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Introduction: Antimicrobial resistance (AMR) is an increasing public health
concern for humans, animals, and the environment. However, the contributions
of spatially distributed sources of AMR in the environment are not well defined.

Methods: To identify the sources of environmental AMR, the novel microbial Find,
Inform, and Test (FIT) model was applied to a panel of five antibiotic resistance-
associated genes (ARGs), namely, erm(B), tet(W), gnrA, sull, and intl1, quantified
from riverbed sediment and surface water from a mixed-use region.

Results: A one standard deviation increase in the modeled contributions of
elevated AMR from bovine sources or land-applied waste sources [land application
of biosolids, sludge, and industrial wastewater (i.e., food processing) and domestic
(i.e., municipal and septage)] was associated with 34-80% and 33-77% increases
in the relative abundances of the ARGs in riverbed sediment and surface water,
respectively. Sources influenced environmental AMR at overland distances of up
to 13 km.

Discussion: Our study corroborates previous evidence of offsite migration of
microbial pollution from bovine sources and newly suggests offsite migration from
land-applied waste. With FIT, we estimated the distance-based influence range
overland and downstream around sources to model the impact these sources may
have on AMR at unsampled sites. This modeling supports targeted monitoring of
AMR from sources for future exposure and risk mitigation efforts.

KEYWORDS

microbial FIT, antimicrobial resistance, surface water, sediment, animal feeding
operations, land application

1. Introduction

Antimicrobial resistance (AMR) currently exists at higher than natural levels
due to antibiotics use and misuse in human and animal medicine and livestock
production (Davies and Davies, 2010). Wastes from these origins contain pathogens
and associated antibiotic resistance genes (ARGs), which can be dispersed via runoff
into rivers in the environment (Amarasiri et al, 2019). While putative geographical
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sources of pathogens and ARGs have been identified, the extent
of their contributions to elevated AMR in the environment
remains unknown. Characterizations of AMR spatial sources, their
contributions (Nappier et al., 2020), and modeling approaches that
suit the conceptual framework of ARG transport, attenuation, and
amplification (Singer et al., 2006; Pruden et al., 2012) are needed.

Antibiotic resistance genes and antibiotic-resistant bacteria
(ARB) can become elevated intracellularly due to the impacts
of human and animal sources by (1) direct dissemination or
extracellularly and through horizontal gene transfer (HGT), (2)
organic matter enrichment of ARGs, and (3) the dissemination
of selective factors (e.g., antibiotics) from sources (Xie et al,
2018). A geospatial study of surface water in the United States
supports that land use is a driver of AMR (Keely et al., 2022).
Potential sources of elevated AMR in the environment have been
identified at locations where human, animal, and industrial waste
meet with the environment (Nappier et al., 2020; Zainab et al.,
20205 Zheng et al., 2021). Animal feeding operations (AFOs) are
likely sources due to frequent antibiotic use for disease treatment
and prevention or use in animal feed, often at sub-therapeutic
doses (Pruden et al., 2012; Ling et al., 2013; Heaney et al., 2015;
Li et al., 2015; Rogers et al., 2018; Lopatto et al., 2019). Other
potential sources include wastewater treatment plants (WWTPs)
(Bueno et al., 2018; Brown et al., 2019; Pazda et al., 2019; Beattie
etal., 2020b) and land application sites of treated (i.e., biosolids and
semi-solids) and untreated wastes (i.e., biosolids and wastewater)
from agricultural (e.g., manure spreading), industrial, or municipal
origins (Munir and Xagoraraki, 2011; Beattie et al., 2018, 2020b;
Pepper et al., 2018; Yang et al., 2018; Duarte et al., 2019; Jacobs
et al,, 2019). Additionally, elevated AMR levels have been detected
in groundwater near septic systems (O'Dwyer et al., 2017), and
low-intensity developed land cover is a fecal contamination source
(Crowther et al., 2003; Alford et al., 2016; Bucci et al., 2017;
Hinojosa et al., 2020; McKee et al., 2020; Wiesner-Friedman et al.,
2021a). However, ARGs predate manufactured antimicrobials and
exist in natural environments (D’Costa et al., 2011; Van Goethem
et al., 2018), and different soil types can represent sources (Zhang
etal., 2018,2021; Macedo et al., 2020). Additionally, season (Beattie
et al, 2018, 2020a; Zheng et al., 2018; Liu et al, 2020) and
precipitation (Ahmed et al., 2018; Keen et al., 2018) are temporal
factors to consider.

To model contributions from these sources with known
mechanistic approaches (Wang et al., 2019; Costa et al., 2021),
knowledge of loadings and decay is needed. While current research
shows that first-order decay can represent ARG levels over distance
and time and that ARG decay occurs over long time scales (e.g.,
weeks to months), the decay rate varies depending on the ARG
and environmental variables (Mao et al, 2014; Lopatto et al.,
2019; Macedo et al., 2020; Barrios et al., 2021; Burch et al.,
2021). Furthermore, loadings at sources are not well characterized.
Statistical models incorporating first-order decay are helpful to
screen potential sources of elevated AMR without requiring
mechanistic information (Wang et al., 2019; Costa et al., 2021).
Here, we use land-use regression (LUR) to identify the sources of
contaminants and quantify their association with environmental
responses (Messier et al, 2014). By constructing source terms
that characterize contributions through spatial predictor models

Frontiersin Microbiology

10.3389/fmicb.2023.1223876

(SPMs), LUR leverages hyperparameters and databases of spatially
distributed sources to describe the decayed range of influence
around sources (Wiesner-Friedman et al., 2021b). LUR studies can
increase the ecological understanding of how sources influence
ARG levels and help develop microbial risk assessments for AMR
(Nappier et al., 2020).

To the best of our knowledge, only two studies using LUR
or SPMs have characterized source contributions to the AMR
levels of rivers and their quantified associations (Pruden et al,
2012; Amos et al,, 2015). Pruden et al. (2012) explored different
SPMs that account for average upstream capacities and found that
WWTPs and AFOs were associated with sull relative abundance
in sediment (2012). A recent study (Amos et al.,, 2015) modeled
the decaying contributions [i.e., decaying concentrations of cellular
and extracellular intIl1 (i.e., genes related to ARG mobility
and pollution) and concentrations of selective pressures (e.g.,
antibiotics, biocides, microplastics, etc.)] coming from upstream
WWTPs, leading to higher levels of intIl relative abundance
in sediment.

These two LUR studies implemented different SPMs.
Pruden et al. (2012) used the inverse distance-weighted (IDW)
interpolation of pollution capacities upstream of the sampling
location. This SPM is an interpolation of pollution capacities
upstream of the sampling point. Therefore, it does not guarantee
that pollution decreases away from sources, as would be expected
from dilution and degradation processes. Amos et al. (2015) used
a sum of exponentially decaying contributions (SEDC) applied
to upstream sources. This model is different from the IDW
interpolation in that it accounts for the density of sources, and
it is such that the predictor value decreases away from sources,
which is physically meaningful. Factors including dilution due
to flow (Knapp et al., 2012), overland flow, and manure hauling
from AFOs to application fields contribute to the dissemination
of microbial contamination to rivers (Wiesner-Friedman et al.,
2021a,b). Our goal is to expand upon previous modeling with a
generalized SPM that incorporates these four components (i.e.,
density and proximity of upstream sources, overland flow, and
dilution) to screen many potential sources of elevated AMR.

By implementing a LUR approach in a new region with a more
generalized SPM, we aimed to (1) estimate relative abundance (i.e.,
ARG/16S rRNA gene) ratios (RARs) that express how AMR levels
respond to the influence of different types of upstream sources,
(2) characterize the overland range of influence around AMR
sources, and (3) predict AMR levels at unsampled river sites. We
were further interested in studying source impacts on riverbed
sediment and surface water, representing time-integrated effects
and transient contamination (Wiesner-Friedman et al., 2021a).
To accomplish this, we applied the newly developed microbial
Find, Inform, and Test (FIT) framework (Wiesner-Friedman et al.,
2021b), which uses LUR and novel SPMs, and applied FIT to a panel
of four ARGs (ermB, tetW, gnrA, and sull) and one resistance-
associated gene (intIl) (collectively called ARGs throughout)
quantified from riverbed sediment and surface water from a mixed-
use Great Lakes watershed area. The panel of ARGs in this study
were selected for their associations with agricultural resistance [i.e.,
tet(W) and erm(B)], clinical significance (i.e., gnrA), and as mobile
genetic elements (i.e., intIl and sull) (Beattic et al., 2018). Three
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ARGs have been previously studied using LUR [i.e., tet(W), sull,
and intl1] but were only measured from sediment (Pruden et al.,
2012; Amos et al.,, 2015), and two [i.e., erm(B) and gnrA] have
not been studied with LUR. Compared to these previous studies,
we modeled contributions from new types of spatially distributed
sources (e.g., land-applied waste from municipal or industrial
origins) and for ARG responses in sediment and surface water.

2. Methods

2.1. Sampling and sample analysis of
antibiotic resistance genes

The data used for this study were originally collected and
processed by Marquette University researchers (Beattie et al., 2018)
based on (1) the number and spatial distribution of samples and (2)
the high detection rate of ARGs in riverbed sediment and surface
water. The samples were obtained from Kewaunee, Ahnapee, and
East Twin Rivers in Kewaunee County, Wisconsin during five
sampling events representing four seasons and 20 sampling sites
(sampling sites are depicted as circles in Figure 1). Sites were
selected based on the impacts of expected variability from the dense
livestock agriculture in Kewaunee County and public access to
the sites (Beattie et al., 2018). DNA was extracted from samples,
and quantitative PCR was used to quantify AMR-associated genes
[ie., erm(B), qnrA, tet(W), sull, and intll] and the 16S rRNA
gene. Antibiotic resistance gene selection is detailed in a previously
published study (Beattie et al., 2018); briefly, genes resistant to
antibiotics commonly used in agriculture (tetracycline, macrolides,
and sulfonamides; tet(W), erm(B), and sull), genes found on
mobile genetic elements (intII and sull), and genes conferring
resistance to clinically important antibiotics (fluoroquinolones;
gqnrA) were chosen to explore the diversity of environmental
resistance in the study area. Values measuring below the detection
limit (<8% of the data points; see Supplementary Table S1) were
set to half the detection limit. Detailed sampling methods, DNA
extraction, qPCR protocols, and the full ARG dataset (relative and
absolute abundances) can be found in a previously published study
(Beattie et al., 2018). River network, precipitation, temperature, and
source location data and processing can be found in previously
published studies (Wiesner-Friedman et al., 2021a,b).

2.2. Physically meaningful land-use
regression model

This study uses a physically meaningful LUR model (i.e., source
terms are not allowed to have negative regression coefficients)
implemented in FIT without modifiers (i.e., attenuators or
amplifiers) to focus on characterizing source contributions to each
ARG response, y; (Wiesner-Friedman et al., 2021b):

y; = Bo+ PLi(B1 + B2P2;) + BsFreezing;
+ [fo:l Bus™ (oc(”)) ] + & (1)
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The ARG response, y;, represents logl0 of the relative
abundance z;, where z; is the ratio of ARG copies to 16S rRNA gene
copies. The first three variables, namely, P1;, P2;, and Freezing;,
represent recent precipitation, antecedent precipitation, and a
seasonal, Bernoulli-distributed variable representing whether the
monthly average temperature was freezing for each i’sample.
The first term, By, and the last term, ¢;, represent the regression
intercept and random error, respectively. Bi, B2, and B3 are
associated regression coefficients, and 25:1 ,Busgu) («®) is a sum
of contributions from spatially distributed sources. Each source
term, 55“) (a(“)), is defined as a function of ground hauling,
overland, and downstream decay hyperparameters; o™, the flow-
connected distances (i.e., overland and downstream distances)
from the spatial locations of sources of type u (e.g., WWTPs)
to the sampling locations of each isample; and sample site
flow (proxied by Strahler stream order) (Wiesner-Friedman et al.,
2021b). The sources can also be weighted by information associated
with their scale (e.g., size of the land cover area, gallons of manure,
or equally weighted) (Wiesner-Friedman et al., 2021a). Because
hyperparameters describe the distance decay of dimensionless
quantities that denote the scale of sources, source terms describe
dimensionless source contributions to sampling sites. All source

terms sl(-u)

are SPMs equal to the z-scored Sum of Exponentially
Decaying Contributions (SEDC) so that a one standard deviation
increase in the u" SEDC represents a f8, increase in the response.
An RAR expresses the ratio of relative abundances for a one
standard deviation increase in source u. In other words, a one-
unit increase in SPM 55”) results in a (100(RAR™ — 1)) percentage
increase in relative abundance z (Wiesner-Friedman et al., 2021b).

See Supplementary material S5 for details.

2.3. Data for spatially distributed sources

Multiple databases are available to

potential sources in Kewaunee County. While many sources

spatial represent
of elevated ARGs exist globally, we identified thirteen categories of
potential sources that may be important to Kewaunee County (u
=12,..,13).

The first eight potential sources of the u* categories were
spatially related to sampling site locations with SPMs, which are
the z-scored overland and river-distance with flow (ORF) SPM:
(1) AFOs, (2) manure application fields, (3) septic systems, (4)
industrial land application sites, (5) municipal or septage (i.e.,
domestic-originating) land application sites, (6) WWTPs, (7) low-
intensity developed land cover representing rural accumulations
on imperviousness, and (8) high-intensity developed land
cover representing more urban/residential accumulations on
imperviousness. The next three potential sources were soil sources
represented by the dominant soil type within a 1-km radius of the
sampling location: (9) Type A represents soils with the highest
infiltration rate when saturated, likely consisting of sand, sandy
loam, loamy sand, or gravel soil types; (10) Type C represents
soils with a low infiltration rate when saturated, likely consisting
of clay loam, silty clay loam, sandy clay, or silty clay; and (11)
Type D represents soils with a very low infiltration or high run-oft
potential, likely consisting of clay loam, silty clay loam, sandy clay,
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Conservative values of the standardized sum of exponentially decaying contribution (SEDC) are shown for two types of spatial prediction models: (A)
AFOs via manure application at agricultural application fields, and (B) land application sites with municipal or industrial wastes and septage. These
standardized SEDCs are conservative in using the maximum hyperparameter values «“) (see Equation 1) found across ARG responses. For subpanel
a, we used the maximum hyperparameter values «“ obtained across three relative abundance responses [erm(B), tet(W), and sull] in sediment
Imax(@™) = {yg = 14 km, ao = 13 km, ag = 2 km}]. For subpanel b, we used the maximum hyperparameter values «¥ obtained across two
relative abundance responses [tet(W) and int/1] in surface water Imaxie™) = {ao = 10 km, ag = 10 km}]. An increase of 1 on the color scale
corresponds to a one standard deviation increase of the corresponding SEDC. The multiplication of the standardized SEDC shown here with a given
regression coefficient g, from Table 1 gives the increase in the corresponding log10 relative abundance y. Circles represent the sampling locations
associated with this study and highlight the conservative value of the standardized SEDC at that site. For example, for erm(B) in sediment, the g, for u
= AFO via manure application fields is B, = 0.199, therefore, a one standard deviation increase (shown in orange in the map) in the standardized
SEDC for AFO via manure application fields increases y (the log10 relative abundance) by 0.199, or conversely, the relative abundance z increases by
1.58, which corresponds to a 58% increase in relative abundance z. Database representations are detailed

or silty clay. The last two source categories were those related to
the sampling site locations using the ground hauling, overland, and
river distance with flow (GORF) SPM. Here, the SPM leverages two
source locations to capture how land application occurs on land
disproportionately closer to the origin of the waste [e.g., manure
is hauled from AFOs (u = 1) to manure application fields (v =
2), and AFOs will minimize hauling distances for cost purposes
(Hadrich et al., 2010)]. The sources defined with this SPM are 12)
AFOs via the ground transport or hauling of manure to fields and
13) domestic-originating land application sites (1 = 5) with waste
that is applied more greatly in proximity to denser residential areas
represented by septic system locations (1 = 3). See previous study
for SPM equations and descriptions (Wiesner-Friedman et al,
2021b).

2.4. Application of the FIT framework to
ARG responses

The microbial FIT framework is a three-step approach
(Wiesner-Friedman et al., 2021b) using the physically meaningful
LUR (Equation 1). The three stages of the FIT framework, Find,
Inform, and Test, were applied independently to the 10 ARG
responses (i.e., sediment and water measurements of five ARGs).
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This modeling was implemented in MATLAB 2020b (https://
scicrunch.org/resolver/RRID:SCR_001622).

In Find reliable databases of spatially distributed sources, many
candidate databases can be explored for their ability to reproduce
source-term relationships for unseen data. Here, for each of the
potential ARG source categories (v = 1,2,...,13), we explored
the candidate options for representing the sources based on (a)
available databases [e.g., the Wiscland-2 land cover database,
the Wisconsin Pollution Discharge Elimination System (WPDES)
database, and county databases available for manure storage and
septic systems], (b) coding options, (c) different classes of data, and
(d) weighting options (see Supplementary material S2 for details).

The find stage obtains a reliability score for each candidate
database option. The reliability score is calculated by obtaining
hyperparameters for the SPM for a training set of response
data. Using training hyperparameters for a test set (see
Supplementary material S4), we calculated a reliability score
with test-set regression coefficients. The score rewards candidate
databases with the most consistently positive test-set regression
coefficients [i.e., sign stability score (SSS)], the largest sum
of test-set coefficients (M), and the lowest variability of the
2021b).
Supplementary material S2 for the reliability score equation.

test-set coefficients (Wiesner-Friedman et al, See

In the inform stage, source terms are informed with transport-
characterizing hyperparameters in ORF and GORF SPMs. In this

frontiersin.org
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TABLE 1 Symbols and abbreviations from Equation 1.

Term Description

Vi log10 of the relative abundance z;, where z; is the ratio
of ARG copies to 16S rRNA gene copies for each
i"sample.

P1; Recent precipitation for each isample.

P2; Antecedent precipitation for each isample.

Freezing; Bernoulli distributed variable representing whether the
monthly average temperature was freezing for each
i"sample.

sf’“ (™) The impact on each i*’sample from the u"*source type
modeled with the Sum of Exponentially Decaying
Contributions (SEDC) Spatial Predictor Models (SPMs)
that account for the ground hauling, overland, and river
distance flow (Wiesner-Friedman et al., 2021a,b).

Bo The regression intercept.

Bi The increase in y; for a one standard deviation increase
in recent precipitation.

B The effect that a one standard deviation increase in
antecedent precipitation has on the effect of recent
precipitation f;.

B3 The effect of freezing temperatures on y;.

Bu The increase in y; for a one standard deviation increase
in the source term s}”) (ot(")).

& The random error for each isample.

stage, hyperparameter values, &™) (i.e., describing average ground
hauling distance yg, decay overland o, and downstream ag),
were obtained by independently maximizing the RAR (108" for
every source type. This maximization was subject to a penalty on
very low or high values of overland decay and ground hauling
hyperparameters, «p and yg, that yielded poor regression qualities
(Wiesner-Friedman et al., 2021b). The spatial predictor models
leveraging the hyperparameters, o™, are described in detail in the
microbial FIT framework (Wiesner-Friedman et al., 2021b).

The goal of the last stage is to fest the predictive ability of
informed source terms to identify key sources of elevated ARGs
in Kewaunee County Rivers and Streams. Before model selection,
if the correlation of informed source terms was large (o >0.7),
those yielding the highest univariate R-squared were chosen
over correlated options (Dormann et al.,, 2013). Then, seasonal,
precipitation, and source terms were stepwise selected with
AIC. The prediction of individual source impacts on unsampled
locations was initially assessed through the find stage based on
the robustness of the source term’s consistent contributions and
the ARG’s logl0 relative abundance across training and test sets.
Ultimately, the prediction of total source impacts was assessed with
the adjusted R? resulting from the test stage.

2.5. Conducting interviews/surveys with
Wisconsin dairy cattle veterinarians

To understand which ARGs are likely to be shed by bovines
based on antibiotic usage, we reviewed information from a
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thorough systematic review outlining and quantifying antibiotic
usage on Wisconsin dairy farms (Pol and Ruegg, 2007). Since
the publishing of that study, practices may have changed, and
a previous ARG study found local knowledge to be beneficial
(Rogers et al., 2018). We conducted a small survey with dairy
cattle veterinarians and asked Wisconsin dairy cattle veterinarians
about the changes they have observed in antibiotic use over
their careers. Google Maps was used to search for veterinarians,
veterinary services, and “large animal” services. In total, 12
veterinary offices were identified as serving the dairy cattle
industry, representing the practices of over 30 veterinarians.
Surveys were sent to all 12 offices, and four returned our
surveys. See Supplementary material S6.1 for survey questions and
veterinarian responses.

3. Results

3.1. The ARGs in this study are biologically
linked to antibiotic usage in Wisconsin
AFOs

According to the four veterinarians we interviewed, ceftiofur,
a beta-lactam (Dowling, 2004), was the most frequently prescribed
antibiotic for disease treatment (Dowling, 2004). Other antibiotics
that
tulathromycin,

enrofloxacin, florfenicol,
These (see
Supplementary material S4 for interview details and discussion)

veterinarians prescribe are

and oxytetracycline. interviews
reflected antibiotic use for disease treatment that was consistent
with the findings of the 2007 study on antibiotic usage at
AFOs in Wisconsin (Pol and Ruegg, 2007). These antibiotics
belong to the broader classes of fluoroquinolones, sulfonamides,
macrolides, and tetracyclines, which correspond well with
resistance encoded by or co-occurring with the ARGs used
for this LUR modeling (Pal et al, 2015; Beattie et al., 2018).
Our interviews did indicate that some antibiotics are still used
preventatively (e.g., tetracycline flushes) because operations have
difficulty monitoring large herds. Preventative antibiotic use is
therefore a missing component in understanding the frequency
and dose associated with these classes of antibiotics. However, our
interviews and the 2007 study provide a biological link between
the panel of ARGs from our study and dairy AFOs. Additionally,
although intI1 has been identified as a marker for anthropogenic
pollution more broadly, clinical class I integrons can carry ARG
cassettes, conferring multidrug resistance with the ability to
spread rapidly through horizontal gene transfer (Gillings et al,
2015).

We could not directly obtain information on clinical
antibiotic usage in rural Wisconsin. However, one wastewater
study (Karthikeyan and Meyer, 2006) indicates a total of
six classes of antibiotic compounds found in the influent
Based
on the frequency of the detection of different antibiotic

of municipal wastewater from across Wisconsin.
classes, the study indicates that the ARGs for this study may
also well represent the anthropogenic impacts of clinical

antibiotic use.
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3.2. Overland and downstream flow from
bovine sources consistently contribute to
elevated ARGs

After implementing the FIT framework across five ARGs in
sediment and surface water, we found that all five of the ARG
responses (see Table 2) are positively associated with bovine sources
(i.e., AFOs, AFOs via the ground hauling of manure to application
fields, or manure application field locations) in at least surface
water or sediment. For ARG responses in sediment, FIT selected
the GORF AFO source term, which represents the contributions
from AFOs via the ground hauling of manure to application fields.
A one standard deviation increase in GORF AFO contributions was
associated with RARs of 1.58 and 2.01, representing 58% and 101%
increases (p < 0.10) in the relative abundance of erm(B) and tet(W).

Across ARG responses in surface water, FIT selected the GORF
AFO source term for erm(B). A one standard deviation increase
in these AFO contributions was associated with a 45% (p < 0.05)
increase in the relative abundance of erm(B) in surface water. For
tet(W) and gnrA responses, FIT selected the ORF AFO source
term, representing the contributions directly from AFO locations.
A one standard deviation increase in AFO contributions was
associated with 77% (p < 0.05) and 49% (p < 0.05) increases in the
relative abundance of tet(W) and gnrA, respectively. For sull and
intI1, FIT selected the ORF manure application fields representing
contributions directly from field locations (i.e., irrespective of
AFOs). A one standard deviation increase in manure application
field contributions was associated with 41% (p < 0.10) and 36%
(inclusion lowers AIC) increases in the relative abundance of sull
and intll, respectively.

In sediment and surface water, the magnitude of the association
between tet(W) and AFOs was greatest compared to other ARG
responses. A greater association may indicate that more tet(W)
genes are located at AFOs or may suggest that oxytetracycline is
used frequently to prevent diseases at dairy AFOs compared to
other antibiotics. Some studies suggest that tet(W) and tetracycline
resistance may be more specific to dairy feces than other ARGs and
antibiotic resistance phenotypes (Srinivasan et al., 2008; Kyselkova
et al, 2015). The strength of the associations from our study
supports that tet(W) is correlated with dairy manure.

This is the first study to characterize ARG contributions with
GORF or ORF SPMs for bovine sources. Our findings imply that
overland and downstream transport and dilution from flow are
key processes in disseminating AMR from AFOs and manure
fields. This study also suggests that manure hauling to application
sites is a factor in elevated ARGs in the environment. Our novel
spatial predictors and modeling approach are in agreement with
AFO’s association with ARGs found by Pruden et al. (2012) using
a different SPM and applied to a different geographical region.
Pruden et al. (2002) found that the relative abundance of sull in
sediment was positively correlated (R?> = 0.35, p < 0.001) with the
average upstream capacities of AFOs. However, these authors found
no significant relationship with the relative abundance of tet(W)
in sediment (Pruden et al., 2012), which could reflect differences
in livestock and antibiotic use. Our study quantified seven novel
associations between bovine sources and ARG responses. We have
quantified the associations between bovine sources and levels of
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erm(B), tet(W), qnrA, sull, and intIl in surface water (ie., five
novel associations) and the association between bovine sources
and levels of erm(B) and tet(W) in sediment (i.e., two novel
associations), which can inform ecological studies of AMR and
microbial risk assessment.

3.3. Flow affects consistent detection of
signals from bovine sources

The find stage of FIT enables the exploration of many databases
of collocated, spatially distributed sources. The result is the set
of source locations and associated information that consistently
represent sources to the response from a cross-validation approach.
Here, we report the find stage results for bovine sources because
they were the most consistently selected source from the fest stage
of FIT. Across ARG responses in surface water, FIT modeled
contributions from AFOs with the county manure storage option
and contributions from manure application fields with the crop
rotation land cover option.

For ARG responses in sediment, FIT modeled contributions
from AFOs with WPDES CAFO locations, but differences existed
in CAFO weightings. The difference in weighting CAFOs by animal
units for erm(B) and tet(W) and equal weighting for sull may reflect
differences in the transport processes resulting in elevated relative
abundance, independent of the number of animal units (e.g., some
other selective pressure emanating from sources).

One key difference in FIT’s database selection was that, to
represent AFOs, the WPDES CAFOs option was selected for
sediment responses and the county’s manure storage option for
surface water responses. One explanation for this difference is that
sediment sampling was impossible at three sites during one high-
flow event (Beattie et al., 2018). These manure storages are known
to overflow during high-flow events (Burch et al., 2021), and the
additional surface water samples may have better captured transient
contamination from manure storages.

3.4. Land application of septage, municipal,
and industrial waste is another source of
elevated ARGs in the environment

After implementing FIT across 5 ARGs in sediment and
surface water, we found that three of the ARG responses (Table 2)
are positively associated with land-applied waste sources in
sediment (sull and intll) or surface water [tet(W) and intll].
ARG responses in sediment, municipal waste, or septage land
application characterized land-applied residential waste sources.
For sull, FIT selected the ORF land-applied residential waste source
term representing land-applied waste from residential origins
(i.e., land application of municipal waste or septage consisting
of solid or semi-solid residue generated during the treatment of
domestic sewage via primary, secondary, or advanced wastewater
treatment and the wastewater contents of septic or holding tanks,
dosing chambers, grease interceptors, seepage beds/pits/trenches,
privies, or portable restrooms (Wis. Admin, 2021). A one standard
deviation increase in contributions from land-applied waste from
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TABLE 2 Regression results for predicting the relative abundance of erm(B), tet(W), gnrA, sull, and inl1 (log10 gene copies per 16S-rRNA copies) in riverbed sediment (columns toward the left) and surface water
(right-most five columns).

Environmental matrix

Riverbed sediment

Surface water

ARG (n = sample size) tet(W) sull (n =91) intll (n =91) tet(W) qnrA (n =
(n=91) (n =98) 98)
Recent precip. Std. Regression —0.723** 0.654** NS —0.330** 0.415** 0.635** 0.213** 0.637** 0.277**
Coefficient (8;)
Recent x Std. Regression 0.561** 0.923** NS 0.256™* —0.394** —0.300"* —1.10%* NS 0.637**
antecedent Coefficient (8,)
precip.
Freezing Regression —0.621* NS NS —0.801** 1.94%* NS NS NS NS
Coeficient (83)
Bovine sources Bovine Source GOREF AFO (via GOREF AFO (via NS NS GOREF AFO (via ORF AFO ORF AFO ORF Manure ORF Manure
Description ground hauling of ground hauling of ground hauling of app. fields app. fields
manure to manure to manure to
application fields) application fields) application fields)
Std. Regression 0.199* 0.303* NS NS 0.162** 0.247** 0.173** 0.148* 0.134
Coefficient (By)
RAR (10%+) 1.58* 2.01* NS NS 1.45™ 1.77%* 1.49%* 1.41* 1.36
Influence Range <13 km <10 km
(@o0)
Land-app. Land applied NS NS Land-applied Septage ground NS Land-applied NS NS Land-applied
waste sources waste Source waste- residential transport to land waste- waste-
Description app. sludge- industrial industrial
residential
Std. Regression NS NS 0.211** 0.155* NS 0.134* NS NS 0.148*
Coefficient (8y,)
RAR (10%) NS NS 1.63** 1.43* NS 1.36* NS NS 1.41*
Influence Range < 8km <10 km
(o)
Soil sources Soil Source NS NS Type A (Sand, Type A (Sand, Type D (Clay loam, NS NS NS NS
Description Sandy loam, Loamy | Sandy loam, Loamy | silty clay loam,
sand, and Gravel) sand, and Gravel) sandy clay, and silty
clay)
Regression NS NS 0.402** 0.253 0.231 NS NS NS NS
Coefficient (By)
RAR (10%+) NS NS 2.52%* 1.79 1.70 NS NS NS NS
Influence Range 1 km

(oRadius)

*p < 0.10, **p < 0.05. NS indicates that no terms were selected for the source category. Other source categories not selected: wastewater treatment plants (WW'TPs), septic systems, and developed land cover. No terms were selected for the log10 relative abundance
of qnrA in sediment. The sample size is indicated for each of the responses in each column. For each of the climatic and source terms, the standardized regression coefficient, B, is provided resulting from the Test stage of FIT. For each source term, two additional
rows result from the Find and Inform stages of the FIT framework. For each source term category (i.e., bovine, land-applied waste, or soil), the source description, the relative abundance ratio (RAR = 10#), and hyperparameters indicating the influence range around
sources, o, are summarized. Precipitation-term associations are shown in blue. The associations with freezing temperatures are shown in white. Bovine source associations are in red. Land-applied waste sources are shown in yellow.
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residential use was associated with a 63% (p < 0.05) increase in the
relative abundance of sull. For intl1, FIT selected the GORF land-
applied waste source term, representing land-applied residential
waste weighted by the density of nearby septic systems. A one
standard deviation increase in land-applied waste from residential
use was associated with a 43% (p < 0.05) increase in the relative
abundance of intI1.

For ARG responses in surface water, industrial waste’s land
application characterized these five ARGs” secondary sources. For
tet(W), FIT selected the ORF land-applied industrial waste source
term representing by-product solids from the animal product
or food processing industry (i.e., remains of butchered animals,
paunch manure, cheese production waste, and vegetable waste
materials). A one standard deviation increase in land-applied waste
from industrial use was associated with a 36% (p < 0.10) increase
in the relative abundance of tet(W). Then, for intll, FIT selected
the ORF land-applied industrial waste source term [i.e., “both the
by-product solids from the animal product or food processing and
liquid waste such as silage, leachate, whey, whey permeate, whey
filtrate, contact cooling water, cooling or boiler water containing
water treatment additives, and wash water generated in industrial,
commercial, and agricultural operations” (Wis. Admin, 2021)].
A one standard deviation increase in land-applied waste from
industrial use was associated with a 41% (p < 0.10) increase in the
relative abundance of intI1.

Our findings are consistent with current knowledge that ARGs
are enriched in biosolids from treatment processes (i.e., primary,
secondary, or advanced wastewater treatment) (Chen and Zhang,
2013; Burch et al., 2014; Pepper et al., 2018). This is the first
study to report an association between modeled contributions from
spatially distributed land-applied waste and ARGs recovered from
riverbed sediment and surface water. This is also the first study
to show that septage and municipal or industrial waste disposal
on land pollute and correspond with a quantifiable environmental
impact on antibiotic resistance levels in sediment and surface water.
The WPDES database lists the facility names associated with the
land application sites. After searching on company websites for
the products associated with each facility producing industrial
wastewater or sludge destined for land application, we found that
88.8% of the industrial land-applied waste sites are associated with
dairy and meat products. None (i.e., 0%) of the facilities were
associated with pharmaceuticals. This suggests that the disposal
of industrial wastes from dairy and meat processing extends
the polluting ability of industrial livestock agriculture and that
industrially produced, land-applied pharmaceutical waste is not a
source of elevated ARGs in this region.

3.5. Sandy soils are associated with
sediment ARGs, and clay soils are
associated with surface water ARGs

The bottom of Table 2 shows the results from the Inform and
Test stages corresponding to the soil as a source. For surface water
responses, only soil type D (clay loam, silty clay loam, sandy clay,
or silty clay) coverage was associated with a 70% increase in the
log10 relative abundance of erm(B). In sediment responses, soil
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type A (i.e., sand, sandy loam, loamy sand, or gravel) coverage was
associated with 152% and 79% increases in sull and intl1 logl0
relative abundances, respectively.

Soil type D contains clay, and we expect ARGs to correlate
with clay based on previous research (Mao et al., 2014; Wang
et al., 2016). A previous study also suggests that clay microbial
communities are more resilient to change from anthropogenic
sources compared to other soil types, like sand (Neumann et al.,
2013). Therefore, this contribution to erm(B) relative abundance of
clay soil sources may suggest the long-term impacts of agricultural
sources on clay microbial communities. However, we found
different results from the surface water results. Overall, soil appears
to significantly contribute to the relative abundance of these
ARGs, and the differences in soil sources for surface water and
sediment in this study have many potential explanations (e.g.,
adsorption, desorption, and absorption between overland soil,
riverbed sediment, and surface water). More observational data
and controlled mesocosm-scale experiments are needed to validate
these findings and characterize these complex dynamics.

3.6. Regional differences may affect the
primary sources of elevated ARGs

WWTPs were expected to show associations with sull and
intll, as sull is often conserved in integron-integrase mobile
genetic elements (Pruden et al, 2012; Amos et al, 2015), but
the FIT model selected neither municipal nor industrial WWTPs
associating with any of the five relative abundance responses across
surface water or sediment. One explanation is that in this rural
area of ~20,000 people (US Census Bureau, 2022), only five of the
WWTPs were flow-connected to the 20 sampling sites. Our study
area consists of a larger bovine-human ratio (Borchardt et al., 2021;
Burch et al.,, 2021; Wiesner-Friedman et al., 2021a) compared to
the study areas of previous ARG research in the South Platte River
Basin in Colorado, United States (Pruden et al., 2012), and the
Thames Watershed in Oxfordshire, United Kingdom (Amos et al.,
2015).

In our study, both sull and intIl were associated with land-
applied municipal waste and septage. The land-applied municipal
waste and septage represent the aggregation of treated septage
and wastewater, suggesting that some ARGs may originate from
WWTPs, but most likely, the persistent application of biosolids
on land represents a more significant source than WWTP effluent
or septic systems in this region. Quantitation methods with low
detection limits for intIl, more flow-connected sampling sites to
sources, or a different ARG panel may be needed to detect the
impacts of WWTP effluent or septic systems.

3.7. The overland influence range around
sources extends up to 13 km

elevated ARGs in
sediment had exponential influence ranges of wp<I13km

Bovine source terms associated with

on the river network, indicating that decayed contributions
would still be detected in the river when manure fields were
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up to 13km away from the river network. For all bovine
source terms associated with ARG responses in surface water,
decayed contributions would still be detected when sources were
up to 10km from the river network. For all land-applied
associated with ARGs, the
range was up to 8km for sediment and 10km for surface

waste source terms influence
water responses.

These overland, exponential influence ranges, «o, were
determined from the inform stage of FIT. In a previous
study (Wiesner-Friedman et al.,, 2021a), we remarked that this
hyperparameter captures more than average overland transport.
This hyperparameter characterizes the extent to which a microbial
response can capture a signal from sources so that longer overland
influence ranges may indicate either A) longer transport and B)
an increased probability of detection, or both. Previously, we
found longer overland influence ranges around sources for host-
associated Bacteroides in sediment (i.e., «p > 1 km) vs. surface
water (i.e.,, o < 1 km) (Wiesner-Friedman et al., 2021a).

In this study, on average, we found long overland influence
ranges [i.e, a mean value of ¢p =7.07km (95%CL: 4.22km,
9.92km)] for both sediment and surface water. ARGs can exist
naturally in soils (D’Costa et al., 2011) and be carried by either
aerobic or anaerobic bacteria (Xu et al, 2021); They can be
transferred to other bacteria by several genetic mechanisms (Davies
and Davies, 2010). These factors may increase the transport of and
ability to detect ARGs in surface waters compared to anaerobic
Bacteroides gene markers. Furthermore, Bacteroides persist briefly
outside of the gut of their hosts (Ballest¢ and Blanch, 2010),
so shorter overland influence ranges would be expected. One
implication of longer influence ranges around bovine sources
for ARGs compared to host-associated Bacteroides genes is that
host-associated markers may underrepresent the risks associated
with fecal contamination from bovine sources in surface water.
Additionally, this research and previous studies have found an
increased probability of detecting microbial genes in sediments
compared to surface water (see Supplementary material 52) (Kasich
et al., 2012; Wiesner-Friedman et al., 2021a), which suggests that
risks associated with particular sources may be underrepresented
from sampling transient surface water compared to time-integrated
polluted sediment.

The FIT model of ARGs in the environment is the first to
characterize overland influence ranges around these sources. A
setback distance of 34-67m from surface water has previously
been recommended for manure and slurry land application under
experimental conditions (Hall et al, 2020). The exponential
influence ranges from our study indicate that sources very
close to the river will greatly contribute but that distant
sources up to 13km away from the river network can also
impact ARG levels. A factor that may lead to long influence
ranges in this region is the karst geology, where fractures,
sinkholes, caves, disappearing streams, and springs may provide
direct pathways for contaminants, including antibiotics and
ARGs, to reach ground and surface waters (Stange and Tiehm,
2020; Xiang et al, 2020). Our findings are consistent with a
study in a karst region in Germany, where elevated ARGs
and human-specific fecal markers were detected in a spring
9km away from the suspected source (Stange and Tiehm,
2020).
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3.8. The modeling predicts localized
impacts to elevated ARGs in sediment and
dispersed impacts in surface water

Since this is the first study to report LUR results for erm(B) in
sediment and erm(B), tet(W), qnrA, sull, and intII in surface water,
we identified the databases that most reliably report the spatial
location of bovine and land-applied waste sources associated with
elevated relative abundance of these ARGs and their corresponding
regression coefficients (Table 2), and we have shown the spatial
impact of these pollution sources (Figure 1).

Figure 1A shows the geographical distribution of an increase
expected in the relative abundances of erm(B), tet(W), and sull
in sediment associated with risk-conservative contributions from
AFOs via the application of manure. This figure, which results
from a GORF SPM, suggests that elevated ARGs in riverbed
sediment are localized around manure application fields. However,
the extent to which those sources (viz., differently sized black
squares) qualify as polluters relates to their proximity to AFOs and
the scale of the operation (viz. differently sized blue diamonds).
This localized pollution may be influenced by ARG soil attachment
(Barrios et al., 2021). In previous LUR, AFOs were associated with
sull in sediment, but the spatial localization was not reported or
depicted (Pruden et al., 2012). Our LUR/FIT modeling showing
localized sediment ARG pollution is consistent with the field
studies of the enrichment of ARGs in AFO manure application
and dissemination into the environment (Fahrenfeld et al., 2014;
Wallace et al., 2018).

Figure 1B shows the geographical distribution of an increase
expected in the relative abundances of tet(W) and intII in surface
water associated with risk-conservative contributions from land
application sites. This figure, which results from an ORF SPM,
suggests that land application sites have a dispersed impact on
elevated ARGs in surface water.

These maps indicate locations where additional monitoring
may be needed to understand the impacts of different sources
on environmental and public (i.e., water users’) health. The
upper-bound hyperparameter values and database information also
serve other regions with similar geography, land use, agricultural
practices, and population to preliminarily define monitoring
locations for AMR studies.

4. Discussion

This is the first LUR study of ARGs in surface water and
the first LUR of more than two ARG responses from sediment
samples. Our primary finding is that bovine sources (i.e., AFOs
and manure application fields) were consistent sources of elevated
ARGs. This continues the large body of work that has detected
ARGs in livestock manure and slurry, on soil where the manure or
slurry is applied, and downstream of livestock operations (Joy et al.,
2013; Fahrenfeld et al., 2014; Peng et al., 2017; Wepking et al., 2017;
Guo et al., 2018; Lopatto et al., 2019; Hall et al., 2020; Miller et al,,
2020), but it is the first to connect modeled transport from manure
land application to elevated AMR.

Previous research has revealed that domestic and industrial
wasteland application sites are potential sources of elevated
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ARGs (Bondarczuk et al.,, 2016; Murray et al., 2019). However,
our study distinguishes itself as one that found associations
with the collective contributions from spatially distributed land-
applied waste sites over a large spatial scale and measured ARG
levels in the environment. A large body of work has detected
microbial contaminants associated with land-applied wastes in
soils, groundwater, surface water, and the air near application sites
(Brooks et al., 2007; Lapen et al., 2008; Tanner et al., 2008; Edwards
et al., 2009; Gottschall et al., 2009; Zerzghi et al., 2010; Esseili et al.,
2012; Mohapatra et al., 2016; Pepper et al., 2019). Our research adds
to this body of evidence.

While the US Environmental Protection Agency’s (EPA’)
Part 503 rule (Walker et al, 1994) regulates treatment and
land application standards for class A and B biosolids, there
are many similarities between pre-treatment class B biosolids
and anaerobically treated manure or slurry from dairy CAFOs.
Antibiotic-resistant bacteria, endotoxins, prions, pathogenic
bacteria, and protozoa have been reported in both (Pepper et al,
2019). Few regulations exist for the treatment of livestock facility
waste and its application on land. Regulations of livestock waste
have focused on nutrient management, do not require treatment
for viruses and pathogens, and only apply to be permitted
CAFOs. Class B biosolids must meet minimal treatment and
land application requirements. Therefore, one explanation for the
increased consistency of association between bovine sources and
ARG responses compared to land-applied waste sources is that
this land application is more regulated compared to manure and
that this additional regulation of treatment and land application
locations has resulted in less harm to water quality than bovine
manure land application. Another explanation could be that
the quantity of bovine manure land application is much greater
than other types in this region. However, regulators may want to
evaluate current treatment standards, land application restrictions,
and environmental monitoring of land application of waste more
generally to improve water quality.

The dissemination of fluoroquinolone-associated resistance
encoded by both chromosomal and plasmid-derived gnrA may
increase the risks of quinolone-resistant human pathogens in
surface water from plasmid-mediated HGT (Cummings et al,
2011). In the United States, fluoroquinolones are among the most
common clinically prescribed classes of antibiotics (Antibiotic Use
in the United States, 2017). Our findings that connect AFOs to the
levels of gnrA in surface water are concerning, and the United States
may want to consider broader enforcement of the recent policy
limiting the use of antibiotics that are clinically relevant to humans
in livestock settings (FDA, 2022).

Aside from the anthropogenic sources, the soil source
results in this study support that the processes involving the
interaction of anthropogenic sources, nearby soils, sediment,
and surface water are too complex for a linear modeling
approach to describe. The importance of soil sources in this
study shows that characterizing natural processes (i.e., physical,
biological, ecological, physicochemical, and chemical dynamics)
may help predict ARG levels and mitigate the impacts of
anthropogenic sources on AMR. Monitoring the impacts of chronic
and acute ARG-associated pollution events (i.e., pollution with
antibiotic-resistant bacteria and selective pressures) on adsorption,
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desorption, and absorption processes for various soil types may
provide an additional benefit. More complex modeling calls for
refinement in spatial scale and improvement in the prediction of
soil characteristics.

A concern for the applicability of this study to other regions
may be the availability of spatial databases. However, we found that
a strength of this study is that the key ARG sources in this study
(i.e., CAFOs, class A and B land application sites, and soil type) are
represented by nationally available databases in the United States.
Expanding these databases to include industrial livestock land
applications and greater detail about application methods and the
types of applied waste may be beneficial.

Here, we have focused on spatial relationships. However,
modeled the
and antecedent precipitation (see Table2 for results and

we have impact of freezing temperature
Supplementary material S5 for details). We found that freezing
temperature is negatively associated with ARGs in sediment
and positively associated with one ARG in surface water, which
is consistent with a previous study that found higher ARG
abundances during the Wisconsin manure application season
(Beattie et al., 2018). In addition, we identified three patterns
of association for ARGs with antecedent precipitation (see
Supplementary material S5). However, due to the temporal
resolution of sampling approximately only once every 3 months,
our results can only be interpreted as seasonal effects rather than
impacts from recent and antecedent precipitation.

Additionally, due to this temporal resolution, our models may
only capture the long-tail decay of ARGs disseminating from
sources (Burch et al., 2014; Lopatto et al., 2019; Macedo et al,,
2020; Barrios et al, 2021), meaning that peak contamination
corresponding to periods directly following manure application
is not well-characterized. Sampling at a finer temporal resolution
could help to better capture these peaks as well as the impact of
different flow events and meteorological variables.

The reproducibility of associations between the three source
categories associated with increases in ARGs (i.e., bovine, land-
applied waste, and soil) and the ARG responses in sediment
and surface water provides evidence that elevated ARGs in the
environment are linked to natural occurrence soils and land-
applied wastes of bovine, residential, or industrial origins. In our
study, we found that a one standard deviation increase in source
impacts is associated with increases between 36 and 152%. This is
larger than the expected percentage increase (17%) in total relative
abundances of ARGs (TARG) in sediment and surface water
associated with a total antibiotic selection pressure (TASP) score of
1-2 reported from a meta-analysis (Duarte et al., 2019). The greater
association in our study may indicate the combined influence of
enrichment from organic matter, antibiotics, and intracellular or
extracellular ARGs disseminating from sources (Xie et al., 2018).
Our findings call for more robust treatment regulations to remove
or reduce ARBs and ARGs from wastes and policies to decrease
antimicrobial use in livestock and humans.

Due to measured negative changes to the environment and
public health of communities living nearby dense industrial
livestock agriculture and land application sites (Greger and
Koneswaran, 2010; Lowman et al., 2013; Hooiveld et al., 2016),
a collaborative One Health approach (Robinson et al., 2016) may
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be beneficial for evaluating the impacts of these sources of mixed
contaminants (i.e., pathogens, ARB and ARGs, heavy metals,
disinfectants, fire retardants, pharmaceuticals, and polycyclic
aromatic hydrocarbons) (Kinney et al., 2006; Ma et al., 2011; Pepper
et al.,, 2018; Murray et al., 2019) on the shared health of humans,
animals, and the environment.
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