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Abstraci—Reliable robotic grasping, especially with de-
formable objects such as fruits, remains a challenging task
due to underactuated contact interactions with a gripper,
unknown object dynamics and geometries. In this study, we
propose a transformer-based robotic grasping framework
for rigid grippers that leverage tactile and visual informa-
tion for safe object grasping. Specifically, the transformer
models learn physical feature embeddings with sensor
feedback through performing two predefined explorative
actions (pinching and sliding) and predict a grasping out-
come through a multilayer perceptron with a given grasping
strength. Using these predictions, the gripper predicts a
safe grasping strength via inference. Compared with con-
volutional recurrent networks, the transformer models can
capture the long-term dependencies across the image se-
quences and process spatial-temporal features simultane-
ously. We first benchmark the transformer models on a pub-
lic dataset for slip detection. Following that, we show that
the transformer models outperform a CNN + LSTM model in
terms of grasping accuracy and computational efficiency.
We also collect a new fruit grasping dataset and conduct
online grasping experiments using the proposed frame-
work for both seen and unseen fruits. In addition, we extend
our model to objects with different shapes and demonstrate
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the effectiveness of our pretrained model trained on our
large-scale fruit dataset.

Index Terms—Deep learning, perception for grasping and
manipulation, visual and tactile sensing.

[. INTRODUCTION

OBOT manipulation has been widely used in industries

for decades, but mostly for repetitive tasks in structured
environment where there is little uncertainty or contact deforma-
tion in manipulated objects. For the tasks where object contact
parameters are prone to vary, such as fruit grasping, they are
still challenging for robotic systems [1]. Loose grips with small
grasping forces can cause objects to slip, while large grasping
forces can cause damage. In addition, object contact geometry
and frictional properties may also affect the optimal grasping
forces for safe grasping. To learn general-purpose grasping
skills, robots need to leverage with dense notions of contact
information from in-hand interactions.

To model the dynamic interactions between the object and its
environment, vision-based sensing frameworks have been stud-
ied based on a sequence of visual observations obtained by ex-
ternal cameras [2], [3]. However, these methods are not sensitive
to the dense local deformation near contact regions, which could
lead to errors between the perceived and actual states of a grasp.
To address this issue, tactile sensing has gained increasing popu-
larity recently [4]. Among various tactile sensors, the ones with
internal cameras, such as GelSight sensor [5], have the capability
of capturing high-resolution image data regarding local contact
geometry. Other tactile designs [6], [7] have also demonstrated a
variety of manipulation tasks with similar methods. Compared to
force sensors, tactile sensors can capture an object’s deformation
during contact. Moreover, tactile data can be readily integrated
by modern learning methods for classification and task-oriented
control policy learning [8]. The authors in [9] and [10] demon-
strated that grasping performance can be significantly improved
by incorporating visual and tactile sensing.

In this article, we employ two state-of-the-art transformer
models—TimeSformer [11] and ViViT [12]—to determine safe
grasping forces from the visual and tactile image sequences
collected during predesigned explorative actions (e.g., pinching
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and sliding). The idea of designing task-oriented explorative
actions is inspired by Wang et al. [8] and the motivations of
introducing the transformer models are as follows.

1) Compared with recurrent networks, such as LSTM, they
do not suffer from the forgetting issue.

2) Compared with convolutional networks used for extract-
ing local features, they have larger receptive fields that
are helpful to understand the global context.

3) Compared with CNN + LSTM models for processing
image sequences, they can extract the spatial-temporal
features simultaneously. While for CNN + LSTM models,
the per-frame spatial features are always encoded (CNN)
prior to the temporal decoding (LSTM). Thus, the trans-
former models are more adaptable to complex tasks.

In our framework, the transformer models learn low-
dimensional embeddings in a supervised fashion for each sensor
modality and then output a fused physical feature embedding.
First, we take this embedding as input and combine it with
a given grasping force threshold to predict the final grasping
outcomes through a multilayer perceptron (MLP). The grasping
outcomes are categorized into three labels: safe grasping, slip-
pery, and potential damage. A force threshold for safe grasping
is then searched for using the learned predictor during online
deployments. Second, the fused physical feature embedding is
used to classify grasped fruit types through a different MLP layer
in order to place them into separate bins automatically.

To begin with, we benchmark the transformer models against
a CNN + LSTM model on a public dataset for slip detec-
tion [9]. Both transformer methods (TimeSformer and ViViT)
outperformed the CNN + LSTM model by 3.1% and 2.0% in
detecting slip, and are much more computationally efficient,
making them more suitable for online tasks. Then, in order
to validate the grasping framework, we perform grasping ex-
periments on various deformable fruits for data collection. We
train the models using both camera and GelSight inputs and
test their performance via grasping outcome classifications on
unseen fruits and online grasping success rate for both seen and
unseen fruits. Furthermore, we employ our pretrained model, the
one trained on a dataset of multiple fruits, for training with an
unseen banana dataset. Notably, employing the pretrained model
accelerates the training process by four times and leads to a 10%
improvement in training accuracy in the new banana dataset.

The contributions of our work are summarized as follows.

1) We propose a transformer-based grasping framework
for fruit grasping and demonstrate the superior effi-
cacy and efficiency of the transformer models against a
CNN + LSTM baseline model.

2) We design a learning-based control framework that incor-
porates safe grasping force estimation using tactile and
visual information obtained via two explorative actions:
pinching and sliding, which do not require any prior
knowledge of physical contact or geometrical models.
Besides, the control parameter is directly formulated as
the depth value read from the tactile feedback without any
aid of external force—torque sensors.

3) We experimentally evaluate the proposed grasping
framework on a diverse set of fruits and achieve an
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end-to-end demonstration of fruit grasping. Besides,
by performing the attention analysis, we show that
the trained transformer models take advantage of the
attention mechanism to: i) incorporate more contact area
information for the grasping task, such as local contact
region in tactile images and fruit surface near the gripper’s
fingertips in visual images; and to ii) capture long-term
dependencies between initial and final grasping status.
Furthermore, we conduct detailed sensitivity analysis
for tactile images and visual images with different data
qualities in Section V-A. We evaluate the robustness of our
transformer models according to the difference in outputs.

4) By employing our model trained on a large fruit dataset
as the pretrained model for our collected banana dataset,
we observe improved training efficiency and higher
success rates in both the training process and online
grasping experiments.

Il. RELATED WORK
A. Robotic Grasping

Robotic grasping has been a widely explored topic involving
different gripper designs, different model-based control meth-
ods, and learning-based methods with various sensor modal-
ities [13], [14]. As for gripper design, previous works have
explored novel design principles for efficient manipulation of
deformable objects. The three fingered Barrett Hand has been
widely used in grasping framework for objects with different
shapes and hardness [15], [16]. The sensorized hand proposed
in Friedl and Roa [17] work uses a multimodel observer frame-
work and a variety of sensors, including cameras, tendon force
sensors, and proximity sensors, to achieve successful grasping.
However, these approaches often involves sophisticated hard-
ware design and potentially limit the flexibility in deployment
across different robotic systems. Instead, our work employs
a simple parallel jaw gripper for grasping and focuses on
leveraging high-fidelity tactile sensing to learn reliable grasp-
ing strategies for a diverse set of deformable objects. As for
grasping control strategies, model-based frameworks have also
been widely used in deformable objects manipulation [16], [18].
The study in Zaidi et al. [16] work develops a grasp planning
pipeline which emphasizes the physical contact constraints for
precise control of forces and object deformations. The work of
Chang and Padir [18] contributes by modeling and automating
the manipulation of linear flexible objects to enhance grasping
accuracy. While model-based methods can achieve high success
rates in grasping, their ability to generalize across objects of
varying shapes and softness is limited. The generalizability of
deformable object grasping is one of the main objectives in our
study. Pozzi et al. [19] proposed a vision-based framework for
grasp learning of deformable objects using an anthropomorphic,
underactuated, compliant hand. It renders a promising future
direction to employ advanced hand mechanisms for grasping.
Recently, motivated by human’s intense dependence of tactile
feedback for the grasping process, tactile sensors have thus be-
gun to play an important role in robotic grasping [20]. Calandra
et al. [21], used deep-learning methods to obtain a grasping
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policy for rigid grippers. However, the grasping success rate
on deformable objects was not ideal since they only adjusted the
grasping position but fixed the grasping force. Kim et al. [22]
estimated the optimal grasping force empirically but assumed
the object weights were known. In [23] and [24], the gripper’s
opening was controlled to stabilize the grasped objects under ex-
ternal disturbances by detecting the slip occurrences. Similarly,
Wettels et al. [25] made use of tactile sensing to stabilize the
grasped object by controlling the grasping force. However, all
of these studies assumed that the objects were already steadily
grasped in hand. In this work, we aim at estimating safe grasping
force for deformable objects through a learning framework.

B. Vision-Tactile Sensor Fusion

We can improve the manipulation performance by fusing
the information obtained from visual and tactile sensors. Ca-
landra et al. [10] proposed a multimodal sensing framework
for grasping outcome prediction. Their subsequent work of
Calandra et al. [21] investigated a learned regrasp policy based
on visuotactile data after executing an initial grasp. Their results
indicated that incorporating tactile readings substantially im-
proves grasping performance. However, the manipulated objects
used in their experiments are primarily rigid objects, which do
not require accurate force control. In other works [9], [26], [27],
they used CNN + LSTM models to classify the slip occurrence,
to recognize the object instance, and to perceive the physical
properties of objects. Nonetheless, these methods can only be
used for classification tasks and are not applicable to learning
control policy for safe manipulation.

C. Transformers for Robotics

Transformer models were originally proposed for natural
language processing [28] and computer vision [29], [11], [12],
and [30]. Recently, transformers have drawn increasing atten-
tion in robotics. Shridhar et al. [31] proposed a transformer
framework for tabletop tasks, which encodes language goals
and RGB-D voxel observations and output discretized six-DoF
actions. Monastirsky et al. [32] explored the use of transformers
to predict robot action commands for accurate object throwing.
Yang et al. [33] addressed quadrupedal locomotion tasks using
reinforcement learning with a transformer-based model. All of
these works showed significant improvements over baseline
methods on task performance and training efficiency. However,
to the best of our knowledge, no existing study has ever explored
the use of transformers for robotic grasping using tactile and
visual images.

Ill. METHODS

In this section, we describe the details of the grasping
framework and each transformer model. To give robots
the ability to estimate the safe grasping force, we first let
the robot obtain physical information of the target objects
(fruits in this work) by performing two explorative actions,
pinching and sliding, on the objects. To avoid potential
damage, these actions have minimum interaction with the
objects. To monitor the interactions and record the data, the

S

Fig. 1. Demonstration of our robotic grasping experimental setup. The
robot gripper safely grasps the fruits on the table and sorts them into
the target bins via the learned framework. Robot setup: A KUKA LBR
iiwa robot is equipped with a gripper (red box), of which both fingers
are equipped with a GelSight sensor (blue circle). A Realsense D435 is
mounted above the gripper (green ellipsoid).

robot is equipped with two different sensors. Next, a force
threshold for safe grasping will be extracted via inference
from the obtained physical information and adopted for
execution. In the following, we first describe the sensors in
Section III-A, and then we discuss the transformer models in
Section III-B, and finally we propose the grasping framework
in Sections III-C and III-D. The pseudocode code is
shown in Appendix B in the supplementary material. The
line of the appendix is: https://drive.google.com/file/d/
1JhOoCgqIDYf12YNWXCDOrsryCRRk1FH8/view ?usp=
sharing

A. Sensing Modalities

1) Tactile: The GelSight [5] sensor provides the robot with
dense visual information (high-resolution image) about the con-
tact region between the objects and the robot’s fingertips. For
this purpose, the contact surface of the sensor is covered with a
soft elastomer such that the sensor can measure the object’s
compliance by observing the elastomer’s vertical and lateral
deformation. In out experiments, the gripper has two GelSight
sensors installed on the fingertips, but we only use one to
demonstrate a minimum system setup.

2) Vision: A RealSense D435 camera is used in this work,
and we only consider the RGB datastream. The camera is wrist
mounted at an angle of 15° such that the image is centered on
grasped objects (see Fig. 1 for the setup).

B. Transformer Model

We apply the transformer models for two robotic manipulation
tasks: slip detection and safe grasping force estimation. For
slip detection, we replace the CNN + LSTM model used in Li
et al. [9] work with the transformer models but keep the last
fully connected (FC) layer with two outputs (i.e., a stable grasp
or slip) as the final classification results. For safe grasping force
estimation, the outputs from transformer models are used as
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Fig. 2. lllustration of the transformer model structure. The left figure

shows one transformer layer and the right figure shows the encoding
structure. x;,x2,x3,...,X, are the input vectors which are first linearly
embedded and then added with the position embeddings before trans-
former layer 1.

inputs to the subsequent models in the grasping framework that
will be thoroughly described in Sections III-C and III-D.

Two lightweight transformer models are explored for robotic
tasks in this work: TimeSformer [11] and ViViT [12]. Each
model uses similar self-attention mechanism [28], [34], which
brings main advantages over CNN + LSTM models, while the
difference between these models lies in the factorizing strategy
for spatial-temporal attention. The choice of TimeSformer and
ViViT is pivotal due to their specialized architectures, which
enable the attention strategy across spatial and temporal dimen-
sions in video data. This strategy enhances the performance of
complex classification tasks in robotic manipulation by leverag-
ing spatial and temporal dynamic information.

A transformer layer contains a self-attention layer and an
MLP layer. To stack the transformer layers for a deeper encoding
structure, the MLP layer does not change the vector size. Also,
before and after both layers, there is a LayerNorm and a residual
connection, respectively. One transformer layer is shown in
Fig. 2 (left-hand side subfigure), where the outputs of the current
layer will be the inputs for the next (right-hand side subfigure).
Before the first transformer layer, all the input vectors will be
linearly embedded and then added with position embeddings,
the elements of which represent the positions of each vector, to
retain the useful sequence knowledge [28].

Self-attention mechanism: The self-attention mechanism
[28], [34] allows all the inputs to interact with each other and
identify the one that should be paid more attention to, which
renders their main advantages over CNN + LSTM models.
Specifically, this mechanism can be described as mapping a
query (Q) and a key (K)-value (V') pair to the outputs.

For a single self-attention block (or a single head), the query,
key, and value vectors can be computed by projecting the same
input matrix X € R™*% (each row of X corresponds to an input
vector with size d,.) to Q, K,V as follows:

Q=XW? K=XWK v=xwV (1)

where W@ € R%>de WK ¢ Rdaxdr gnd WV € R >dv gre
learnable matrices with d, = d, = d.

The outputs of the self-attention mechanism are obtained
through (2), which represents the weighted sums of the value
vectors (V) with the weights assigned based on a compatibility
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function between the query vectors (Q) and the corresponding
key vectors (K) at the same vector index. Note that, the dot-
product between Q and K is scaled by /d, as suggested by
Vaswani et al. [28]

Attention(Q, K, V) = softmax <QKT) \Y% ()
o Vi,

SingleHead(X) = Attention(Q, K, V)W?.  (3)

As shown in (3), another learnable matrix WO € Rév*d=
projects the intermediate results to a new matrix with the same
dimension as X.

In practice, to allow the model to attend to information
from different combinations of input space representations, we
employ a MultiHead strategy by projecting the Q, K,V ma-
trices / times with different sets of weights W2, WX W for
1 = 1,... h. This strategy leads to more effective representations
and improved performance. As a result, it is always employed
by transformer models.

In addition to the self-attention blocks, there is an FC MLP
layer applied to each vector position separately and identically.
It has two linear transformations and a GeL U activation function
in between.

Factorization of spatial-temporal attention: For image-based
tasks, to generate input vectors from raw image(s), in Dosovit-
skiy et al. [29] work, they split an image into fixed-size patches
and embed each of them via linear transformation. Our frame-
work handles image sequences instead of single images and must
consider the temporal dimension within each self-attention layer.
To accomplish this, we incorporate spatial-temporal factoriza-
tion using TimeSformer [11] and ViViT [12].

TimeSformer: In this model, spatial-temporal dimensions
are processed sequentially: within each self-attention layer, the
attention is first applied on the temporal dimension of the inputs
at the same spatial position, followed by the spatial dimension
among all inputs from the same temporal position. There are also
residual connections between each operation. This approach is
visualized in Fig. 3. In our work, the input image sequence is
denoted as X; € RN*H*W where N, H, W are the number of
images, image height pixels, and image width pixels, respec-
tively. We first extract the patches Xp € RP»*FPrxPu ' where
(P, Py) is the resolution of each patch and P,, =
these patches are flattened and then linearly embedded to vectors
of size D with a positional embedding being added to each of
them. We further add a CLS (classifier) token to the sequence
of embedded vectors, which is designed to extract task-level
representations [35] by attending to all the other vectors and
forming an augmented sequence X = {CLS, z,2;,...,2n},
where z; € Xp. E(X), which is the transformer encoder func-
tion in ViT, then takes X as input and generates an encoded
sequence of representations {hcrs, hi, ha, ..., hy}, where h;
is the representation of the sth patch. Finally, the output of the
CLS token hcys is used for different tasks. In slip detection (see
Section IV-A), it is passed through an MLP layer to classify
whether or not a slip occurs.

ViViT: Our implementation of ViViT is similar to TimeS-
former, except for the following differences: First, both
dimensions are processed in parallel. Specifically, half of the
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Fig. 3. Visualization of space-time attention approach for TimeS-
former. The top three rows show an input GelSight image sequence, the
generated 4 N image patches and the patch embeddings. We denote
one image patch in green and its spatial-temporal neighbors in blue
and red, respectively. Within each self-attention layer, for each image
patch, the attentions across temporal neighbors and spatial neighbors
are sequentially processed and the output will be the input of the MLP
layer in transformer model after LayerNorm.

heads attend to the spatial dimension and the other half to
the temporal dimension (factorized dot-product attention). We
then combine each output by concatenation and add a linear
transformation to halve the size. Second, there is no CLS tokens
added to the embedded input vectors because of the ambiguities
when dot-producting the temporal and spatial attention. Instead,
we take the average of all patch outputs from the last transformer
layer and pass it (size D) to the MLP layer to classify whether
or not a slip occurs

C. Grasping Framework for Safe Force Estimation

The main goal of our grasping framework is to predict the
grasping outcome given a grasping force threshold and to esti-
mate the force threshold for safe grasping via inference.

1) Grasping Outcome Prediction: As shown in Fig. 4, this
framework is composed of five main components: Control pa-
rameter (force threshold), transformer, sensor fusion model,
action fusion model, and prediction model.

Force threshold: GelSight is a vision-based tactile sensor,
which lacks the capability of estimating the grasping force
(contact normal force) directly. To address this issue, Yuan
et al. [6] showed that the contact normal force can be estimated
from the depth value (unit: pixel) with accurate gel calibration.
On the other side, She et al. [36] directly used the mean value
of the marker displacement provided by GelSight images to
approximate the resultant frictional force. Inspired by this work,
we employ the maximum depth value as the approximation of
grasping forces. If the maximum depth value reaches the selected
threshold for three continuous frames during the execution,
the gripper will begin to grasp the fruit with a constant force
corresponding to the depth threshold value. For all subsequent
operations, we maintain the same grasping force but solely
control the robot arm motion for fruit transportation. Also, the

force threshold will be sent into the prediction model. Note that
the unit of force threshold is pixel, which will be omitted in
Section IV for readability.

Transformer: For each explorative action, the image sequence
from a sensor modality outputs a vector of size D via the
transformer models, as thoroughly described in Section III-B.
In Fig. 4, since we predefine two explorative actions and there

e . ..pinch _ pinch
are two sensor modalities, we have four vectors: v,  \s Viactiles
Vshde slide

visual® Ytactile®

Action fusion model and sensor fusion model: We con-
catenate each two vectors obtained from the same explo-

: : H . ypinch __ pinch pinch slide __

ratll(fin actuirfi and achieve: v = [Vhiiial Viactile) andvf o=

sliae sliae useda __

[vauzﬁhvt dctllrlle] We then fuse them as a vector v =
pinc pinc slide slide 4xD :

[ visual> Vtactile’ Vvisual’ Vtactlle] eR - Then, we use a linear

transformation operation to project it to a low-dimensional space
with an output size of N. The linear transformation can be
represented as

qused _ Vfused . WT +b (4)

where Yfused ¢ RN*1 ig the output vector, which is a fused
physical feature embedding. W € RV *4P is the weight matrix
which is a learnable parameter trained through backpropagation,
which optimizes a loss function that measures the discrepancy
between the predicted and truth labels across a set of training
examples, and then used to perform the linear mapping. b €
RN*1 is another learnable bias which is used as an offset to the
output.

2) Safe Force Threshold Estimation: We aim to identify the
control parameter, i.e., the safe grasping force threshold. As
shown in Fig. 4, the prediction model takes the low-dimensional
physical embedding obtained from performing two explorative
actions and a force threshold candidate as inputs and outputs
the upcoming grasping outcome via learnable neural network
layers. Next, we can uniformly sample the thresholds and feed
each of them into the prediction model and select the one that
predicts a safe grasping. When there are multiple viable choices,
we select the average value.

D. Grasping Framework for Fruit Classification

Our grasping framework includes a goal of fruit type clas-
sification for pick-and-place operations. Specifically, we use a
single-layer MLP network for fruit classification, which takes
the fused physical feature embedding of sensor fusion model
as input and outputs the grasped fruit type (fruit type block in
Fig. 4). In detail, the MLP network learns a nonlinear mapping
from the high-dimensional feature space of the sensor fusion
model, which encodes physics knowledge, to the categorical
labels of the fruit types. During training, the weights of the
transformer models that generate the embedding are frozen.
Only the MLP network is trained in this learning scheme.

IV. EXPERIMENTS

In this section, we present our experiments using the trans-
former models. The robot setup is shown in Fig. 1.
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Fig. 4. Overview of grasping framework. The robot first performs two explorative actions. 1) Pinching the fruit. 2) Sliding along the fruit surface

in the optical axis. Many fruit examples can be found on our GitHub page. Each image sequence is processed by an individual transform network
into a vector of size D. The fusion models concatenate these vectors and project it into a low-dimensional fused physical feature embedding.
This embedding is further processed by a fruit classification model to classify the grasped fruit type. Besides, the prediction model takes the same
embedding and control parameter (force threshold) as inputs and predicts the final grasping outcome. Through inference, a set of control parameters
is first generated and then the parameter with the safe grasping outcome is selected to perform online grasping. This procedure is shown in the
top-right black box. If there are multiple viable choices, we select the average value.

A. Transformers for Slip Detection

To begin with, we benchmark the transformer models against
aCNN + LSTM model on a public dataset for slip detection with
different sensor modalities.

1) Experiment Setup: We conduct experiments for a slip
detection task. The dataset released by Li et al. [9] is used and
can be directly downloaded online."! During implementation,
the entire dataset is split into training, validation, and test sets,
where the test data uses unseen objects in the training data.
Since the size of dataset is relatively small, we randomly split
the dataset five times and train the model on each of them to
mitigate the effect of overfitting. The final detection accuracy
on the test set is averaged. For each model, we analyze the
performance with three different data source inputs (vision-only,
tactile-only, and vision and tactile). For the CNN + LSTM
model, ResNet18 is chosen as the CNN architecture over other
options, such as VGG or Inception [9], due to its advantage of
fewer parameters. As a result, the ResNet18 architecture can be
initialized randomly without the need of loading a pretrained
model.

A sequence of 14 continuous frames are used as input for each
sensor data. During training, we use cross-entropy (two cate-
gories) as the loss function and apply an Adam optimizer [37].
For both transformer models, the input embedding size (D),
number of transformer layers, and number of heads are set to

![Online]. Available: https:/drive.google.com/file/d/INPcZY Stp2pLPyeW
Lwv3-jbltz04RUuSp/view ?usp=drive_link

TABLE |
EXPERIMENTAL RESULTS ON SLIP DETECTION DATASET [9]
accuracy \ model
CNN + LSTM TimeSformer ViViT
Modality ResNet18
Vision-only 71.7% (0.4%) | 78.7% (0.7%) | 78.9% (1.2%)

80.6% (0.8%)
81.9% (0.3%)

81.0% (0.5%)
85.0% (0.4%)

81.8% (0.5%)
83.9% (0.3%)

Tactile-only
Vision and tactile

Execution time of
Feedforward test

TimeSformer and ViViT outperform the CNN + LSTM method by 3:1% and 2:0%, respectively.
recorded values are the average across 5 dataset splits and their variances in parenthesis.

9.61s 2.46s 2.43s

256, 8, 16, respectively. The experiment results and execution
time are shown in Table I.

2) Experiment Analysis: From Table I, we can see that the
transformer models can provide more accurate classification
results. Also, when tested on the same dataset split as in Li
et al. [9] work, the transformer models can achieve better results
(92.3% for TimeSformer and 90.0% for ViViT) than reported
in Li et al. [9] work (88.0%) using both sensor inputs. One
potential reason for the efficacy of transformer models is that
in this application, the final grasping outcomes may be inferred
partially from the initial grasping status and transformer models
have the capacity of capturing these long-term temporal depen-
dencies more effectively compared with recurrent networks [38].
Another potential reason is related to the architecture of the
transformer models: since each transformer layer is stacked in
a sequence, spatial and temporal information can be extracted
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Fig. 5.  Top row: Fruits used in experiments. From the left to the right:
plums, apples, lemons, tomatoes, oranges, and kiwifruits. Bottom row:
the Gelsight images collected at the final frame during pinching for
each fruit grasping. It can be seen that the fruit deformation sensed by
Gelsight varies as they share different hardness and surface texture.

simultaneously via self-attention mechanism, which does not
hold for the CNN + LSTM models.

In addition, it takes significantly less time for feedforward
computation of the trained networks during the robotic deploy-
ment. As shown in Table I, using both vision and tactile inputs
from the same test dataset and selecting the same batch size,
the execution time of both TimeSformer and ViViT models
on the same machine (NVIDIA GeForce RTX 2070) is 2.46 s
(25.6%) and 2.43 s (25.3%), compared to the CNN + LSTM
model (ResNet18:9.61 s, VGG16: 21.39 s). Therefore, it can be
concluded that transformer enables the robots to make decisions
within a much shorter time.

For the CNN + LSTM model, tactile-only significantly out-
performs vision-only, as also reported in Li et al. [9] work. The
transformer models perform similarly for each single sensor case
while also showing better performance for the multisensor case.
This indicates that multisensor input provides better cues for the
slip detection.

These advantages highlighted previously altogether motivate
us to exploit transformer models on safe fruit grasping.

B. Transformers for Safe Fruit Grasping

In this section, we examine our framework for grasping de-
formable fruits.

1) Experiment Setup: We collect our own dataset® on fruit
grasping involving six different types of fruits: plums, oranges,
lemons, tomatoes, apples, and kiwifruits, as shown in Fig. 5
(top row). We perform the fruit grasping with various grasp-
ing force thresholds (discussed in Section III-C1) on them for
782 times in total to train the models. For each type of fruit,
due to the variations in fruit hardness and surface texture, the
grasping force thresholds are different as we ensure a balanced
training data distribution among the three grasping outcomes
(i.e., the count numbers of three grasping outcomes are similar).
For example, the sequence of force threshold used for apple
(the hardest fruit) is sampled as integers from 4 to 16, and
for orange (the softest fruit) it is from 4.0 to 10.0 with 0.5
intervals (both have 13 force thresholds). Since each fruit has
a different range of force threshold, we include decimal values
to guarantee that the numbers of each fruit samples in training
data are close. Each fruit is clearly visible with a black backdrop
relative to the camera frame. On the bottom row in Fig. 5, we

2[Online]. Available: https:/drive.google.com/file/d/1qBGmeEmLY Gl4gP
BAbp3y8d3_Y14u01RH/view?usp=drive_link

show that the fruit deformation varies during pinching as they
differ in hardness and surface texture. In summary, our collected
dataset is comprehensive. For each fruit, it covers a large force
range which includes both successful grasping (initial grasp
plus transportation) and failures. This comprehensive dataset
allows our framework to effectively enable the robot to select
the appropriate grasping force that guarantees the success of
both the initial grasp and the subsequent transportation. More
importantly, our framework could achieve this across different
fruits with various textural and hardness. The data are collected
by the RealSense camera and GelSight at 30 Hz and with
640 x 480, 200 x 150 resolutions, respectively. The visual
images are then resized to 160 x 120 resolution for compu-
tational efficiency. For both pinching and sliding actions, we
use the first frame of every three continuous frames for a total of
eight frames (frame index: 1,4,7,10, 13,16, 19,22). For both
transformer models, the patch sizes are set as (20, 15) for tactile
data and (16, 12) for visual data. The input embedding size (D),
number of transformer layers, and number of heads are set to be
256, 16, and 8, respectively.

2) Experimental Evaluation: We aim to address the following
questions in this experimental evaluation.

1) Can our transformer models outperform the CNN +
LSTM models in terms of grasping outcome prediction
for unseen fruits?

2) Isit plausible to deploy the trained frameworks for online
fruit grasping applications?

3) What patterns do the transformer models learn from data?
In other words, where do the transformer models attend
to?

3) Grasping Outcome Prediction on Unseen Fruit: We use a
cross-validation technique, partitioning one type of fruit grasp-
ing data as a testing set and others as a training set, to compare
the accuracy of grasping outcome prediction. After training,
the transformer models achieve 80.2% and 76.0% accuracy
of grasping outcome prediction on the test dataset (kiwifruit)
for TimeSformer and ViViT, respectively. For CNN + LSTM
model with Resnet18 as the CNN architecture, it achieves 75.0%
accuracy on the test dataset. building connection with the later
training with banana.

4) Online Fruit Grasping Evaluation: Then, the trained
frameworks are deployed on a seven-DOF KUKA LBR iiwa
robot manipulator to estimate the safe grasping force via in-
ference for both seen and unseen fruits. During inference, we
sample the force thresholds as integers between 4 and 16, and
for each sample, we adopt the same fused physical embedding
obtained from performing two predefined explorative actions.
The robot then grasps each fruit 50 times. Table II shows the
success rate and the average on-board computation time for one
sample. It can be seen from Table II that the transformer models
outperform the CNN + LSTM model significantly, for both seen
and unseen fruit grasping.

We demonstrate the total computation time for each success-
ful grasping. As we show in Table II, our framework with ViViT
takes 0.29 s for each force threshold sample. In total, we have
13 samples (all integers between 4 and 16), so the total on-board
computation time is around 3.77 s. We also allow 15 s for the
endure time for the two explorative actions. As a result, for
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TABLE Il
EXPERIMENTAL RESULTS OF SUCCESS RATE FOR ONLINE FRUIT GRASPING
(50 TRIALS FOR EACH FRUIT) AND THE AVERAGE COMPUTATION TIME

success rate model
CNN + LSTM | TimeSformer | ViViT
Fruit ResNet18
Plum 66% 88% 86%
Orange 64% 86% 90%
Lemon 60% 90% 90%
Tomato 74% 86% 86%
Apple 68% 92% 92%
Kiwifruit (unseen) 52% 74% 80%
Computation time 052 s 039 s 029 s
for one sample
30
apple
25 orange
plum

tomato

353
(=]

lemon

kiwi

Selection Count
= &

w

i 6 8 10 12 14
Sampled Force Threshold

Fig. 6. Times each force threshold candidate is selected for safe
grasping. The positional order of the color bars at each sample is shown
in the dashed block.

each successful grasping, it takes around 20 s in total, and this
indicates our framework can accomplish 180 graspings per hour.
It should be noted that since we only use CPU (11th Gen Intel(R)
Core(TM) i19-11900 K @ 3.50 GHz) during online deployment,
we believe our framework shows the potential for real-time
industrial application, with further computational improvement
or even GPU implementations.

It is noteworthy that in spite of the variations in grasping
position caused by manual fruit reloading, slight fruit spoilage
caused by squeezing, and unseen fruit type (kiwi), the framework
is still able to select the safe grasping threshold for each grasp.
This shows that the framework demonstrates some level of
generalizability under the uncertainty of the local contact surface
texture and fruit ripeness. Besides, Fig. 6 shows the times each
force threshold candidate is selected for the successful fruit
grasping when using ViViT. Their values are proportional to the
grasping force that should be exerted on the fruit. It is observed
that the selected force thresholds for safe grasping of each fruit
distribute over a finite range. Take orange as an example, force
threshold 4.5 is selected 11 times for safe grasping of softer
oranges and 6.0 is also selected five times for harder oranges.
This force threshold variation indicates our framework’s adap-
tation to the fruit’s inherent variability, which is infeasible by
hard coding a fixed force threshold, even for the same fruit.

We also test the fruit classification model on the seen fruits
during online deployments (video can be found here?), which
enables the KUKA LBR iiwa robot to place each fruit into

3[Online]. Available: https://www.youtube.com/watch?v=W708DsTivTk
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Fig. 7. Snapshots of fruit picking operation. (a) Grasp. (b) Move.
(c) Place. Other fruit experiments are shown in the attached video.

Frame16 Frame22

Frame1

Fig. 8. Visualization of temporal attention from selected image patches
at the final frame to their temporally preceding neighbors during a lemon
grasping. We only show the results of four frames here. From top to
bottom rows, the images are collected from pinching (tactile), sliding
(tactile), pinching (visual), and sliding (visual), respectively. The image at
each frame is split into 10 x 10 patches, among which 24 and 6 patches
are selected (denoted within the dashed ellipsoid in the final frame) to
present the temporal attention for tactile and visual images. The brighter
the patch color is, the more attention is paid from its temporal neighbor
at the final frame.

separate bins using its built-in position-based waypoint tracking
controller after successful grasp. For this, we predefine five
different waypoints for each fruit and when the robot reaches
the desired waypoint, it would drop off the grasped fruit imme-
diately. In Fig. 7, we show one case that the robot first grasps the
orange from the table and then places it in the target bin using the
proposed framework. It should be noted that the purpose of this
operation is to illustrate that our framework can be potentially
used for an integrated pick-and-place task. Therefore, our fruit
classification model is not compared with other existing methods
since it is not the focus of this work.

5) Attention Analysis: One important component of our
framework is the transformer models learned entirely from data.
Therefore, we now examine what pattern has our models learned
qualitatively. Take TimeSformer as an example, we use the
attention rollout method [39] to visualize the learned temporal
attentions across vision and tactile image sequences on several
selected image patches, as shown in Fig. 8. It can be seen that
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Fig. 9. Normalized temporal attention weights to all selected image
patches at each frame from their corresponding temporal neighbors at
the final frame.

the image patches at the final frame do not only attend to them-
selves, but also their temporal neighbors at preceding frames
(red color brightness denotes the attention weights). In addition,
Fig. 9 shows the normalized temporal attention weights of all
selected image patches. An intriguing observation is that the
image patches at the first two frames, when the gripper initially
touches the objects, share larger attention weights compared
with succeeding intermediate frames. Our conjecture of this
observation is due to the fact that as the initial and ending
contact information is more inferable to the physical status of the
manipulated objects, as well as to the grasping outcome. On the
contrary, the gradient flow in recurrent networks, even for LSTM
architecture, can gradually lose the information on the previous
inputs, especially of the first few inputs, resulting in the difficulty
of capturing long-term temporal dependencies [40]. However,
transformer is able to mitigate this problem as demonstrated.

Furthermore, we show the spatial attention at the final frame
for apple, plum, (seen during training), and kiwifruit (unseen
during training) grasping in Fig. 10. For tactile images, the
TimeSformer model mostly attends to the local contact region,
and for visual images, it attends to the fruit surface near gripper’s
fingertips. Therefore, the transformer models can incorporate
more contact information for the grasping task.

We highlight that the interpretability of attention mechanisms
may provide an alternative way of analyzing how deep learning
methods understand the object’s physical deformation properties
captured by tactile and visual sensors during contact-rich tasks.

V. ADDITIONAL EXPERIMENTS AND ANALYSIS

We conduct three more experiments to showcase the sensitiv-
ity of our framework in images with large disturbance and the
effectiveness of our framework in handling objects with irregular
shapes in this section.

A. Sensitivity Analysis of Visual and Tactile Feedback

In this section, we evaluate the sensitivity of our framework
in visual and tactile images with different data qualities.

1) Experiment Setup: We employ our proprietary fruit-

grasping dataset for sensitivity analysis, aiming to evaluate

--

Apple Plum Kiwi

Fig. 10.  Visualization of spatial attention from output token to the input
image space at Frame 22 during fruit grasping. From top to bottom, the
images are collected from pinching (tactile), sliding (tactile), pinching
(visual), and sliding (visual), respectively. The image brightness cor-
responds to spatial attention weights. It is clear that the model mostly
attends to the local contact region on tactile images and attends to the
fruit surface near gripper’s fingertips on visual images. It should be noted
that kiwi is unseen during training.

std =50

No Noise std =20 std =100

Fig. 11.  Top row: Visual images for tomato with different noises. Bot-
tom row: Gelsight images for tomatoes with different noises. From left
to right, the Gaussian noises added on images are no noise, o =
20,50, and 100, respectively.

our framework’s performance across varying image qualities.
We add different noises to the images in our training set and
evaluated the performance with the trained model. We assume
Gaussian noise, mimicking natural variations and imperfections
in real images. Mathematically, Gaussian noise added on an im-
ageis shownas N(0, o), where N (0, o) represents the Gaussian
distribution with a mean of 0 and a standard deviation of o, which
is a pixel value in range [0, 255].

Gaussian with different standard deviations (o = 20, 50, 100)
are added to the images, as shown in Fig. 11. We use ap-
ples (hard fruit) and tomatoes (soft fruit) from our train-
ing set for analysis. The force thresholds used for apples
are integers from 4 to 18, while tomatoes employed force
thresholds ranging from 4.0 to 11.0 with 0.5 intervals. For
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Fig. 12.  These two plots show the relationship between sample force

thresholds (x-axis) and average outcomes difference (y-axis) with noise
and the outcomes without noise for apples and tomato. The lines with
different colors represent different levels of Gaussian noises.

each input, our framework predicted three values, such as
[14.7,3.7,—27.9] for each label of [0, 1, 2] which represented
[slipping, safe grasping, and damage], selecting the label with
the highest value. To assess the impact of noise and thresholds,
ten model predictions are conducted for each level of noise
and threshold, calculating the absolute value of the average
difference between outcomes with and without noise. For exam-
ple, an outcome without noise [14.7,3.7, —27.9], and an average
outcome with noise [14.7, 3.8, —28.0], resulted in differences of
[0,0.1,0.1]. The average difference is then calculated as 0.067,
representing the final result. This procedure is repeated for tactile
and visual images of both apples and tomatoes, encompassing
15 different thresholds and three noise levels.

2) Experiment Evaluation: Upon conducting experiments
with both tactile images and visual images of apples and toma-
toes, we present the results in Fig. 12. Visual noise analysis
reveals the largest difference in outcomes at the highest noise
level (0 = 100). However, when considering the average out-
comes in Section V-Al, this discrepancy represents only 6.5% of
the outcomes. Hence, visual noise does not significantly impact
the model’s prediction performance. Conversely, tactile image
noise exhibits a more pronounced difference. Substantial tactile
noise (o = 100) can lead to a difference of approximately 3.5,
accounting for 20% of the outcomes. The results in both apples
and tomatoes validate the superior robustness of our framework
to visual images than tactile images

3) Attention Analysis: In addition, we conducted attention
analysis on images with varying levels of noise using the same
method, as described in Section IV-B5. Our focus in this and
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Original (Visual) std = 100 (Visual) Original (Tactile) std = 100 (Tactile)

Fig. 13. This figure shows the comparison of spatial attention results
for the tomato in both visual and tactile images between zero noise and
o = 100.

LR L .

Banana (Visual) Banaa (Tactile) Corn (Visual) A Corn (ctile)

Fig. 14. This figure shows the visual images and Gelsight images for
corn and banana.

TABLE IlI
EXPERIMENTAL RESULTS OF SUCCESS RATE FOR ONLINE FRUIT GRASPING
(50 TRIALS FOR EACH FRUIT)

success rate model
CNN + LSTM | TimeSformer | ViViT
Fruit ResNet18
Corn 46% 68% T2%
Banana 18% 38% 38%

subsequent subsections is to evaluate spatial attention. When
visualizing the spatial attention of apple with different noise
levels (see Fig. 13), we observe that the TimeSformer model
primarily attended to localized contact regions in visual images,
even in the presence of high noise levels (o = 100). However,
under the same noise conditions, the model struggled to effec-
tively attend to the fruit surface in tactile images. These findings
further solidify our conclusion on the superior robustness of our
framework to visual images than tactile images.

B. Fruit Grasping Evaluation for Unseen Irregular
Objects

In this section, we evaluate our framework with unseen irreg-
ular objects (i.e., corn and banana) during online experiments,
the same as Section IV-B1. Unlike kiwi, corn and bananas are
new objects with irregular shapes and different contact surface
textures, as shown in Fig. 14. Note that, we use a new gripper
in this section for this experiment, which has almost exactly the
same mechanical properties as the previous one.

1) Experiment Evaluation: We deploy our model trained
from five different round fruits shown in Section IV-B1 on
corn and banana to estimate the safe grasping. Similar to the
experiments for other fruits, we sample the force threshold as
integers between 4 and 16. The robot then grasps each fruit 50
times. Table III shows the success rate.

Analyzing the results depicted in Table III, we observe that
our model achieves a high accuracy of 72% for the corn grasping,
where the visual and tactile images of the corn have different pat-
terns from those of the round fruits in our training set. This result
highlights the robustness of our model in dealing with varying
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Corn

Banana

Fig. 15.  This figure visualizes the spatial attention for tactile images of
a banana and a corm.

visual images. However, the accuracy for bananas is compar-
atively lower at 38%, indicating limited generalizability when
encountering highly varying tactile images. Fig. 14 illustrates
the distinctive contact surface textures of a banana compared
to the circular contact surface textures typically found in fruits
with around geometry. While the contact surface textures of corn
are also irregular, our conjecture is that it consists of multiple
smaller circles that bear resemblance to round objects, enabling
our model to perform well in corn-grasping tasks.

2) Attention Analysis: We visualize the spatial attention of
corn and bananas using the same method as Section IV-BS5.
Fig. 15 illustrates our model can attend to the contact surface in
tactile images of corn, but it is not doable in bananas.

Again, we attribute the reason to the fact that the contact
surface of corn is composed of small circles, which are similar to
the training objects. However, our model fails to attend to either
the banana or the corn in visual images due to their disparate
camera views.

C. Fine-Tuning Pretrained Model for a Novel Object
Shape

Since our model cannot generalize to the banana because of
the significant shape difference, we collect a banana dataset* and
train a new model to validate that our framework is applicable to
bananas. Then, we examine our framework for grasping bananas
after fine-tuning a pretrained model on the banana dataset.

1) Experiment Setup: We use the same method as Sec-
tion IV-B1 to collect a new dataset on banana grasping. We
perform the fruit grasping with various grasping force thresholds
on them 64 times. The sequence of force thresholds uses for
bananas ranges from 3.0 to 6.5 with 0.5 intervals.

2) Training: When acquiring a new dataset, it is common to
result in smaller dataset sizes compared to the original dataset.
For example, the size of our banana dataset is only one-tenth
of that of the original dataset. Owing to the scarcity of data,
training the model solely on the new dataset often fails to yield
satisfactory performance. In this section, we aim to leverage the
model trained on the original dataset described in Section IV-B3
as a pretrained model to solve this challenge.

During the training process, we split the dataset into a training
set and a validation set with a ratio of 7 : 1.

When training solely with the banana dataset, each epoch
requires approximately 23 s. When using the pretrained model,
the time per epoch is reduced to 8 s. This represents a significant
reduction in training time, leading to a substantial improvement
in training efficiency.

4[Online]. Available: https:/drive.google.com/file/

TABLE IV
EXPERIMENTAL RESULTS OF SUCCESS RATE FOR ONLINE BANANA
GRASPING WITH DIFFERENT MODELS (50 TRIALS FOR EACH MODEL)

success rate model
CNN + LSTM | TimeSformer | ViViT
Fruit ResNet18
Banana (w/o training) 18% 38% 38%
Banana (w/o pretrained) 48% 76% 76%
Banana (with pretrained) 52% 80% 84%

In terms of training results, employing the pretrained model
results in a training accuracy of 75%, surpassing the accu-
racy achieves without the pretrained model by 10%. Moreover,
training without the pretrained model exhibits large oscilla-
tions in both validation loss and accuracy due to the limited
size and single type of the banana dataset. In this case, em-
ploying our pretrained model, which is trained on a larger
dataset, mitigates these oscillations and enhances the model’s
performance.

3) Experiment Evaluation: We deploy our model trained
from the banana dataset to a real banana grasping experiment
to estimate the online grasping results. Similar to the setting in
the Section IV-B4, we sample the force thresholds as integers
between 3 and 12. For each sample, we adopt the same fused
physical embedding obtained from performing two predefined
explorative actions. In Table IV, we present the results obtained
from three different scenarios: the original model, which is not
trained on the banana dataset; the model trained solely on the
banana dataset; and the model trained on the banana dataset
using the pretrained model.

After training on the banana set, the model reveals a signifi-
cant performance improvement. This demonstrates the effective
learning capabilities of our model, even when dealing with
fruits of complex and irregular shapes, leading to enhanced
grasping performance. Also, the performance gap becomes more
pronounced when handling intricate, irregular objects such as the
banana. With the use of the pretrained model, our framework
achieves a high success rate of up to 84%, while the baseline
model reaches only 52%.

Furthermore, the advantages of employing the pretrained
model successfully extend to the online grasping experiment.
When using the pretrained model, our framework achieves a
higher grasping success rate of 84%, compared to 76% without
employing the pretrained model. It highlights the versatility of
our model, as it can not only be used in safe grasping for round
fruits but also serve as a pretrained model for training on new
datasets, even when the new fruit exhibits a completely different
and irregular shape.

4) Attention Analysis: Same as Section IV-B5, we examine
the performance of spatial attention after training with the
banana set. As shown in Fig. 16, the TimeSformer model can
mostly attend to the local contact region of visual images and
tactile images for both banana and apple (in the original dataset)
after training with the banana set, although they have very
different shapes and contact surface textures. Therefore, the
transformer models can incorporate more contact information
for the grasping task, even with fruits with irregular shapes.
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Banana (Visual) Banana (Tactile) Apple (Visual) Apple (Tactile)

Fig. 16.  This figure visualizes the spatial attention of banana and apple
after training with the pretrained model.

VI. CONCLUSIONS AND DISCUSSIONS

Our experiments demonstrate that the transformer models can
enable robotic grasping tasks in both the object classification and
robot control domain. The results indicate that they outperform
traditional models, such as CNN + LSTM, for classification
tasks such as slip detection and grasping outcome prediction.
In addition, our transformer-based grasping framework is able
to select the grasping strength to safely grasp fruits with varying
hardness and surface texture. We also visualize the attention
flows of the transformer models, which can potentially explain
their effectiveness and efficacy. With the attention analysis,
we find that our model has greater robustness with various
data qualities in visual images than that in tactile images.
Furthermore, our model can effectively learn from fruits with
complex and irregular shapes and serve as a pretrained model
for training on new datasets. However, it is worth noting that the
transformer models are still model-free methods relying on the
learned attention from rich data. Performance could be expected
to be improved by incorporating model-based methods, such
as physical contact models, as future work. Also, improving
grasping task robustness and generalization via adversarially
regularized policy learning [41] would be another direction
to explore. On the other hand, considering another common
scenario of grasping objects in a cluttered scene, we can integrate
our framework with a high-level task planner to decide the
collision-free grasping.
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