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ARTICLE INFO ABSTRACT
Editor: Jurgen Mahlknecht During the SARS-CoV-2 pandemic, genome-based wastewater surveillance sequencing has been a powerful tool
for public health to monitor circulating and emerging viral variants. As a medium, wastewater is very complex
Keywords: because of its mixed matrix nature, which makes the deconvolution of wastewater samples more difficult. Here
SARS-CoV-2 we introduce a gold standard dataset constructed from synthetic viral control mixtures of known composition,
Wasrewater_ spiked into a wastewater RNA matrix and sequenced on the Oxford Nanopore Technologies platform. We
Deconvolution . . . e
Benchmark compare the performance of eight of the most commonly used deconvolution tools in identifying SARS-CoV-2
Control dataset variants present in these mixtures. The software evaluated was primarily chosen for its relevance to the CDC
Deconvoluting tools wastewater surveillance reporting protocol, which until recently employed a pipeline that incorporates results
Relative abundance from four deconvolution methods: Freyja, kallisto, Kraken 2/Bracken, and LCS. We also tested Lollipop, a

Abbreviations: SARS, Severe Acute Respiratory Syndrome; COVID-19, Coronavirus Disease 2019; WBE, wastewater-based epidemiology; WB, water background;
NWRB, SARS-CoV-2 negative wastewater RNA extract background; PWRB, SARS-CoV-2 positive wastewater RNA extract background; NWSS, National Wastewater
Surveillance System; CFSAN, Center for Food Safety and Applied Nutrition; C-WAP, CFSAN Wastewater Analysis Pipeline; ONT, Oxford Nanopore Technologies;
NFW, nuclease-free water; RNA, ribonucleic acid; SNV, single nucleotide variant; NCBI, National Center for Biotechnology Information; PCR, polymerase chain
reaction; ddPCR, droplet digital PCR; Pangolin, Phylogenetic Assignment of Named Global Outbreak Lineages; VOC, variant of concern; DCIPHER, Data Collation and
Integration for Public Health Event Responses; S3C, Swiss SARS-CoV-2 Sequencing Consortium; SIB, Swiss Institute of Bioinformatics; ANOVA, Analysis of variance;
HSD, Honestly Significant Difference; Tukey’s HSD, Tukey’s post hoc Honestly Significant Difference Test.
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deconvolution method used by the Swiss SARS-CoV-2 Sequencing Consortium, and three additional methods not
used in the C-WAP pipeline: lineagespot, Alcov, and VaQuERo. We found that the commonly used software
Freyja outperformed the other CDC pipeline tools in correct identification of lineages present in the control
mixtures, and that the VaQuERo method was similarly accurate, with minor differences in the ability of the two
methods to avoid false negatives and suppress false positives. Our results also provide insight into the effect of
the tiling primer scheme and wastewater RNA extract matrix on viral sequencing and data deconvolution

outcomes.

1. Introduction

SARS-CoV-2 emerged in China in December of 2019 and led to the
COVID-19 pandemic (Li et al., 2021). From a public health perspective,
as SARS-CoV-2 has continued to mutate, tracking circulating and
emerging variants of SARS-CoV-2 has been an essential part of the
pandemic response (Aleem et al., 2024). Sequencing-based wastewater
surveillance has become a sentinel for monitoring and identifying these
new variants and tracking the shifts in variants across populations
(Karthikeyan et al., 2022). During outbreaks, COVID-19 clinical samples
have been plentiful and provided an adequate basis for identifying the
emergence and spread of new variants. However, as governments have
changed or ended their commitments to COVID-19 surveillance, PCR
testing has been replaced by at-home testing and the few clinical sam-
ples available only offer a sampling of individuals who either choose to
be tested or are hospitalized.

Wastewater-based epidemiology (WBE) is not a new concept; it has
been used since the early 20th century for monitoring other outbreak-
causing pathogens (Life, 2021; Ivanova et al., 2019). When early re-
ports in 2020 showed that SARS-CoV-2 was detectable in wastewater
and was a leading indicator in advance of spikes in confirmed cases
(Peccia et al., 2020), this sparked widespread interest in WBE as a tool
for monitoring COVID-19 outbreaks. Wastewater surveillance was
implemented on a large scale worldwide, in locations ranging in size
from large metropolitan sewersheds (Gregory et al., 2021; Rego et al.,
2021) to individual college campus dormitories (Gibas et al., 2021; Solo-
Gabriele et al.,, 2023). The relatively low implementation cost of
genome-based wastewater surveillance makes it ideal for areas that lack
resources for clinical sample-based sequencing surveillance (Amman
etal., 2022) and a useful addition to any areas where clinical sequencing
is limited. In response to the COVID-19 pandemic, the CDC launched the
National Wastewater Surveillance System (NWSS) in September 2020
(CDC, 2023) and the U.S. Food & Drug Administration (Center for Food
Safety, 2023) set up a sequencing project with the collaboration of na-
tional and university labs to track and monitor the incidence of SARS-
CoV-2. The Center for Food Safety and Applied Nutrition (CFSAN) of
the FDA (2013) made their in-house wastewater analysis pipeline, C-
WAP, available to collaborating labs that submit wastewater sequencing
to the NWSS (C-WAP, n.d.-a). As clinical testing has decreased since
2022, this approach gives epidemiologists and public health officials a
means to track the proportion of variants circulating in the community,
and can potentially identify new and novel variants as they emerge
(Smyth et al., 2021). Recently, the C-WAP pipeline has been archived
and is not under active development or maintenance; its successor
Aquascope can be used instead and relies primarily on Freyja for
deconvolution (C-WAP, n.d.-a).

The most widely used approach for sequencing SARS-CoV-2 viral
RNA was developed by the ARTIC Network (Quick, 2020). While the
ARTIC protocol was initially developed for clinical samples, it is the
foundation for sequencing SARS-CoV-2 from wastewater. ARTIC uses
two overlapping pools of primer pairs (Karthikeyan et al., 2022) to tile
the whole genome, producing 300-500 bp amplicons which are then
pooled and sequenced. This approach is applicable to both intact and
fragmented viral RNA, as amplicons will be created whenever the tar-
geted area of sequence is included in an intact segment of RNA, without
requiring the presence of the entire genome to be amplified successfully.

The full process of wastewater sequencing includes sample concentra-
tion, RNA extraction, and target amplification out of the total extracted
RNA from each sample (Ferdous et al., 2021). Along with the ARTIC
Network’s primers, several other amplicon primer sets exist to sequence
SARS-CoV-2 and generate full coverage consensus sequences
(Ramachandran, 2022; VarSkip, n.d.; Freed et al., 2020; Child, 2022). A
second approach employs target enrichment, amplifying only the spike
protein regions where many strain-defining mutations occur (Shafer
et al., 2022). The subsequent concentration and extraction steps are the
same regardless of the amplification approach.

Assembly of amplified viral genomic RNA is achieved by realigning
amplicons to a reference genome. The bioinformatic analysis of SARS-
CoV-2 sequencing from wastewater is significantly more complicated
than it is for clinical samples. With a clinical sample, it is reasonable to
assume that an individual is going to be infected with only one variant.
The bioinformatics approach to a clinical sample is to align all the
amplicons to the reference and then identify the variant calls using
standard approaches like minimap and BCFtools (Li, 2018; Danecek
et al., 2021).

Wastewater samples are composite collections from the population
served by a single building, sewershed, or wastewater treatment facility.
Therefore the expectation is that the sample itself is a representation of
the variants circulating in that community, and the nature and
complexity of the mixture may vary with the population size in the area
collected. When wastewater samples are analyzed, rather than simply
aligning the sequences collected to a reference, they must be deconvo-
luted and assigned to specific variants. There are several bioinformatic
pipelines available for the analysis of wastewater sequencing data.

As with other environmental samples, wastewater sequencing comes
with a variety of challenges. For example, wastewater sample processing
can result in biases in downstream quantitation or sequencing processes
due to sample quality and sample chemistry (Freyja, n.d.-b). The choice
of extraction methods may result in fragmentation of the input RNA
(Freyja, n.d.-b), leading to shorter sequence reads of lower quality, and
the chemical makeup of extracted samples may include small molecules
that inhibit the amplification steps in detection (Gibas et al., 2021;
Katayama et al., 2002; Lin et al., 2021) and sequencing. The chemical
environment of wastewater leads to viral RNA degradation and frag-
mentation (Bivins et al., 2020). Low viral concentration requiring an
initial sample concentration step is the norm in wastewater samples, and
the concentration method during processing can also impact the
coverage and quality of sequence data (Karthikeyan et al., 2022).
Wastewater also contains both low-frequency and high-frequency vari-
ants simultaneously, which can make the detection and relative abun-
dance estimation of the lineages more difficult (Amman et al., 2022),
especially since low-abundance components may still be of interest as
new variants enter a monitored area. The current bioinformatics tools
can often identify the dominant lineage but fail to detect low-frequency
or new variants correctly. For these reasons, deconvolution of SARS-
CoV-2 variants from mixed viral samples still presents a challenge
(Karthikeyan et al., 2022). In this study we tested eight deconvolution
methods: Freyja, kallisto, Kraken 2/Bracken, LCS, Lollipop, lineagespot,
Alcov, and VaQuERo.

One of the most commonly used tools for wastewater variant
sequencing is Freyja (Karthikeyan et al., 2022). It uses a depth weighted
least absolute deviation regression algorithm and reports the relative
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lineage abundances in mixed viral samples mapping to a common viral
reference from a sequencing dataset (Freyja, n.d.-a). Using bam files, it
first calculates the frequency of each mutation and its respective
sequencing depth. Then, to solve the regression problem, it uses a bar-
code matrix of lineage-defining mutations obtained from USHER and the
mutation frequency and depth information to weight SNV frequency
across each mutation site. These weights allow for prioritization of site-
specific information as a function of sequencing depth which is ulti-
mately used to generate a relative abundance of each of the known
lineages.

Originally employed for abundance quantification of metagenomic
transcripts, kallisto (Bray et al., 2016; Baaijens et al., 2021), has been
repurposed to work with SARS-CoV-2 reads. Kallisto constructs an index
from the RNA transcriptome with a de Bruijn graph that represents
transcript k-mers. Reads are then pseudoaligned with the k-mers, and
transcript abundance quantification is performed by likelihood function.
For wastewater deconvolution, instead of using RNA-Seq transcripts,
kallisto constructs the index of k-mer from multiple SARS-CoV-2
consensus sequences. The reads are pseudoaligned and relative abun-
dance is estimated.

LCS (Lineage deComposition for Sars-cov-2 pooled samples) is a
mixture model that determines SARS-CoV-2 variant composition in
pooled samples by using a previously defined selection of mutations that
characterize SARS-CoV-2 variants from publicly available sources and a
matrix of variant signatures (Valieris et al., 2022). The matrix corre-
sponds to the probability of finding an alternate sequence at any poly-
morphism from any variant. Along with the matrix, it uses the
sequencing data containing counts of reads mapped to respective poly-
morphic loci. Minimap generated alignment files are then used for the
estimation of the relative frequencies of the variants with maximum
likelihood.

Kraken 2 (Wood et al., 2019) is a metagenomic sequence classifica-
tion tool that uses alignments for taxonomic assignment. Similar to
kallisto, Kraken 2 breaks down the sequences into k-mers and uses each
of them to calculate a compact hash code to use as a query for finding the
Lowest Common Ancestor (LCA) with a space seed searching scheme.
This information is stored in a list and then used to form the classifica-
tion tree where nodes are weighted based on the number of the k-mers
linked with the taxon and root-to-leaf (RTL) path is weighted by addition
of all the weights. The query sequence is then classified as the leaf to the
maximum RTL path. For wastewater deconvolution, Kraken 2 uses each
FASTQ sequence as the query and k-mer match to LCA for lineage
identification and finally Bracken uses this lineage classification infor-
mation to perform the relative abundance of sequence.

Freyja is frequently used as a component of other wastewater anal-
ysis pipelines, such as the C-WAP/Aquascope pipeline. Kallisto, LCS and
Kraken 2 are components of the C-WAP pipeline as well and obvious
choices for inclusion in this analysis. In addition to benchmarking the
tools that are part of the C-WAP/Aquascope pipeline, we also evaluated
four other commonly used lineage abundance estimation methods, as
evidenced by the frequency of citations; LolliPop, Alcov, lineagespot and
VaQuERo. LolliPop (Dreifuss et al., 2022) is a part of V-Pipe (Posada-
Céspedes et al., 2021) and aids in processing viral sequencing data from
NGS for the Swiss SARS-CoV-2 Sequencing Consortium (S3C) as a part of
the SIB SARS-CoV-2 surveillance program. LolliPop solves the decon-
volution problem by using a least square fitting approach and uses
kernel-based smoothing to generate higher confidence relative abun-
dance. It is designed to be integrated with Cojac (Jahn et al., 2022) but
can also be used independently. Alcov (Abundance Learning of SARS-
CoV-2 Variants) treats lineage abundance estimation as an optimiza-
tion problem using mutation frequencies (Ellmen et al., 2021). Alcov
focuses on nonsynonymous mutations only, and for each lineage-
defining amino acid variant, the variant amino acid is back-translated
into a nucleotide SNV at the appropriate genomic index. Lineage
abundance estimation based on multiple variants is cast as an optimi-
zation problem using an ordinary least squares (OLS) approach,
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considering only mutations for which sufficient read depth is available.
Lineagespot is another widely used deconvolution tool that detects
variants and assigns lineages by the identification of mutational load by
quantifying lineage abundance metrics, computing average allele fre-
quency of all amino acid mutations and generates the mutational load as
proportions (Pechlivanis et al., 2022). Finally, we also considered
VaQuERo, a method developed at CeMM (Center for Molecular Medi-
cine), Vienna (Amman et al., 2022). VaQuERo uses a SIMPLEX regres-
sion to deduce overall variant frequencies from the mutation patterns of
individually selected variants. Both LolliPop and VaQuERo can use
smoothing approaches to increase confidence in variant abundance es-
timates when presented with time series data, but the other tools are
designed for the analysis of single samples.

As with any software tool designed to estimate an unknown,
benchmarking and performance evaluation are essential for determining
the most accurate software to identify mixtures of SARS-CoV-2 lineages
in wastewater. Kayikcioglu et al., 2023 evaluated performance of 5
different deconvolution tools using simulated sequencing datasets [50].
Given that wastewater is a complex matrix, simulated data sets can be
affected by assumptions about variant and error frequency that may not
represent the behavior of nucleic acids in the wastewater matrix. These
evaluations used the genomic simulator DeepSimulator, but the authors
acknowledge that the simulation workflow did not take into account
factors such as time, temperature, and the chemical composition of the
sample matrix. To avoid the assumptions necessary in read simulation
and account for the effect of these factors under standard wastewater
processing conditions, we have sequenced synthetic RNA control mix-
tures. Twist viral controls consisting of a mixture of subgenomic frag-
ments were used as a proxy for the genomic fragmentation known to be
observed in wastewater. These controls were spiked into both water and
complex wastewater extract backgrounds in known concentrations, and
then sequenced on the Oxford Nanopore platform to generate a gold
standard dataset for benchmarking and evaluation of bioinformatic
deconvolution tools. Our choice of the ONT platform, which is widely
advertised as a low-cost and portable sequencing platform was moti-
vated by our own experiences in generating data for state and local
public health laboratories. Cost considerations were a key driver of our
choice of the ONT platform for use in both clinical and wastewater
surveillance. In the course of our work, we found that this less-common
choice of sequencing platform rather than the widely used Illumina
platform allowed us to produce more sequence data with a smaller
budget than comparable labs, but that less was known about the per-
formance and reproducibility of the platform.

We compare predictions and identify strengths and weaknesses of
available deconvolution tools, with the goal of informing future method
development in wastewater analysis. While not comprehensive in its
scope, this study addresses the behavior of fragmented RNA molecules in
the post-extraction sequencing workflow and provides a model for
construction and analysis of standardized wastewater spike-ins that may
be needed to address other sampling contexts and stages in the work-
flow. Apart from validation and standardization of methods, this dataset
has the potential to be used for optimization and capacity building for
wastewater-based epidemiology. This is also beneficial as it can be used
to evaluate and compare the performance of available sequencing
platforms. The dataset is available through NCBI’s Sequence Read
Archive (SRA) under the BioProject accession PRINA1031245. The
protocol for preparation of control mixtures is available at dx.doi.or
¢/10.17504/protocols.io.261ged2jjv47/v1, and analysis scripts and
computational protocols are available at https://github.com/env
iro-lab/benchmark-deconvolute.

2. Materials and methods
To conduct this study, 15 different controls were used to prepare 38

different control mixtures that represented equal concentrations as well
as different relative abundance. These 38 mixtures were prepared in
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three sample matrices: controlled sample mixtures prepared in water in
isolation (water background; WB) and controlled sample mixtures
spiked into RNA extracts from wastewater samples (Negative waste-
water RNA background; NWRB and positive wastewater RNA back-
ground; PWRB). RNA extracts from both SARS-CoV-2 negative and
SARS-CoV-2 positive samples were used as the matrix for spike-ins for
two sets of mixtures. These three sets of mixtures were then sequenced
with two different primer sets on an ONT platform. Finally, the
sequencing data generated from these analyses were used to evaluate
performance of the 8 different deconvolution tools mentioned in
Table 1. Supplemental Fig. 1 graphically outlines the overall procedures
used in this manuscript.

2.1. Wastewater background samples

Wastewater samples used as background for the constructed control
mixtures were collected in April 2023 as a part of the SARS-CoV-2
campus monitoring program at the University of North Carolina Char-
lotte conducted by the Environmental Monitoring Lab (Gibas et al.,
2021).

RNA concentration and extraction were performed using the King-
Fisher Flex with Nanotrap Microbiome A Particles, Nanotrap Enhance-
ment Reagent, and the MagMAX Microbiome Ultra Nucleic Acid
Isolation Kit. Nuclease-free water (NFW) was used as a negative control
during extraction and Phosphate buffered Saline (PBS) was concentrated
and extracted along with the samples as a processing control. The
automated Nanotrap® Microbiome A protocol provided by Ceres
Nanosciences (2023) was used without modification.

Extracted RNA was tested using droplet digital PCR (ddPCR) to
quantitate SARS-CoV-2 viral RNA. Samples were tested using the CDC
N2 primer and probe set with the BioRad one-step RT ddPCR Advanced
kit (1-step RT-ddPCR advanced kit for probes, 2024). A positive control
and NFW negative control were included in the assay. If out of 10,000
droplets (minimum number of droplets required) at least 3 (minimum
positive droplets) were positive, the sample was then considered as
positive. All the results were analyzed with the QuantaSoft™ Software,
Regulatory Edition #1864011 (QuantaSoft™ software, 2024). Positive
samples were used as positive wastewater background mixtures and
negative samples were used for the negative wastewater background
mixtures. The average concentration of SARS-CoV-2 in the positive
wastewater background samples was 2.23 copies/pl.
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2.2. Assay-ready synthetic mixed control preparation

Assay-ready synthetic RNA controls representing various SARS-CoV-
2 major variants were sourced from Twist BioSciences (San Francisco,
CA). These controls were used in known concentrations and in a variety
of combinations of variants and mixture complexities to assay the ability
of software to deconvolute more complex mixtures. 15 different syn-
thetic controls were used - Control 15 (Alpha-103909), Control 17
(Gamma-104044), Control 23 (Delta-104533), Control 48 (Omicron -
BA.1 lineage-105,204), Control 51 (B.1.1.529 + BA.2-England-105346),
Control 2 (Wuhan-hu-1 from China-102,024), Control 6 (Wuhan-hu-1
from California-102918), Control 50 (B.1.1.529 + BA.2-Australia-
105,345), Control 64 (BA.5-England-106,196), Control 62 (B.2.12.1-
Denmark-105865), Control 66 (BA.4-Texas-106198), Control 67 (BA.4-
California-106199), Control 63 (B.2.12.1-USA-105857), Control 65
(BA.5-USA-106197) and Control 19 (Iota-104529). From these 15 con-
trols, 38 different mixtures were prepared, as outlined in Supplemental
Table 1. Each control was assigned with a letter/symbol for shorthand
designation: Control 15 - A, Control 17 - G, Control 23 - D, Control 48-
01, Control 51 —02, Control 2 - @, Control 6 —O, Control 50 - 02,
Control 64 —05, Control 62 - O3, Control 66 —04, Control 67 —04,
Control 63 - 03, Control 65 - 05, Control 19 - 1.

2.3. Spike-in mixed control preparation

Control mixtures were spiked into three backgrounds, a water
background (WB), and RNA extracts from SARS-CoV-2 positive (PWRB)
and SARS-CoV-2 negative wastewater samples (NWRB), to provide a
more realistic nucleic acid matrix for subsequent amplification and
sequencing steps. The same ratio of synthetic controls used in the control
mixtures in the water background was also used with the two RNA
backgrounds to allow for comparison between all three backgrounds.

2.4. Sequencing control mixtures

Whole genome sequencing based on tiled amplicon amplification
was performed with two different primer sets: 1) ARTIC v4.1 primer,
which generates 400 bp long amplicons, and 2) VarSkip short v2a, which
generates 550 bp long amplicons. For both of the reactions, the NEB-
Next® ARTIC SARS-CoV-2 Companion Kit (New England Biolabs) was
used. ARTIC v4.1 primers from IDT in a 1:100 dilution were used in
place of the ARTIC v3 primers that are contained in the NEBNext kit. For

Table 1
Comparison of reference reconstruction, algorithm, reference set source and input for tested deconvolution Tools.
Tool Reference Algorithm Reference set source(s) Input Source
Reconstruction
Alcov Mutation based Optimization outbreak.info + covvariants.org bam https://www.medrxiv.org/content/10.
1101/2021.06.03.21258306v1
Freyja Mutation based Depth weighted least absolute cov-lineage bam, https://www.nature.com/articles
regression reference /s41586-022-05049-6
fasta
kallisto Reference based Pseudoalignment of hashed k-mer ~ GISAID or UShER (UCSC) fastq, https://genomebiology.biomedcentral.
reference com/articles/10.1186/513059-022-02
fasta 805-9
LCS Mutation based Statistical regression Problem GISAID or WHO fastq https://academic.oup.com/bioinform
atics/article/38/7/1809/6519145?logi
n=true
lineagespot ~ Mutation based Calculation of allele frequency of outbreak.info vef https://www.nature.com/articles
unique and AA mutations /541598-022-06625-6
LolliPop Mutation based Least square problem cov-spectrum.org or covariants.org or bam https://www.medrxiv.org/content/10.
PHE Genomic’s Standardized Variant 1101/2022.11.02.22281825v1
Definitions
VaQuERo Mutation based SIMPLEX regression GISAID and ECDC bam or vef https://www.nature.com/articles
/s41587-022-01387-y
Kraken 2 Reference based K-mer match to LCA taxa GISAID fastq https://genomebiology.biomedcentral.

com/articles/10.1186/s13059-019-18
91-0
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ARTIC, the protocol was followed as outlined in the NEBNext ARTIC
instruction manual (E7660) and for VarSkip the protocol was followed
as outlined by Ramachandran et al. (Ramachandran, 2022). For bar-
coding, the Native Barcode Expansion Kit (Exp-NBD196) from ONT was
used. Samples were sequenced on the Oxford Nanopore PromethION
using R9 flow cells.

2.5. Sequence trimming and filtering

Samples were analyzed via an in-house covid-analysis pipeline
(covid-analysis, n.d.) which trims and filters reads using artic guppyplex
basecalling, followed by filtering with Kraken 2, and Porechop to
remove reads of human origin and technical sequence
(fieldbioinformatics, n.d.). Samples were also analyzed with the C-WAP
pipeline (C-WAP, n.d.-b) which was used during the COVID-19
pandemic for analysis of sequencing data from wastewater samples by
the CDC national wastewater network. For the ARTIC pipeline (artic
guppyplex), the sequence length cutoff range, which reflects the range of
expected amplicon sizes, was 305-505 bp on sequences generated using
the ARTIC 4.1 primers and for VarSkip, it was 475-675 bp. The BAM,
FASTQ, or VCF files generated by the covid-analysis pipeline were then
used as input for all subsequent analyses, depending on the input data
requirements of each deconvolution tool.

2.6. Deconvolution of mixtures

Freyja (Freyja, n.d.-b), kallisto (Bray et al., 2016), LCS (Valieris et al.,
2022) and Kraken 2/Bracken (Wood et al., 2019) were selected due to
their use in the C-WAP pipeline and LolliPop (Dreifuss et al., 2022) was
selected for its use in V-pipe. In addition to these, lineagespot
(Pechlivanis et al., 2022), Alcov (Ellmen et al., 2021), and VaQuERo
(Amman et al., 2022) were selected to look at a sampling of approaches
to deconvolution that had not been selected for use in C-WAP. The
project github repository linked in Supplemental Materials 1 provides
analysis scripts used in the project along with a complete description of
parameter and option choices used with each tool.

2.7. Standardization of outputs

Each tool compared in this analysis had its own output format. To
make our outputs comparable, they have been converted to the same
output format used by Freyja. Pangolin lineages provided by each tool
were summarized in the manner derived from the way Freyja summa-
rizes lineages, but with a few categories adjusted to best illustrate the
proportions of relevant lineages and sublineages; most notably, BA.1,
BA.2, BA.4, and BA.5 and their sublineages were grouped separately
rather than remaining within a single, broad Omicron category.

2.8. Statistical analysis

Various statistical tests were performed to discern the reliability of
our claims, always with a threshold of p > 0.01 for significance. We
analyzed the variations in outcomes based on the deconvolution tool
used, the expected abundance of lineages contained within each sample,
the background matrix of a sample, and the primer scheme used during
sequencing. Each comparison of this sort was conducted via analysis of
variance (ANOVA), or t-test when comparing just two categories.
ANOVAs with significant values were followed up with Tukey’s post hoc
Honestly Significant Difference (HSD) test to determine which individ-
ual groups varied significantly from one another. Means, standard de-
viations, and relevant p-values are presented and discussed near each
statistical analysis.

2.9. NCDHHS sample collection

In Section 3.7 of Results and discussion, we discuss the continuing
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emergence of variants as a challenge for all types of deconvolution
methods based on fixed strain definitions. We base this observation on
statewide wastewater sequencing data that we produced for the NC
Wastewater Monitoring Network between June 2022 and June 2023.
Wastewater samples were collected twice per week from 20 municipal
wastewater treatment plants in North Carolina: Beaufort, Msd of
Buncombe County, Sugar Creek in Charlotte, Mallard Creek in Charlotte,
McDowell Creek in Charlotte, and Charlotte 4 (a subwatershed location
on the Greenway), Fayetteville Rockfish, Greensboro North Buffalo,
Greenville, Jacksonville, Laurinburg, Marion, Raleigh (Neuse River
Resource Recovery Facility), Owasa, Roanoke Rapids, South Durham,
Tuckaseigee, City of Wilson, Wilmington North Side City, Wilmington
North Side Cunty and Winston Salem by the WWTP’s staff. These were
then shipped to UNC-Chapel Hill Noble laboratory. These wastewater
samples were concentrated using HA filtration as described in Katayama
et al. (2002) (Katayama et al., 2002). The samples were then extracted
on the KingFisher™ Flex automated magnetic particle analyzer (Thermo
Fisher Scientific, Waltham, MA) using the easyMag® NucliSENSE® re-
agents (bioMerieux, Durham, NC) in the Noble lab. After performing
quantification by RT-ddPCR, UNC Chapel Hill shipped an additional
concentration filter to UNC Charlotte on dry ice for sequencing using the
methods described above.

3. Results and discussion

Deconvolution of SARS-CoV-2 lineage abundance from wastewater
extract sequencing data can be accomplished using a variety of algo-
rithms (Table 1). The deconvolution methods assessed in this paper can
be grouped depending upon several methodological choices including
whether classification is based on recruitment of reads to a reference
genome or on a match of detected SNVs to a pattern of defining muta-
tions, the source of the reference genome or reference lineage-defining
mutation information used for classification, and the algorithmic
approach used. There are also operational differences in each compu-
tational workflow, especially as to whether the input required is the raw
FASTQ file, a pre-aligned BAM or SAM file, or a VCF file extracted from a
read alignment (Table 1). Starting with a fastq vs a bam does not impact
the bioinformatics analysis, other than flexibility in downstream anal-
ysis and computational efficiency. However, starting analysis from a vef
file means that there is no access to variant frequency information or
total number of reads covering the site, and only uses the summarized
call of that variant. Definition of variants by each method is with respect
to the original Wuhan strain of SARS-CoV-2, except for kallisto, which
uses recruitment of reads to a collection of reference strain genomes.
Bioinformatics issues specific to the read recruitment workflow are
discussed separately in Section 3.7.

3.1. Sequencing outcomes across background type and primer sets

To assess the impact of the wastewater extract matrix itself on
sequencing outcomes, we compared sequencing results generated for
control mixtures spiked into water background (WB), SARS-CoV-2
negative wastewater RNA extract background (NWRB) and SARS-CoV-
2 positive wastewater RNA extract background (PWRB).

We examine the impact of the tiling primer scheme using two of
these: the ARTIC v4.1 and VarSkip short v2a primer sets, both of which
continue to be widely used. The tiling primer scheme determines the
expected amplicon size, as well as which sections of the genome are
amplified during the sequencing process, impacting the diversity and
coverage of sequences obtained (Lin et al., 2021). To evaluate the po-
tential effects of primer choice on sequencing outcomes, we replicated
our experiments using two different tiling primer sets. To assess
sequencing performance of the different primer schemes, we compared
the mean coverage depth and mean breadth of coverage generated from
each sample when aggregating across both the whole genome and for
the S gene alone.
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3.1.1. Mean depth of coverage, whole genome

For samples sequenced with ARTIC primers, the mean coverage
depth values across the whole genome for the three backgrounds
differed significantly (WB: mean = 9133.47, std. dev. = 1518.10,
NWRB: mean = 5036.28, std. dev. = 595.27, and PWRB: mean =
9579.87, std. dev. = 1914.78), as determined by one-way ANOVA (F =
113.03, p = 1.69e-27). This is visualized in Supplemental Fig. 2a.
Similarly, with VarSkip primers, mean coverage across the whole
genome also differed significantly (WB: mean = 11,814.91, std. dev. =
1329.63, NWRB: mean = 9485.823, std. dev. = 1355.15, and PWRB:
mean = 13,330.34, std. dev. = 995.65), as determined by one-way
ANOVA (F = 93.03, p = 1.87e-24).

Supplemental Fig. 2b shows the same analysis but with mean
coverage depth compared only over the S gene, in which many lineage
defining mutations are located. As with the whole genome, the mean
coverage over the S gene for the ARTIC primers was significantly
different across WB (mean = 11,085.81, std. dev. = 1673.67), NWRB
(mean = 5985.21, std. dev. = 539.62), and PWRB (mean = 11,752.88,
std. dev. = 1846.24), as determined by one-way ANOVA (F = 174.56, p
= 5.32e-35). The mean coverage over just the S gene for VarSkip is
similarly significant across WB (mean = 9994.74, std. dev. = 1444.92),
NWRB (mean = 8144.81, std. dev. = 1756.88), and PWRB (mean =
12,964.56, std. dev. = 1774.93), as determined by one-way ANOVA (F
= 80.96, p = 2.07e-22). In both the whole genome and the S gene,
Tukey’s HSD test for the ARTIC primers showed significant differences
between NWRB and WB and between NWRB and PWRB (p < 0.01 for
each), but the mean coverage values for WB samples did not vary
significantly from PWRB (p = 0.38 for whole genome (Supplemental
Fig. 2a), p = 0.12 for S gene (Supplemental Fig. 2b). For the VarSkip
primers, Tukey’s HSD showed that all three backgrounds differed with
the others (p < 0.01 for all). The VarSkip WB and PWRB mixtures had
significantly different mean coverage depths from each other differing
from sequences produced from the ARTIC primer scheme.

3.1.2. Mean depth of coverage, primer scheme comparison

To understand how the mean coverage depth differs from one primer
scheme to another, a t-test was conducted which showed significant
differences in mean coverage depth, t(226) = —5.765, p = 2.656e-8,
ARTIC (mean = 9607.96, std. dev. = 2970.47), and VarSkip (mean =
11,543.69, std. dev. = 2006.75). The above values are those calculated
over the whole genome, but the results when looking only at the S gene
corroborate these, t(226) = —7.262, p = 6.102e-12, ARTIC (mean =
7916.54, std. dev. = 2507.84), and VarSkip (mean = 10,368.04, std.
dev. = 2588.83).

3.1.3. Mean breadth of coverage

To fully explore the coverage level of all our samples, we also
analyzed variance in breadth of coverage by calculating the fraction of
the whole genome (Supplemental Fig. 2¢) and the S gene alone (Sup-
plemental Fig. 2d) covered at 100x for both the ARTIC and VarSkip
datasets. For the whole genome amplified by ARTIC, the 100x ratio was
statistically different across WB (mean = 0.942, std. dev. = 0.014),
NWRB (mean = 0.925, std. dev. = 0.021), and PWRB (mean = 0.938,
std. dev. = 0.018), as determined by one-way ANOVA (F = 9.872,p =
1.057e-4). VarSkip amplified samples show no background as having
significantly different mean breadth of coverage over both the whole
genome regardless of background across WB (mean = 0.922, std. dev. =
0.016), NWRB (mean = 0.906, std. dev. = 0.049), and PWRB (mean =
0.924, std. dev. = 0.024), as determined by one-way ANOVA (F = 3.72,
p = 0.027). For the ARTIC dataset, Tukey’s HSD, WB and PWRB lack
statistically significant differences (p = 0.48), but NWRB differs signif-
icantly from the other two backgrounds (p < 0.01) for both. While these
are statistically significant, they are not as significant as we observed for
mean coverage depth.

The variance in breadth of coverage across the S gene for the ARTIC
primers agrees with that of the whole genome (ANOVA: F = 35.47,p =
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6.86e-13; WB (mean = 0.942, std. dev. = 0.015), NWRB (mean = 0.908,
std. dev. = 0.033), and PWRB (mean = 0.948, std. dev. = 0.018)) with
similar Tukey’s HSD results (p < 0.01 for NWRB vs WB and NWRB vs
PWRB; p = 0.52 for WB vs PWRB). For the VarSkip primer scheme across
the S gene alone we do not observe a statistical significance (ANOVA: F
= 2.96, p = 0.055; WB (mean = 0.874, std. dev. = 0.062), NWRB (mean
= 0.835, std. dev. = 0.116), and PWRB (mean = 0.875, std. dev. =
0.070)). These values are not significant enough of a difference for
Tukey’s HSD in VarSkip. This suggests that the wastewater background
itself might have a slight influence on breadth of coverage, but it is not
significant enough to be seen in both the negative and positive waste-
water backgrounds.

3.1.4. Mean breadth of coverage, primer scheme comparison

To compare the breadth of coverage between the ARTIC and VarSkip
primer schemes, we conducted a t-test incorporating all three back-
grounds, t(250) = 5.13, p = 5.81, ARTIC (mean = 0.935, std. dev. =
0.019), and VarSkip (mean = 0.917, std. dev. = 0.034) and found that
the breadth of coverage is not statistically significant between the
primer schemes. Given these results and the preponderance of the ARTIC
primer scheme in the literature, we focused our analysis of the decon-
volution tools on the ARTIC v4.1 derived dataset.

3.2. There are significant differences in variant identification between
deconvolution tools

To assess the performance of the chosen deconvolution methods, we
first compared the ability of each of the methods to detect the strains
included in the original sample and in the expected proportions. Median
pairwise L2 abundance norms, calculated using the approach described
in Ye et al. (Ye et al., 2019) provides a summary of the accuracy of
abundance estimation across methods, offering a comparison between
expected vs estimated abundance and also among the tools themselves
(Fig. 1). For most comparisons, the tools were not statistically signifi-
cantly different as determine by one-way ANOVA (threshold: p < 0.01)
and Tukey’s post hoc HSD Test. However, Kraken 2 (C-WAP) was sta-
tistically significantly different from all other predictions. Kallisto,
similarly, was different for all predictions except lineagespot. Line-
agespot differed significantly from all other predictions except kallisto
and LCS. In Supplemental Table 1, we show the expected and predicted
composition for each sample mixture. All of the deconvolution methods
tested in this study could identify the major lineages that were present in
the control mixtures, except for lineagespot and C-WAP’s implementa-
tion of Kraken 2 (Supplemental Fig. 3). Similar results are found for the
VarSkip dataset as show in Supplemental Fig. 4.

While most of the methods identify the variant in the mixed control
dataset at the lineage level, there are misidentifications of many variants
at the sub-lineage level. Most of these tools use a mutation-based
reference set to define lineages and sublineages. As SARS-CoV-2 is a
pathogen with a high mutation rate, the presence or absence of a single
significant lineage-defining mutation can cause misidentification of sub-
lineages. For example, BA.4 and BA.5 share >50 similar mutations
(Tallei et al., 2023) and BA.1 and BA.2 share 29 similar mutations
(Kumar et al., 2022). At this degree of similarity, a single missing
lineage-defining SNP has the potential to result in a misidentification.
This is compounded by the fact that lineages are being defined and
classified based upon amplicons and may not be able to be easily
assigned to one variant.

Misidentification was also seen in older variants such as Iota, because
some of the tools did not incorporate mutations for variants in their
lineage dictionary if they were no longer considered as variants of
concern or interest, such as Iota. Similarly, for lineagespot, the database
is truncated following delta and it does not have a reference for omicron
lineages; as a result, lineagespot completely misses calling any of the
Omicron lineages assigning those as “other” as seen in Supplemental
Fig. 3 and in the large L2 values in Fig. 1. Most of the deconvolution tools
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Fig. 1. Median pairwise L2 abundance norms between deconvolution tools. Each value shows the L2 distance between the clusters of estimated and expected
abundance profiles for each of the tools, and estimated abundance profiles between tools as well. Lower L2 distance represents closer similarity between the X and Y
axis clusters. This shows two different distance values for Kallisto. Kallisto (C-WAP) represents the estimated output generated from using the database that C-WAP
pipeline uses and Kallisto represents the estimated output generated from using the in-house database. This same figure but for the VarSkip datasets can be seen in

Supplemental Fig. 4.

also did not explicitly identify the original Wuhan-hu-1 strain when it
was a component of the mixture, other than Freyja. As most of these
tools define lineages based on mutations relative to the Wuhan-hu-1
strain, and there is no mutation present in Wuhan-hu-1 relative to it-
self, none of them label this lineage correctly when it is present in a
wastewater mixture, perhaps because its occurrence is a circumstance
that is now unlikely other than in archival samples or constructed
standard mixtures like those created for this study. VaQuERo, if it is
unable to detect any lineage or sublineage based on mutations, will
identify that sample as Wuhan-hu-1 by default.

3.3. The wastewater background had only subtle effects on abundance
estimation

The relative abundance of lineages changes very little regardless of
whether it is spiked into negative or positive wastewater. The variances
between samples from different backgrounds were insignificant (p >
0.01 for all) when testing the effect of sample matrix on the O/E ratio by
ANOVA for each of the deconvolution tools (Fig. 2). The insignificant
differences in the estimated abundance between backgrounds can be
attributed to the extra complexity of a metagenomic sample and the

effect of addition of lineages of SARS-CoV-2 from the positive waste-
water background to the synthetic control mixtures, however, this does
not negatively impact the performance of the tools. This also suggests
that the deconvolution tools are not highly sensitive to the small
coverage differences or sample background for relative abundance
estimation. Similar results are seen in the VarSkip dataset (Supplemental
Fig. 5).

For the small differences that were observed, ANOVAs were per-
formed for each lineage to see how those differences varied depending
on the water or wastewater background of a sample. These results are
shown in Table 2. The lineages that preceded Omicron tended to show
statistically significant differences between samples from wastewater
backgrounds and water backgrounds, suggesting that sample back-
ground affects the lineage assignment of older variants more signifi-
cantly than the newer ones. The addition of wastewater, which has a
complex composition of inhibitors and carry through compounds, can
inhibit the PCR and sequencing reactions and affect the sensitivity of
variant detection, although this does not explain the insignificant dif-
ferences in more recent lineages. More likely, the absence of defining
mutations in the reference lists of deconvolution tools, for older/non-
variant-of-interest lineages (as we have seen in Section 3.3) can cause
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Fig. 2. Relative abundance of strains detected by each deconvolution method (with ARTIC primers) as a percentage of the expected abundance (O/E ratio =
observed relative abundance/expected relative abundance) for spike-ins to nuclease free water (green), SARS-CoV-2 negative wastewater background (blue), and
SARS-Cov-2 positive wastewater background (red). Data points show the actual O/E ratios of observed to expected for each observed strain in a mixture, while the
box plots summarize the distribution of O/E ratio values across all strains and control mixtures. Box plots are delimited at the first and third quartiles. The related

results with VarSkip primers can be seen in Supplemental Fig. 5.

Table 2
ANOVA statistic between sample matrix backgrounds (water or wastewater) and
Tukey’s HSD results when grouped by lineage.

Lineage ANOVA Tukey’s HSD p-values
F-statistic p-value WB vs WB vs NWRB vs

NWRB PWRB PWRB

Wuhan- 0.047881818  0.953278547  — - -

hu-1

Alpha 14.2040499 1.79E-06 0 0 0.995

Gamma 9.738276664  0.000102748  0.003 0 0.701

Delta 2.996111335 0.053471462 - - -

Tota 23.53172099 1.23E-09 0.003 0 0.002

BA.1.X 0.025036687  0.975277084  — -

BA.2.X 1.281574051 0.279354374 - - -

BG.X 2.418754658  0.091769427 - - -

BA.4.X 2.470374107  0.086528375  — - -

BA.5.X 13.12012881 3.74E-06 0.044 0 0.02

misidentification and misestimation.

3.4. Lineage abundance variation between deconvolution methods

To understand how the lineage abundance estimated by each method
differed from the expected abundance, the estimated relative abundance
in each control dataset with different backgrounds were analyzed with
respect to the percent abundance of lineages (Fig. 3 and Supplemental
Fig. 6a, b, ¢). Fig. 3 shows the observed to expected (O/E) ratio for each
lineage with abundance estimates from Freyja aggregated across all
three backgrounds. This O/E ratio varies significantly between linages
with some underestimated (Wuhan-hu-1 and BA.1.X) and some signifi-
cantly overestimated (BA.4.X). This variation carries over when
considering each background separately. Supplemental Fig. 6 shows that
certain tools underestimated lineage abundance more often with certain
lineages. Several of the tools underestimated the abundance of the older
variants, especially LCS with Delta and Iota. Among the pre-Omicron
variants only, Alpha was slightly overestimated in some of the

mixtures by Freyja, LCS and LolliPop. Gamma was the only variant that
had similar relative abundance estimated by all the tools. Conversely,
the abundance of Omicron and its sublineages are frequently over-
estimated by most of the deconvolution tools, especially BA.4.X in all the
tools tested. Kraken 2 significantly overestimates most of the Omicron
lineages. Kallisto’s performance varies greatly depending on the refer-
ence database chosen; this is discussed further in Section 3.7.

When considering the effect of the wastewater background (Sup-
plemental Fig. 6b and c), the patterns observed in the water background
are for the most part mirrored in the NWRB and PWRB backgrounds
continuing to support our conclusion that the matrix does not signifi-
cantly affect the linage abundance outcome. This is somewhat surprising
given that the positive samples were collected from April 2023 when
most circulating lineages are Omicron, and we would expect an increase
in Omicron concentrations in the samples.

Part of our experimental design was to vary both the number of
linages in a mixture as well as the expected abundance such that some
mixtures contained up to 10 lineages and the concentrations as copies/
uL varied in a single sample (Supplemental Table 1). This intent of this
was to more closely mimic a collected wastewater sample that would be
a mix of different variants as well as different concentrations of those
variants. In Supplemental Fig. 7, the distribution of the O/E ratio by the
number of linages in a mixture is plotted. It clearly shows that samples
with a single lineage are, for the most part, called accurately. However,
as the complexity of a mixture increases, the O/E ratios at 4 lineages and
greater do vary and is likely dependent on the strain being called, as
discussed above. No statistically significant differences were detected as
determined by one-way ANOVA. Supplemental Fig. 8 explores this same
O/E ratio based upon the relative expected abundance of a control in the
mixture. Again, as expected, when the mixture is composed of a single
control (abundance of 1.0), there is a tight O/E ratio at 1. This is similar
for expect abundances of 0.625 and 0.3125. What is interesting is that as
the expected abundance decreases and a mixture becomes more complex
or a sample is added in a lower relative abundance, the O/E ratio begins
to vary and on average is calculating the observed abundance as lower
than expected. The one-way ANOVA statistics sit at our threshold of p =
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0.01 suggesting that differences are at most barely significant.

3.5. Freyja yielded the most accurate lineage compositions and fewest
false negatives

One of the main objectives of this study was to identify which
deconvolution tool most accurately deconvolutes samples of known
composition, in terms of overall accuracy and false positive or false
negative identifications. In short, a false positive occurs when the tool
incorrectly identifies a negative instance as positive and a false negative
occurs when the tool incorrectly identifies a positive instance as nega-
tive. Output of all methods tested was compared to the expected relative
abundance of strains in the prepared samples. Results of each method
were also compared to one another. We found that Freyja outperformed
other tools in both accuracy and fraction of false negatives.

The median pairwise L2 abundance norms calculated in Fig. 1, are
generated from the distances between expected control vector and
deconvolution tool datasets, and show that Freyja has the lowest dis-
tance (0.02) from the expected vector, indicating that Freyja has the
highest accuracy in identifying the relative abundance of lineages.
Supplemental Fig. 4 shows Freyja’s detection of lineage composition in
comparison to other deconvolution tools when the VarSkip primer set is
used. Similarly, the lowest distance is also Freyja to expected with 0.03.
When considering false positives, Freyja consistently identified the lin-
eages with minimal false positives and zero false negatives (Figs. 4 and
5). With highest accuracy, no false negatives and few false positives,
Freyja most accurately replicates the lineage identification and abun-
dance of expected control mixtures. Fig. 4 compares the detected and
undetected lineages and for all tools using the ARTIC primer dataset, and
the VarSkip results are in Supplemental Fig. 9. The expanded lineage
detection composition as outlined in Fig. 5 for the other tools tested can
be found in Supplemental Fig. 10.

When comparing the effectiveness of each tool’s lineage detection
(Fig. 4), VaQuERo most closely follows Freyja in performance. The rest
of the tools detected multiple false positives, lineages which were not
present in the control mixture dataset and sometimes also failed to
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detect the spiked-in lineages correctly. As false positive identification
presents a major challenge in wastewater lineage deconvolution, the
relatively low false positive calls in Freyja and VaQuERo carry signifi-
cant weight in tool choice. This can be seen in Fig. 5 and Supplemental
Fig. 10 where false positives appear below the X-axis. Within Freyja,
omicron lineages are classified into either sublineages BA.1, BA.2, BA.4
or BA.5 or a more generalized category of “Omicron”, but not a specific
sublineage. With SARS-CoV-2, the variations that separate a VOC from a
less concerning strain may consist of just one or two changes. False
positive detection of a VOC, especially during times of increasing inci-
dence, may result in unnecessary or confusing announcements from
public health authorities. Perceived false alarms may increase public
skepticism of public health data and measures. When we consider how
each algorithm works, Freyja uses each of the mutations from the
alignment files and their respective sequencing depth to perform the
depth weighted least absolute deviation regression. Similarly, VaQuERo
also uses all unique and non-unique marker mutations to solve the
deconvolution problem using SIMPLEX regression approach. Given the
similar approaches, it is not surprising that they both perform well.

3.6. Kallisto performance was strongly dependent on the reference
database

Kallisto is originally an RNA transcript quantification tool. As the
variant abundance estimation is found to be computationally similar to
RNA transcript abundance estimation (Baaijens et al., 2021), it has been
repurposed to be used as a wastewater deconvolution tool for relative
abundance estimation of the SARS-CoV-2 variants. Kallisto takes a set of
reference sequences that contains multiple genomic sequences per
lineage, with the recommendation to include multiple sequences per
lineages to reduce biases relating to within-lineage variation (Baaijens
et al., 2021). As a consequence, the composition of the reference set can
significantly affect the performance of a reference-based deconvolution
tool (ARmann et al., 2023). We developed two databases to test how the
performance of kallisto varies with respect to the database used.

The in-house database preparation is described in the configuration
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Fig. 3. O/E ratio distribution for each lineage with abundance estimates from Freyja aggregated across all three backgrounds. p-value: 1.75e-45 f-value: 40.94. The
O/E was significantly different across lineages, as determined by one-way ANOVA (F = 40.94, p = 1.75e-45 < 0.01). O/E ratios are broken down similarly in
Supplemental Fig. 6 for all nine deconvolution tools and all three backgrounds separately.
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Number of summarized lineages detected by each tool (normalized by number of expected lineages in each sample)
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Fig. 4. Distribution of the number of lineages each tool detected in each mixture categorized by true positives and false positives as well as lineages that went
undetected despite being present in the mixture (false negatives). All counts were normalized to the number of lineages that should have been present in any given
mixture. Only WB mixtures were included in this plot. This plot with VarSkip data can be seen in Supplemental Fig. 9.
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Fig. 5. Detected lineage composition by Freyja (WB mixtures only). Lineages in the positive Y direction are true positives that should have been present and were
correctly detected. Lineages in the negative direction are those that should not have been present but the deconvolution tools detected.

parameters (Supplemental Materials 1) and includes 406 sequences with
up to four sequences per lineage for 299 different lineages. On the other
hand, the C-WAP databases for both kallisto and Kraken 2 used 30 se-
quences with up to six sequences for each of the following 13 included
lineages: Wuhan-hu-1, Alpha, Beta, Gamma, Eta, Epsilon, Delta, Iota,
Kappa, BA.1, BA.1.1, BA.2, and BA.3 (Kayikcioglu et al., 2023). Those
databases were produced one time, receiving no further updates over
time. The in-house database used lineages that were more specific than
those in the C-WAP database, including many sublineages of the lineages
listed for C-WAP’s database. Fig. 1 shows that the accuracy of kallisto

10

varies between these reference databases. Kallisto run with the C-WAP
database has the median distance of 0.28 with respect to the expected
abundances, and kallisto with the in-house database has a distance of
0.35. This means that the accuracy of kallisto is improved when using
the C-WAP database. Similarly, more false positive lineages were iden-
tified with the in-house database (Fig. 4). We hypothesize that because
the in-house database has significantly more reference sequences per
lineage, the algorithm may have had difficulty with unambiguous read
assignment and aggregation into lineages. Therefore, the goal of
correctly interpreting within-strain variation may be at odds with the
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goal of unambiguous read mapping, and the reference database should
be chosen with care.

3.7. Interpretation of increasingly complex variant profiles is a future
challenge

The reference sequences necessary for deconvoluting wastewater
mixtures mostly rely on the availability of SARS-CoV-2 clinical
sequencing samples. As PCR-based lab testing has declined in favor of at-
home rapid testing, access to clinical specimens has decreased signifi-
cantly. As fewer clinical sequences are being surveyed, the availability of
reference sequences for current circulating variants will similarly
decrease. Theoretically, this absence of reference sequence will cause a
drift of current sequences away from the reference data, which will at
some point start to impact the performance of deconvolution tools in
identifying lineages. If this is indeed happening, we should see an in-
crease in the abundance of unidentified or unclassified lineages in
wastewater across time.

As part of our research program, we have been sequencing waste-
water samples across North Carolina using the ARTIC primer set and
Freyja for deconvolution. If we examine data from September 2022 to
July 2023 (Fig. 6), we can see that the trendline shows abundance of
“unclassified by Freyja” and “below abundance threshold” lineages
increasing over time. In diverse metagenomic datasets, an abundance
threshold is often applied to filter out very low abundance lineages and
simplify interpretation and visualizations. The fraction of circulating
SARS-CoV-2 lineages in NC-DHHS wastewater samples that fall below
such an abundance threshold is continuously increasing (Fig. 6). As
subvariants of major lineages proliferate, without a threshold the visu-
alization and analysis of wastewater sequence signal will lose its clarity,
making it more difficult to interpret current trends. Grouping of iden-
tified strains into major lineages can also clarify interpretation of
complicated mixtures, but it is also a challenge for strain-reference-
based deconvolution algorithms to correctly identify subvariants with
accuracy. We can see in Section 3.6 that the most accurate output-
generating tool Freyja is overcalling generic Omicron signatures in our
most complex standard mixtures, where multiple controls are present in
varying proportions starting from 625 to 2500 copies/pl. We hypothe-
size that as variants continue to diversify, under sampling of the most
recently emerged variants needs to be taken into account during data
analysis to improve algorithm performance. These trends also suggest
that methods of wastewater sequence analysis that do not focus on
deconvolution of variants to existing reference genomes and variant
patterns will be required going forward. The gradually increasing rate of
identification failures observed even with Freyja, the most accurate of
the deconvolution tools we studied, supports the concern that reference-
based identification of variants will be increasingly challenging as time

Lowess curve (frac=2/3) for unclassified and low-abundace lineages

Lineages unclassified by Freyja

0.02

Fraction

0.01

Sep 2022

Nov 2022 Jan 2023 Mar 2023 May 2023 Jul 2023
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goes by.
4. Conclusions and future work

This study addresses the ability of commonly used deconvolution
methods to distinguish the presence and abundance of SARS-CoV-2
variant spike ins when controlled mixtures are sequenced. We find
that Freyja, which has been widely adopted throughout the COVID-19
pandemic, produces variant abundance calls with the closest relation-
ship to the expected ratios when tested on controlled variant spike-in
mixtures. The error profile produced by Freyja is dominated by false
positive lineage identifications rather than false negatives, including the
identification of indeterminate omicron lineages that do not correspond
to any particular control, which are seen mainly in complex mixtures
containing multiple spiked in variants. We also examine the influence of
the wastewater background on deconvolution outcomes. We find that
the impact of the wastewater matrix on variant deconvolution is insig-
nificant, despite significant differences in sequence coverage resulting
from the wastewater matrix. The influence of different tiling amplicon
primer schemes on deconvolution outcomes is also negligible. The
impact of the concentration and extraction process on viral RNA
detection and quantitation has been extensively studied. The impact of
that process on wastewater variant sequencing could straightforwardly
be investigated by repeating this study beginning from encapsulated
viral controls spiked into raw wastewater, but that is a separate ques-
tion, less about bioinformatics method performance than about sample
processing and chemistry. We also found that without regularly updated
clinical reference data, the amount of sequence classified as unknown is
gradually increasing. The virus continues to diversify, and the practice
of classifying wastewater sequence into strain assignments may prove
untenable in the long run. Approaches that have the additional capa-
bility to focus on the changing abundance of SNVs at key sites and
identify emerging mutation clusters, like VaQueRo, are one potential
way forward. It would likely be interesting to repeat this study on the
commonly-used Illumina sequencing platform as well. However, given
that we observe minimal differences in variant identification due to
either tiling amplification scheme or exposure of RNA to the wastewater
extract background, and the ongoing improvements to basecalling error
rates on the Oxford Nanopore platform, the influence of the sequencing
platform on variant deconvolution is likely to be relatively subtle as
well.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2024.174515.
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