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Abstract

This paper is a continuation of Melenk et al., “Stability analysis for electromagnetic
waveguides. Part 1: acoustic and homogeneous electromagnetic waveguides” (2023)
[5], extending the stability results for homogeneous electromagnetic (EM) waveguides
to the non-homogeneous case. The analysis is done using perturbation techniques for
self-adjoint operators eigenproblems. We show that the non-homogeneous EM waveg-
uide problem is well-posed with the stability constant scaling linearly with waveguide
length L. The results provide a basis for proving convergence of a Discontinuous
Petrov-Galerkin (DPG) discretization based on a full envelope ansatz, and the ultra-
weak variational formulation for the resulting modified system of Maxwell equations,
see Part 1.

Keywords Electromagnetic waveguides - Well-posedness analysis - Perturbation of
self-adjoint eigenvalue problems

Mathematics Subject Classification (2010) 78A50 - 35Q61

1 Introduction

This is the second part of our work devoted to the stability and well-posedness analysis
of electromagnetic (EM) waveguides; see [5] for an introduction and the motivation
for our work. In Part 1 of this work, we considered the homogeneous waveguide only,
and we showed that the operator corresponding to the first-order system of Maxwell
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equations is bounded below with a constant scaled inversely with the length L of the
waveguide (L is proportional to the number of wavelengths),

1 1
(1B +1H12)" < L (IV x E = ioH |2+ |V x H +iwE|?)",

where i = /=1, w denotes the angular frequency of the light, and C is a positive
constant. We use the formalism of closed operators; the electric/magnetic field (E, H)
pair comes from the domain of the operator. A simple perturbation argument, given
at the end of [5], shows that for a sufficiently small perturbation' of the dielectric
constant (or relative permittivity) € = 1 4 ¢, the operator remains bounded below
but the linear dependence of the stability constant upon L is lost. In fact, the smallness
of perturbation §e is expressed in terms of constant C L; hence, the larger the length
L, the smaller ¢ must be.

Step-index fibers In this paper, we extend our stability result to non-homogeneous EM
waveguides. This case has importance in modeling a large number of EM waveguide
applications, such as optical amplifiers which are used to achieve high-power laser out-
puts very efficiently [6, 8]. A typical optical fiber model is the double-clad step-index
fiber—a cylindrical EM waveguide where the cross-section (or transversal domain)
consists of a silica-glass fiber core surrounded by a silica-glass inner cladding and an
outer polymer cladding (see Fig. 1a). The material refractive index n is slightly higher
in the core than in the inner cladding which enables the propagation of core-guided
transverse modes. Consequently, the permittivity € = €(x, y, z), which depends on
the material refractive index n = n(x, y, z), is discontinuous at the core-cladding
interface dQcore 1= {(x, y,2) : xz 4+ y2 = rczore} of a step-index fiber, as illustrated
in Fig. 1b. Analogously, the material contrast at the inner-outer cladding interface
0Qead == {(x, y,2) 1 x24+y* = rczlad} enables propagation of cladding-guided modes
by total internal reflection at the glass-polymer interface.

We note that it is a common assumption in engineering literature to consider €
differentiable. Indeed, it is often the case that simplified models of EM waveguide
applications (e.g., some beam propagation models) entirely neglect the fact that € is
not differentiable. More recently, partly thanks to the increased computing capabilities,
it has become possible to numerically solve EM waveguide models of realistic length
based directly on the Maxwell equations [2—4] thereby avoiding such simplifying
assumptions. We emphasize that the analysis in this paper considers discontinuous
material parameters and is therefore directly applicable to step-index fibers.

Contributions Extending the stability analysis to the non-homogeneous waveguide
problem turns out to be rather non-trivial. We begin by rewriting the Maxwell system
in terms of four unknowns: transversal — E;, H,, and longitudinal — E3, H3 compo-
nents of electric and magnetic fields. Assuming the exponential ansatz ¢'#? in the
(longitudinal) z-direction, we obtain a non-standard eigenvalue problem for propa-
gation constant 8. Upon eliminating E3, H3, we obtain a more standard system of

! We use a non-dimensional version of the equations.
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Fig.1 a Schematic of a small section of a double-clad step-index fiber, taken from [1]; b transversal profile
of the relative permittivity ¢ = €(r) in a double-clad step-index fiber

second-order equations (in x, y) with a non-self-adjoint operator, even for the homo-
geneous case. Only in the last step, after elimination of H; (or E;), we obtain a more
standard E-eigenvalue problem for E;, and the corresponding H -eigenvalue problem
for H;. The operators in the E- and H-eigenvalue problems for the homogeneous
case turn out to be self-adjoint. This leads to the determination of an orthonormal
eigenbasis and corresponding spectral decomposition which, upon the substitution
into the original first-order system, decouples the original system into systems of first-
order ordinary differential equations (ODESs). Stability analysis for the ODEs and the
spectral decomposition argument led to the final result in [5].

In the non-homogeneous case, the operators in the E- and H-eigenvalue problems
are not self-adjoint but they represent perturbations of self-adjoint operators. This
invites the application of the classical® perturbation analysis for self-adjoint operators
[7] that we pursue in this paper. The arguments are far from trivial, as we lose the con-
venient orthonormal basis argument and have to resort to a series of non-orthonormal
(perturbed) eigenvectors. The decoupling argument then involves adjoint operators
which need to be analyzed as well. As always with the perturbation argument, the
analysis is formal; we proceed under the assumption that the non-orthogonal series
converge as needed. In the computation of the mass matrix for the perturbed eigenvec-
tors, we neglect the quadratic (in d€) terms and consider the linearized mass matrix
only.

Outline The structure of the paper is as follows. We begin in Section 2 with
the derivation of the various eigenvalue problems and relations between them. In

Section 3, we develop the classical perturbation argument to compute the perturbed E
and H eigenvectors and their counterparts for the adjoint problems. In Section 4, we
arrive at our first main result; we reduce the problem to a system of decoupled systems
of small subsystems of two ODE:s for the coefficients in the spectral representations
of E; and H;. Upon further reduction to a single second-order ODE, we arrive at

2 Dating back to Lord Rayleigh.
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essentially the same ODE problem as in the analysis of the homogeneous waveguide.
This leads to the final estimates of E;, H; (and their curls) in terms of the right-hand
side and to our final result presented in Section 5. We finish with short conclusions in
Section 6. Finally, Appendix 1 provides additional algebraic results from the per-
turbation analysis. In the main body of the paper, we proceed under the customary,
simplifying assumption that all perturbed eigenvalues are distinct. In Appendix 1
though, we provide additional details for the case of multiple eigenvalues as it is in
the case of the step-index fiber.

In the end, our main stability result is identical with the one for the homogeneous
waveguide: we show the scaling of the stability constant with length L. The (formal)
perturbation analysis necessitates the assumption of a small perturbation but only
in the L°°-norm. Nowhere in our analysis do we require the dielectric constant to
be differentiable, a common assumption in the engineering literature. The presented
analysis thus applies to step-index fibers.

2 Eigensystems
Let E;, E3 denote the transversal (a 2D vector), and longitudinal (a scalar) components

of a 3D vector field E. The 3D curl operator applied to vectors (E;, 0) and (0, E3)
generates a 2D scalar-valued operator curl, and a 2D vector-valued operator V x,

JE, Eq 0E3 0E3
curl £, = curl(Eq, Ey) = — — ——, VX E3:=(—,——).
ox ay ay ax

We will be using the following 2D identities derived easily from their corresponding
3D counterparts:

e; X (e; x Ey) = —E;,
e; X (Vx E3) =VEj3, e; Xx VE3 = -V x E3, 2.1
curl(e, x E;) =div E; , div(e; x E;) = —curl E; .
For instance,
e;xE  =e;x(Ex,Ey) :=(—Ey,Ey) (=(0,0,1)x(Ex, Ey,0) = (—E,, E;,0)).
The 3D Maxwell equations,

VXE—-ioH = f, VxH+iweE =g,

are accompanied with perfect electrical conductor (PEC) boundary conditions (BCs):
n x E = O onthe lateral boundary and at z = 0, with anon-local Dirichlet-to-Neumann
(DtN) BC applied at z = L, see Part I of this work. The original system of equations
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translates into:
V x Ey+e; x 2E —ioH = f,

curl E; —iwHs = f3,

(2.2)
V x Hz + e; X B%H, +iweE; = gy,
curl H; + iweE3 = g3.
Multiplying the first and third equations by iw e, x, we obtain:
ViwEs — %ia)Et +wle, x H =iwe, x [,
curl E; —iwHz = f3,
(2.3)

VioH3 — %int —w?e, x €E; =iwe, X g,
curl H; + iweE3 = g3..

Let D denote the 2D transversal domain of the waveguide. The eigensystem corre-
sponding to the first-order system operator, and ¢'P% ansatz in z, looks as follows:

E; € Hy(curl, D), E3 € H}(D),
H, € H(curl, D), H3 € H' (D),
ioVE3 + a)zeZ X Hy = —wBE;,
(2.4)
curl E; —iwH3 =0,
ioVH; — a)zez X eE, = —wBH;,

curl H; + iweE3 = 0.

And the system corresponding to the adjoint and ¢”? ansatz in z is as follows:

F; € H(div, D), F3 € H' (D),
G, € Hy(div, D), G3 € H}(D),
VX F;3 +cz)2ez X €Gy = —wy Fy,
(2.5)
iw(div F; —eG3) =0,

V x G3 —a)zeZ x Fy = —wy Gy,

io(divG, + F3) =0.
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Eliminating E3 and H3 from system (2.4), we obtain a simplified but second-order
system for E;, H; only:

E; € Hy(curl, D), curl E, € H' (D),
H, € H(curl, D), Lcurl H, € H} (D),
—V (L curl H) + o?e, x H; = —wBE,, 20
V(curl E;) — w?e, x €E; = —wBH, .

Similarly, eliminating F3 and G3 from system (2.5), we obtain a simplified but second-
order system for F;, G; only:

F, € H(div, D), LdivF, € H}(D),

G, € Hy(div, D), divG, € H (D),
2.7
-V x div G; + a)zeZ X €G; = —wy Fy,

V x (LdivF) — o’e; x F; = —0yG, .

One can check that the operator in (2.7) corresponds to the adjoint of the operator
in (2.6). Notice how the boundary conditions (BCs) on E3, G3 have been inherited by
curl H; and div F;.

Reduction to single variable eigensystems Assume g # 0. Solving (2.6), for H,
we get

1
H, = _E[V curl E; — a)zeZ x €E;],

3 o 2.8)
curl H; = — curl(e; x €E;) = — diveE;.
p p
Substituting this into (2.6);, we obtain an eigenvalue problem for E; alone:
E, € Ho(curl, D), curl E, € H'(D), LdiveE, € H (D),
2.9

V x curl E; — w?€¢E, — V(é diveE,) = —/SZE, .

Similarly, solving (2.6); for E; gives

1 1
E; = ——[—V(=curl H) + w’e, x H],
op € (2.10)

curl E, = —%curl(ez X Hy) = —% div H,.
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Substituting this into (2.6),, we obtain an eigenvalue problem for H; alone:

H; € H(curl, D) N Hy(div, D), Lcurl H, € H} (D), div H, € H'(D),
(2.11)
€V x (Leurl Hy) — w’eH, — V(div H,) = —p*H, .

Note that the BC n x E; = 0 implies the BC n - H; = 0. We proceed in the same way
with the adjoint. Solving (2.7), for G; leads to

1 1
G = ——[V x (=div F;) — e, x F],
wy €
' ® . w (2.12)
divG; = —div(e; x F;) = _E curl F;,
14

and substituting this into (2.7)1, we obtain an eigenvalue problem for F; alone:

F, € Ho(curl, D) N H(div, D), LdivF, € H} (D), curl F, € H'(D),
(2.13)
V x curl F; — w?¢F, — eV(% div F}) = —yth .

Note that the BC n - G; = 0 implies the BC n x F; = 0. Similarly, solving (2.7); for
F;, yields

1
F, = ——[-V x divG,) + v’e, x €G],
wp
o o (2.14)
div F; = —E div(e; x €G;) = _E curl eGy,

and substituting this into (2.7)2, we obtain an eigenvalue problem for G, alone:

G, € Hy(div, D), divG, € H'(D), LcurleG, € H} (D),
(2.15)
V x (feurleG)) — 0?€G, — V(divG,) = —y2G, .

Lemma 1 The following holds:

(a) Let (—wB, (E:, Hy)) be an eigenpair for system (2.6). Then, (—,62, E;) solves (2.9),
and (— B2, Hy) solves (2.11).
(b) Conversely, if (—p?, E;) is an eigenpair for (2.9), and we define H; by

1
 w(£p)

(—V curl E; + a)zeZ X éEz) )

t

then (—w(xpB), (E;, Hy)) is an eigenpair for system (2.6). Each eigenpair for (2.9)
generates two eigenpairs for (2.6).
(c) Similarly, if (—B2%, H;) is an eigenpair for (2.11), and we define E; by

1
w(£p)

Et=

1
(V(— curl Hy) — w’e, x H,) ,
€
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then (—w(£pB), (E;, Hy)) is an eigenpair for system (2.6). Each eigenpair
for (2.11) generates two eigenpairs for (2.6).

Proof We have already proved (a). To prove (b), one checks that the formula for H,
and (2.9) imply (just algebra) equation (2.6);. Same procedure to prove (c). O

In particular, Lemma 1 implies that eigenproblems (2.9) and (2.11) have the same
eigenvalues 2.

Lemma 2 The following holds:

(a) Let (wy, (Ft, Gt)) be an eigenpair for system (2.7). Then, (—yz, G;) solves (2.15)
and (—y?, Fy) solves (2.13).
(b) Conversely, if (—y?2, F;) is an eigenpair for (2.13), and we define G, by

1
w(xy)

t =

1
<—V x (—div Fy) 4+ w’e; x Ft> ,
€

then (w(xy), (Ft, Gy)) is an eigenpair for system (2.7). Each eigenpair for (2.13)
generates two eigenpairs for (2.7).
(c) Similarly, if (—y?, G;) is an eigenpair for (2.15), and we define F, by

(V x div G, — wzeZ X eG,) ,

Fi

T w(Ey)

then (w(Ly), (Fy, Gy)) is an eigenpair for system (2.7). Each eigenpair for (2.15)
generates two eigenpairs for (2.7).

In particular, Lemma 2 implies that the eigenproblems (2.13) and (2.15) have the
same eigenvalues 2.

Lemma3 (—p2, E,) is an eigenpair for problem (2.9) if and only if(—ﬂz, e; x E;)
is an eigenpair for (2.15). Similarly, (—B%, H,) is an eigenpair for problem (2.11) if
and only if (—B2, e. x H,) is an eigenpair for (2.13). In particular, this implies that

all four individual eigenproblems share the same eigenvalues.

Proof Use identities (2.1). O

3 A perturbation analysis

In this section, we will use the classical perturbation theory for self-adjoint operators
to analyze two eigenvalue problems:

e the electric eigenvalue problem (2.9)

1
V x curl E, — w*€E, — V(- diveE;) = —B>E, (E problem) (3.1
€
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e and the magnetic eigenvalue problem (2.11)
1
€V x (- curl H;) — w’e€H; — V(div H;) = —y>H; (H problem).  (3.2)
€

We have already argued that the problems share the same eigenvalues. Problem (3.1)
is a perturbation of a self-adjoint eigenvalue problem for the electric field representing
the homogeneous waveguide,

V x curl E — w’E — V(divE) = —B°E, (3.3)
=:AE
where £ = E;. We have learned in [5] that the problem admits two families of

eigenvectors:

Ei =V x y;, Bf = o? — i,
5 5 34
Ej=V¢j, Bj=w" =1,

where (u;, ¥;) and (A}, ¢;) are Neumann and Dirichlet eigenpairs for the Laplace
operator. We will consistently use indices i and j to denote the two families. Prob-
lem (3.2) is a perturbation of a self-adjoint eigenvalue problem for the magnetic field
representing the homogeneous waveguide,

V x curl H — w?H — V(divH) = —y> H, (3.5)

=:BE

where H = H; = G;. The problem admits two families of eigenvectors:

H =V, Bl=o®—w,

(3.6)
Hj:VX(f)j,,B]Z:a)Z—)\.j,

where (1, ¥;) and (A j, ¢;) denote again the Neumann and Dirichlet eigenpairs for the
Laplace operator. Whenever we distinguish between the two families of eigenvectors,
we will consistently use indices i and j or k and / to denote them. The two unperturbed
problems look the same but they differ in the boundary conditions. The corresponding
perturbed eigenpairs are

(=% —8B*, E4+SE), (—y>—08y>, H+SH).

3.1 Perturbation analysis for the E eigenvalue problem

We will present now in detail the analysis for the first perturbed problem. The operator
A is self-adjoint in L2(D), so its eigenvalues are real and the eigenvectors form an
L?-orthonormal basis. Consider now a perturbation,

e:=1+4+8e, E:=E+38E, B*>:=p>+58°

@ Springer
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where E = E;. Inserting these perturbations into (3.1) and linearizing, we obtain the
corresponding linearized problem:

AE) + ,328E = w’8¢E —V($ediv E) +V div(deE) —8,32E (§E problem).
3.7

Consider now problem (3.3) and (3.7) for a specific eigenpair 3 (= ﬂiz, E;). Represent-
ing the perturbation in eigenbasis E;, we have

SE; =) (8E;. E)E.
J
AGBE) =) (BEi, E))(—B)E),

J
(AGE)). Ex) =Y (=BHGE:. Ej) (Ej. Ex) = (—BD)SEi, Er) .
: ——

j 5k

Taking the L2-product of (3.7) with Ey, we obtain

(=BDBSE;, Ex) = —B}SE;, Ex) — 87 (Ei, Ex) +0” (8¢ E;, Ex) — (V(Se div E;), Ey) + (V div(8e Er), Ex) ,
N

=4k

or,

(B? — BOSE:, Ex)+8B28ik = w*(8€E;, Ex) — (V(Se div E;), Ex)+(V div(8eE;), Ex) . (3.8)

Assumption A We assume now that the eigenvalues are distinct (simple). This is a

customary assumption in the perturbation argument to simplify the presentation. The
case of multiple eigenvalues is more complicated and is discussed in Appendix 1.

Under the assumption of distinct (simple) eigenvalues, for k = i, we get a formula
for the perturbation Sﬂizz

8B? = w*(8€E;, E;) + (Se div E;, div E;) — (div(8€E;), div E;).  (3.9)

For k # i, formula (3.8) allows us to compute perturbation § E;; the i-th component
of § E; comes from a normalization argument.

Assumption B We scale the perturbed eigenvectors by the condition
(8E;,E;) =0. (3.10)

Note that this scaling assumption is reasonable. Normalization || E; 4+ S E; 1?=1 plus
linearization imply that R(§E;, E;) = 0. Scaling complex-valued vectors allows also

3 We do not distinguish now between the two families of eigenvectors.
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Table 1 Mass term (8 E, E) for different families of eigenvectors

Ep =V x Ep =V
2 2
SeE;, E —A(B€E;, E

SE; = 8(V x ¥;) @ (Oeki. Ex) ("~ M)Gek, Er)

Mk — i A=
2 2

w”(3€Ej, Ex) (@7 =) (S€Ej, Ep) + 4 M (8eg;, dp)
Wk = Aj ey

for fixing a phase, i.e., multiplying the vector with an arbitrary ¢ factor. Selecting a
proper 6 we can always make the imaginary part of (8 E;, E;) vanish as well. See also
the discussion in Section 4.

We have:

(B} — BY(SE:, Ex) = w*(8€E;, Ex) + (8e div E;, div Ey) — (div(8€ E;), div Ey) .

Linearized mass matrices We shall now compute linearized mass matrices for the
E-eigenproblem, and the two families of eigenvectors. Table 1 presents the results for
the (E;, E;) term.

We can now compute the linearized mass matrix:

(OE;, Ej) + (E;,6E;) = (8E;, Ej) + OE;, E;) .

The second term is obtained by swapping indices in Table 1 and changing the order of
the arguments in the L>-inner products to account for conjugation. For instance, for
the first term,

w*(8€E;, Ey) w*(8€Ex, E;) w*(8€E;, Ey)
— - .
M — i Wi — Kk Wi — Kk

Table 2 presents selected (those that we will need) elements of the linearized mass
matrix.

Curl-curl coupling Let E; + 6 E; be the perturbed eigenvectors for the electric eigen-
problem.
(curl §E;, curl Ej) + (curl E;, curl §E) .

Table 2 Linearized mass matrix

Ex=V E =V
(8E;, Ex) + (Ej, §Ey) for , Vi : i
different families of eigenvectors Ej =V x 0 not needed
Ej=V¢; not needed —(8€Ej, Ey)

@ Springer
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We have:

SE; = Z(&Ei, En)Ey (summation over both curls and grads),
k

curlSE; = Z(&Ei, V X Y)Y (summation over curls only).
k

Hence,

(curl 8E;, curl Ej) = (Y (8Ei, V x )iy curl E )
k

D GELV x Y (i, 1 ¥ry) = GEi, V x Y if Ej =V x ¢
= k
0 if E; is a gradient.

As for the linearized mass matrix, we need to evaluate only the interaction for E;
and E; being curls only or grads only. Consequently, the linearized curl-curl mass
matrix is non-zero only if both eigenvectors are curls, and it is equal to

2 2
w“(8€E;, E; w“(8€E;, E;
(Oe E; J)-HM (OeE;, Ej)

= w*(8¢E;, E;)
Wj — Wi Wi — I

(3.11)

forE; =V xy;, E; =V x ¢;.
3.2 Perturbation analysis for the H eigenvalue problem
The linearized problem is:
BSH + y*8H = —8¢ V x curl H — V x (8¢ curl H) + w?8e¢ H — §y> H,

where the operator B is formally the same as operator A for the E problem (but the
BCs are different). Performing the same analysis as for the E problem, we get

7 — v S Hi, Hy) + 8y 8ix = (S Hy, Hy) — (8€V x curl Hy, Hy) + (V x (8e curl H;), Hy) .

(3.12)
Under Assumption A of distinct (simple) eigenvalues, for k = i, we get a formula for the pertur-
bation & yiz:

8y? = w*(8eH;, H;) — (8¢ V x curl H;, H;) + (V x (8¢ curl Hy), H;) . (3.13)

For k # i, formula (3.12) allows us to compute the perturbation § H;; the i-th com-
ponent of § H; comes from a normalization assumption.
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Table 3 Linearized mass matrix

H, =V H =V
(8H;. Hy) + (H;., 8 Hy) for k= VU 1=V xa
different families of eigenvectors
H; =Vvy; 0 not needed
Hj =V x¢; not needed (8eH;, Hy)
Assumption C We assume
(6H;, H)) = 0. (3.14)

Assumption C implies that the perturbed eigenvector H; + § H; is (approximately)
of length one, see the discussion in Section 4.
After integrating the last term in (3.12) by parts, we obtain

(v =y} (8H;, Hy) = w*(8¢ H;, Hy) — (8¢ V x curl H;, Hy)+ (8¢ curl H;, curl Hy) .

The computations of the (required) elements of the linearized stiffness matrices are
fully analogous to those for the electric eigenvalue problem. Table 3 presents selected

(those that we need) elements of the linearized mass matrix.
Finally, the curl-curl linearized mass matrix for the grad eigenvectors vanishes, and
for the curl eigenvectors H; = V x ¢;, Hj = V x ¢; the entries look as follows:

(curl 8 H;, curl Hj)+ (curl H;, curléHj) = (6H;, Hj))\.j + (H;, (SH]'))\,]'

)\’.
= ']A o’ (8eH;, Hj) — (8€V x curl H;, H;) + (8¢ curl H;, curl; H))
joT A
=1 (8eH; . Hj) =Xikj(8edi.B;)
}\.
+ - l)\ : [a)z((SeHj, H;) — Aj(6eHj, H;) + XjAi(8€p;, ¢z)]
i A

?(8eH;, Hj) + hirj(Sedyi, ;) .
(3.15)

4 Stability analysis

We return to system (2.3). We test the first equation with F; and the third equation
with G;,n - G; = 0 on 0D, to obtain

—(iwE3, div ;) + o?(e; x Hy, F) — Lio(E, F) =io(e; x fi. ),
curl £, —iwH3 = f3,

—(iwHs, div G,) — w?(e; x €E;, Gy) — #iw(H;, Gp) = iw (e; x g1, Gy),
curl H; + iweE3 = g3.

Note that, when integrating by parts the first terms, we have used the fact that E3 = 0
and n - G; = 0 on dD. Solving the second and fourth equations in (2.2) for E3 and
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35 Page 14 of 32

Hj, we get

1 1 1 1
Ey=—g3— —curl Hy, Hy=——f3+ —curlE; .
iwe iwe iw iw

Substituting this into the first and the third equations, we obtain a system of two
variational equations for E;, H; :

(¢ curl Hy, div Fy) + o*(e; x Hy, Fy) = qtio(Er, F) = iw (e; X fro ) + (p g3, div Fy),

—(curl E;, div G;) — a)z(ez x eE;, Gy) — é;iziw(H,, Gy) =iw(e; X g,Gy) — (f3,divGy).
4.1
The variational eigenvalue problem

E; € Hy(curl, D), H; € H(curl, D),
(% curl H;, div F) 4+ w?(e; x Hy, F;) = —wB(E;, Fy),
—(curl E;, div G;) — w*(e; x €E;, G;) = —wB(H;, Gy),
VF; € H(div, D), VG; € Hy(div, D),
is equivalent to the eigenproblem (2.6). Similarly, switching the roles of (E;, H;)
and (F;, G;) above, we obtain the adjoint variational eigenvalue problem, which is

equivalent to (2.7).
Consider now system (4.1). We expand the unknowns into a series of the perturbed

eigenvectors:
E = Z%‘Ezl,i + ZTjEzz,j,
i J
H; = Zfsthl,i + ansz,j,
i J

where «;, 7, §;, ; are functions of z, and

En; =V xyi+8En;, Epnj=Veo;+dEn;,
Hpni=Vy; +8Hni, Hpj=V x¢;+3Hpn

are the two E and H families of (perturbed) eigenvectors. Let

Fi1i =V x¥i +08Fn,, Fp;j=V¢;+3Fn;,
Gi1,i =VYi +06G,i, G j=Vx¢;+35Gn,;

be the corresponding families of perturbed adjoint eigenvectors.

Scaling of the eigenvectors The unperturbed E eigenvectors are scaled to provide an
orthonormal basis, i.e., |V x ;|| = [[V¢;|| = 1. This implies that the unperturbed
H eigenvectors are also unit vectors as |V || = ||V X v;]|, etc. The unperturbed F
and G eigenvectors coincide with the E and H eigenvectors. We learned in Section 3
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that the perturbations 6 E;; ; are scaled by the condition (§E;1;, V x ;) = 0. This
implies that the perturbed eigenvector is, up to the linearization, a unit vector as well,

(VXY +8E11;, VXY +8En,;) = (V x ¥, Vx¥j) +(V x ¥, 8En i) + BEq i, V x ;) = 1.

The same comment applies to all remaining perturbed eigenvectors. Note additionally
that the bi-orthogonality condition (E;, F;) = 1 is also (approximately) satisfied,

(Vxyi +8En,i, V x¥i +8F,) = (Vx ¥, Vxy) +(V x¥;, 8F1i) + (8En,i, V x ¢i) =1.

=1 =0 =0

Decoupling the equations Let —p” be an eigenvalue for eigenproblems (2.9)
and (2.11) with the corresponding eigenvectors E;, H, scaled as discussed above.
In order to invoke Lemma 1(b), we have to replace H; with ¢ H; where the constant ¢
is computed by comparing the eigenvector ¢ H; with H; given by relation (2.8),

1
cH; = —[—V curl E; +a)zeZ x €E;].
wp

The pair (E;, cH;) constitutes then an eigenvector for system (2.6) corresponding to
root B of B2 selected in such a way that e/# represents an outgoing wave.* We proceed
similarly with the adjoint eigenvectors. Let —y 2 be an eigenvalue for problems (2.13)
and (2.15) with the corresponding eigenvectors F;, H,. After scaling the second com-
ponent, the pair (F;, d G;) constitutes an eigenvector for system (2.7) corresponding to
aroot y of y2. The constant d is obtained® by comparing d G, with G, given by (2.12),
cf. Lemma 2,

1 1
dG; = —[-V x (=div F,) + o’e. x F].
wp €

Case 82 # y? This implies 8 # y. Multiplying system (2.6) with the pair (F;, dG,),
we obtain the bi-orthogonality condition,

c¢(BH;, F;) +d(CE;, G;) =0,

where B and C denote the operators on the left-hand side of (2.6). But testing with the
adjoint eigenpair (F;, —d Hy) (corresponding to the eigenvalue —y # ), we obtain
also

c(BH;, F;) —d(CE,;, G;) = 0.

Consequently, we have,

(BH[,F[):O and (CE[,G[):O

4 The choice depends upon the ansatz in time.

5 We learn in Appendix 1 that d is real.
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Case 5% = y2 and = y Multiplying system (2.6) with the pair (F;, G,), we obtain
c(BH;, Fi) +d(CE, Gy) = —wp[1 + cd].

Testing with the adjoint eigenpair (F;, —d G;) (corresponding to the eigenvalue —y #
B), we obtain also
¢(BH;, Fy) —d(CE;, G;) = 0.

Consequently, we have

wp wp
0 .= (BHt,F,)=—2—6[1+cd] and v:= (CE,,G,):—g[l+cd].

Theorem 1 Testing in (4.1) with (Fy1;,dGq,i) and with (Fy2,i, dG2,;i), we obtain a
decoupled system of ODEs for the coefficients «;, §;:

) ) 1 .
!91&' —iwa] =r(2) = (iwe; x fr, Fi1,i) + (Ega,dlv Fi1,i), 42)
vi; —iwd; =r(2) = (iwe; x g, Gy1,i) — (f3,div Gr1,p),

1

and for the coefficients t;, n;:

. . 1 :
{92771' —iwt{ =s1(2) := (iwe; x fy, Fpi) + (Eg3, div Fo), (4.3)
T —ion; =52(2) == (iwe; x §Gi) — (f3,divGi),

where O, v, k = 1,2, are the values of the coefficients 0, v for the two families of
eigenvectors.

We refer to Appendix 1, for the computation of the constants ¢, d, 6, v using the
perturbation analysis, and the final values of 8, v listed in Table 4. The constants take
different values for the two families of E and F eigenvectors. For the homogeneous
waveguide, the systems reduce to the ones in [5].

Remark 1 While we use the perturbation analysis to evaluate the constants ¢, d, 6, v,
the decoupling result in Theorem 1 is general and valid for arbitrary €.

5 Estimation of E;, H and curl E¢, curl H;

Recall that iwH3 = curl E; — f3. Estimating curl E; is thus equivalent to estimating
Hz. Similarly, iwe E3 = —curl H; — g3, so that estimating curl H; is equivalent to
estimating E3.

Table 4 Coefficients § and v for

First famil S d famil
the two families of eigenvectors i ceond amty
6 + 66 —o? —B% — ? (S VY, Vi)
v+ o B + 22 (3e ¢, 9) @*(1+ (3¢ V$, V§))
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5.1 Estimation of E; and H with their spectral components

If the L? mass matrix corresponding to the perturbed eigenvectors represents a bounded
operator in L2, then we can bound the LZ-norm of E; with the sum of its spectral
components. More precisely,

(o] o0

2 2

IEN? <2 [ 1) i Enil® + 1Y iEn jl
i=1 j=1

[~ N N N
=2 lim | Q wiEni Y akEnn) +OQ_tiEan . Y uEal)
| i=1 k=1 =1 =1

N—o00
N N

=2 lim oo (Eqn i, E + i (Epn i, E
Nooo .kle i k( t1,i tl,k) ;1 J l( 12,j t2,l)
_l, = J.l=

N N
< lim 2C o;? + 7
< lim_ 2| il Zlm
1= j=

o o0
=2C | D leil* + I
i=1 j=1

where C is assumed to be independent of N. Note that we do not need any information
about the off-diagonal terms (E;1;, Er2, ;). According to the formulas from Table 2,
we have C = 1 + |[€]| Lo (p).

Similarly,

o0 o0
IH AN <2 [ 1D 8 Ho il + 11 njHio g1
i=1 j=1

oo o
<2C | Y 15+ ) Injl?
i=1 j=1
where, by the results from Table 3, C = 1 + [|8€|| Lo (p) as well.

After integrating in z, we get

L —00 L 00 L
/ |E/*>dz <2C 2:/ |ai|2dz+§ / lt;1?dz |,
0 X 0 X 0

_l:l j=1

- 5.1

L = L o L
/ IH, |I*dz < 2C Zf |5,~|2dz+2/ Injl*dz | .
0 =g i=Jo |
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5.2 Estimation of curl E,, curl H; with spectral components of E;, H;

By the same token, using (3.11), we obtain,

[0 o0
leurl ¢ <2 [u Yoaicurl > + 1) curl E:z,jllz}

i=1 j=1

N N N N
= ZNH—IPOO |:(ZI: a; curl Efp Z acurl Efp x) + (Z Tjcurl Epp j, Z 77 curl E;z.l)j|
i=

k=1 j=1 I=1

N
ajog(curl Efy i, curl Eqy ) + Z 7;7/(curl Ey j, curl Exz,z):|
1 ju=1

™M=

=2 lim |:
N—o00 ;

[e ]
~ 2 (i + 0 [18€l| Loy leti |

i=l

Note that, like for the homogeneous case, the perturbed gradients do not contribute
(the linearized perturbed curl mass matrix is zero).
Similarly, using formula (3.15),

o0 o0

2 2

leurl Hy> <2 | 1Y e curl Hyil|* + 1| ) curl Hya |
i=1 j=1

o0
$2) (illelloy + @18l L)) Inil* -

i=1
Note again that the perturbed gradients do not contribute.
5.3 Estimation of spectral components a;, §;
We focus now on the ODE boundary-value problem (4.2) for the coefficients & and 8,
«(0) =0, 8(L) = \/ga(L),

095 —iwa’ =ry, (5.2)
vo —iwd =,
where 6 = 01 and v = v are the coefficient values for the first family of eigenvectors.
Testing the second equation with §o, e (0) = 0, integrating the derivative term by
parts, and utilizing the impedance BC, we obtain

iw(,8a) = —v(a, da) + iwa(L)da(L) + (12, Sat) .
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Testing the first equation with o’ and using the formula above, we obtain the final
variational problem for the coefficient «:

a(0) =0
(@', 8a) + k% (@, 8a) + ka(L)Sa(L) = L(r1, 8a") — L5 (2, 8ar) (5.3)
Véa : da(0) =0

wherek =i V(f" . For the homogeneous waveguide, k = i § and the equation coincides

with that derived in [5]. For the non-homogeneous waveguide,

K = i\/ﬁz + @2 (8eVY, V).

The perturbed « is still of order . As § = ] = —w?, the right-hand side reduces to

é(n ,8ad) + (2, 8a) . 5.4)

The following lemma was proved in [5].

Lemma4d Let I = (0, L). Consider two problems: Find q1,q> € H(]O(I) ={v e
H'(I) : v(0) = 0} such that

(g1, V) + 22(q1, ) + Aqi(L)v(L) = (f,v) v € Hy(D),
(5, V') +27(q2, v) + Aga(L)v(L) = (f, V') v € H(D),

where f € L*(I). Then, denoting ||q||iﬁ = g1 + B%lig|I? we have:

e Case (i): A = iB, B > 0. There exists a constant C > 0, depending only on a
lower bound for LB such that

lail? 5 < CL2| f11.
la213 5 < CL2B2I £11.

e Case (ii): . = B, B > 0. There exists a constant C > 0, depending only on a
lower bound for LB, such that

lgillT 5 < CB721 £ and hence ligi))* < CBIIfII,

lg2lli g < CILAIP and hence g2)1* < CB2II £11* .

We will use Lemma 4 to estimate the L2-norms of coefficients aj,8; by the L2-
norms of the right-hand sides 7y ;, 72 ; and, in turn, the LZ(O, L)-norms of r1 j, r2 j by
the L?-norms of f;, f3, g, g3. While the stability of propagating modes (Case (i) in
Lemma 4) implies the linear dependence of the stability constant upon L, the stability
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of evanescent modes (Case (ii) in Lemma 4) provides the desired asymptotic scaling
1 1

properties in terms of the eigenvalues |fB;| ~ /L? , A? . Note that, since the number
of propagating modes is finite, their stability does not affect the asymptotic scaling

properties with |B;|. We will skip the dependence of the stability constants C upon L
1 1

but keep track of the dependence upon the eigenvalues |§;| ~ M,?, A?.

Estimation of a; We will consider the four terms contributing to the right-hand
side (5.4) and estimate the corresponding solutions « j, one at a time. By linearity, this
will imply the estimate for the ultimate coefficients «;.

Term 1iw(e; x f;, Fy1,;) contributing to ry. Skipping the factor iw, we have:

L L
Zf lj*dz < Z/ B;\ez x fi, Firj +8Fu I (Lemma 4(ii)2)
j 0 i 0 .
<2y / B; 2 lez x fis i PP + ez x fi, 8Fn,j)IP] (Young’s inequality)
j OL
< 22/ ez X fr, Fn p)I? (linearization, ﬁ,._z <1
) 0 X
J

L
52/ les x fiI1? dz
0

L 2
=2/ 1ol dz.
0

Remark 2 Note that the application of Young’s inequality and neglection of the second-
order terms reduces the estimation of coefficients «; to the case of the homogeneous
waveguide. The ODE systems (4.2) and (4.3) are identical with those for the homoge-
neous waveguide except for the values of 6;, v; which are different but of the same order
as for the homogeneous system. Hence the estimation of coefficients ¢;, §;, T;, 17, in
the perturbed case is identical with the estimation for the homogeneous waveguide.
For the reader’s convenience, we estimate explicitly each term, repeating arguments
from [5].

Term 2 (ég3, div Fy1,;) contributing to rq.

L L
o1 . .
Z/O |°‘j|2dZ < Z/O .Bj2|(ggSsle(Ft1,j +5F11,j))|2 (Lemma 4(ii);)
J j
L -2 1 . 2 1 . 2 S
= ZZ/ B; [|(283,dIV(Ft1,j))| + |(gg3,dlv(5Fr1.j))| ] (Young’s lemma)
i o
Lo
< ZZ/ [(—g3, diV(Ftl.j))|2 (linearization, ﬂ/TZ <1
;€ :
<0 (div Fy,; = 0)
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Term3iw(e; x g/, G;1,;) contributing to r>. We follow exactly the same reasoning
as for Term 1. Note that Lemma 4(ii); gives us even a better factor f*.

Term 4 (f3, div G, ;) contributing to 7.

ZfoL o dz S ZfoLﬂ;4|(fz,div(Gf1,j 5GP (Lemma 4Gi) )
J J
< 22 /0 ' B HI(f3, div(Giu D) + 1(f3, div(8Gi1 ;) P] (Young’s lemma)
J
S2 Z ‘/OL ﬂ;4\(f3s div(Gn, ) (linearization)
J
522/0Lﬂ;4u,-|<f3,u}/2w,->|2
J
s 2Z/OL/3;Z|(f3, wPupi (B2 ~ 0(1)
J
< 2Z/OL (o PP B
J

S2Y I Pl =20 512
J

Estimation of curl E; In the estimation of curl E;, we need to estimate

L
> / (i + I8¢l oo () lei >z

We follow exactly the same strategy as above. In all cases, we can accommodate the
extra i ~ ,81.2 factor.

Estimation of §; The first equation of system (5.2) implies

@181l 2y < @lle 2y + Il L2y -

2
L2(I)

a;’s, except that Lemma 4(ii) delivers now less by a factor of ,3/_2. However, we can
spare it in all of the four discussed cases. It remains to estimate 1. We proceed in the
same way as before.

Estimation of the derivatives ) ; ||o/ || || is done in exactly the same way as for

@ Springer



35 Page22of32

Term 1 (e; x f;, Fy1,j) contributing to 1. We have:

L
Z/ [(ez X fi, Fr1,j +5Ftl,j)|2
j 70 .,
< 22/0 [l(ex X fi, Fr1 p)I> + |(ex X fi, 8F1.j)I*1 (Young’s inequality)
Lo
< 22/ ez X fr, F, j)I? (linearization)
~ Jo
j

t 2 t 2
szf lez x il dzzzf I £l dz.
0 0

Term 2 (ég3, div G,1, ) contributing to ry.

L
1
Z/ (g3, div(Finj +8F )
| 0
| 1
. 2 : 2 B
<2y /O (1= g3, div(Fy1 ) +1(-gs. div(8Fy )] (Young's lemma)
J

L
1
522/ |(—g3. div(Fy1 ;)| (linearization)
i 0 €

S0 (div Fi1,j = 0)

5.4 Estimation of spectral components 7;, n};

We use exactly the same techniques to estimate the spectral components corresponding
to the second families of E and H eigenvectors. We will point out only to the differences

between the two cases. The ODE boundary-value problem (4.3) for the coefficients t
and 7 takes the same form as system (5.2),

BO) =0, n(L) =/ ZB(L),
On —iwp = s, (5.5)
VB —iown = sy,
where |
s1=(iwe; X fr, Fo j) + (;gs, div Fpp ),

2 =(we; x gGp2j) — (f3,divGra ;).

@ Springer



Page230f32 35

The coefficients 6, v are now different. By the results from Appendix 1 in the “Com-
putation of scaling coefficients ¢, d, 6, v” section,

0 =0, =B+ A10erip,A2¢), v =11 =0+ BeV, V).

This gives for the homogeneous waveguide x = i, and for the non-homogeneous
case,

.\/(/32 +A(BE AP, 12 9)) (@ + P (3e Vo, V)
K =1

w

which is still i B to leading order.
The first essential difference is the scaling in the right-hand side of the second-order
problem (5.3),

(B2 + A(8e A2, A2 b))
2

. , .
Z(s1,8) — —5 (52, 8a0) = —(s1, 5t') — (52,60 .
w w w

1)
The coefficient in front of s is the same as before, but the coefficient 6 in front of s,
is now of order 2.

Estimation of 7; We now discuss the four terms contributing to the right-hand side
above.

Term 1iw(e; x f;, Fy2, ;) contributing to s1. The estimate is identical with that for
«;. Skipping constant terms, we have:

L L
Z/ Itjl*dz < Z/ B;2l(ex x fi, Fiaj +8F, p)I? (Lemma 4(ii))
j 70 ;0 ,
< ZZ/ ,3]-_2[\(61 X fis F2 )? + |(ez X fi, 8F . /)21 (Young’s inequality)
j °L
< 22/ ez X fi, Fo p)I? (linearization, ﬁj‘z <1
~ Jo
J

L L
52/ lle: x fz\lzdz:Z/ I f% dz.
0 0
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Term 2 (é g3, div Fy2, ;) contributing to s1. The situation is now different as div Fi2 j = divgrad¢; =

—Ajdj-
L ) L ) 1 5
Z/ |7j1"dz 52[ B 1(= g3, div(Fpa,j + 8 Fpa, ) (Lemma 4(ii);)
. 0 - 0 €
J J L
20 b i W2 ot Yon di W2 . )
522 B; [|(€g3,d1V(Fz2,,))| +|(€g3,d1V(8Fz2,,))| ] (Young’s lemma)
| 0
L 1
522/ ﬁ;zl(*g%div(ﬂz,]‘))lz (linearization)
. 0 ' €
J
L 1 1 ) 5
522/0 (Z83. 279 B2 <1
J

1
2 2
< -8l < lesll”-

Term 3 iw(e; x g, G2, ;) contributing to 5. We follow exactly the same reasoning as for Term
1. Lemma 4(ii); gives us a better factor B~* but there is a factor of order A2 in front of s,.

Term 4 (f3,div G2, ;) contributing to so. Compared with the estimate for o ;, we lose again a
factor /3]._2 due to the term in front of s5.

; /0 ' RS ; /0 ’ B 21(f3, div(Gia j + G ))I? (Lemma 4(ii); )

<2 Z /0 " B 1S3, div(Gia ) + |(f3, div(8Gra, 1))I*] (Young’s lemma)
J

<2 Z /O ’ B2 1(f3, div(Gia )P (linearization)
J

2y /0 ' B2 A1 2P (div G j = —Ad))
J

S 2Zf()L I(f3. 22 )1 (B 1) ~ 0(1))

= 2||'}'3||2.

Estimation of 5; From the first equation in system (5.5), we get

1. 1 1
n=gGop +s50) = Il S 17150 + 3920

as |s1| &~ A. In order to estimate curl H;, we need a more demanding estimate for

2 -1 .72 —1 2
Do ilmilgagy S DA T Ty + 27 st -
J J

In the estimation of the derivatives 7/, we lose a factor of 87 but we gain it back with the factor A7t
above. We also need the additional factor when estimating the second term. The details are as follows.
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Term 1 (e; x f;, Fy3, ;) contributing to s1. This term in painless. We do not need the additional
factor A]Tl ~ ,8;2.

L
Z/ ez X fi, Fio,j +8Fn )
- JO
! L
<2 [I(ez X fiy Fro. )? + |(ez x fi, 8F 1)|*] (Young’s inequality)
~ Z 1 F12,j z 1,062, j g q y
- 0
! L
S 22/ I(ez x fi. Fro.p)I? (linearization)
= JO
J

L L
szf ||ezx.f,||2dz=2/ V£l dz.
0 0

Term 2 (1 g3, div G, ;) contributing to s;. The presence of the additional factor is now essential.
8 JJ g p

L
_ 1
> ﬁ,»zf | g3, div(Fr,j +8Fp )
- ; 0
J

L1 ) 1 )
<23 | BN g3, div(Fia D) + (=g, div(§Fia, ))I7] (Young’s lemma)
~ Jo '/ € €

J
|

S2 Z B;* (= g3, div(Fi2, ))I? (linearization)

7 e

- ITLINN ,

2% [ 1Caaser iy Fraj = —hj))

J
S22y L|<1 Mg B2 <D
~ ~ J, Eg3’ j i AR

J

1
< 2||gg3||2 < lgsll*.

5.4.1 Final result

We arrive at our final result.

Theorem 2 Assume that € = 1 + 8¢ where the perturbation 8¢ is sufficiently® small in L>-norm,
and that it vanishes near the boundary.” Under the technical assumption that the eigenvalues of
the homogeneous waveguide are simple, there exists then a constant C > 0 such that under the
assumption of validity of the performed linearizations,

IEW +1HIP = CL2(IV x E = ioH|? + |V x H +iweE|?)

forall (E, H) from the domain of the operator.

Remark 3 We have proved the theorem under the simplifying assumption of distinct (simple) eigen-
values ,81.2 of the homogeneous waveguide problem, see Assumption A in Section 3.1. Extending the
proof to the case of multiple eigenvalues requires techniques discussed in Appendix 1. We believe
(conjecture) that this is possible using the presented techniques although a presentation of it would

6 To justify the perturbation analysis.
7 See Assumption D in Appendix1
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add additional complexity to the already technical material. For a start, we mention that, in the case of
equal Dirichlet and Neumann Laplace eigenvalues, we cannot exclude the possibility of the perturbed
Maxwell eigenvalues being complex.

6 Conclusions

We have extended the stability analysis for homogeneous electromagnetic waveguides from [5] to the
case of a non-homogeneous waveguide with a perturbed dielectric constant € = 1 4 §€. The analysis
was done using the classical (formal) perturbation theory for eigenproblems involving a self-adjoint
operator under the assumption of ‘smallness’ of perturbation the §e but with no assumptions on
its derivatives. In particular, the results hold for discontinuous perturbations §¢ and are therefore
applicable to the case of step-index fibers.

Appendix 1. Perturbation analysis continued

In this section, we provide additional results obtained from the perturbation analysis. The results
below require the perturbation analysis for the adjoint /' and G problems that follow the same lines
as for the £ and H problems. We skip the details and present only the final results that were used in
Section 4.

Computation of scaling coefficients ¢, d, 6, v

First family of eigenvectors

We first investigate perturbations of E, F eigenvectors V x v; and the corresponding H, G eigen-
vectors Vi;.

Perturbations of coefficients ¢, d Let V x ¢ + §E and Vi 4 §H be the perturbed E and H
eigenvectors corresponding to a perturbed eigenvalue 8 + §8. Here v is a Neumann eigenvector of
the Laplacian, —Av = uy, and B2 = w® — u. The perturbed coefficient ¢ 4 8c is defined by the
relation:

B—5p

(c +8c) (Vi +8H) = o

[—V curl(V x ¢ + 8 E) + w?e, x (1 +86)(V x ¥ + aE)] ,
We first compute the value of c. Testing with Vi, we get,

1 1
c=—(-V (=AY +o*(e: x (Vx Y], VYY) = — [-u+ o’] =
=ny =Vy —g2

Linearizing both sides, and testing with Vi, we get,

sc(Vyr, Vi) +c (BH, Vi) = _”%?2 (=Veurl V x ¢ + o>V, Vi)
=1 =0 =p2
+a5 (=Veurl §E + w’e; x 8E, Vi)
=0
+;gw2 (bee; x (V x ¥), V) .
=(6eVY, V)
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In the end,
3B

dc=——
1)

w
+ E(SEVI/I, V).

Similarly, perturbation &d is defined by the relation:

d+86d) (VY +6G) ~

B—35B
wB?

This yields:
4]

1)
d=— and éd =—-0—.
B B?

[—V x (1 — 8€)div(V x ¥ + 8F)) + w*(es x (V x ¥ +5F))] .

Perturbations of coefficients entering the decoupled system of equations We are now ready to

compute the perturbation of coefficient

_ OB B 2
0= 2c[l-i-ca']— 2[c+d]_ w” .

We have: 1 8 1 B
1) @Y @
80 =~ +dlsp+ - b~ - 4d
w? o B o o?
_ _?5/3 + ﬁ[_; + E(SGVI//, Vil+ ﬁ‘sﬁ
»? w?
_ _?5,3 + W(SEVW V).

Finally, using formula (3.9) for 82 and utilizing 88> = 28 88, we obtain,

4 4

3OV XUV U+ 2 (5eVy, Vi) = 0.

00 =
282

We proceed with the coefficient

_ wf _ wp 1 L 5

V= ﬂ[l-l-Cd]— 2[d+6]— B”.
We have: 1 51 5
w ) ,

_ Bspg_ @B 2
= —Bop — T — L=+ @Y. V)]

a)z
= —B88— 7((Sew/, V).

Using again formula (3.9) for 8B, we obtain,

w? w? 5
Sv = —7(56V XY, Vxiy)— 7(86V1//, V) = - (6eV, V).

@ Springer



35 Page28of32

Second family of eigenvectors

Next, we record the results for similar computations for perturbations of the second family of E, F
eigenvectors: V¢; and the corresponding H, G eigenvectors V x ¢;.

0= -l 4ea) = p?
2¢

v:—%[l—l—cd] =w?.

The perturbations are as follows:

dc = 8,8 — 7(56 Vo, Vo)

A
2
sd =2 2 ep.4)
0 op
and, ,
39_ﬁ55+’3—8c—“’—2’35d
ﬂZ
—/35,37*(56VX¢ V><¢)+*(5€¢ b)
=12(e ., §)
) _sz :Bd %5
] Praptd= 2%
22

(U
= G- g Ged. )+ —<8e V. Vo)
= 0?(5e Ve, V).

The results for both families are summarized in Table 4.

Are the perturbed eigenvalues 32 + 532 Real?

We recall the main results concerning the E eigenvalues for the homogeneous waveguide obtained

in [5].

Lemmas5 Let (A;, ¢;) and (i ;) denote the Dirichlet and Neumann eigenpairs of the Laplacian in
domain D. The eigenvalues ﬂl.z are classified into the following three families.

(a) B2 =0o’ — wj with juj distinct from all ).;. The corresponding eigenvectors are curls:
E=Vx l//‘j N

with multiplicity of % equal to the multiplicity of ;.
(@) B = w? — A; with A; distinct from all j- The corresponding eigenvectors are gradients:

E=Vé¢,
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with multiplicity of B2 equal to the multiplicity of X;.
(c) p?=w?— nj = ° —Aj for uj = A;. The corresponding eigenvectors are linear combinations
of curls and gradients:
E =aV ij+bV¢,-, a,beC,

with multiplicity of B* equal to the sum of multiplicities of j and A;.

Analogous results hold for the H eigenproblem (2.11).
In Section 3, under the assumption of distinct (simple) eigenvalues, we derived the following
formula for the perturbation of E eigenvalues and eigenvectors:

(B7 — BOGE:, Ex)+8B]8ix = (8¢ E;, Ey) — (V@ div Ey), Ex) + (V div(3eEp), Ex) . (A.1)
For k = i, we obtain the formula for the perturbation 8/31.2:
8B} = 0* (b€ E;, Ei) — (V(Sediv Ey), E;) + (V div(SeEy), E;). (A.2)

The case of multiple eigenvalues will be discussed momentarily. We investigate now whether the
perturbed eigenvalues remain real. The first term on the right-hand side of (A.2) is always real. The
second term is real as well as,

—(V(Se div E;), E,-) = ((Se div E;, div E;).

Assumption D: Perturbation §e is zero near the boundary 0D.
We use the assumption to rewrite the third term as:

(Vdiv(3eEy), E;) = —(div(seE;), div E;) .

Consider now the three cases discussed in Lemma 5. In the first case, E; = V x i, the term is zero.
For the second case, E; = V¢;, the term is:

—(diV(SEE,*), div Ei) = —(diV(tSEV(bi), —)\.,'(ﬁ,') = )\.i(diV(SEV(bi), ¢z) = —1i(6eV;, Vo)

which s real as well. This concludes the analysis for the case when Dirichlet and Neumann eigenvalues
of the Laplace operator are distinct.

Multiple eigenvalues

The third case is the most difficult to analyze as we are dealing with a multiple eigenvalues. The
standard perturbation theory does not cover the case. Formula (A.2) is invalid for the case of a multiple
eigenvalue because the right-hand side may depend upon the choice of an eigenvector from the
eigenspace. Additionally, formula (A.1) does not allow to compute components of § E; corresponding
to other eigenvectors from the same eigenspace. Instead, we have to restrict the original perturbed
operator to the eigenspace corresponding to the multiple eigenvalues, and consider the perturbed
eigenvalue problem directly. Let us assume for simplicity that both A = p are simple eigenvalues,
i.e., we are dealing with a double eigenvalue 82 = w? — A = w? — . Recall the linearized operator:

AcE =V xcurl E — 0’¢E — V(L div(eE))

~V xcurl E — 02(1 +86)E — V((1 — §¢) div((1 + 8€)E))
~V xcurll E — w?E — V(divE)+ V(8ediv E) — V(div(de)E) — W*8€E .

=AE SAE
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Let ¥, ¢ be Neumann and Dirichlet Laplace eigenvectors corresponding to a common eigenvalue
pw =X andlet Ey =V x ¢ and E2 = V¢ be the two eigenvectors spanning the two-dimensional
eigenspace corresponding to eigenvalue 82 = w® — A of operator A. We have:

SAE; = —V(div(3¢E))) — 0’8€E;
SA Ey = (V(3e div V) —(Vdiv(se V) — 0?8e V.
N—— e ————

=—AV(Sed)

The perturbed operator restricted to the eigenspace in terms of its spectral components looks as
follows.

—w? (8eV x Y, V X ¥) (A — w?) (8€V X ¥, Vo)
(8AEy, E\) (BAE1, Ey) — —
(A Es, E1) (5A Es, En) - —w? (8eV X Y, Vp) (A — @) (5eVp, V) —A2 (3¢, p)
= =b =d

Let further simplify the matrix notation to

(¢5)
CD)-
The characteristic equation for perturbed eigenvalues 5 reads as follows.
(882> = (8B)(A+ D) + (AD — BC) =0
with the discriminant
A= (A+ D)> —4(AD — BC) = (A — D)> +4BC.
This gives:

A = (—w?a — (h — 0P)b + 12d)* — 40> (A — ?)c?
= (0%a + (A — 0?)b — A2d)? — 4w (L — w?)c? .

Can discriminant A be negative ? It is certainly positive for A < w?. In other words, the propagating
modes remain propagating or become purely evanescent. However, for » > w2, it is difficult to
exclude the possibility of the discriminant becoming negative.®

The analysis of multiple eigenvalues can now easily be extended to the case of multiple Neumann
and Dirichlet eigenvalues for the Laplace operator. For simplicity, let us consider only the case of
double eigenvalues, relevant for the cylindrical waveguide and the step-index fiber. Recall again the
formula for the perturbed operator,

(BAE, F) = —(8ediv E, div F) + (div(8eE), div F) — 0 (8¢E, F).

8 Among other things, we tried to compute the derivative dA /dX at A = w?, but we could not show that it
must be positive.
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In the case of multiple Neumann eigenvalue p, E; =V X ¥, E = V X 9, and we obtain

(8€V x Y1, V. x Y1) (8 V x Y1, V x 4n2)

(BAE,E1) AE, Ey) _ ) - _7
(SA Ea, E1) (A Ea, E) = (8eV X Y2, V X Y1) (6eV X Y2, V X ¥0)
=:B =D

Upon inspection, we see that the discriminant of the characteristic equation is always positive.
§=(A+ D)’ —4(AD — B*) = (A — D)> +4B>.

For the step-index fiber, B = 0, and A = D. The perturbed eigenvalue remains a double eigenvalue.
In the case of multiple Dirichlet eigenvalue A, E; = V¢, E2 = V¢,, and we obtain

(BAEi, Ej) = (L —?)(BeVi, V) — A2 (Begy, ¢) i, j=1,2.

For the step-index fiber, the off-diagonal terms are zero, and the diagonal terms are equal. The
perturbed eigenvalue remains double. One can show in a similar way that, in the general case,
perturbed eigenvalues 582 remain real.

Lemma 6 Assume that the perturbation §e¢ vanishes near the boundary dD. In the first two cases
discussed in Lemma 5 and in the third case for . < ?, the perturbed eigenvalues ,8,-2 + 5/31.2 are

always real. In the third case, for A > w?, they may be complex.
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