double eigenvalues, relevant for the cylindrical waveguide and the step-index fiber. Recall again the
formula for the perturbed operator,

(δA E, F) = −(δε div E, div F) + (
div(δεE), div F

)− ω2(δεE, F) .

8 Among other things, we tried to compute the derivative d�/dλ at λ = ω2, but we could not show that it
must be positive.
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In the case of multiple Neumann eigenvalue μ, E1 = ∇ × ψ1, E2 = ∇ × ψ2, and we obtain

(
(δA E1, E1) (δA E1, E2)

(δA E2, E1) (δA E2, E2)

)
= −ω2

⎛
⎜⎜⎝

(δε∇ × ψ1,∇ × ψ1)︸ ︷︷ ︸
=:A

(δε∇ × ψ1,∇ × ψ2)︸ ︷︷ ︸
=:B

(δε∇ × ψ2,∇ × ψ1)︸ ︷︷ ︸
=:B

(δε∇ × ψ2,∇ × ψ2)︸ ︷︷ ︸
=:D

⎞
⎟⎟⎠

Upon inspection, we see that the discriminant of the characteristic equation is always positive.

δ = (A + D)2 − 4(AD − B2) = (A − D)2 + 4B2 .

For the step-index fiber, B = 0, and A = D. The perturbed eigenvalue remains a double eigenvalue.
In the case of multiple Dirichlet eigenvalue λ, E1 = ∇φ1, E2 = ∇φ2, and we obtain

(δA Ei , E j ) = (λ − ω2)(δε∇φi ,∇φ j ) − λ2(δεφi , φ j ) i, j = 1, 2 .

For the step-index fiber, the off-diagonal terms are zero, and the diagonal terms are equal. The
perturbed eigenvalue remains double. One can show in a similar way that, in the general case,
perturbed eigenvalues δβ2 remain real.

Lemma 6 Assume that the perturbation δε vanishes near the boundary ∂D. In the first two cases
discussed in Lemma 5 and in the third case for λ ≤ ω2, the perturbed eigenvalues β2

i + δβ2
i are

always real. In the third case, for λ > ω2, they may be complex.
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