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larval development and taxa in
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Introduction: Many marine organisms have a biphasic life cycle that transitions
between a swimming larva with a more sedentary adult form. At the end of the
first phase, larvae must identify suitable sites to settle and undergo a dramatic
morphological change. Environmental factors, including photic and chemical
cues, appear to influence settlement, but the sensory receptors involved are
largely unknown. We targeted the protein receptor, opsin, which belongs to
large superfamily of transmembrane receptors that detects environmental
stimuli, hormones, and neurotransmitters. While opsins are well-known for
light-sensing, including vision, a growing number of studies have demonstrated
light-independent functions. We therefore examined opsin expression in
the Pteriomorphia, a large, diverse clade of marine bivalves, that includes
commercially important species, such as oysters, mussels, and scallops.

Methods: Genomic annotations combined with phylogenetic analysis show
great variation of opsin abundance among pteriomorphian bivalves, including
surprisingly high genomic abundance in many species that are eyeless as adults,
such as mussels. Therefore, we investigated the diversity of opsin expression
from the perspective of larval development. We collected opsin gene
expression in four families of Pteriomorphia, across three distinct larval stages,
i.e., trochophore, veliger, and pediveliger, and compared those to adult tissues.

Results: We found larvae express all opsin types in these bivalves, but opsin
expression patterns are largely species-specific across development. Few
opsins are expressed in the adult mantle, but many are highly expressed in adult
eyes. Intriguingly, opsin genes such as retinochrome, xenopsins, and Go-opsins
have higher levels of expression in the later larval stages when substrates for
settlement are being tested, such as the pediveliger.

Conclusion: Investigating opsin gene expression during larval development
provides crucial insights into their intricate interactions with the surroundings,
which may shed light on how opsin receptors of these organisms respond to
various environmental cues that play a pivotal role in their settlement process.

KEYWORDS

metamorphic competence, veliger, trochophore, GPCR, RNA-seq, Mytilidae,
Ostreidae, Pectinidae

1 Introduction

One of the outstanding questions in marine larval biology is how do larvae detect
environmental cues which initiate metamorphosis? Metamorphic competence describes the
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larval readiness and ability to mediate settlement on a selected surface
and complete a morphogenetic transformation into the adult form
(Hadfield et al., 2001; Bishop et al., 2006) and it can be divided into
two parts. Settlement is a reversable behavioral phase and appears to
be controlled by a dopaminergic receptor-mediated neural pathway,
while metamorphosis, an irreversible morphogenetic phase, is
controlled by an adrenergic receptor-mediated pathway for at least
some species (Bonar et al., 1990). Environmental stimuli that influence
or initiate these phases are likely hierarchical and include both
physical and biochemical cues (Say and Degnan, 2020). Physical cues
that drive larval behavior and may play a role in metamorphic
competence include light (Bayne, 1964; Rittschof et al., 1998), surface
texture, water flow, and temperature (reviewed in Bonar et al., 1990),
but the morphogenetic transformation into competent larvae typically
requires the identification of biochemical cues that will trigger
additional changes. Some likely candidates are chemicals released by
conspecific adults or are present on the substrate appear to promote
larval competence by indicating the quality of the habitat (Rodriguez
et al,, 1993; Rittschof et al., 1998). Surprisingly, the nature of the
environmental cues that trigger settlement and metamorphosis are
largely unknown for most marine invertebrates, and the likelihood of
species specificity adds another layer of complexity to this scenario
(Zeng et al,, 2022).

Marine bivalves, like many other mollusks, have free-swimming,
planktonic larvae that spend a variable amount of time in the water
column before settling onto the benthos. A classic example of this
biphasic lifecycle is in the Pteriomorphia, a diverse clade including
scallops, mussels, oysters, and pearl oysters. Despite significant
differences in the duration of the pelagic period (Marshall et al., 2010),
these species share very similar developmental stages with a conserved
morphology (Loosanoff et al., 1966). Within hours after gastrulation,
the trochophore is formed as a ciliated larva that lasts until the
secretion of the larval shell (Carter et al., 2012). The second
developmental stage is the veliger, marked by two valves embracing
the larval body and an enlarged ciliated velum used for swimming
(Waller, 1981). It is also during this larval stage that a pair of simple
eyespots is formed (Cragg, 2016). The last stage is the pediveliger,
remarkable for the presence of a long foot associated with crawling
behavior (Cragg, 2016) and is likely used as a sensory organ during
settlement (Croll et al, 1997). The pelagic phase ends when
pediveligers settle onto suitable surfaces where metamorphosis will
result in the benthic juvenile. As in the case for most benthic
organisms, the molecular basis of larval sensory receptors is largely
unknown in bivalves (Zeng et al., 2022), which raises the question of
how environmental cues are perceived.

Organisms detect environmental stimuli using an array of sensory
receptors, and the duplication and divergence of these receptors provide
evolutionary opportunities for expansion into new ecological niches. The
seven-transmembrane G-coupled protein receptor (GPCR) is the largest
superfamily of transmembrane receptors that allow organisms to detect
environmental stimuli, hormones, and neurotransmitters (Fredriksson
et al,, 2003). One of the most important sensory receptors is opsin, a
GPCR present across Metazoa. Opsins bind to a chromophore molecule,
typically 11-cis retinal, to form a photopigment capable of absorbing
photons and initiating phototransduction (Terakita, 2005). Opsins are
classified based on the type of photoreceptors they were discovered in
(e.g., rhabdomeric “r-opsins” and ciliary “c-opsins”), the G-protein they
couple with (e.g., Gy vs. G), and phylogenetic relationship (e.g., the
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“tetraopsin” clade which includes retinochrome, G,-opsins and neuropsin;
Shichida and Matsuyama, 2009; Porter et al.,, 2012), see also summary
table for opsin function in (McElroy et al., 2023). In addition to mediating
vision in animal eyes, opsins are known to be used for photoreception in
extraocular tissues (Rawlinson et al., 2019; Calligaro et al.,, 2021) and also
acting in light-independent functions, such as taste (Leung et al., 2020).
Recently, we discovered extensive variation in opsin content across
Mollusca, ranging from three to 63 genomic copies (McElroy et al., 2023).
Among our findings was that pteriomorphian bivalves exhibit lineage-
level expansions in several different types of opsins. While mantle eyes in
adult animals have evolved numerous times in Pteriomorphia (Audino
etal.,, 2020), opsin expansions are not restricted to eyed lineages (McElroy
et al,, 2023). From a gene expression perspective, previous RNA-seq
analysis of eyes in the bay scallop Argopecten irradians revealed multiple
duplications of the G -coupled r-opsins (Porath-Krause et al., 2016), the
primary visual opsin used by invertebrates, such as arthropods (Cronin
and Porter, 2014), cephalopods (Hubbard and St. George, 1958), and
scallops (Kojima et al., 1997). Initially, this finding raised the possibility
that opsin diversification is tied to the evolution of novel, specialized
photosensory structures in bivalves. Surprisingly, the extensive opsin
duplication—including Gprotein coupled r-opsins - in the mussels
Mpytilidae (McElroy et al., 2023), which do not have adult eyes, does not
support this relationship. In addition, the data suggests that neither the
presence nor the complexity of eyes is necessarily tied to an increase in
opsin copy number. Such apparent contradiction raises the question of
where and when such remarkable diversity of opsin copies is expressed.
Consequently, we hypothesize that bivalve opsins might be expressed in
different biological contexts, such as larval development and competency.

Identifying where the diverse repertoires of opsins are expressed
in pteriomorphian species such as mussels, oysters, and scallops is a
critical first step toward understanding the evolutionary pressures
driving opsin diversification. In this context, exploring opsin
expression across larval development might help elucidate how opsins
are used during the pelagic lifecycle and their roles across different
stages. Therefore, we expect adult and larval stages to express different
opsin repertoires. More precisely, we hypothesize that: (1) opsins
expressed in mantle eyes are unique to these organs; (2) opsin
repertoire varies across development but not so much across
phylogenetically close species; (3) the expression of some opsin types
might be stage-dependent; and (4) the highest number of opsin
expression occur in the pediveliger stage when larvae search for
environmental clues that can indicate suitable surfaces for settlement.

To address these questions, we investigated opsins in the context
of life stages to determine where and when these genes are expressed.
We examined pteriomorphian species with publicly available
annotated genomes from five eyeless species: the Portuguese oyster,
Crassostrea angulata; the Pacific oyster, Crassostrea gigas; the Akoya
pearl oyster, Pinctada fucata; the Korean mussel, Mytilus coruscus; and
blue mussel, Mytilus edulis. We also examined two species that possess
eyes as adults: the Chinese scallop, Chlamys farreri, and the king
scallop, Pecten maximus. Using these seven target species, we were
able to characterize changes in opsin expression across bivalve
development. For each species, we leveraged available RNA-seq data
for three major larval stages, i.e., trochophore, veliger, and pediveliger.
We also retrieved data from specific adult tissue types, such as the
adult mantle, a known photosensitive tissue (Kennedy, 1960), and
adult mantle eyes (when present). By generating a robust phylogeny
of pteriomorphian opsins we were able to ensure that variations in
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expression levels can be interpreted in the context of extensive lineage-
level duplications observed in bivalves (McElroy et al., 2023). Our
results reveal that opsin expression patterns across larval development
are largely species-specific, although closely related species share the
expression of some opsin types. Interestingly, larval and adult samples
reveal significant differences in opsin repertoire. More opsins are
expressed during the larval stages, with increasing opsin expression
during the veliger and pediveliger stages, relative to adult tissues. By
linking these data to a species’ life history, we provide the first
comparative steps to understanding the biological relevance of opsin
types and their evolution in marine bivalves.

2 Methods

2.1 Genomic and transcriptomic data
collection

To examine changes in opsin expression across Pteriomorphia,
we identified species pairs with both publicly available annotated
genomes and RNA-seq data collected at three developmental stages
(i.e., trochophore, veliger, pediveliger) and from adult tissues. All
RNA-seq data needed to be (1) based on Illumina paired-end
sequencing with (2) relatively high and similar sequence depth across
studies. Seven species from four families met our criteria: mussels
Mytilus edulis and M. coruscus (Mytilidae); oysters Crassostrea gigas
and Cr. angulata (Ostreidae); the pearl oyster Pinctada fucata
(Margaritidae); and scallops Chlamys farreri and Pecten maximus
(Pectinidae; Supplementary Table S1). For some species (e.g., Cr. gigas,
Pi. fucata, and Pe. maximus), a single study did not include both larval
and adult tissues, so a second study was obtained for the larval—adult
comparison. Only data from control treatments were used for our
analyses. Biological replicates were available for all tissue types across
focal species with the exception of M. edulis (larval stages), M. coruscus
(mantle), Pi. fucata (all tissue), and Ch. ferreri (larval stages;
Supplementary Table S1). All transcriptomic annotated data was
retrieved from the NCBI Sequence Read Archive (SRA;
Supplementary Table S1), except the Pi. fucata data, which was
downloaded from Takeuchi et al. (2012). We used the sratoolkit v3.0.0
(Heldenbrand et al., 2017) to download the RNA-seq datasets from
the NCBI SRA database and fastp v0.23.2 (Chen et al., 2018) was used
to ensure quality control by eliminating low-quality reads and adapters
from the downloaded FASTQ files.

2.2 Opsin sequence analysis and
classification

McElroy et al. (2023) demonstrated extensive lineage-specific
opsin expansions in Mollusca, with bivalves having highly variable
opsin content. To place opsins from our focal bivalve species into
proper phylogenetic context, we collected opsin sequences from 23
high-quality pteriomorphian genome assemblies
(Supplementary Table S2, species bolded used for expression analysis).
Building on the results of McElroy et al. (2023), we used the gene-
family assembly pipeline BITACORA v1.3 (Vizueta et al., 2020),
incorporating Gene Model Mapper (GeMoMa; Keilwagen et al., 2016,

2018), to de novo predict genes based on alignments of the same
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high-quality molluscan opsin protein sets. We ran the predicted genes
through the Phylogenetically Informed Annotation Pipeline (PIA;
Speiser et al., 2014; modified version downloaded)' to identify opsins
based on the Light Interacting Toolkit (LIT_1.1; r_opsin_20_rtrans.
fas). We also aligned the high-quality curated reference opsin protein
sequences (McElroy et al., 2023) from close relatives to additional
genome assemblies (e.g., Crassostrea gigas for Cr. angulata) using
miniprot v0.7 (Li, 2023) and then extracted transcripts and protein
sequences for each gene using gffread v0.12.7 (Pertea and Pertea,
2020). We inspected alignments in MEGA X (Kumar et al., 2018) to
combine results from these two approaches and aid in manually
completing gene models (here, a complete GPCR Class A 7tm_1
domain) along with tblastn (NCBI BLAST+ v2.13.0; Camacho et al,,
2009) hits in their respective genomes. All candidate opsins had a
retinal-binding lysine residue homologous to K296 in
bovine rhodopsin.

Recently, a closely related 7-transmembrane GPCR was identified
in mollusks, annelids, and nemerteans as being more closely related
to opsins than melatonin receptors and named “pseudopsins” (De
Vivo et al, 2023). For outgroup sequences, we used these
“pseudopsins,” along with melatonin receptors, and the opsin-like
GPCRs from the placozoan Trichoplax adhaerens referred to as
(XP_002113363.1, XP_002112437.1).

pseudospin and melatonin receptor sequences from additional

“placopsins” To collect
species, we similarly mapped protein sequences from close relatives to
the genome assemblies (e.g., Cr. gigas for Cr. angulata).

We then used maftt v7.481 (Kuraku et al., 2013) to align the opsin
and outgroup amino acid sequences using the EINSI strategy (—
maxiterate 1,000 —genafpair), then generated a phylogenetic tree using
maximum likelihood analysis with IQ-TREE2 v2.1.3 (Minh et al,,
2020) using the protein substitution model JTT +F+R9, and 1,000
ultrafast bootstrap for node support. For the purposes of visualization,
we pruned the resulting tree using the R package ape v5.7.1 (Paradis
et al., 2004) that only the opsin sequences from the seven species
analyzed here for gene expression are present in the topology.

2.3 Opsin nomenclature

The opsin literature has a long list of synonymies for opsin
types. Here, we use common names and the short-hand synonyms
that often indicate that opsin’s G-protein signaling pathway:
r-opsin = G-opsin, which includes the arthropod and cephalopod
visual opsins and the vertebrate melanopsin; xenopsin = G;-opsin,
an opsin type found in lophototrochozoans; G,-opsin;
neuropsin = Opn5; retinochrome = RTC, and peropsin.

To make orthologous gene comparisons among species and to
distinguish genes resulting from paralogous duplication,
we developed a nomenclature based on the phylogenetic topology
of pteriomorphian opsins. Our nomenclature only applies to this
study, as adding additional opsin sequences to a phylogenetic
analysis could alter the placement of gene duplications that
we identified. However, we think that future attempts at a

comprehensive opsin nomenclature should be grounded in

1 https://github.com/MartinGuehmann/PIA2
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phylogenetics. Briefly, the first three letters of a gene name are
determined by the first capital letter of the genus and the first two
letters in lowercase of the species name (e.g., “Med” for Mytilus
edulis). A period separates the abbreviated Latin binomial from
the alphanumeric code identifying the opsin type (homolog), such
as “xenopsin” (e.g., “opnGx”). The next part of the name is a single
letter capitalized indicating the opsin clade membership if the
opsin type is divided into multiple clades, for example, clades A
versus B in xenopsin (e.g., “opnGx.B”). If there is a paralogous
gene duplication, it is shown as an Arabic numeral with the clade
letter (e.g., “opnGx.B1”). A period separates the clade membership
with estimated time of when the paralogous duplication occurred.
“MY” specifies a duplication along the “Mytilidae” lineage (e.g.,
“opnGx.B1.MY”).

2.4 Quantifying gene expression

Typically, bivalve larvae are sampled by hundreds or thousands of
individuals per time point. Many of the studies used here had multiple
pooled samples at the same time point or had two collection times
within a single developmental stage, for example, 17 and 21 days post-
fertilization (dpf) across the pediveliger stage. In these situations,
we did a single mapping process with multiple samples and then
averaged these data to get a single transcripts-per-million (TPM)
value representing that developmental stage (“pediveliger”s
Supplementary Table S1; e.g., Crassostrea angulata). We applied the
same approach when there were multiple RNAseq data for adult
tissues (Supplementary Table S1; e.g., Mytilus edulis). Another caveat
with the data is that the length developmental stages can vary among
species (hours to days) or within a species when influenced by
environmental inputs like temperature (reviewed in Cragg, 2016).
Thus, there may be changes in gene expression during a prolonged
stage that were not captured when examining a single collection
time point.

We combined nucleotide sequences of curated opsins for each
species with their publicly available genome annotations, removing
any redundancies created by the opsin sequence addition. We then
used Salmon v1.9.0 (Patro et al., 2017) for pseudo-alignment-based
quantification of each SRA dataset (Supplementary Table S1) and
collected the transcripts-per-million (TPM) values for downstream
comparisons. To account for possible noise, we then categorized
opsins as expressed (present) in each sample if the TPM value was
above the 10th percentile of values from each study
(Supplementary Table S3).

Finally, we selected four well-established housekeeping genes to
compare with opsin expression: actin (ACTB), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), succinate dehydrogenase
(SDHA), and polyubiquitin-C (UBC; Silver et al., 2008; Huan et al.,
2016). All the housekeeping genes were extracted from the seven focal
species and tblastn (NCBI BLAST+ v2.13.0; Camacho et al., 2009) was
used to find the hits of these protein sequences in their respective
genomes. All four housekeeping genes were recovered except UBC in
Crassostrea angulate, GAPDH from Mytilus coruscus, and SDHA and
UBC in Pinctada fucata. Finally, the transcripts-per-million (TPM)
values for these housekeeping genes were extracted from the same
SRA datasets from which we determined opsin expression (Salmon

v1.9.0; Patro et al., 2017).
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3 Results

3.1 Pteriomorphian opsin phylogeny
reveals extensive protein diversity and gene
duplications

A ML tree was generated to place opsins from target
pteriomorphian species into the opsin types identified in McElroy
et al. (2023). Broadly, we recapitulated previous relationships of
molluscan opsin groups (Figure 1A; Supplementary Data 1) and
evidenced lineage-level duplications of many opsins in this group of
bivalves recently demonstrated in McElroy et al. (2023). This
phylogeny provided a framework to identify putative paralogs and to
estimate in which taxonomic lineages gene duplications or losses may
have occurred. Ultimately, this phylogenetic framework allowed for
more accurate comparations of gene expression among species.

Across Mollusca, genomes contain opsins from as many as seven
distinct clades, but lack c-opsins and cnidopsins (McElroy et al., 2023).
We phylogenetically classified 447 opsins sequences mined from 23
pteriomorphian genomes, including 119 from our seven focal species
into the seven types of opsins: canonical or noncanonical G-opsins (=
r-opsins), neuropsin, G,-opsin, xenopsin (= G,-opsin), peropsin, and
retinochrome (Figure 1A). All identified opsin sequences possessed a
retinal-binding lysine residue homologous to K296 in the bovine
rhodopsin positional naming system indicating the capacity to form a
photopigment. Gene duplications were observed in xenopsin
(Figure 1B), both canonical and non-canonical Gg-opsins (Figure 1C),
G,-opsin and neuropsin (Figure 1D). Some of these duplication events
appear to be deep within the Pteriomorphia before the split of the four
families examined (e.g., xenopsin clade B), while others are at the
family-level, such as r-opsin paralogs in Pectinidae and Mytilidae
(Figure 1C). Multiple rounds of gene duplication were estimated to
occur in the xenopsin clade B for Mytilus and pectinid species, while
Crassostrea has a single duplication event and Pi. fucata has only one
gene from that xenopsin clade (Figure 1B). The xenopsin clade A
appears to be less expansion-prone than xenopsin clade B, but gene
duplication is evident in Pi. fucata, Crassostrea, and Mytilus (Figure 1B).
Duplications of neuropsin were only observed in Mytilus, which has a
lineage-level expansion resulting in four opsins vs. one in the other
species examined here. As in McElroy et al. (2023), a single
retinochrome was found in these pteriomorphian genomes (Figure 1D),
and only Crassostrea and Pi. fucata had a copy of peropsin (Figure 1D).

3.2 Larval development extensively recruits
different opsin types

Some general patterns emerged from the opsin expression data
(Figure 2; Supplementary Data 2). First, all opsin types are expressed
across the three larval stages, trochophore, veliger, and pediveliger, in
most species. Second, few opsin types are expressed in the adult mantle
tissue. This was observed across all seven species. At one extreme,
neuropsin (opn5) is below the threshold of expression in the adult
mantle for all focal taxa and treated as “off” (Figure 2). Of the three
species that have a peropsin gene (Cr. angulata, Cr. gigas, and Pi.
fucata), expression occurs during the trochophore stage in Cr. angulata
and Pi. fucata, veliger and pediveliger in all three species, but only the
mantle tissue of Cr. gigas (summarized in Figure 2, see also Figure 3;
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FIGURE 1

ML opsin phylogeny based on 447 pteriomorphian opsin and outgroup sequences. Color-coding of clades is by opsin type and same through panels
(A-D). Symbols indicate taxonomic membership by family: circle = Pectinidae, square = Margaritidae, star = Ostreidae, triangle = Mytilidae. In panels
(B—D), only UF-bootstrap values <95 are show at nodes. Naming system of opsins described in Methods. (A) Circle phylogeny of all opsin subgroups,
labeled and color-coded. Numbers of above the branches represent all UF-bootstrap values. Outgroup genes in gray. Inset panel in dotted line is a
species phylogeny of the seven target species. Symbols indicate taxonomic membership by family. (B) Pruned topology of the pteriomorphian
xenopsin subgroup. Major clades A and B indicated by vertical bars. (C) Pruned topology of the pteriomorphian G,-opsin subgroup. Major clades A and
B in canonical and non-canonical G4-opsin shown as vertical bars and indicate a gene type duplication in pre-Pteriomorphia. (D) Pruned topology of
pteriomorphian “tetraopsins” sensu Ramirez et al. (2016). Major clades A and B indicating a gene type duplication in pre-Pteriomorphia highlighted by

vertical bars. A full topology is provided in Supplementary Data 1.

Supplementary Figure S2). This type of pattern is also prevalent with
xenopsins. For example, of the 13 xenopsin in the M. edulis genome
which are commonly expressed during larval stages, only two copies
are present in the adult mantle (summarized in Figure 2, see also
Supplementary Figure S1). Third, the number of opsin genes expressed
for a given type is higher in the veliger and pediveliger stages than in
the trochophore for most species. To summarize, 76 opsins were
expressed in the veliger stage across all focal species versus 57 and 76
genes in the trochophore and pediveliger stages, respectively (Figure 2).
While not a strong trend, this pattern is notable for the xenopsin
(opnG,) in mytilid species M. coruscus and M. edulis (Figure 2) with
nine and six xenopsins being expressed during the veliger stage,
respectively, versus six and five xenopsins in the pediveliger stage.

3.3 Pteriomorphian larvae utilize
species-specific opsin repertoires

When looking at changes in relative expression level of specific
opsins rather than presence/absence of expression, no clear patterns
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emerge, except that retinochrome (RTC) was the most highly
expressed gene across the focal species (Figures 3, 4;
Supplementary Figures SI, S2) when considering non-eye tissue
samples. Instead, changes during larval development are largely
lineage-specific among our seven focal species. For example, when
comparing opsin expression between the two oyster species, Cr.
angulata and Cr. gigas, only two of the 12 genes, a G,-opsin,
opnGo.A.OS, and a xenopsin, opnGx.B1.0S, have similar changes
(Figure 3). Seven of the opsin genes have opposing expression profiles
(e.g., opn5.0S, opnGq-nc.B.OS, and opnGq.B.OS; Figure 3).
Comparing the oysters to their most closely related family,
Margaritidae (Pi. fucata), gene expression is dissimilar for the
orthologous neuropsin (opn5), which is not expressed in any of the Pi.
fucata samples (Supplementary Figure S2), and the orthologous
xenopsin (opnGx.B1.MA) is below the expression threshold for the
Pi. fucata (Supplementary Figure S2). The three remaining orthrologs,
opnGq.B, peropsin, and RTC, have grossly similar expression patterns
in the larvae with highest levels of expression in pediveliger (opnGq.B

and peropsin) or trochophore (RTC; Supplementary Figure S2;
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FIGURE 2

Opsin gene expression across three larval stages and the adult mantle for seven pteriomorphian species. Opsins are color-coded by type as in Figure 1.
Presence of gene expression shown by bars; Arabic numerals to the right of the bars are the number of opsins in that tissue sample. Expression was
treated as "off” if the TPM value was below the 10th percentile of values determined from each study. Thresholds shown in Figures 3, 4 and
Supplementary Figures S1, S2. Total number of opsins by type in a given species’ genome indicated in the far-right column.

Figure 3). The remaining Pi. fucata opsins cannot be directly compared
to oyster opsins due to lineage-specific duplications in xenopsins, G,-
opsins, and noncanonical r-opsins for each family (Figures 1B-D).

Opsin expression between the pair of scallop species, Ch. farreri
and Pe. maximus, appears to be more conserved than in Ostreidae.
When genes were above the expression threshold, expression patterns
were more similar among larval stages and when those stages were
compared to the adult mantle tissue (e.g., opnGo.B.PE, opnGq.B.PE.2;
Figure 4). However, expression levels of many scallop opsins were low,
and often only one of the species pair had expression above its species-
specific threshold. For example, low expression of xenopsin (= opnG;,)
was observed for both species in genes opnGx.A.PE.2, opnGx.B1.PE.2,
but only Pe. maximus has expression above the threshold for opnGx.
B1.PE.3 and opnGx.B2.PE.1 (Figure 4).

Opsin expression between the mytilid species, M. coruscus and
M. edulis, was the most conserved. Both relative level and expression
pattern across all opsin types were mirrored between the species
(Supplementary Figure S1). However, genomic content varied, most
notably for the xenopsin type (Figure 2). Mytilus edulis had additional
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copies of xenopsin that ranged from one new copy in the A clade to five
more copies in B2 clade (e.g., opnGx.A.MY.2b, opnGx.B2.MY.3e, opnGx.
B2.MY.3f; Supplementary Figure S1). These copies are the result from a
series of paralogous duplication events within the Mytilidae (Figure 1B).

3.4 Opsins are relatively more expressed in
larvae than in the adult mantle margin,
except for adult eyes

Opsins were expressed at relatively lower levels in adult mantle
tissue than in larvae (Figures 3, 4; Supplementary Figures S1, S2). This
was observed across all opsin types in all focal species with the
exceptions of two non-canonical r-opsins and one xenopsin
(opnGx.A.0S.1) in Cr. angulata (Figure 3) and one of the pectinid-
specific r-opsin paralogs, opnGq.B.PE.2, in the two scallop species
(Figure 4). In contrast, when eyes were present, opsin expression was
higher in eye tissue than in mantle or any larval stage. The relative
expression of 12 of the 18 scallop opsins were higher in the adult eye
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FIGURE 3
Changes in opsin gene expression across larval stages and adult tissue for two oyster species, Cr. angulata (square) and Cr. gigas (triangle; Ostreidae).
Expression data collected in the same study are connected by dotted lines showing ontogenetic changes in expression levels within a species. Only
larval data for Cr. angulata. Each panel is an interspecific comparison of one opsin ortholog, which are color-coded by opsin type as in Figure 1. To
account for noise in the data, colored horizontal lines are the transcripts-per-million (TPM) values above the 10th percentile from each study. Opsin
nomenclature described in Methods: Opn5 = neuropsin; OpnG, = G,-opsin; OpnG,-nc = rhabdomeric noncanonical Gq-opsin; OpnGq = rhabdomeric
canonical Gg-opsin; OpnG; = xenopsin; RTC = retinochrome.

samples of Ch. farreri (Figure 5). These 12 opsins represent the six
opsin types that scallops possess (pectinids do not have a peropsin;
Figure 2), and 10 of these opsin genes are pectinid-specific paralogs
from the xenopsin A and Bl (Figure 1B) clades, non-canonical and
canonical r-opsin clades (Figure 1C), and G,-opsin clade (Figure 1D).
One copy of the paralog pairs of xenopsin (opnGx.A.PE.2), G,-opsin
(opnGo.B.PE) and non-canonical r-opsin (opnGq-nc.B.PE.1) have
relatively higher expression in eye tissue than in the larvae, while
expression all four canonical r-opsin paralogs increased between 5.6
to 18.5K fold in the eye (Figure 5). To assess whether the variation in
opsin expression observed between larval stages and eyes extended
throughout the system, we examined the expression levels of four
housing keeping genes from the same samples. Our findings revealed
consistently similar expression patterns of housekeeping genes
between eyes and each larval stage, suggesting that the difference in
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opsin expression between larval stages and eyes are biologically
meaningful and not the result of RNAseq data artifacts (Figure 5;
Supplementary Data 2).

4 Discussion

The settlement and metamorphosis of pelagic larvae to benthic
adults is an irrevocable transition that determines the survival and
reproductive success of the animal. This process is orchestrated by
some suite of sensory receptors that respond to physical and
biochemical cues. One important physical cue is light, which in some
species, influences the regulation of genes critical for settlement (Say
and Degnan, 2020). The most ubiquitous photopigment is based on the
opsin protein and it is known to be expressed in a variety of invertebrate
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FIGURE 4

Changes in opsin gene expression across larval stages and adult tissue for two scallop species, Ch. farreri (square) and Pe. maximus (triangle;
Pectinidae). Each panel is an interspecific comparison of one opsin ortholog, which are color-coded by opsin type like Figure 1. Expression data
collected in the same study are connected by dotted lines showing ontogenetic changes in expression levels within a species. Larval stages did not
have biological replicates for Ch. farreri. To account for noise in the data, colored horizontal lines are the transcripts-per-million (TPM) values above
the 10th percentile from each study. Naming system for opsins described in Methods: Opn5 = neuropsin; OpnG, = G,-opsin; OpnG,-nc = rhabdomeric

noncanonical Gq-opsin; OpnGq = rhabdomeric canonical G,-opsin; OpnG, = xenopsin; RTC = retinochrome.

larvae that exhibit phototactic behavior (Passamaneck et al., 2011;
Githmann et al,, 2015; Neal et al., 2019; Doring et al., 2020). We recently
discovered that mollusks, including pteriomorphian bivalves, exhibit
gene expansions in many different opsin types, and these opsin
expansions are not restricted to eyed species, but instead are taxon-
specific and occur frequently in lineages with eyeless adults (McElroy
et al,, 2023). Identifying spatiotemporal expression patterns of these
diverse opsin repertoires is a critical first step toward understanding
function, specifically, how opsins might be utilized during the pelagic
lifecycle and their roles across different developmental stages. Here,
we compared opsin gene expression in four families of Pteriomorphia,
across three distinct larval stages, i.e., trochophore, veliger, and
pediveliger, with adult tissues known to be light-responsive. Our results
show that pteriomorphian larvae have an extensive opsin repertoire.
Likely, these larvae are capable of expressing multiple opsin transcripts
during all three developmental stages examined, implying the existence
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of multiple photopigments and the possibility of multiple photoreceptor
types in photosensitive regions of the trochophore (Yurchenko et al.,
2018; Wollesen et al., 2019; Piovani et al., 2023) and the larval eyespots
of the late veliger/early pediveliger stages.

As we hypothesized, opsin expression is more common in larval
stages across all species examined than in the photosensitive mantle
tissue of the adult (Figure 2). We found this trend to be strongest in
xenopsin, where adult mantle tissue could have no expression or as
many as three out of 13 xenopsins (opnG,) copies expressed (e.g.,
M. edulis, Figure 2). In contrast, the larvae had six to nine genes
present in a given stage. This pattern was also seen in neuropsin
(opn5), canonical and noncanonical r-opsins (opnG,), and G,-opsin.

Interestingly, while many of these opsin types were largely absent
in the adult mantle, expression levels could be quite high in the eyes
of the adult scallop (Figure 5). At least one paralogous copy of all six
opsin types found in the scallop genome were expressed in the eye
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Opsin type

Opsin gene expression in adult eye (square) and the three larval stages (triangle) for the scallop Ch. farreri. Opsin type is along the x-axis and color-
coded like Figure 1, following the naming system described in Methods. Relative expression levels (log transformed) on the y-axis. Four well-
established housekeeping genes (left) were used to compare with opsin expression. Dotted horizontal lines are the transcripts-per-million (TPM) values
above the 10th percentile from each study. All three larval stages are shown; information about a specific larval stage is in Figure 4.

(e.g., opnGo.A.PE in larvae versus opnGo.B.PE in the eye; Figure 5).
The majority of these genes were not exclusively expressed in the eye,
but reveal the expression of a single gene copy between two disparate
tissue types during the lifetime of the animal (e.g., opnGq.B.PE.1;
Figure 5). If we assume that the presence of a retinal-binding lysine
implies the formation of a photopigment and light sensing, gene
sharing of these opsins between pelagic larvae and the pallial eyes of
adults indicates exaptation (Gould and Vrba, 1982), a trait whose
current role differs from its original function as the trait has been
redeployed in a new biological context (co-option; True and Carroll,
2002) such as tissue type. When co-option does not involve gene
duplication, the gene is shared between the old and new functions
(Piatigorsky and Wistow, 1989). Since the pallial eye of the pectinids
is a derived trait (Audino et al., 2020), the likely ancestral condition/
function for these opsins is in the larvae. We hypothesize that the
opsins were then co-opted for new visual processes in the adult eye,
which would be neofunctionalization of that gene copy. Interesting,
three of the four highest expressed opsins in the scallop eye are only
expressed there (i.e., expression levels in the larvae were below the
threshold): r-opsins (opnGq.B.PE.2, opnGq.B.PE.3) and one xenopsin
(opnGx.B1.PE3; Figure 5). These cases may be examples of adaptation,
where gene duplication occurs first, then the daughter paralogs evolve
independent novel functions (True and Carroll, 2002). Our results
suggest that the genetic machinery underlying the scallop pallial eye
could be a combination of exaptative and adaptive processes. Future
work should include studies to determine localized expression of
opsin in larvae and validate opsin function. Futhermore, a
macroevolutionary perspective of eye evolution will need to examine
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opsin expression across the life cycle of other pteriomorphian lineages
with independently derived pallial eyes, such as Limidae and Arcidae
(Audino et al,, 2020), to determine if these morphologically distinct
eyes evolved in a similar manner and utilize similar opsin repertoires.

4.1 Highest number of opsin genes occur
in the later larval stages

We first identified and phylogenetically placed opsin genes from
the genomes of seven focal species (Figure 1). Of the 119 opsin genes
from our focal species, all but nine were expressed in at least one larval
stage indicating that opsins were important to general larval function.
When an opsin copy was not expressed in the larvae, these genes were
almost always paralogous duplicates for that taxon or family (except
for neuropsin in Pi. fucata; Supplementary Figure S2), suggesting that
paralogs have diverged in function after duplication. Presence of opsin
expression varied across developmental stages and species, but the
greatest number of opsins was expressed in the two later larval stages
veliger and pediveliger (76 and 76 out of 119 genes, respectively) versus
57 opsin genes in the trochophore stage (Figure 2). The only other
bivalve study to examine opsin expression in larvae is from a
non-pteriomorphian and eyeless species, the razor clam Sinonovacula
constricta (Infraclass: Heteroconchia; Kong et al., 2023). Like our
results, the majority of S. constricta opsins (17 out of 23 genes) was
expressed in the larvae. Both number of opsins expressed, and relative
expression levels increased from the trochophore to pediveliger stage
(Kong et al., 2023). Also, like our findings (except in scallop eyes),

frontiersin.org


https://doi.org/10.3389/fnins.2024.1357873
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

Hasan et al.

opsins were generally lowly expressed in the adult tissues. These results
provide an independent data point of opsin expression coinciding with
the timing of metamorphic competence and support our hypothesis
that opsins play a role in identifying the cues involved in settlement.

4.2 Photoisomerases retinochrome and
peropsin expressed in all pteriomorphian
life stages

One of the few opsins with consistent expression patterns across
different species and developmental stages was retinochrome
(Figure 2), which was often the most highly expressed opsin in these
datasets (Figures 3-5; Supplementary Figures S1, S2). This opsin, first
discovered in cephalopods (Hara and Hara, 1965; Hara et al., 1967),
acts primarily as a photoisomerase for converting all-trans to 11-cis
retinal (reviewed in Terakita and Nagata, 2014; Vocking et al., 2022).
That is, it likely does not drive phototransduction and instead acts to
resupply 11-cis retinal for rhodopsin (Vicking et al., 2021; Kong et al.,
2023). Retinochrome is found across all mollusk clades (e.g., Ramirez
et al., 2016; McElroy et al., 2023) and in other lophotrochozoans,
though its function is only known from mollusks (Vocking et al.,
2021). Unlike other groups of opsins, retinochrome does not regularly
duplicate and diversify; it is almost typically represented by a single
gene in mollusks, indicating that it is likely functionally restricted
(though see examples in Kong et al., 2023; McElroy et al., 2023). As in
McElroy et al. (2023), no duplications of retinochrome were seen in
pteriomorphian bivalves in this study. In addition to resupplying
11-cis retinal, retinochrome has been hypothesized to act as a storage
protein for retinal (Ozaki et al., 1983). These critical functions may
drive demand for retinochrome presence in all light-responsive cells,
but currently little is known about opsin expression across
development and tissue types in a broad range of mollusks.

The other opsin type in mollusks expected to act as an isomerase
is the molluscan peropsin (Ramirez et al., 2016; Vocking et al., 2021).
Like retinochrome, this opsin is largely resistant to duplications, but
has been lost numerous times (McElroy et al., 2023). Here, the two
Crassostrea species and Pinctada fucata are the only taxa whose
genomes encode peropsin. In both groups of species, we found
peropsin expressed across all larval stages with apparently increasing
expression levels from trochophore through pediveliger (Figure 3;
Supplementary Figure S2). Determining if peropsin functions
similarly to retinochrome in the classic molluscan visual cycle
(Terakita et al., 1989) and whether it can drive phototransduction are
important first steps in defining the role for this opsin. Furthermore,
in species with both retinochrome and peropsins, visual (e.g.,
immunohistochemistry) or transcriptomic (e.g., single-cell RNA-seq)
analysis should be conducted to determine if photoreceptors and
other cell types express both opsins. Together, these investigations
should help shed light on why some lineages maintain these putative
photoisomerases, while other species lose it.

4.3 Increased number and expression
levels of opsin in later larval stages

Opsin may have a role in larval exploration of suitable settlement
sites. We found relatively higher levels of opsin expression in the veliger
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and pediveliger larval stages for peropsin and some of the paralogs of
G,-opsin, canonical and noncanonical r-opsins (opnG,), and xenopsin
(opnG,). Increased number and expression levels of opsins in these
later stages may be related to increasing sensory needs as the larva
approaches metamorphic competency. It has been demonstrated that
larvae alter their response to light at different developmental stages,
going from positive phototaxis in veligers to negative phototaxis in
pediveligers (e.g., Mytilus edulis in Bayne, 1964). This likely is opsin-
based, as opsin has been shown to be expressed in the larval eyespots
of other marine invertebrates [Polyplacophora (Vocking et al., 2015);
Platyneresis dumerilli (Randel et al., 2013); the flatworm Maritigrella
crozieri (Rawlinson et al., 2019)]. While the specific location of where
each opsin expressed in pteriomorphian larvae is still unknown, the
photosensitive eyespots are ubiquitous among molluscan larvae,
forming in the late veliger or early pediveliger stages of bivalves
(reviewed in Cragg, 2016). These simple organs located in the anterior
aspect of each gill bar consist of two cells, a photoreceptor cell and a
pigment cell, and can sense direction and intensity of light, but lack
spatial vision (Hodgson and Burke, 1988). Both “visual” opsins, those
expressed in adult image-forming eyes (e.g., Gg-opsins in Randel et al.,
2013; Vocking et al., 2015), as well as opsins that have not been
demonstrated to have a role in vision (e.g., xenopsins in Rawlinson
etal, 2019), have been shown to be expressed in larval eyespots.

In pteriomorphians, opsin may play an important role in
coordinating with a yet-to-be-determined chemosensory system to
orchestrate larval settlement, perhaps analogous to the cryptochrome-
based photosensing system in the sponge, Amphimedon queenslandica
(Say and Degnan, 2020). In the sponge, detecting the cessation of
light is required for the larvae to respond to a highly inductive
biochemical cue, otherwise, larvae are unable to settle if maintained
in constant light. Light was shown to influence expression of nearly
180 genes critical for settlement (Say and Degnan, 2020). Many of
these genes possessed known G-protein regulatory motifs that repress
the GPCR signaling of chemotransduction in A. queenslandica and
likely maintain larvae in a state that is unable to respond to
biochemical cues until larvae transition in to the dark (Say and
Degnan, 2020). Future work in Pteriomorphia should examine these
light-mediated changes to gene expression profiles during settlement
and metamorphosis.

4.4 Larval opsins and light-independent
functions

Another critical sensory modality in metamorphic competency is
chemoreception. For many diverse marine invertebrates, GPCRs, the
same superfamily as opsin, are the chemoreceptors that regulate
settlement. This has been demonstrated across diverse metazoans such
as the gastropod Haliotis rufescens (Trapido-Rosenthal and Morse,
1986), the echinoderm Stronglylocentrotus purpuratus (Amador-Cano
etal., 2006), the sponge Amphimedon queenslandica (Say and Degnan,
2020), and cnidarians Hydractinia echinata (Schneider and Leitz,
1994) and Acropora millepora (Strader et al., 2018), but see (Holm
etal., 1998; Tran and Hadfield, 2012). Intriguingly, Baxter and Morse
(1992) proposed that the chemosensor that induces settlement and
metamorphosis in the gastropod Haliotis is not only a GPCRs, but
likely is a member of the rhodopsin-like class of GPCRs, as is opsin,
which comprises subfamily A16. Perhaps some portion of the large
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and diverse opsin repertoire in pteriomorphian larvae function
as chemoreceptors?

There is a growing body of evidence that opsins have multimodal
functionality (Feuda et al., 2022). Opsin has been shown to have light-
independent sensory modalities including chemosensory (Leung et al.,
2020), auditory (Senthilan et al., 2012), mechanoreception (Katana et al.,
2019), and temperature reception (Shen et al., 2011; reviewed in Leung
and Montell, 2017). A promising candidate is xenopsin. A recently
described opsin type (Ramirez et al., 2016), xenopsin is an under-
characterized opsin restricted to Lophotrochozoa (Ramirez et al., 2016;
Vocking et al., 2017). It is associated with ciliary photoreceptors and may
be co-expressed with Gg-opsins (Vocking et al., 2017; Doring et al,
2020). Xenopsin is particularly prone to large gene family expansions in
both pteriomorphian and non-pteriomorphian bivalves (Figure 1;
McElroy et al, 2023). Furthermore, these gene copies are most
commonly expressed in the later developmental stages of pteriomorphian
(summarized in Figure 2) and heteroconchian S. constricta larvae, with
few expressed in adult tissue (Figure 3; Kong et al., 2023). For these
reasons, we think xenopsins may be important for species-specific cues
in development. Future work should target specific spatiotemporal
expression patterns for xenopsins in bivalves across life stages.

Opsins are worthwhile proteins to explore in the context of life-
stage triggers and decisions of settling in mollusks, which require
multisensory inputs. Future work should be to test functions. A first
step is to determine whether candidate opsins form photosensitive
pigments when provided an appropriate chromophore. Assays to test
if an opsin can form a functioning photopigment can be conducted in
heterologous expression systems, where opsin is expressed outside of
the animal and then and then absorbance spectra can be quantified
(Faggionato and Serb, 2017; Smedley et al., 2022). Second, we can test
whether the candidate opsin can perform as a chemoreceptor. Because
GPCRs are one of the most common pharmaceutical targets (Sriram
and Insel, 2018), there are high-resolution GPCR structures in
dedicated repositories such as GPCRdb (Pandy-Szekeres et al., 2018)
and GPCR-EXP (Chan and Zhang, 2020) available to investigate the
molecular basis of GPCR structure-function relationship and
characteristic features of ligand binding (reviewed in Venkatakrishnan
et al, 2013). Furthermore, there are a wealth of protein ligand
interaction databases that consists of a list of active site residues of a
protein and the physio-chemical properties of ligands. Ligand
compatibility can be examined with computational approaches allow
modeling of ligand docking (e.g., GPCR-ModSim Esguerra et al.,
2016) and ligand predictions based on protein models [pdCSM-GPCR
(Velloso et al., 2021); others listed in Allen and Roth, 2011], such as
the AlphaFill algorithm applied to Alphafold models (Hekkelman
et al.,, 2023). These in silco studies could be followed up with in vitro
testing of ligand binding to test for light-independent functions in an
opsin (reviewed in Allen and Roth, 2011).

5 Conclusion and future directions

As larval development and metamorphosis involve dramatic
morphological changes, gene expression is a crucial aspect to
understand those processes in a functional framework. Here, we profiled
opsin transcription across larval development in seven species of
pteriomorphian bivalves, representing four distinct taxonomic families:
Margaritidae (pearl oyster), Mytilidae (mussels), Ostreidae (oysters),
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and Pectinidae (scallops). Broadly, our results suggest that more opsins
are expressed in larval than adult stages. Opsin evolution in
Pteriomorphia is dynamic and lineage-level gene expansions have
resulted in species from different families having very different opsin
repertoires. We see that opsin expression patterns are more similar
between closely related species and highly divergent across deeper
evolutionary distances, except for retinochrome, which appears
constitutively and highly expressed across development in all taxa.
Interestingly, unlike the other five species, the scallop results indicate
little to no expression of the G-coupled r-opsin during larval stages,
instead expressing these opsins—typically used for invertebrate vision—
in adult eyes. These results point toward a scenario where opsins
specialize to function in eyes. Important future research includes
RNA-seq analysis and protein staining to confirm that lowly expressed
opsins are indeed transcribed in larval development (Sadier et al., 2018).
Additionally, a powerful setting to explore whether the evolution of
opsin use in larvae vs. adult eyes has occurred in a similar or different
manner among pteriomorphian bivalves would be an examination of
the Arcidae (ark clams) and Limidae (file clams), as these lineages have
eye types analogous to scallops (Audino et al., 2020). Last, while
characterizing photopigment-forming potential, opsins also should
be scrutinized for potential light-independent modalities such as ligand
binding, which can be predicted bioinformatically. Overall, opsin
expression in bivalve larvae is surprisingly diverse and might represent
a key aspect related to perceiving environmental cues.
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