Check for
updates

SCIENCE ADVANCES | RESEARCH ARTICLE

ATMOSPHERIC SCIENCE

Leading role of Saharan dust on tropical cyclone rainfall

in the Atlantic Basin

Laiyin Zhu', Yuan Wangz*, Dan Chavas?, Max Johncox?, Yuk L. Yung5

Tropical cyclone rainfall (TCR) extensively affects coastal communities, primarily through inland flooding. The
impact of global climate changes on TCR is complex and debatable. This study uses an XGBoost machine learning
model with 19-year meteorological data and hourly satellite precipitation observations to predict TCR for indi-
vidual storms. The model identifies dust optical depth (DOD) as a key predictor that enhances performance evi-
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dently. The model also uncovers a nonlinear and boomerang-shape relationship between Saharan dust and TCR,
with a TCR peak at 0.06 DOD and a sharp decrease thereafter. This indicates a shift from microphysical enhance-
ment to radiative suppression at high dust concentrations. The model also highlights meaningful correlations
between TCR and meteorological factors like sea surface temperature and equivalent potential temperature near
storm cores. These findings illustrate the effectiveness of machine learning in predicting TCR and understanding

its driving factors and physical mechanisms.

INTRODUCTION

Tropical cyclones (TCs) are extreme weather events that have caused
catastrophic damages globally (I, 2). According to global and region-
al climate models, TC rainfall (TCR) is expected to increase with
global warming, following the increased water vapor holding capac-
ity in the atmosphere with rising temperature (3-5). A recent study
(6) compared the sea surface temperature (SST)-TCR relationships
and discovered that the climate scaling (changing ratio between rain-
fall and rising temperature) under future warmer climate (5% per K)
is smaller than the Clausius-Clapeyron scaling (7% per K) and ap-
parent scaling under current climate. In addition, recent satellite ob-
servations revealed a decreasing trend of rain rate in the core part of
TCs but increasing trend in outer bands (7, 8). Besides ocean surface
temperature and water vapor in the atmosphere, other environmen-
tal factors regulate the regional variations of TCR, including vertical
wind shear (9-11), surface roughness change (12-14), and atmo-
spheric aerosols (15, 16). How the environment and climate influ-
ence the TCR remains unresolved, especially over multiyear to
decadal time scales.

Saharan dust, transported across the Atlantic Ocean by trade
winds, is the predominant aerosol type during summer and early fall
over the tropical Atlantic (17). It can efficiently alter atmospheric
radiative fluxes in both shortwave and longwave bands and partici-
pate in cloud formation by serving as cloud condensation nuclei
(CCN) and/or ice nuclei (IN) (18). It has been reported that Saharan
dust tends to suppress the formation of tropical cyclones via a cool-
ing effect on SST that consequently cuts the energy supply for TCs
(19, 20). This phenomenon was evident during the peak of Europe-
an air pollution in the 1970s and 1980s, which is believed to have
amplified the Sahel dust emissions due to the prevalent drought
conditions. This intensified dust transport coincided with a notice-
able downturn in Atlantic hurricane activity (8). Another study (21)
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has highlighted a close association between the North Atlantic’s
dust and considerable spatial shifts in factors such as zonal wind
shear, midlevel moisture, and SST. However, they found a minimal
correlation between dust optical depth (DOD) and the Atlantic’s
accumulated cyclone energy. As Saharan dust-laden air masses
move westward, they can introduce dry and stable air into the trop-
ical environment. This dry air inhibits the moisture and convection
required for tropical cyclone formation. Moreover, by blocking so-
lar radiation from reaching the surface, dust can reduce SST. The
dust effects on TCR can be more complicated and multifaceted.
Similar to the anthropogenic aerosols (e.g., sulfate or hygroscopic
organics) that provide more CCN to TC systems (22), dust can fos-
ter the hydrometeor formation in the cloud tower, enhance the ver-
tical motion of rain bands via elevated latent heat release, and result
in more surface precipitation (23). In a nutshell, there is no consen-
sus on the sign of the dust effect on TCR, and it remains uncertain
what is the relative importance of dust effect compared to the other
meteorological factors.

Current climate models still do not have sufficient spatial resolu-
tion to resolve the complex microphysical processes of cloud and
precipitation, particularly how aerosol microphysics affects deep
convective clouds. While cloud-resolving numerical models were
adopted to capture the complex air-sea and aerosol-TC interactions
(14, 24), it remains challenging to run these models over multiyear
to decadal climate time scales, given their computational expense.
Therefore, a combination of big data and machine learning (ML)
offers a promising alternative method for untangling those complex
relationships between environment forcings and TC activities. Pre-
vious studies have demonstrated that ML has robust predictive
capabilities in TC genesis, intensity, precipitation, and rapid intensi-
fication (14, 25-27). While current ML research on TCs primarily
centers on enhancing forecasting and prediction capabilities, ML
models also have the potential to unveil intricate and nonlinear re-
lationships between features and response variables. Recent ad-
vancements in interpretable ML further bolster the interpretability
of these models. Therefore, in this research, we first derive a long-
term record of TCR, which is defined as the average tropical cyclone
rain rate within 600 km of each TC position (see Materials and
Methods), and then aim to: (i) develop an ML model capable of
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predicting TCR variabilities across the Atlantic Ocean using envi-
ronmental forcing variables; (ii) pinpoint the most influential envi-
ronmental forcing variables within the ML model and explore their
interactions; and (iii) specifically, elucidate the role of Saharan dust
in TCR. This will be achieved by contrasting various ML models
with and without the dust variable and interpreting their physical
significance through the lens of ML interpretability techniques.

RESULTS

Model performance and overall effect of dust

A correlation analysis first shows very low correlations (coefficient
generally smaller than 0.06) between individual environmental fac-
tors and TCR (fig. S1). It indicates that conventional statistical
methods such as linear regression may not work well to model
TCR, likely due to the nonlinear relationships between environ-
mental features and TCR. Therefore, we use a more sophisticated
ML approach, the Extreme Gradient Boosting (XGBoost) based on
an ensemble of decision trees, to build our TCR models. Two dis-
tinct models were developed, one only including the traditional
meteorological factors and geoinformation and the other adding
DOD as another predictor. Results from fivefold cross-validation
demonstrate that both DOD and non-DOD models offer decent
out-of-sample prediction capabilities (with ~0.6 R, as in Fig. 1, A
and B), without overfitting the training data. Notably, the DOD
model surpasses its counterpart, as evidenced by a higher R* and a
reduced root mean squared error (RMSE). The differences in condi-
tional median values further highlight the DOD model’s superiority
across most TCR spectrums, with pronounced error reduction ob-
served for both light and heavy TCR extremes (as illustrated in
Fig. 1C). Both models tend to have a larger magnitude of underes-
timates for heavy TCR than the overestimates for light TCR. With
respect to the spatial distribution, we can also observe systematic
improvement from the non-DOD to DOD models (Fig. 1D). On
average, the absolute error (AE) of the non-DOD model is approxi-
mately fourfold that of the DOD model. This is underscored by the
more frequent appearance of an AE ratio exceeding 1, indicating
that the non-DOD model’s AE is consistently larger than that of the
DOD model.

To test the model’s ability of generalization to new storms that
have not been trained on, we conducted an additional analysis by
grouping the data into 319 independent TCs and apply our ML
models to predict TCRs in each hold-out TCs. Essentially, we
trained 319 hold-one-TC-out models, and for the model evaluation,
we used each model to predict rainfall of TC that was hold out be-
fore. Results show that the integrated TCR (sum of all TCRs within
each TC) predicted by the DOD model generally agrees well with
the observations, with R? = 0.68, and RMSE = 27.1 mm (fig. S2). It
indicates that at the storm scale, our DOD model can capture cer-
tain rainfall variabilities from TCs that never participated in the
model training. We also trained a set of the DOD models only by
standardized predictors (with a uniform range between 0 and 1 for
scalars, and —1 and 1 for vectors) and they showed similar model
performance (fig. S3) with the DOD models trained by predictors
with original scales. For the analyses below, we choose to use the
latter for better physical interpretability of model predictors.

The distinct thermal and surface characteristics of oceans and
land directly affect how TCs interact with boundary layers and
influence TCR processes (28). Over land, additional atmospheric
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factors, such as urban heat island effects (13) and man-made aero-
sols (22), add complexity to the precipitation patterns associated
with TCs. To investigate these distinctions, we bifurcated our model
predictions based on distance from shore (DIST < 250 km for land;
DIST > 250 km for ocean). Notably, the R* for land samples in both
non-DOD and DOD models (fig. S4, A and B) slightly decrease
from that of the broader basin (Fig. 1, A and B). Meanwhile, land
RMSEs increase by 0.09 mm/hour for both non-DOD (9.8% in-
crease) and DOD models (10.5% increase). In addition, the over-
land TCR AE in the DOD model (0.79 mm/hour) exceeds its
oceanic counterpart by 28% (0.61 mm/hour), a discrepancy also
evident in AE frequency distributions (fig. S5A). The overall model
improvement by adding DOD is almost the same between land
(0.0317 mm/hour) and ocean (0.0313 mm/hour) (fig. S5B). The
general degraded performance of model performance (R*>, RMSE,
and AE) over land is partially because our current ML model does
not explicitly include any land-specific parameters. This can also
be attributed to the higher mean and SD observed in land TCRs
compared to the ocean (fig. S6, B and C).

Understanding contributions from different factors

To test the significance of environmental variables and interpret their
interplay with TCRs, we used SHapley Additive exPlanations (SHAP)
within XGBoost models. The SHAP value represents how individual
model prediction changes in response to alterations in independent
feature variables (Fig. 2). Specifically, a positive SHAP value signifies
a favorable contribution from the independent variable to the pre-
dicted outcome (higher TCR here) and vice versa. The magnitude of
SHAP values offers insight into TCR sensitivity relative to environ-
mental variable fluctuations and serves as a metric for variable im-
portance. In the non-DOD model, month, longitude, and latitude are
key factors (Fig. 2A). Even though they do not directly have physical
impacts on TCR, they contain rich information about the spatial and
temporal variability of important environmental forcings. For ex-
ample, month reflects changes in SST and DOD throughout the sea-
sons. Figure S7 indicates that positive TCR contributions (SHAP)
mainly coincide with the regular Atlantic hurricane season (June to
October). This period witnesses the peak Atlantic ocean surface tem-
perature favorable for TC genesis and sustenance (29). The longitude
and latitude of the TC center are closely related to other factors like
DOD, SST, humidity, and topography, all potentially important for
TCR. Latitude further sheds light on TC characteristics (tropical ver-
sus extratropical storms), vertical wind shear, and Coriolis force
variations, potentially influencing TC rainband dimensions.

In the DOD model, dust prominently exhibits the highest variable
importance (Fig. 2B), corroborating the notion of the importance of
Saharan dust from the error statistic comparisons seen in Fig. 1 and
fig. S4. Yet, Month, longitude, and latitude persist as important indi-
cators even within the DOD model. The intertwining of important
environmental drivers with month, longitude, and latitude may blur
the physical understanding of both the complete non-DOD and
DOD models. Consequently, we constructed two simpler XGBoost
models focusing solely on environmental drivers to elucidate model
interpretations. The DOD NoGeo model (Fig. 2C) omits month, lon-
gitude, and latitude from the primary DOD model. Furthermore, the
DOD NoGeo Tropics model (Fig. 2D) confines its dataset to the
tropics (spanning 5° to 30°) from the DOD NoGeo model. These re-
fined models (fig. S8) reveal a modest decline in R*(—0.21 and —0.20)
and an increase in RMSE (+0.20 and +0.15 mm/hour) relative to the
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Fig. 1. Model performance evaluation from different perspectives. The predicted/observed mean Tropical Cyclone Rainrate (TCR) within 600 km of the TC center
(R < 600): for (A) the non-DOD model and (B) the DOD model using the scatter density plot (out-of-sample predictions are made for five testing sets and then combined,
then 100 bins with equal intervals are generated for the TCR ranges. The count of scatters is summarized within each box); (C) difference between median values of TCR ob-
servations (binned within 10 quantiles) and the conditional median values for non-DOD (blue) and difference between median TCR observation and the conditional median
DOD model predictions (red); (D) spatial pattern of absolute errors (AEs) of non-DOD models divided by AE of DOD models (top) and their histogram distribution (bottom).

comprehensive DOD model (Fig. 1B). The performance of the No-
Geo Tropics model surpasses that of the NoGeo model, primarily
because it excludes TCs undergoing extratropical transition. These
extratropical transitions often entangle with midlatitude dynamics
(30). Given our models lack direct information on these midlatitude
system fluctuations, prediction accuracy diminishes for TCR at
higher latitudes.

In both the DOD NoGeo and NoGeo Tropics models, the DOD
shows as the top and the Reynolds SST shows as the third most in-
fluential environmental variable, as indicated in Fig. 2 (C and D). In
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addition, the surface (1000 hPa) equivalent potential temperature
from 200 to 800 km (E000) stands out as an important thermody-
namical variable with strong relevance to TC energy source from
the bottom and ranked second in NoGeo Tropics models. Within
the tropics, positive TCR SHAP values are typically associated with
lower DOD and higher SST ranges (Fig. 2D). Their detailed relation-
ships will be presented in the following sections. Although the pre-
cise relationship is multifaceted, the 850 to 200 hPa wind shear
magnitude from 200 to 800 km emerges as a key determinant in the
DOD NoGeo model (Fig. 2C).
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Fig. 2. Comparisons of variable importance from four different models based on the SHAP value. The variable importance calculated as SHAP value for: (A) Non-DOD
models; (B) DOD models; (C) DOD models without geographical locations and month (DOD NoGeo models); and (D) DOD Nogeo models only based on data between 5°
and 30° N (DOD NoGeo Tropics). Here, the SHAP value can be interpreted as how individual model prediction reacts to changes in particular features as compared to the
mean of prediction. Each listed number is the feature importance, defined as the absolute mean of all SHAP values for a specific feature, and it reflects tropical cyclone rain

rate’s sensitivity to each individual feature.

Nonmonotonic relationship between dust and TCR

The dust SHAP as a function of DOD reveals that the dust effect on
TCR is nonmonotonic (Fig. 3A) for NoGeo Tropics models. A gen-
eral boomerang shape can be identified, with the apparent peak at a
DOD value of approximately 0.06. Between DOD 0.06 and 0.08, the
dust remains enhancing TCR, but the impact decreases. When
DOD exceeds around 0.085, the SHAP value turns negative, indicat-
ing that suppression of TCR by dust starts to occur. An increase in
TCR by the presence of dust can be explained by the microphysical
precipitation enhancement by dust as CCN or IN, according to the
existing modeling studies (23, 31, 32). There are two microphysical
pathways for dust to enhance TCR: (i) as CCN, fine-mode dust
reduces cloud droplet size, suppresses warm rain, and enhances
mixed-phase processes that produce more ice hydrometeors and

Zhuetal., Sci. Adv. 10, eadn6106 (2024) 24 July 2024

turn into more surface precipitation. As pointed out by recent litera-
ture, the efficiency of those processes is subject to meteorological
factors such as entrainment rate and evaporation during the fall-out
processes (33, 34), but such a cold-phase invigoration has also wide-
ly predicted by many numerical models; (ii) dust can serve as IN
that directly contributes to heterogeneous ice nucleation and pro-
mote ice hydrometeor production. Note that it remains uncertain if
the giant CCN, a potential role for the coarse-mode dust particle
play, can increase the net precipitation, as they facilitate the warm
rainfall but likely suppress the mixed-phase precipitant formation. It
is reasonable to assume that the giant CCN effect is small, as our
study domain is generally hundreds of miles away from the dust
source regions, and the large-size particles have sedimented out
during the long-range transport.
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Fig. 3. Interpretation of the dust impacts on tropical cyclone rainfall based on the SHAP values and the locally estimated scatterplot smoothing function. (A) The
distribution of beeswarm SHAP values based on the Eastern (red dots, > —60°) and Western Atlantic Ocean (blue dots, < —60°), the black curves are smoothed SHAP values
calculated by the locally estimated scatterplot smoothing (LOESS) function for all SHAP values, and the histograms (bottom). Both panels use a logarithm scale for the DOD
for better visualization. (B) The mean of SHAP values based on 10 percentile bins of the whole data for the Eastern Atlantic (top), Western Atlantic (center), and their sepa-
rate frequency distributions (bottom). DOD smaller than 0.03 are not analyzed because of the satellite detection limit and uncertainty in the reanalysis data. All plots are

for DOD NoGeo Tropics models.

A substantial segment of the SHAP values curve remains positive
within the DOD range of 0.03 to 0.06, indicating higher TCR from
model predictions. As DOD exceeds 0.06, both SHAP decrease rap-
idly, a trend occurring in a large fraction of TCR samples (Fig. 3A,
bottom). The reduction of dust contribution to TCR and even a sup-
pression effect under the high dust loading conditions may indicate
the emergence of the dust radiative effect when dust concentration
is high enough to interfere with solar radiative fluxes, block them
from reaching the ocean surface, and stabilize the atmosphere to
weaken convection. On the other hand, the microphysical effects of
precipitation enhancement can also be saturated and even reversed.
When too much fine-mode dust particles as CCN are present, they
largely reduce the particle size of ice hydrometeors and prevent
them from falling onto the surface (35, 36).

We further examined the spatial distribution of DOD SHAP val-
ues to shed light on this complex relationship between TCR and
DOD. Figure 3B reveals distinct DOD spatial patterns: the Western
Atlantic regions (longitude < —60°) primarily experience lower
DODs, as they are relatively far from the dust source regions. Seg-
regating the data based on 10 DOD quantile intervals presents

Zhuetal., Sci. Adv. 10, eadn6106 (2024) 24 July 2024

similar nonmonotonic dust SHAP responses as a function of DOD
values for Western and Eastern Atlantic (Fig. 3B). Moreover, the
Western Atlantic exhibits greater variability in mean TCR SHAP
values, ranging from —0.24 to 0.10 mm/hour, with a broader spec-
trum of positive SHAP values. Meanwhile, the Eastern Atlantic (red
curve) has a smaller SHAP range (—0.21 to 0.07 mm/hour) but a
broader negative SHAP (DOD > 0.08). This indicates that while
DOD can enhance and suppress TCR in both regions, its enhanc-
ing effect is more pronounced in the Western Atlantic. Its suppress-
ing effect is more evident in the Eastern Atlantic, primarily due to
its proximity to the Saharan dust source and higher frequency of
larger DOD cases (Fig. 3B, bottom). Previous studies revealed a
suppressing effect of aerosols on TC activities over the Atlantic Ba-
sin (20, 37) but an enhancing effect over the Pacific (38), both as-
suming linear relationships between aerosols and low-frequency
SST variability over the multiyear and large spatial scale. Our ML
model revealed a nonlinear relationship between the DOD and the
TCR at the individual TC level, signifying the importance of exam-
ining the TC-SST-DOD interactions in a sophisticate analyzing
framework.
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Leading meteorological factors
The significance of SST’s variable importance (Fig. 2) stands out as the
third important factor in the ranking of the DOD NoGeo model and
DOD NoGeo Tropics model. Note that latitude, longitude, and month
information may partially overlap with the SST-related variabilities
on TCR. In the regions with warmer ocean surfaces at lower latitudes,
TCR has a pronounced sensitivity to SST. Increased TCR SHAP val-
ues generally match higher SSTs (Fig. 4A), supporting the widely ac-
cepted notion that warmer SSTs enhance TC development due to the
abundant latent heat fluxes from the warm ocean surface (29, 39).
However, there are also noticeable nonlinear variations within this
overall positive trend. The SHAP plot (Fig. 4A) shows a clear peak at
an SST of 26°C, even though this only accounts for a small portion of
the data (Fig. 3B, bottom). Given that 26°C is the SST baseline requi-
site for TC genesis and growth (40), this peak at 26°C likely echoes a
crucial SST benchmark for TCs. Most of the data lies between 27.5°
and 30°C, where TCR shows a pronounced positive relationship with
the SST. The 200-millibar V' wind is the variable with the most covari-
ance with the SST regarding the SHAP value. However, its relation-
ship is quite complex and nonlinear. The SHAP values for other
predictors for the NoGeo Tropics models are shown in fig. S9.
Recent studies have revealed notable global trends where the TCR
in the inner bands of TCs decreases, whereas the TCR in the outer
bands is on the rise (7, 8). As suggested by Tu et al. (7), the decreased
TCR core can be linked to the recent global reduction in atmospher-
ic stability. To explore environmental controls on rain rates in differ-
ent parts of TCs, we created separate non-DOD Nogeo Tropics and
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DOD Nogeo Tropics models for averaged TCR in both inner core
(<200 km of TC center) and outer bands (between 200 and 600 km
of TC center). As shown in fig. S10, they all have decent prediction
performances. Adding DOD has improved baseline models’ perfor-
mance, in particular for the core models, with a 0.06 (16%) increase
in R? and a 0.17 mm (22%) decrease in RMSE (fig. S10, A and B).
The DOD outer band models have a 0.04 (11%) increase in R* and a
0.03 (3%) mm decrease in RMSE (fig. S10, C and D). Regarding
SHAP variable importance, the DOD achieved notable rankings
within both the core (first) and outer band models (fourth), shown
in fig. S11. Core regions of TCs predominantly witness convective
precipitation, while the outer rain bands frequently experience
stratiform precipitation (41). Our analysis indicates that the equiva-
lent potential temperature (E000) holds the highest variable impor-
tance in the non-DOD core model and second highest in the DOD
core models, followed by SST (Fig. 4B and fig. S11). This concurs
with the established understanding that atmospheric temperature
and moisture content supply the essential energy and moisture for
convective precipitation in the TC core. In general, a higher E000
signifies larger buoyancy and/or more extensive moisture content in
ascending air masses (42). Our findings underscore a pronounced
positive association between TCR and E000 (Fig. 4B). This associa-
tion displays notable shifts from negative mean SHAP values when
E000 is <78°C to positive mean SHAP values when E000 is >78°C,
and the increase of mean SHAP happens when E000 is between 74°
and 85°C, which covers the majority of the data (histogram in
Fig. 4B). The 200-millibar U wind has the most covariance with

B Precipitable water(mm)

LE

0.5+

SHAP value

70 80 90
Equivalent potential temperature(°C)
0- —

+ 100-
c
3 200-
O

300-

70 80 90

Fig. 4. Major meteorological impacts on tropical cyclone rainfall. The SHAP value plots for (A) 55T, (B) the equivalent potential temperature (E000) in the DOD Nogeo
Tropics models. SST and E000 distributions are shown in histograms in bottom. The black curves are smoothed SHAP values calculated by the LOESS function.
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SST regarding the SHAP value, but its relationship is also complex.
DOD, SST, and E000’s SHAP value patterns in the DOD core model
(fig. S12) are similar to the 600 km model (Figs. 3 and 4) but with a
larger magnitude.

Last, the 850 to 200 hPa wind shear (SHRD) is vital in the TCR
within outer band regions (fig. S13). The vertical wind shear can
enhance the TCR by shifting the heaviest rainfall away from the cy-
clone center and strengthening the outer rain bands. In contrast,
very high vertical wind shear may disrupt the TC circulation and
suppress the convective precipitation (43, 44). Our DOD outer band
models reflect a complex relationship between SHRD and TCR. In
fig. S14, SHRD demonstrates a double boomerang shape, with two
high SHAP peaks between 0 to 5 knots and 10 to 15 knots.

DISCUSSION

In this study, we leverage an advanced ML model and storm-level
TCR dataset to predict tropical cyclone precipitation and to under-
stand the roles of environmental variables within these models. Our
results successfully capture decent amount of TCR variability and
showcase robust out-of-sample prediction accuracies. Different from
previous conventional GCM and downscaling studies that focused
on the large-scale relationship between TCR and climate variables on
the monthly time scale (8), our research aims to advance the under-
standing of TCR mechanisms by focusing on TCR at individual
storm level and expands to cover more environmental variables.

A major finding of our study is the pronounced impact of DOD
on the model efficacy, with DOD emerging as a top factor in the
models’ variable importance ranking. Moreover, the DOD’s influ-
ence on TCR in the North Atlantic is complex and nonlinear. An
enhancing effect is observed when the DOD is between 0.03 and
0.06, and this enhancing effect is mainly observed in the Western
Atlantic Ocean, where dust loading is relatively low. An increase in
DOD level before 0.06 may provide TCs with an additional supply of
CCN or IN that facilitate cloud droplet or ice crystal formation
within the TC rain bands (45, 46). However, when DOD exceeds
0.06, a marked suppression of TCR occurs. It can be explained by
the reduced solar radiation reaching the ocean surface. This leads to
a decline in TC-induced precipitation, supporting the observations
(47) for general rainfall patterns. Our DOD predictor is directly ex-
tracted from the reanalysis data, which are different from the SHIPS
data for other environmental variables. The SHIPS data provide a
complete variable list for TC behaviors and ready to use, but some of
its variables are based on forecast and their definitions are some-
times arbitrary (e.g., 200 to 800 km to each TC center). Future work
can test more potential environmental predictors from both SHIPS
and reanalysis dataset (e.g., ERA5) that have different spatial ex-
tents, temporal resolutions, and lead time.

From the methodology perspective, ML algorithms like XG-
Boost exhibit strength in resolving nonlinear relationships in the
atmosphere than traditional regression approaches. Our analysis
demonstrates that TCR has low correlations with most environmen-
tal variables, and traditional parametric approaches like multiple
linear regressions cannot capture the TCR variability and may suffer
from multiple collinearity issues. The XGBoost does not have any
stringent assumption of normal distribution and noncollinearity of
predicting features and has been proved to have strong prediction
performances in our case. Our interpretable ML framework can be
extended to other atmospheric research involving complex interactions

Zhuetal, Sci. Adv. 10, eadn6106 (2024) 24 July 2024

between different environmental factors and atmospheric processes.
Regarding the SHAP values used in this study, although they do not
directly come from any principle of physics, they can be used as a
local feature attribution method to identify potential physical rela-
tionships and generate scientific hypotheses. They are also more ef-
ficient than the traditional parameter-perturbation experiments.
Therefore, the SHAP values have already exhibited its exploratory
power for analyzing complex relationships (47), especially in atmo-
spheric science research, such as tropical cyclone genesis, lightning
prediction, etc. (48-50). In the present study, by combining XGBoost
ML and SHAP values, we successfully identify the relationships
between TCR and environmental variables including SST and DOD,
most of which can be explained by current knowledge of physical
processes with TC.

Note that different environmental variables may be intercon-
nected with each other in ML models. A principal components (PC)
analysis can be applied to the predicting variables to first obtain or-
thogonal PC before they enter the ML model. However, this would
make the physical interpretation of PCs more difficult than that of
original predictors. In the present study, no matter to what extent
DOD is correlated with other predictors, the effect of dust as an ad-
ditional predictor is rather obvious between two versions of ML
models, highlighted by the enhancement of dust model predictability
and DOD’s importance in the model.

In the broader context of climate change, prior studies have ex-
amined the differential scaling of TCR in response to increasing SST
and atmospheric temperatures. By synthesizing results from 16
studies, Knutson et al. (4) reported a median TCR increase of 14%
for every 2°C global warming, ranging from 6 to 22%. Intriguingly,
this rate surpasses the 7% increase per 1°C of tropical SST warming
suggested by the Clausius-Clapeyron equation. In contrast, a subse-
quent research (6) reported a smaller apparent scaling (global
warming) of TC precipitation than the Clausius-Clapeyron scaling
(7%), yet it demonstrated a more pronounced climate scaling based
on current climate conditions. Our ML model affirms the widely
recognized positive correlation between SST and TCR. Yet, it reveals
more intricate nonlinear dynamics modulated by specific SST
thresholds and abrupt shifts in TCR behavior. Our model shows a
pronounced increase in TCR when SST falls between 27° and 30°C,
constituting most of our data. As SST rises, so does the total water
available for precipitation, resulting in larger TCR. We also identify
that high equivalent potential temperature can boost convective
rainfall from near inner cores of TCs due to increased air tempera-
ture and moisture. Large jumps of the inner core TCR are observed
when the equivalent potential temperature is between 74° and
85°C. The relationship between TCR and SST can be affected by the
presence of dust, in particular in the core part of the TCs (<200 km).
The abundance of Saharan dust correlates with droughts in West
Africa and is controlled by both climate natural variability and an-
thropogenic global warming (51, 52). The reported TCR-SST-DOD
relationships can be used to evaluate TC numerical simulations in
the global cloud-resolving or storm-resolving models currently un-
der development.

MATERIALS AND METHODS

The TCR estimation

We first obtained the NASA GPM IMERG (Integrated Multi-satellitE
Retrievals for Global Precipitation Measurement) data V06 final
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run. The IMERG data incorporate advanced algorithms and data
fusion techniques and combine multiple satellite products to pro-
vide hourly precipitation rate estimates globally with a 0.1° spatial
resolution half-hour interval (53). Then, we extracted all Atlantic
TC locations (in longitude and latitude with 6-hour interval) from
2003 to 2021 from the International Best Track Archive for Climate
Stewardship (IBTrACS) data (54). We also obtained other relevant
information for each TC location, including time (at each location),
distance to the nearest coastal line (DIST), the maximum wind
speed (VMAX), and storm classification from the IBTrACS (CLASS).
All IMERG pixels with >0.1 mm/hour rain rate within 600 km
(r < 600 km) of each TC center are defined as the snapshot TC rain
rate (TCR). The 600-km search boundary captures most TCR (4, 8)
and sets up a consistent criterion for the dependent variable of ML
models. Drizzle observations (<0.1 mm/hour) are removed mainly
because heavier precipitation with potential flooding impact is the
focus of this study. Light rains from the GPM sensors are also pos-
sibly contaminated by nonraining signals (8, 55). We calculated the
mean TCR for all >0.1 mm/hour grids inside each snapshot and
used them as the dependent variable for model training and inter-
pretation. For a more nuanced comparison, we also computed aver-
age TCR specifically for the inner core (radius less than 200 km) and
the outer rain bands (radius between 200 and 600 km).

Environmental variables

The statistical hurricane intensity prediction scheme (SHIPS) is a
widely used dataset for forecasting tropical cyclones wind intensity
over the Atlantic Ocean (56, 57). Developed by the Regional and
Mesoscale Meteorology Branch of the Cooperative Institute for Re-
search in the Atmosphere at the National Oceanic and Atmospheric
Administration (RAMMB/CIRA at NOAA), SHIPS incorporates
various atmospheric and oceanic variables to provide valuable in-
formation about the intensity but also other behaviors of TCs. We
choose the SHIPS as the major data source of our predictors because
it is a very comprehensive dataset that includes quality controlled
and readily available variables for each historical TC. For example,
SHIPS includes forecasts of the NCEP global forecasting system, the
Geostationary Operational Environmental Satellite (GOES) infra-
red imagery, Reynolds SST analyses, and oceanic heat content esti-
mated from satellite altimetry measurements. SHIPS have been
widely used to develop both forecasting and explanatory models for
both TC intensity and rainfall structures (11, 58, 59). Here, we fur-
ther down-selected a subset of environmental variables that are
closely related to TCR, including both convective precipitation and
stratiform precipitation (41). The Reynold SST (60) are extracted for
each TC location with r = 200 to 800 km and ¢ = 0 from SHIPS (8),
and it will be used as a predictor in our ML models. Similarly, we
also obtained the 1000 hPa equivalent potential temperature (E000,
r = 200 to 800 km), relative humidity at 750 to 500 hPa (RHMD,
r =200 to 800 km) and 1000 hPa (R000, r = 200 to 800 km), 200 hPa
zonal and meridian winds (U20C and V20C, r = 0 to 500 km), 200 hPa
divergence (D200, r = 0 to 1000 km, with storm circulation filtered
out), 1000 hPa air temperature (7000, r = 200 to 800 km) and rela-
tive humidity (R000, r = 200 to 800 km), and 0 to 1000 km average
total precipitable water (PW17, r = 0 to 1000 km) from the
SHIPS. Magnitudes and directions of vertical wind shears are also
extracted for 850 to 200 hPa (SHRD and SHTD, r = 200 to 800 km)
and 850 to 500 hPa (SHRS and SHTS, r = 200 to 800 km). In addition
to IBTrACS and SHIPS, we also derived the DOD from Copernicus
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Atmosphere Monitoring Service (CAMS) European Centre for
Medium-Range Weather Forecasts (ECMWF) Atmospheric Com-
position Reanalysis 4 (EAC4) dataset that assimilates satellite aero-
sol observations (61). The DOD is calculated as the average of all
observations within between 1000 and 200 km from the TC center
with 6-hour leading time. This leading time is designed to detect
possible influence from DOD to TCR with minimum impact from
their possible feedback. All environmental variables are aligned with
the TCR observations and ready for the ML model training for the
next step. Details about all dependent and independent variables are
listed in table S1, which gives their acronyms, physical meanings,
and units.

Model training and evaluation

We use the XGBoost algorithm (62) to train our TCR models. The
XGBoost is a powerful ML approach that uses an ensemble of deci-
sion trees, where each subsequent tree aims to correct the mistakes
made by the previous ones. It efficiently combines the predictions
from multiple weak learners to create a robust and accurate final
prediction, and it can handle both regression (our models) and
classification problems.

The model development and interpretation processes are shown
as a schematic plot in fig. S14. We first split the whole data ran-
domly into 80% training data (orange boxes in fig. S14) and 20%
testing data. We first train XGBoost model based on 80% data and
then use it to make predictions based on 20% testing data. We repeat
80/20% model training and testing processes five times so five slices
of testing data cover the whole sample. Then, we calculate statistical
metrics including Mean AEs (MAEs), RMSE, and R? to evaluate the
out-of-sample prediction performance of XGBoost models. We test
different versions of model: (i) without DOD (non-DOD model),
(ii) with DOD (DOD model), (iii) DOD model with geographical
locations (longitudes and latitudes) and months removed (DOD
NoGeo), and (iv) DOD NoGeo model only for the tropical Atlantic
region with latitude = 5° to 30° (DOD Nogeo Tropics). We combine
the “Caret” and “XGBoost” R packages to streamline the hyperpa-
rameter search/tuning (62, 63). More details about the combina-
tions of hyperparameter and cross-validation methods can be found
in table S2.

Model interpretation

ML models are adept not only at delivering accurate predictions but
also at providing insights into fundamental physical processes. One
advantage of the XGBoost algorithm is that it can reveal complex
and nonlinear relationships between features and predictions. Here,
we use the SHAP (64) to interpret our trained models.

The SHAP borrows the concept of Shapley values from game
theory (63). It provides a systematic way to assign importance or
contribution values to individual features in a model and measures
the impact of each feature on the prediction by considering all pos-
sible feature subsets and their corresponding predictions. It enables
us to understand each feature’s relative importance in the model’s
decision-making process. The original formula (65) to calculate
Shapley value can be expressed as

[SI1(p—1S]—1)
|
SC{L,...p}\ {j} P

|
d;(v) = ~(v,(SU {j}) = v,(8))

0
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where S is a subset of p features used in the model, and x is the vec-
tor of feature values of the instance to be explained. v,(S) is the
prediction for feature values in set S that are marginalized over
features that are not included in set S. Because all possible combi-
nations of features need to be evaluated with and without one spe-
cific feature to calculate its exact Shapley value, its computing
resources requirement exponentially increases when number of
features becomes larger. Approximations are designed to reduce
the computing time, such as the Monte-Carlo sampling proposed
by Strumbelj et al. (66). We used the R package “shapviz” (67) to
calculate and visualize the SHAP in our analysis. We first use SHAP
to calculate the feature importance of different XGBoost models
and then use it to understand how TCR reacts to changes of different
environmental forcings.

Supplementary Materials
This PDF file includes:

Figs.S1to S14

Tables S1.and S2
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