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AT M O S P H E R I C  S C I E N C E

Leading role of Saharan dust on tropical cyclone rainfall 
in the Atlantic Basin
Laiyin Zhu1, Yuan Wang2*, Dan Chavas3, Max Johncox4, Yuk L. Yung5

Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The 
impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning 
model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for indi-
vidual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evi-
dently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR, 
with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhance-
ment to radiative suppression at high dust concentrations. The model also highlights meaningful correlations 
between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near 
storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding 
its driving factors and physical mechanisms.

INTRODUCTION
Tropical cyclones (TCs) are extreme weather events that have caused 
catastrophic damages globally (1, 2). According to global and region-
al climate models, TC rainfall (TCR) is expected to increase with 
global warming, following the increased water vapor holding capac-
ity in the atmosphere with rising temperature (3–5). A recent study 
(6) compared the sea surface temperature (SST)–TCR relationships 
and discovered that the climate scaling (changing ratio between rain-
fall and rising temperature) under future warmer climate (5% per K) 
is smaller than the Clausius-Clapeyron scaling (7% per K) and ap-
parent scaling under current climate. In addition, recent satellite ob-
servations revealed a decreasing trend of rain rate in the core part of 
TCs but increasing trend in outer bands (7, 8). Besides ocean surface 
temperature and water vapor in the atmosphere, other environmen-
tal factors regulate the regional variations of TCR, including vertical 
wind shear (9–11), surface roughness change (12–14), and atmo-
spheric aerosols (15, 16). How the environment and climate influ-
ence the TCR remains unresolved, especially over multiyear to 
decadal time scales.

Saharan dust, transported across the Atlantic Ocean by trade 
winds, is the predominant aerosol type during summer and early fall 
over the tropical Atlantic (17). It can efficiently alter atmospheric 
radiative fluxes in both shortwave and longwave bands and partici-
pate in cloud formation by serving as cloud condensation nuclei 
(CCN) and/or ice nuclei (IN) (18). It has been reported that Saharan 
dust tends to suppress the formation of tropical cyclones via a cool-
ing effect on SST that consequently cuts the energy supply for TCs 
(19, 20). This phenomenon was evident during the peak of Europe-
an air pollution in the 1970s and 1980s, which is believed to have 
amplified the Sahel dust emissions due to the prevalent drought 
conditions. This intensified dust transport coincided with a notice-
able downturn in Atlantic hurricane activity (8). Another study (21) 

has highlighted a close association between the North Atlantic’s 
dust and considerable spatial shifts in factors such as zonal wind 
shear, midlevel moisture, and SST. However, they found a minimal 
correlation between dust optical depth (DOD) and the Atlantic’s 
accumulated cyclone energy. As Saharan dust-laden air masses 
move westward, they can introduce dry and stable air into the trop-
ical environment. This dry air inhibits the moisture and convection 
required for tropical cyclone formation. Moreover, by blocking so-
lar radiation from reaching the surface, dust can reduce SST. The 
dust effects on TCR can be more complicated and multifaceted. 
Similar to the anthropogenic aerosols (e.g., sulfate or hygroscopic 
organics) that provide more CCN to TC systems (22), dust can fos-
ter the hydrometeor formation in the cloud tower, enhance the ver-
tical motion of rain bands via elevated latent heat release, and result 
in more surface precipitation (23). In a nutshell, there is no consen-
sus on the sign of the dust effect on TCR, and it remains uncertain 
what is the relative importance of dust effect compared to the other 
meteorological factors.

Current climate models still do not have sufficient spatial resolu-
tion to resolve the complex microphysical processes of cloud and 
precipitation, particularly how aerosol microphysics affects deep 
convective clouds. While cloud-resolving numerical models were 
adopted to capture the complex air-sea and aerosol-TC interactions 
(14, 24), it remains challenging to run these models over multiyear 
to decadal climate time scales, given their computational expense. 
Therefore, a combination of big data and machine learning (ML) 
offers a promising alternative method for untangling those complex 
relationships between environment forcings and TC activities. Pre-
vious studies have demonstrated that ML has robust predictive 
capabilities in TC genesis, intensity, precipitation, and rapid intensi-
fication (14, 25–27). While current ML research on TCs primarily 
centers on enhancing forecasting and prediction capabilities, ML 
models also have the potential to unveil intricate and nonlinear re-
lationships between features and response variables. Recent ad-
vancements in interpretable ML further bolster the interpretability 
of these models. Therefore, in this research, we first derive a long-
term record of TCR, which is defined as the average tropical cyclone 
rain rate within 600 km of each TC position (see Materials and 
Methods), and then aim to: (i) develop an ML model capable of 
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predicting TCR variabilities across the Atlantic Ocean using envi-
ronmental forcing variables; (ii) pinpoint the most influential envi-
ronmental forcing variables within the ML model and explore their 
interactions; and (iii) specifically, elucidate the role of Saharan dust 
in TCR. This will be achieved by contrasting various ML models 
with and without the dust variable and interpreting their physical 
significance through the lens of ML interpretability techniques.

RESULTS
Model performance and overall effect of dust
A correlation analysis first shows very low correlations (coefficient 
generally smaller than 0.06) between individual environmental fac-
tors and TCR (fig.  S1). It indicates that conventional statistical 
methods such as linear regression may not work well to model 
TCR, likely due to the nonlinear relationships between environ-
mental features and TCR. Therefore, we use a more sophisticated 
ML approach, the Extreme Gradient Boosting (XGBoost) based on 
an ensemble of decision trees, to build our TCR models. Two dis-
tinct models were developed, one only including the traditional 
meteorological factors and geoinformation and the other adding 
DOD as another predictor. Results from fivefold cross-validation 
demonstrate that both DOD and non-DOD models offer decent 
out-of-sample prediction capabilities (with ~0.6 R2, as in Fig. 1, A 
and B), without overfitting the training data. Notably, the DOD 
model surpasses its counterpart, as evidenced by a higher R2 and a 
reduced root mean squared error (RMSE). The differences in condi-
tional median values further highlight the DOD model’s superiority 
across most TCR spectrums, with pronounced error reduction ob-
served for both light and heavy TCR extremes (as illustrated in 
Fig. 1C). Both models tend to have a larger magnitude of underes-
timates for heavy TCR than the overestimates for light TCR. With 
respect to the spatial distribution, we can also observe systematic 
improvement from the non-DOD to DOD models (Fig. 1D). On 
average, the absolute error (AE) of the non-DOD model is approxi-
mately fourfold that of the DOD model. This is underscored by the 
more frequent appearance of an AE ratio exceeding 1, indicating 
that the non-DOD model’s AE is consistently larger than that of the 
DOD model.

To test the model’s ability of generalization to new storms that 
have not been trained on, we conducted an additional analysis by 
grouping the data into 319 independent TCs and apply our ML 
models to predict TCRs in each hold-out TCs. Essentially, we 
trained 319 hold-one-TC-out models, and for the model evaluation, 
we used each model to predict rainfall of TC that was hold out be-
fore. Results show that the integrated TCR (sum of all TCRs within 
each TC) predicted by the DOD model generally agrees well with 
the observations, with R2 = 0.68, and RMSE = 27.1 mm (fig. S2). It 
indicates that at the storm scale, our DOD model can capture cer-
tain rainfall variabilities from TCs that never participated in the 
model training. We also trained a set of the DOD models only by 
standardized predictors (with a uniform range between 0 and 1 for 
scalars, and −1 and 1 for vectors) and they showed similar model 
performance (fig. S3) with the DOD models trained by predictors 
with original scales. For the analyses below, we choose to use the 
latter for better physical interpretability of model predictors.

The distinct thermal and surface characteristics of oceans and 
land directly affect how TCs interact with boundary layers and 
influence TCR processes (28). Over land, additional atmospheric 

factors, such as urban heat island effects (13) and man-made aero-
sols (22), add complexity to the precipitation patterns associated 
with TCs. To investigate these distinctions, we bifurcated our model 
predictions based on distance from shore (DIST ≤ 250 km for land; 
DIST > 250 km for ocean). Notably, the R2 for land samples in both 
non-DOD and DOD models (fig.  S4, A and B) slightly decrease 
from that of the broader basin (Fig. 1, A and B). Meanwhile, land 
RMSEs increase by 0.09 mm/hour for both non-DOD (9.8% in-
crease) and DOD models (10.5% increase). In addition, the over-
land TCR AE in the DOD model (0.79 mm/hour) exceeds its 
oceanic counterpart by 28% (0.61 mm/hour), a discrepancy also 
evident in AE frequency distributions (fig. S5A). The overall model 
improvement by adding DOD is almost the same between land 
(0.0317 mm/hour) and ocean (0.0313 mm/hour) (fig.  S5B). The 
general degraded performance of model performance (R2, RMSE, 
and AE) over land is partially because our current ML model does 
not explicitly include any land-specific parameters. This can also 
be  attributed to the higher mean and SD observed in land TCRs 
compared to the ocean (fig. S6, B and C).

Understanding contributions from different factors
To test the significance of environmental variables and interpret their 
interplay with TCRs, we used SHapley Additive exPlanations (SHAP) 
within XGBoost models. The SHAP value represents how individual 
model prediction changes in response to alterations in independent 
feature variables (Fig. 2). Specifically, a positive SHAP value signifies 
a favorable contribution from the independent variable to the pre-
dicted outcome (higher TCR here) and vice versa. The magnitude of 
SHAP values offers insight into TCR sensitivity relative to environ-
mental variable fluctuations and serves as a metric for variable im-
portance. In the non-DOD model, month, longitude, and latitude are 
key factors (Fig. 2A). Even though they do not directly have physical 
impacts on TCR, they contain rich information about the spatial and 
temporal variability of important environmental forcings. For ex-
ample, month reflects changes in SST and DOD throughout the sea-
sons. Figure  S7 indicates that positive TCR contributions (SHAP) 
mainly coincide with the regular Atlantic hurricane season (June to 
October). This period witnesses the peak Atlantic ocean surface tem-
perature favorable for TC genesis and sustenance (29). The longitude 
and latitude of the TC center are closely related to other factors like 
DOD, SST, humidity, and topography, all potentially important for 
TCR. Latitude further sheds light on TC characteristics (tropical ver-
sus extratropical storms), vertical wind shear, and Coriolis force 
variations, potentially influencing TC rainband dimensions.

In the DOD model, dust prominently exhibits the highest variable 
importance (Fig. 2B), corroborating the notion of the importance of 
Saharan dust from the error statistic comparisons seen in Fig. 1 and 
fig. S4. Yet, Month, longitude, and latitude persist as important indi-
cators even within the DOD model. The intertwining of important 
environmental drivers with month, longitude, and latitude may blur 
the physical understanding of both the complete non-DOD and 
DOD models. Consequently, we constructed two simpler XGBoost 
models focusing solely on environmental drivers to elucidate model 
interpretations. The DOD NoGeo model (Fig. 2C) omits month, lon-
gitude, and latitude from the primary DOD model. Furthermore, the 
DOD NoGeo Tropics model (Fig.  2D) confines its dataset to the 
tropics (spanning 5° to 30°) from the DOD NoGeo model. These re-
fined models (fig. S8) reveal a modest decline in R2 (−0.21 and −0.20) 
and an increase in RMSE (+0.20 and +0.15 mm/hour) relative to the 
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comprehensive DOD model (Fig. 1B). The performance of the No-
Geo Tropics model surpasses that of the NoGeo model, primarily 
because it excludes TCs undergoing extratropical transition. These 
extratropical transitions often entangle with midlatitude dynamics 
(30). Given our models lack direct information on these midlatitude 
system fluctuations, prediction accuracy diminishes for TCR at 
higher latitudes.

In both the DOD NoGeo and NoGeo Tropics models, the DOD 
shows as the top and the Reynolds SST shows as the third most in-
fluential environmental variable, as indicated in Fig. 2 (C and D). In 

addition, the surface (1000 hPa) equivalent potential temperature 
from 200 to 800 km (E000) stands out as an important thermody-
namical variable with strong relevance to TC energy source from 
the bottom and ranked second in NoGeo Tropics models. Within 
the tropics, positive TCR SHAP values are typically associated with 
lower DOD and higher SST ranges (Fig. 2D). Their detailed relation-
ships will be presented in the following sections. Although the pre-
cise relationship is multifaceted, the 850 to 200 hPa wind shear 
magnitude from 200 to 800 km emerges as a key determinant in the 
DOD NoGeo model (Fig. 2C).

Fig. 1. Model performance evaluation from different perspectives. The predicted/observed mean Tropical Cyclone Rainrate (TCR) within 600 km of the TC center 
(R < 600): for (A) the non-DOD model and (B) the DOD model using the scatter density plot (out-of-sample predictions are made for five testing sets and then combined, 
then 100 bins with equal intervals are generated for the TCR ranges. The count of scatters is summarized within each box); (C) difference between median values of TCR ob-
servations (binned within 10 quantiles) and the conditional median values for non-DOD (blue) and difference between median TCR observation and the conditional median 
DOD model predictions (red); (D) spatial pattern of absolute errors (AEs) of non-DOD models divided by AE of DOD models (top) and their histogram distribution (bottom).
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Nonmonotonic relationship between dust and TCR
The dust SHAP as a function of DOD reveals that the dust effect on 
TCR is nonmonotonic (Fig. 3A) for NoGeo Tropics models. A gen-
eral boomerang shape can be identified, with the apparent peak at a 
DOD value of approximately 0.06. Between DOD 0.06 and 0.08, the 
dust remains enhancing TCR, but the impact decreases. When 
DOD exceeds around 0.085, the SHAP value turns negative, indicat-
ing that suppression of TCR by dust starts to occur. An increase in 
TCR by the presence of dust can be explained by the microphysical 
precipitation enhancement by dust as CCN or IN, according to the 
existing modeling studies (23, 31, 32). There are two microphysical 
pathways for dust to enhance TCR: (i) as CCN, fine-mode dust 
reduces cloud droplet size, suppresses warm rain, and enhances 
mixed-phase processes that produce more ice hydrometeors and 

turn into more surface precipitation. As pointed out by recent litera-
ture, the efficiency of those processes is subject to meteorological 
factors such as entrainment rate and evaporation during the fall-out 
processes (33, 34), but such a cold-phase invigoration has also wide-
ly predicted by many numerical models; (ii) dust can serve as IN 
that directly contributes to heterogeneous ice nucleation and pro-
mote ice hydrometeor production. Note that it remains uncertain if 
the giant CCN, a potential role for the coarse-mode dust particle 
play, can increase the net precipitation, as they facilitate the warm 
rainfall but likely suppress the mixed-phase precipitant formation. It 
is reasonable to assume that the giant CCN effect is small, as our 
study domain is generally hundreds of miles away from the dust 
source regions, and the large-size particles have sedimented out 
during the long-range transport.

Fig. 2. Comparisons of variable importance from four different models based on the SHAP value. The variable importance calculated as SHAP value for: (A) Non-DOD 
models; (B) DOD models; (C) DOD models without geographical locations and month (DOD NoGeo models); and (D) DOD Nogeo models only based on data between 5° 
and 30° N (DOD NoGeo Tropics). Here, the SHAP value can be interpreted as how individual model prediction reacts to changes in particular features as compared to the 
mean of prediction. Each listed number is the feature importance, defined as the absolute mean of all SHAP values for a specific feature, and it reflects tropical cyclone rain 
rate’s sensitivity to each individual feature.
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A substantial segment of the SHAP values curve remains positive 
within the DOD range of 0.03 to 0.06, indicating higher TCR from 
model predictions. As DOD exceeds 0.06, both SHAP decrease rap-
idly, a trend occurring in a large fraction of TCR samples (Fig. 3A, 
bottom). The reduction of dust contribution to TCR and even a sup-
pression effect under the high dust loading conditions may indicate 
the emergence of the dust radiative effect when dust concentration 
is high enough to interfere with solar radiative fluxes, block them 
from reaching the ocean surface, and stabilize the atmosphere to 
weaken convection. On the other hand, the microphysical effects of 
precipitation enhancement can also be saturated and even reversed. 
When too much fine-mode dust particles as CCN are present, they 
largely reduce the particle size of ice hydrometeors and prevent 
them from falling onto the surface (35, 36).

We further examined the spatial distribution of DOD SHAP val-
ues to shed light on this complex relationship between TCR and 
DOD. Figure 3B reveals distinct DOD spatial patterns: the Western 
Atlantic regions (longitude ≤ −60°) primarily experience lower 
DODs, as they are relatively far from the dust source regions. Seg-
regating the data based on 10 DOD quantile intervals presents 

similar nonmonotonic dust SHAP responses as a function of DOD 
values for Western and Eastern Atlantic (Fig.  3B). Moreover, the 
Western Atlantic exhibits greater variability in mean TCR SHAP 
values, ranging from −0.24 to 0.10 mm/hour, with a broader spec-
trum of positive SHAP values. Meanwhile, the Eastern Atlantic (red 
curve) has a smaller SHAP range (−0.21 to 0.07 mm/hour) but a 
broader negative SHAP (DOD >  0.08). This indicates that while 
DOD can enhance and suppress TCR in both regions, its enhanc-
ing effect is more pronounced in the Western Atlantic. Its suppress-
ing effect is more evident in the Eastern Atlantic, primarily due to 
its proximity to the Saharan dust source and higher frequency of 
larger DOD cases (Fig.  3B, bottom). Previous studies revealed a 
suppressing effect of aerosols on TC activities over the Atlantic Ba-
sin (20, 37) but an enhancing effect over the Pacific (38), both as-
suming linear relationships between aerosols and low-frequency 
SST variability over the multiyear and large spatial scale. Our ML 
model revealed a nonlinear relationship between the DOD and the 
TCR at the individual TC level, signifying the importance of exam-
ining the TC-SST-DOD interactions in a sophisticate analyzing 
framework.

Fig. 3. Interpretation of the dust impacts on tropical cyclone rainfall based on the SHAP values and the locally estimated scatterplot smoothing function. (A) The 
distribution of beeswarm SHAP values based on the Eastern (red dots, ≥ −60°) and Western Atlantic Ocean (blue dots, < −60°), the black curves are smoothed SHAP values 
calculated by the locally estimated scatterplot smoothing (LOESS) function for all SHAP values, and the histograms (bottom). Both panels use a logarithm scale for the DOD 
for better visualization. (B) The mean of SHAP values based on 10 percentile bins of the whole data for the Eastern Atlantic (top), Western Atlantic (center), and their sepa-
rate frequency distributions (bottom). DOD smaller than 0.03 are not analyzed because of the satellite detection limit and uncertainty in the reanalysis data. All plots are 
for DOD NoGeo Tropics models.
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Leading meteorological factors
The significance of SST’s variable importance (Fig. 2) stands out as the 
third important factor in the ranking of the DOD NoGeo model and 
DOD NoGeo Tropics model. Note that latitude, longitude, and month 
information may partially overlap with the SST-related variabilities 
on TCR. In the regions with warmer ocean surfaces at lower latitudes, 
TCR has a pronounced sensitivity to SST. Increased TCR SHAP val-
ues generally match higher SSTs (Fig. 4A), supporting the widely ac-
cepted notion that warmer SSTs enhance TC development due to the 
abundant latent heat fluxes from the warm ocean surface (29, 39). 
However, there are also noticeable nonlinear variations within this 
overall positive trend. The SHAP plot (Fig. 4A) shows a clear peak at 
an SST of 26°C, even though this only accounts for a small portion of 
the data (Fig. 3B, bottom). Given that 26°C is the SST baseline requi-
site for TC genesis and growth (40), this peak at 26°C likely echoes a 
crucial SST benchmark for TCs. Most of the data lies between 27.5° 
and 30°C, where TCR shows a pronounced positive relationship with 
the SST. The 200-millibar V wind is the variable with the most covari-
ance with the SST regarding the SHAP value. However, its relation-
ship is quite complex and nonlinear. The SHAP values for other 
predictors for the NoGeo Tropics models are shown in fig. S9.

Recent studies have revealed notable global trends where the TCR 
in the inner bands of TCs decreases, whereas the TCR in the outer 
bands is on the rise (7, 8). As suggested by Tu et al. (7), the decreased 
TCR core can be linked to the recent global reduction in atmospher-
ic stability. To explore environmental controls on rain rates in differ-
ent parts of TCs, we created separate non-DOD Nogeo Tropics and 

DOD Nogeo Tropics models for averaged TCR in both inner core 
(<200 km of TC center) and outer bands (between 200 and 600 km 
of TC center). As shown in fig. S10, they all have decent prediction 
performances. Adding DOD has improved baseline models’ perfor-
mance, in particular for the core models, with a 0.06 (16%) increase 
in R2 and a 0.17 mm (22%) decrease in RMSE (fig. S10, A and B). 
The DOD outer band models have a 0.04 (11%) increase in R2 and a 
0.03 (3%) mm decrease in RMSE (fig.  S10, C and D). Regarding 
SHAP variable importance, the DOD achieved notable rankings 
within both the core (first) and outer band models (fourth), shown 
in fig. S11. Core regions of TCs predominantly witness convective 
precipitation, while the outer rain bands frequently experience 
stratiform precipitation (41). Our analysis indicates that the equiva-
lent potential temperature (E000) holds the highest variable impor-
tance in the non-DOD core model and second highest in the DOD 
core models, followed by SST (Fig. 4B and fig. S11). This concurs 
with the established understanding that atmospheric temperature 
and moisture content supply the essential energy and moisture for 
convective precipitation in the TC core. In general, a higher E000 
signifies larger buoyancy and/or more extensive moisture content in 
ascending air masses (42). Our findings underscore a pronounced 
positive association between TCR and E000 (Fig. 4B). This associa-
tion displays notable shifts from negative mean SHAP values when 
E000 is <78°C to positive mean SHAP values when E000 is >78°C, 
and the increase of mean SHAP happens when E000 is between 74° 
and 85°C, which covers the majority of the data (histogram in 
Fig. 4B). The 200-millibar U wind has the most covariance with 

Fig. 4. Major meteorological impacts on tropical cyclone rainfall. The SHAP value plots for (A) SST, (B) the equivalent potential temperature (E000) in the DOD Nogeo 
Tropics models. SST and E000 distributions are shown in histograms in bottom. The black curves are smoothed SHAP values calculated by the LOESS function.
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SST regarding the SHAP value, but its relationship is also complex. 
DOD, SST, and E000’s SHAP value patterns in the DOD core model 
(fig. S12) are similar to the 600 km model (Figs. 3 and 4) but with a 
larger magnitude.

Last, the 850 to 200 hPa wind shear (SHRD) is vital in the TCR 
within outer band regions (fig.  S13). The vertical wind shear can 
enhance the TCR by shifting the heaviest rainfall away from the cy-
clone center and strengthening the outer rain bands. In contrast, 
very high vertical wind shear may disrupt the TC circulation and 
suppress the convective precipitation (43, 44). Our DOD outer band 
models reflect a complex relationship between SHRD and TCR. In 
fig. S14, SHRD demonstrates a double boomerang shape, with two 
high SHAP peaks between 0 to 5 knots and 10 to 15 knots.

DISCUSSION
In this study, we leverage an advanced ML model and storm-level 
TCR dataset to predict tropical cyclone precipitation and to under-
stand the roles of environmental variables within these models. Our 
results successfully capture decent amount of TCR variability and 
showcase robust out-of-sample prediction accuracies. Different from 
previous conventional GCM and downscaling studies that focused 
on the large-scale relationship between TCR and climate variables on 
the monthly time scale (8), our research aims to advance the under-
standing of TCR mechanisms by focusing on TCR at individual 
storm level and expands to cover more environmental variables.

A major finding of our study is the pronounced impact of DOD 
on the model efficacy, with DOD emerging as a top factor in the 
models’ variable importance ranking. Moreover, the DOD’s influ-
ence on TCR in the North Atlantic is complex and nonlinear. An 
enhancing effect is observed when the DOD is between 0.03 and 
0.06, and this enhancing effect is mainly observed in the Western 
Atlantic Ocean, where dust loading is relatively low. An increase in 
DOD level before 0.06 may provide TCs with an additional supply of 
CCN or IN that facilitate cloud droplet or ice crystal formation 
within the TC rain bands (45, 46). However, when DOD exceeds 
0.06, a marked suppression of TCR occurs. It can be explained by 
the reduced solar radiation reaching the ocean surface. This leads to 
a decline in TC-induced precipitation, supporting the observations 
(47) for general rainfall patterns. Our DOD predictor is directly ex-
tracted from the reanalysis data, which are different from the SHIPS 
data for other environmental variables. The SHIPS data provide a 
complete variable list for TC behaviors and ready to use, but some of 
its variables are based on forecast and their definitions are some-
times arbitrary (e.g., 200 to 800 km to each TC center). Future work 
can test more potential environmental predictors from both SHIPS 
and reanalysis dataset (e.g., ERA5) that have different spatial ex-
tents, temporal resolutions, and lead time.

From the methodology perspective, ML algorithms like XG-
Boost exhibit strength in resolving nonlinear relationships in the 
atmosphere than traditional regression approaches. Our analysis 
demonstrates that TCR has low correlations with most environmen-
tal variables, and traditional parametric approaches like multiple 
linear regressions cannot capture the TCR variability and may suffer 
from multiple collinearity issues. The XGBoost does not have any 
stringent assumption of normal distribution and noncollinearity of 
predicting features and has been proved to have strong prediction 
performances in our case. Our interpretable ML framework can be 
extended to other atmospheric research involving complex interactions 

between different environmental factors and atmospheric processes. 
Regarding the SHAP values used in this study, although they do not 
directly come from any principle of physics, they can be used as a 
local feature attribution method to identify potential physical rela-
tionships and generate scientific hypotheses. They are also more ef-
ficient than the traditional parameter-perturbation experiments. 
Therefore, the SHAP values have already exhibited its exploratory 
power for analyzing complex relationships (47), especially in atmo-
spheric science research, such as tropical cyclone genesis, lightning 
prediction, etc. (48–50). In the present study, by combining XGBoost 
ML and SHAP values, we successfully identify the relationships 
between TCR and environmental variables including SST and DOD, 
most of which can be explained by current knowledge of physical 
processes with TC.

Note that different environmental variables may be intercon-
nected with each other in ML models. A principal components (PC) 
analysis can be applied to the predicting variables to first obtain or-
thogonal PC before they enter the ML model. However, this would 
make the physical interpretation of PCs more difficult than that of 
original predictors. In the present study, no matter to what extent 
DOD is correlated with other predictors, the effect of dust as an ad-
ditional predictor is rather obvious between two versions of ML 
models, highlighted by the enhancement of dust model predictability 
and DOD’s importance in the model.

In the broader context of climate change, prior studies have ex-
amined the differential scaling of TCR in response to increasing SST 
and atmospheric temperatures. By synthesizing results from 16 
studies, Knutson et al. (4) reported a median TCR increase of 14% 
for every 2°C global warming, ranging from 6 to 22%. Intriguingly, 
this rate surpasses the 7% increase per 1°C of tropical SST warming 
suggested by the Clausius-Clapeyron equation. In contrast, a subse-
quent research (6) reported a smaller apparent scaling (global 
warming) of TC precipitation than the Clausius-Clapeyron scaling 
(7%), yet it demonstrated a more pronounced climate scaling based 
on current climate conditions. Our ML model affirms the widely 
recognized positive correlation between SST and TCR. Yet, it reveals 
more intricate nonlinear dynamics modulated by specific SST 
thresholds and abrupt shifts in TCR behavior. Our model shows a 
pronounced increase in TCR when SST falls between 27° and 30°C, 
constituting most of our data. As SST rises, so does the total water 
available for precipitation, resulting in larger TCR. We also identify 
that high equivalent potential temperature can boost convective 
rainfall from near inner cores of TCs due to increased air tempera-
ture and moisture. Large jumps of the inner core TCR are observed 
when the equivalent potential temperature is between 74° and 
85°C. The relationship between TCR and SST can be affected by the 
presence of dust, in particular in the core part of the TCs (<200 km). 
The abundance of Saharan dust correlates with droughts in West 
Africa and is controlled by both climate natural variability and an-
thropogenic global warming (51, 52). The reported TCR-SST-DOD 
relationships can be used to evaluate TC numerical simulations in 
the global cloud-resolving or storm-resolving models currently un-
der development.

MATERIALS AND METHODS
The TCR estimation
We first obtained the NASA GPM IMERG (Integrated Multi-satellitE 
Retrievals for Global Precipitation Measurement) data V06 final 
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run. The IMERG data incorporate advanced algorithms and data 
fusion techniques and combine multiple satellite products to pro-
vide hourly precipitation rate estimates globally with a 0.1° spatial 
resolution half-hour interval (53). Then, we extracted all Atlantic 
TC locations (in longitude and latitude with 6-hour interval) from 
2003 to 2021 from the International Best Track Archive for Climate 
Stewardship (IBTrACS) data (54). We also obtained other relevant 
information for each TC location, including time (at each location), 
distance to the nearest coastal line (DIST), the maximum wind 
speed (VMAX), and storm classification from the IBTrACS (CLASS). 
All IMERG pixels with >0.1 mm/hour rain rate within 600 km 
(r < 600 km) of each TC center are defined as the snapshot TC rain 
rate (TCR). The 600-km search boundary captures most TCR (4, 8) 
and sets up a consistent criterion for the dependent variable of ML 
models. Drizzle observations (<0.1 mm/hour) are removed mainly 
because heavier precipitation with potential flooding impact is the 
focus of this study. Light rains from the GPM sensors are also pos-
sibly contaminated by nonraining signals (8, 55). We calculated the 
mean TCR for all >0.1 mm/hour grids inside each snapshot and 
used them as the dependent variable for model training and inter-
pretation. For a more nuanced comparison, we also computed aver-
age TCR specifically for the inner core (radius less than 200 km) and 
the outer rain bands (radius between 200 and 600 km).

Environmental variables
The statistical hurricane intensity prediction scheme (SHIPS) is a 
widely used dataset for forecasting tropical cyclones wind intensity 
over the Atlantic Ocean (56, 57). Developed by the Regional and 
Mesoscale Meteorology Branch of the Cooperative Institute for Re-
search in the Atmosphere at the National Oceanic and Atmospheric 
Administration (RAMMB/CIRA at NOAA), SHIPS incorporates 
various atmospheric and oceanic variables to provide valuable in-
formation about the intensity but also other behaviors of TCs. We 
choose the SHIPS as the major data source of our predictors because 
it is a very comprehensive dataset that includes quality controlled 
and readily available variables for each historical TC. For example, 
SHIPS includes forecasts of the NCEP global forecasting system, the 
Geostationary Operational Environmental Satellite (GOES) infra-
red imagery, Reynolds SST analyses, and oceanic heat content esti-
mated from satellite altimetry measurements. SHIPS have been 
widely used to develop both forecasting and explanatory models for 
both TC intensity and rainfall structures (11, 58, 59). Here, we fur-
ther down-selected a subset of environmental variables that are 
closely related to TCR, including both convective precipitation and 
stratiform precipitation (41). The Reynold SST (60) are extracted for 
each TC location with r = 200 to 800 km and t = 0 from SHIPS (8), 
and it will be used as a predictor in our ML models. Similarly, we 
also obtained the 1000 hPa equivalent potential temperature (E000, 
r = 200 to 800 km), relative humidity at 750 to 500 hPa (RHMD, 
r = 200 to 800 km) and 1000 hPa (R000, r = 200 to 800 km), 200 hPa 
zonal and meridian winds (U20C and V20C, r = 0 to 500 km), 200 hPa 
divergence (D200, r = 0 to 1000 km, with storm circulation filtered 
out), 1000 hPa air temperature (T000, r = 200 to 800 km) and rela-
tive humidity (R000, r = 200 to 800 km), and 0 to 1000 km average 
total precipitable water (PW17, r  =  0 to 1000 km) from the 
SHIPS. Magnitudes and directions of vertical wind shears are also 
extracted for 850 to 200 hPa (SHRD and SHTD, r = 200 to 800 km) 
and 850 to 500 hPa (SHRS and SHTS, r = 200 to 800 km). In addition 
to IBTrACS and SHIPS, we also derived the DOD from Copernicus 

Atmosphere Monitoring Service (CAMS) European Centre for 
Medium-Range Weather Forecasts (ECMWF) Atmospheric Com-
position Reanalysis 4 (EAC4) dataset that assimilates satellite aero-
sol observations (61). The DOD is calculated as the average of all 
observations within between 1000 and 200 km from the TC center 
with 6-hour leading time. This leading time is designed to detect 
possible influence from DOD to TCR with minimum impact from 
their possible feedback. All environmental variables are aligned with 
the TCR observations and ready for the ML model training for the 
next step. Details about all dependent and independent variables are 
listed in table  S1, which gives their acronyms, physical meanings, 
and units.

Model training and evaluation
We use the XGBoost algorithm (62) to train our TCR models. The 
XGBoost is a powerful ML approach that uses an ensemble of deci-
sion trees, where each subsequent tree aims to correct the mistakes 
made by the previous ones. It efficiently combines the predictions 
from multiple weak learners to create a robust and accurate final 
prediction, and it can handle both regression (our models) and 
classification problems.

The model development and interpretation processes are shown 
as a schematic plot in fig.  S14. We first split the whole data ran-
domly into 80% training data (orange boxes in fig. S14) and 20% 
testing data. We first train XGBoost model based on 80% data and 
then use it to make predictions based on 20% testing data. We repeat 
80/20% model training and testing processes five times so five slices 
of testing data cover the whole sample. Then, we calculate statistical 
metrics including Mean AEs (MAEs), RMSE, and R2 to evaluate the 
out-of-sample prediction performance of XGBoost models. We test 
different versions of model: (i) without DOD (non-DOD model), 
(ii) with DOD (DOD model), (iii) DOD model with geographical 
locations (longitudes and latitudes) and months removed (DOD 
NoGeo), and (iv) DOD NoGeo model only for the tropical Atlantic 
region with latitude = 5° to 30° (DOD Nogeo Tropics). We combine 
the “Caret” and “XGBoost” R packages to streamline the hyperpa-
rameter search/tuning (62, 63). More details about the combina-
tions of hyperparameter and cross-validation methods can be found 
in table S2.

Model interpretation
ML models are adept not only at delivering accurate predictions but 
also at providing insights into fundamental physical processes. One 
advantage of the XGBoost algorithm is that it can reveal complex 
and nonlinear relationships between features and predictions. Here, 
we use the SHAP (64) to interpret our trained models.

The SHAP borrows the concept of Shapley values from game 
theory (63). It provides a systematic way to assign importance or 
contribution values to individual features in a model and measures 
the impact of each feature on the prediction by considering all pos-
sible feature subsets and their corresponding predictions. It enables 
us to understand each feature’s relative importance in the model’s 
decision-making process. The original formula (65) to calculate 
Shapley value can be expressed as

ϕj(v) =
∑

S⊆ {1,… ,p}� {j}

∣S ∣ ! (p− ∣S ∣ − 1) !

p !
(vx(S ∪ {j}) − vx(S))

(1)
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where S is a subset of p features used in the model, and x is the vec-
tor of feature values of the instance to be explained. vx(S) is the 
prediction for feature values in set S that are marginalized over 
features that are not included in set S. Because all possible combi-
nations of features need to be evaluated with and without one spe-
cific feature to calculate its exact Shapley value, its computing 
resources requirement exponentially increases when number of 
features becomes larger. Approximations are designed to reduce 
the computing time, such as the Monte-Carlo sampling proposed 
by Štrumbelj et al. (66). We used the R package “shapviz” (67) to 
calculate and visualize the SHAP in our analysis. We first use SHAP 
to calculate the feature importance of different XGBoost models 
and then use it to understand how TCR reacts to changes of different 
environmental forcings.

Supplementary Materials
This PDF file includes:
Figs. S1 to S14
Tables S1 and S2

REFERENCES AND NOTES
	 1.	 R. Mendelsohn, K. Emanuel, S. Chonabayashi, L. Bakkensen, The impact of climate change 

on global tropical cyclone damage. Nat. Clim. Chang. 2, 205–209 (2012).
	 2.	L . Zhu, S. M. Quiring, Exposure to precipitation from tropical cyclones has increased over 

the continental United States from 1948 to 2019. Commun. Earth Environ. 3, 312 (2022).
	 3.	 K. Emanuel, Assessing the present and future probability of Hurricane Harvey’s rainfall. 

Proc. Natl. Acad. Sci. U.S.A. 114, 12681–12684 (2017).
	 4.	T . Knutson, S. J. Camargo, J. C. L. Chan, K. Emanuel, C.-H. Ho, J. Kossin, M. Mohapatra,  

M. Satoh, M. Sugi, K. Walsh, L. Wu, Tropical cyclones and climate change assessment: Part 
II: Projected response to anthropogenic warming. Bull. Am. Meteorol. Soc. 101, E303–E322 
(2020).

	 5.	L . Zhu, K. Emanuel, S. M. Quiring, Elevated risk of tropical cyclone precipitation and 
pluvial flood in Houston under global warming. Environ. Res. Lett. 16, 094030 (2021).

	 6.	 A. M. Stansfield, K. A. Reed, Global tropical cyclone precipitation scaling with sea surface 
temperature. NPJ Clim. Atmos. Sci. 6, 60 (2023).

	 7.	 S. Tu, J. Xu, J. C. L. Chan, K. Huang, F. Xu, L. S. Chiu, Recent global decrease in the 
inner-core rain rate of tropical cyclones. Nat. Commun. 12, 1948 (2021).

	 8.	 O. Guzman, H. Jiang, Global increase in tropical cyclone rain rate. Nat. Commun. 12, 5344 
(2021).

	 9.	 S. S. Chen, J. A. Knaff, F. D. Marks Jr., Effects of vertical wind shear and storm motion on 
tropical cyclone rainfall asymmetries deduced from TRMM. Mon. Weather Rev. 134, 
3190–3208 (2006).

	 10.	 M. T. Wingo, D. J. Cecil, Effects of vertical wind shear on tropical cyclone precipitation. 
Mon. Weather Rev. 138, 645–662 (2010).

	 11.	 Y. Zhou, L. Zhu, C. J. Matyas, H. Luan, J. Tang, Assessing environmental conditions 
associated with spatially varying rainfall structure of North Atlantic tropical cyclones: An 
object-based climatological analysis. Int. J. Climatol. 43, 5464–5484 (2023).

	 12.	 M. Feldmann, K. Emanuel, L. Zhu, U. Lohmann, Estimation of Atlantic tropical cyclone 
rainfall frequency in the United States. J. Appl. Meteorol. Climatol. 58, 1853–1866 (2019).

	 13.	 W. Zhang, G. Villarini, G. A. Vecchi, J. A. Smith, Urbanization exacerbated the rainfall and 
flooding caused by hurricane Harvey in Houston. Nature 563, 384–388 (2018).

	 14.	L . Zhu, P. Aguilera, Evaluating variations in tropical cyclone precipitation in Eastern 
Mexico using machine learning techniques. J. Geophys. Res. Atmos. 126, e2021JD034604 
(2021).

	 15.	 Y. Wang, K.-H. Lee, Y. Lin, M. Levy, R. Zhang, Distinct effects of anthropogenic aerosols on 
tropical cyclones. Nat. Clim. Chang. 4, 368–373 (2014).

	 16.	C . Zhao, Y. Lin, F. Wu, Y. Wang, Z. Li, D. Rosenfeld, Y. Wang, Enlarging rainfall area of tropical 
cyclones by atmospheric aerosols. Geophys. Res. Lett. 45, 8604–8611 (2018).

	 17.	 A. M. Johansen, R. L. Siefert, M. R. Hoffmann, Chemical composition of aerosols collected 
over the tropical North Atlantic Ocean. J. Geophys. Res. Atmos. 105, 15277–15312 (2000).

	 18.	 B. Pan, Y. Wang, Y. Lin, J.-S. Hsieh, M. Lavallee, L. Zhao, R. Zhang, Radiative and 
microphysical impacts of the Saharan dust on two concurrent tropical cyclones: Danielle 
and Earl (2010). J. Geophys. Res. Atmos. 129, e2023JD039245 (2024).

	 19.	 J. P. Dunion, C. S. Velden, The impact of the Saharan air layer on atlantic tropical cyclone 
activity. Bull. Am. Meteorol. Soc. 85, 353–366 (2004).

	 20.	 R. Rousseau-Rizzi, K. Emanuel, Natural and anthropogenic contributions to the hurricane 
drought of the 1970s–1980s. Nat. Commun. 13, 5074 (2022).

	 21.	 P. Xian, P. J. Klotzbach, J. P. Dunion, M. A. Janiga, J. S. Reid, P. R. Colarco, Z. Kipling, 
Revisiting the relationship between Atlantic dust and tropical cyclone activity using 
aerosol optical depth reanalyses: 2003–2018. Atmos. Chem. Phys. 20, 15357–15378 
(2020).

	 22.	 B. Pan, Y. Wang, T. Logan, J. S. Hsieh, J. H. Jiang, Y. Li, R. Zhang, Determinant role of 
aerosols from industrial sources in Hurricane Harvey's catastrophe. Geophys. Res. Lett. 47, 
e2020GL090014 (2020).

	 23.	 Y. Zhang, F. Yu, G. Luo, J. Fan, S. Liu, Impacts of long-range-transported mineral dust on 
summertime convective cloud and precipitation: A case study over the Taiwan region. 
Atmos. Chem. Phys. 21, 17433–17451 (2021).

	 24.	 Y. Lin, Y. Wang, J. S. Hsieh, J. Jiang, Q. Su, L. Zhao, M. Lavallee, R. Zhang, Assessing the 
destructiveness of tropical cyclones induced by anthropogenic aerosols in an 
atmosphere-ocean coupled framework. Atmos. Chem. Phys. 23, 13835–13852 (2023).

	 25.	H . Su, L. Wu, J. H. Jiang, R. Pai, A. Liu, A. J. Zhai, P. Tavallali, M. Demaria, Applying satellite 
observations of tropical cyclone internal structures to rapid intensification forecast with 
machine learning. Geophys. Res. Lett. 47, e2020GL089102 (2020).

	 26.	T . Zhang, W. Lin, Y. Lin, M. Zhang, H. Yu, K. Cao, W. Xue, Prediction of tropical cyclone 
genesis from mesoscale convective systems using machine learning. Weather Forecast. 
34, 1035–1049 (2019).

	 27.	 Q. Yang, C.-Y. Lee, M. K. Tippett, D. R. Chavas, T. R. Knutson, Machine learning–based 
hurricane wind reconstruction. Weather Forecast. 37, 477–493 (2022).

	 28.	 R. E. Tuleya, Y. Kurihara, A numerical simulation of the landfall of tropical cyclones. J. 
Atmos. Sci. 35, 242–257 (1978).

	 29.	 K. A. Emanuel, An air-sea interaction theory for tropical cyclones. Part I: Steady-state 
maintenance. J. Atmos. Sci. 43, 585–605 (1986).

	 30.	C . Jung, G. M. Lackmann, Changes in tropical cyclones undergoing extratropical 
transition in a warming climate: Quasi-idealized numerical experiments of North Atlantic 
landfalling events. Geophys. Res. Lett. 50, e2022GL101963 (2023).

	 31.	 S. P. Parajuli, G. L. Stenchikov, A. Ukhov, S. Mostamandi, P. A. Kucera, D. Axisa,  
W. I. Gustafson Jr., Y. Zhu, Effect of dust on rainfall over the Red Sea coast based on 
WRF-Chem model simulations. Atmos. Chem. Phys. 22, 8659–8682 (2022).

	 32.	T . Yuan, J. Huang, J. Cao, G. Zhang, X. Ma, Indian dust-rain storm: Possible influences of 
dust ice nuclei on deep convective clouds. Sci. Total Environ. 779, 146439 (2021).

	 33.	 J. M. Peters, Z. J. Lebo, D. R. Chavas, C. Y. Su, Entrainment makes pollution more likely to 
weaken deep convective updrafts than invigorate them. Geophys. Res. Lett. 50, 
e2023GL103314 (2023).

	 34.	 Y. Sun, Y. Wang, C. Zhao, Y. Zhou, Y. Yang, X. Yang, H. Fan, X. Zhao, J. Yang, Vertical 
dependency of aerosol impacts on local scale convective precipitation. Geophys. Res. Lett. 
50, e2022GL102186 (2023).

	 35.	 G. Li, Y. Wang, R. Zhang, Implementation of a two-moment bulk microphysics scheme to 
the WRF model to investigate aerosol-cloud interaction. J. Geophys. Res. Atmos. 113, 
D15211 (2008).

	 36.	 Y. Wang, J. M. Vogel, Y. Lin, B. Pan, J. Hu, Y. Liu, X. Dong, J. H. Jiang, Y. L. Yung, R. Zhang, 
Aerosol microphysical and radiative effects on continental cloud ensembles. Adv. Atmos. 
Sci. 35, 234–247 (2018).

	 37.	 A. T. Evan, D. J. Vimont, A. K. Heidinger, J. P. Kossin, R. Bennartz, The role of aerosols in the 
evolution of tropical North Atlantic ocean temperature anomalies. Science 324, 778–781 
(2009).

	 38.	 Y. Yang, D. J. W. Piper, M. Xu, J. Gao, J. Jia, A. Normandeau, D. Chu, L. Zhou, Y. P. Wang,  
S. Gao, Northwestern Pacific tropical cyclone activity enhanced by increased Asian dust 
emissions during the Little Ice Age. Nat. Commun. 13, 1712 (2022).

	 39.	 M. Yanai, Formation of tropical cyclones. Rev. Geophys. 2, 367–414 (1964).
	 40.	 R. McTaggart-Cowan, E. L. Davies, J. G. Fairman Jr., T. J. Galarneau Jr., D. M. Schultz, 

Revisiting the 26.5°C sea surface temperature threshold for tropical cyclone 
development. Bull. Am. Meteorol. Soc. 96, 1929–1943 (2015).

	 41.	 R. A. Houze Jr., Clouds in tropical cyclones. Mon. Weather Rev. 138, 293–344 (2010).
	 42.	 F. Song, G. J. Zhang, V. Ramanathan, L. R. Leung, Trends in surface equivalent potential 

temperature: A more comprehensive metric for global warming and weather extremes. 
Proc. Natl. Acad. Sci. U.S.A. 119, e2117832119 (2022).

	 43.	 K. L. Corbosiero, J. Molinari, The effects of vertical wind shear on the distribution of 
convection in tropical cyclones. Mon. Weather Rev. 130, 2110–2123 (2002).

	 44.	 B. Tang, K. Emanuel, Midlevel ventilation’s constraint on tropical cyclone intensity. J. 
Atmos. Sci. 67, 1817–1830 (2010).

	 45.	 P. J. DeMott, A. J. Prenni, X. Liu, S. M. Kreidenweis, M. D. Petters, C. H. Twohy,  
M. S. Richardson, T. Eidhammer, D. C. Rogers, Predicting global atmospheric ice nuclei 
distributions and their impacts on climate. Proc. Natl. Acad. Sci. U.S.A. 107, 11217–11222 
(2010).

	 46.	 P. J. Demott, K. Sassen, M. R. Poellot, D. Baumgardner, D. C. Rogers, S. D. Brooks,  
A. J. Prenni, S. M. Kreidenweis, African dust aerosols as atmospheric ice nuclei. Geophys. 
Res. Lett. 30, 1732 (2003).

	 47.	D . Rosenfeld, Y. Rudich, R. Lahav, Desert dust suppressing precipitation: A possible 
desertification feedback loop. Proc. Natl. Acad. Sci. U.S.A. 98, 5975–5980 (2001).

D
ow

nloaded from
 https://w

w
w

.science.org at Stanford U
niversity on July 24, 2024



Zhu et al., Sci. Adv. 10, eadn6106 (2024)     24 July 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

10 of 10

	 48.	H . Chen, S. M. Lundberg, S.-I. Lee, Explaining a series of models by propagating Shapley 
values. Nat. Commun. 13, 4512 (2022).

	 49.	C . L. Loi, C.-C. Wu, Y.-C. Liang, Prediction of tropical cyclogenesis based on machine 
learning methods and its SHAP interpretation. J. Adv. Model. Earth Syst. 16, 
e2023MS003637 (2024).

	 50.	 G. Song, S. Li, J. Xing, Lightning nowcasting with aerosol-informed machine learning and 
satellite-enriched dataset. NPJ Clim. Atmos. Sci. 6, 126 (2023).

	 51.	H . M. Clifford, N. E. Spaulding, A. V. Kurbatov, A. More, E. V. Korotkikh, S. B. Sneed,  
M. Handley, K. A. Maasch, C. P. Loveluck, J. Chaplin, M. McCormick, P. A. Mayewski, A 2000 
year Saharan dust event proxy record from an ice core in the European Alps. J. Geophys. 
Res. Atmos. 124, 12882–12900 (2019).

	 52.	 M. Yoshioka, N. M. Mahowald, A. J. Conley, W. D. Collins, D. W. Fillmore, C. S. Zender,  
D. B. Coleman, Impact of desert dust radiative forcing on sahel precipitation: Relative 
importance of dust compared to sea surface temperature variations, vegetation changes, 
and greenhouse gas warming. J. Climate 20, 1445–1467 (2007).

	 53.	 G. J. Huffman, D. T. Bolvin, D. Braithwaite, K.-L. Hsu, R. J. Joyce, C. Kidd, E. J. Nelkin,  
S. Sorooshian, E. F. Stocker, J. Tan, D. B. Wolff, P. Xie, Integrated Multi-satellite Retrievals for 
the Global Precipitation Measurement (GPM) Mission (IMERG) (Cham: Springer International 
Publishing, Cham, 2020), pp. 343–353.

	 54.	 K. R. Knapp, M. C. Kruk, D. H. Levinson, H. J. Diamond, C. J. Neumann, The International Best 
Track Archive for Climate Stewardship (IBTrACS). Bull. Am. Meteorol. Soc. 91, 363–376 (2010).

	 55.	 S. Tu, J. C. L. Chan, J. Xu, Q. Zhong, W. Zhou, Y. Zhang, Increase in tropical cyclone rain rate 
with translation speed. Nat. Commun. 13, 7325 (2022).

	 56.	 M. Demaria, J. Kaplan, A statistical hurricane intensity prediction scheme (SHIPS) for the 
Atlantic Basin. Weather Forecast. 9, 209–220 (1994).

	 57.	 M. Demaria, M. Mainelli, L. K. Shay, J. A. Knaff, J. Kaplan, Further improvements to the 
statistical hurricane intensity prediction scheme (SHIPS). Weather Forecast. 20, 531–543 
(2005).

	 58.	T . A. Jones, D. J. Cecil, SHIPS-MI forecast analysis of hurricanes Claudette (2003), Isabel 
(2003), and Dora (1999). Weather Forecast. 22, 689–707 (2007).

	 59.	 Y. Zhou, C. Matyas, H. Li, J. Tang, Conditions associated with rain field size for tropical 
cyclones landfalling over the Eastern United States. Atmos. Res. 214, 375–385 (2018).

	 60.	 R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, M. G. Schlax, Daily high-
resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496 (2007).

	 61.	 A. Inness, M. Ades, A. Agustí-Panareda, J. Barré, A. Benedictow, A.-M. Blechschmidt,  
J. J. Dominguez, R. Engelen, H. Eskes, J. Flemming, V. Huijnen, L. Jones, Z. Kipling,  
S. Massart, M. Parrington, V.-H. Peuch, M. Razinger, S. Remy, M. Schulz, M. Suttie, The 
CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 
(2019).

	 62.	T . Chen, C. Guestrin, paper presented at the Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining, San Francisco, 
California, USA, 2016.

	 63.	L . S. Shapley, Notes on the N-Person Game &mdash; II: The Value of an N-Person Game 
(RAND Corporation, Santa Monica, CA, 1951).

	 64.	 S. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions. Adv. Neural. 
Inf. Process. Syst. 30, 4768–4777 (2017).

	 65.	C . Molnar, Interpretable Machine Learning: A Guide for Making Black Box Models Explainable 
(ed. 2, 2022).

	 66.	E . Štrumbelj, I. Kononenko, Explaining prediction models and individual predictions with 
feature contributions. Knowl. Inf. Syst. 41, 647–665 (2014).

	 67.	 M. Mayer, shapviz: SHAP Visualizations. R package version 0.8.0 (2023); https://
cran.r-project.org/web/packages/shapviz/index.html.

Acknowledgments: We thank the constructive comments from the anonymous referees. 
Funding: Y.W. was supported by the NSF (AGS-2103714). L.Z was supported by the Faculty 
Research and Creative Activities Award from Western Michigan University. Author 
contributions: Conceptualization: Y.W., L.Z., and D.C.; data acquisition: L.Z. and Y.W.; 
methodology: Y.W., L.Z., and D.C.; formal analysis: L.Z., Y.W., and M.J.; writing–original draft: L.Z., 
Y.W., and D.C.; writing–review and editing: All authors. Competing interests: The authors 
declare that they have no competing interests. Data and materials availability: All data 
needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials. Raw and processed data as well as ML codes are archived at 
Stanford Digital Repository Services with DOI: https://doi.org/10.25740/vh400jc1009

Submitted 18 December 2023 
Accepted 20 June 2024 
Published 24 July 2024 
10.1126/sciadv.adn6106

D
ow

nloaded from
 https://w

w
w

.science.org at Stanford U
niversity on July 24, 2024

https://cran.r-project.org/web/packages/shapviz/index.html
https://cran.r-project.org/web/packages/shapviz/index.html
https://doi.org/10.25740/vh400jc1009

	Leading role of Saharan dust on tropical cyclone rainfall in the Atlantic Basin
	INTRODUCTION
	RESULTS
	Model performance and overall effect of dust
	Understanding contributions from different factors
	Nonmonotonic relationship between dust and TCR
	Leading meteorological factors

	DISCUSSION
	MATERIALS AND METHODS
	The TCR estimation
	Environmental variables
	Model training and evaluation
	Model interpretation

	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


