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ABSTRACT

Summation-by-parts (SBP) finite difference methods are widely
used in scientific applications alongside a special treatment of
boundary conditions through the simultaneous-approximate-term
(SAT) technique which enables the valuable proof of numerical
stability. Our work is motivated by multi-scale earthquake cycle
simulations described by partial differential equations (PDEs) whose
discretizations lead to huge systems of equations and often rely
on iterative schemes and parallel implementations to make the nu-
merical solutions tractable. In this study, we consider 2D, variable
coefficient elliptic PDEs in complex geometries discretized with the
SBP-SAT method. The multigrid method is a well-known, efficient
solver or preconditioner for traditional numerical discretizations,
but they have not been well-developed for SBP-SAT methods on
HPC platforms. We propose a custom geometric-multigrid pre-
conditioned conjugate-gradient (MGCG) method that applies SBP-
preserving interpolations. We then present novel, matrix-free GPU
kernels designed specifically for SBP operators whose differences
from traditional methods make this task nontrivial but that perform
3% faster than SpMV while requiring only a fraction of memory.
The matrix-free GPU implementation of our MGCG method per-
forms 5% faster than the SpMV counterpart for the largest problems
considered (67 million degrees of freedom). When compared to off-
the-shelf solvers in the state-of-the-art libraries PETSc and AmgX,
our implementation achieves superior performance in both itera-
tions and overall runtime. The method presented in this work offers
an attractive solver for simulations using the SBP-SAT method.
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1 INTRODUCTION

Computational modeling of the natural world involves pervasive
material and geometric complexities that are hard to understand,
incorporate, and analyze. The partial differential equations (PDEs)
governing many of these systems are subject to boundary and inter-
face conditions, and all numerical methods share the fundamental
challenge of how to enforce these conditions in a stable manner.
Additionally, applications involving elliptic PDEs or implicit time-
stepping require efficient solution strategies for linear systems of
equations.

Most applications in the natural sciences are characterized by
multiscale features in both space and time which can lead to huge
linear systems of equations after discretization. Our work is moti-
vated by large-scale (~hundreds of kilometers) earthquake cycle
simulations where frictional faults are idealized as geometrically
complex interfaces within a 3D material volume and are character-
ized by much smaller-scale features (~microns) [21, 28]. In contrast
to the single-event simulations, e.g. [49], where the computational
work at each time step is a single matrix-vector product, earthquake
cycle simulations must integrate with adaptive time-steps through
the slow periods between earthquakes, and are tasked with a much
more costly linear solve. For example, even with upscaled param-
eters so that larger grid spacing can be used, the 2D simulations
in [21] generated matrices of size ~10°, and improved resolution
and 3D domains would increase the system size to ~10° or greater.
Because iterative schemes are most often implemented for the lin-
ear solve (since direct methods require a matrix factorization that is
often too large to store in memory), it is no surprise that the sparse
matrix-vector product (SpMV) arises as the main computational
workhorse. The matrix sparsity and condition number depend on
several physical and numerical factors including the material het-
erogeneity of the Earth’s material properties, order of accuracy,
the coordinate transformation (for irregular grids), and the mesh
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size. For large-scale problems, matrix-free (on-the-fly) techniques
for the SpMV are fundamental when the matrix cannot be stored
explicitly.

In this work, we use summation-by-parts (SBP) finite difference
methods [30, 40, 52, 53], which are distinct from traditional finite
difference methods in their use of specific one-sided approximations
at domain boundaries that enable the highly valuable proof of
stability, a necessity for numerical convergence. Weak enforcement
of boundary conditions has additional superior properties over
traditional methods, for example, the simultaneous-approximation-
term (SAT) technique, which relaxes continuity requirements (of
the grid and the solution) across physical or geometrical interfaces,
with low communication overhead for efficient parallel algorithms
[18]. For these reasons SBP-SAT methods are widely used in many
areas of scientific computing, from the flow over airplane wings to
biological membranes, to earthquakes and tsunamigenesis [20, 36,
43, 46, 54, 60]; these studies, however, have not been developed for
linear solves or were limited to small-scale simulations.

With this work, we contribute a novel iterative scheme for lin-
ear systems based on SBP-SAT discretizations where nontrivial
computations arise due to boundary treatment. These methods
are integrated into our existing, public software for simulations of
earthquake sequences. Specifically, we make the following contri-
butions:

e Since preconditioning of iterative methods is a hugely con-
sequential step towards improving convergence rates, we
develop a custom geometric multigrid preconditioned con-
jugate gradient (MGCG) algorithm which shows a near-
constant number of iterations with increasing system size.
The required iterations (and time-to-solution) are much
lower compared to several off-the-shelf preconditioners of-
fered by the PETSc library [4], a state-of-the-art library for
scientific computing.
We develop custom, matrix-free GPU kernels (specifically
for SBP-SAT methods) for computations in the volume and
boundaries, which show improved performance as compared
to the native, matrix-explicit implementation, while requir-
ing only a fraction of memory.
o GPU-acceleration of our resulting matrix-free, precondi-
tioned iterative scheme shows superior performance com-
pared to state-of-the-art methods offered by NVIDIA.

Furthermore, the ubiquity of SBP-SAT methods in modern scientific
computing applications means our work has the propensity to
advance scientific studies currently limited to small-scale problems.

The paper is organized as follows: First, we present related (albeit
limited) work on preconditioning and GPU acceleration of itera-
tive schemes for SBP-SAT methods. Next, we provide a detailed
description of our model problem, followed by the corresponding
SBP-SAT discretization which generates the linear system we focus
on in this work. We include details of our code development in the
Julia programming language and its HPC capabilities and verify our
solutions through rigorous spatial convergence tests to ascertain
correctness. We next discuss a two-pronged approach for accel-
erating time-to-solution, with developed methods customized for
SBP-SAT methods. The first is through a preconditioning approach,
which can be thought of as a mathematical means for reducing
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the number of overall iterations required for the iterative scheme
to converge. Second, individual iterations can be accelerated by
GPU parallelism and the development of matrix-free operations.
Preconditioning and parallel performance are compared against
options from several state-of-the-art libraries (PETSc and NVIDIA
AmgX). We conclude with a summary of our results and proposed
future work.

2 RELATED WORK

Conjugate gradient (CG) is a standard iterative method for solving
linear systems involving symmetric positive-definite (SPD) matrices.
But the performance of CG often relies fundamentally on specialized
preconditioning techniques specific to the application, e.g. [1, 25,
44, 59]. To our knowledge, no systematic studies of preconditioning
performance for SBP-SAT methods have been done until this study.
Multigrid (MG) is a technique for both solving and preconditioning
linear systems using a hierarchy of successively coarser grids. Three
key ingredients define multigrid methods, namely, interpolation
operators (prolongation and restriction), smoothers, and (if used)
a direct solve on a coarse grid. MG has inherent high-parallelism,
smooths low-frequency error components and has proven to be a
highly successful preconditioner for improving convergence rates
in a wide range of application problems [55]. In [50], MG methods
were explored for SBP-SAT methods, and the development of SBP-
preserving interpolation operators showed improved performance
by modifying standard interpolation operators near boundaries.
However, these studies only explored MG as a solver, and not its
effectiveness as a preconditioner. In addition, they applied Galerkin
coarsening to produce the coarse grid operators rather than through
a rediscretization of the original PDE. Because part of the focus
of our work is the development of matrix-free methods, defining
the coarse grid operators in this fashion would require writing an
entirely different kernel for every grid level, as well as more memory
for data storage [11]. Therefore, to fully utilize the efficiency of our
matrix-free methods, as well as to reduce complexity in and number
of kernels needed, our focus is on rediscretization approaches when
using MG as a preconditioner for CG (denoted MGCG).

The CG iteration itself involves three components: the sparse
matrix data structure (if matrix-explicit methods are used), the
reduction operations to compute inner products, and the matrix-
vector multiply. For such matrix-explicit methods, loading the ma-
trix from device memory often dominates SpMV performance. Even
though GPUs are bandwidth rich (an order of magnitude or higher
than CPUs), making them ideally suited for SpMV [16], the SpMV
constitutes the majority of the computational load. Specifically, per-
formance can be limited by low computational intensity, irregular
memory access, and sparsity [33], and though not the focus of this
work, much effort has been devoted to sparse matrix data structures
such as CSR (our baseline comparison), ELL, COO, and BELLPACK
(GPU only) [3, 5, 7, 8, 16, 56, 58].

To our knowledge, the only previous work on SBP-SAT methods
on the GPU considered a matrix-explicit SpMV [32], or used stencil
computations in seismic wave propagations but did not solve linear
systems [45]. Here we develop a matrix-free implementation of
the SpMV and corresponding MGCG method to solve our model
problem. Matrix-free methods include the additional benefits of
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increased arithmetic intensity and reduced memory footprint, and
do not require matrix assembly (which can be cumbersome for
complex applications), all of which can improve performance on
modern, bandwidth-limited processors [13, 24, 35, 42].

3 MODEL PROBLEM AND METHODS

3.1 Partial Differential Equations for the Solid
Earth

Our work is motivated by the study of quasi-static deformation of
the solid Earth over the time-scales of earthquake cycles. Motion is
governed by the equilibrium equation and a constitutive relation-
ship describing the material properties. The standard assumption is
that the Earth is linear elastic, defined on a sub-domain of R3. While
solutions to the 3D elasticity equations are the eventual target, 2D
problems are considered in this work in order to sort out implemen-
tation details with reduced computational costs. The 2D anti-plane
shear problem [37] is particularly ubiquitous in earthquake cycle
benchmark problems [22], where a vertical cross-section of a 3D
problem (assuming invariance in one-direction) gives rise to an
elliptic equation at each time-step, where only one non-zero com-
ponent of the displacement vector exists and depends on two spatial
variables, namely,

V.- (uVu)=f for(xy) e, (1)

where p(x, y) is the spatially-varying shear modulus, u is Earth’s
material displacement in the z-direction, and f comprises body
forces. In order to enable complex fault geometries and topography,
we assume that Q is a curved quadrilateral in R?, which enables
extensions to arbitrary domains partitioned into computational
blocks, e.g. [29]. As Figure 1(a) illustrates, the boundary can be
partitioned into four curves 9Q;, i = 1,...,4, where (for example),
0Q3 represents Earth’s surface and the shear modulus p(x, y) can
vary in order to represent heterogeneities in the crust, for example,
a shallow sedimentary basin, as illustrated.

For generality we consider both Dirichlet and Neumann bound-
ary conditions, namely

u=gi, 9Q, (2a)
u=g JQy, (2b)
n-uVu=gs, 0Qs, (2¢)
n-pVu=gs, 0Q4, (2d)

where vector n is the outward pointing normal to the domain
boundary and g;, i =1, ..., 4 represent boundary data.

3.2 Coordinate Transformation

In order to solve (1)-(2) with SBP-SAT methods, the domain Q
is transformed (via a conformal mapping) to the regular, square
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Figure 1: (a) Geometrically complex physical domain Q with
material stiffness that increases from i, within a shallow,
ellipsoidal sedimentary basin, to stiffer host rock given by
Uout- (b) Q is transformed to the regular, square domain Q
via conformal mapping.

domain (r,s) € Q = -1 < (r,s) < 1, as in Figure 1(b). The trans-
formed equations are given by

=V (cVu) = Jf,  for(r,s) € Q, (3a)
u =g, face 1, (3b)

u =g, face 2, (3¢)

W cVu = 5;93, face 3, (3d)
At cVu = 5;94, face 4, (3e)

where Vu = [%, %]T, face k for k = 1, ...4 define the domain

boundaries of Q, given in Figure 1(b). J > 0 is the Jacobian and S}‘

is the surface Jacobian on face k. Vector A¥ is the outward pointing
normal to the face and 2 X 2 matrix ¢ is symmetric positive definite
(SPD) and encodes the variable material properties p(x, y) and the
coordinate transform, see [23, 29] for more details.

3.3 SBP-SAT Finite Difference Methods

SBP methods approximate partial derivatives using one-sided differ-
ences at all points close to the boundary node, generating a matrix
approximating a partial derivative operator. In this work we focus
on second-order derivatives that appear in (3), however, the matrix-
free methods we derive are applicable to any second-order PDE. We
consider SBP finite-difference approximations to boundary-value
problem (3), i.e. on the square computational domain Q; solutions
on the physical domain Q are obtained by the inverse coordinate
transformation.

In this work, we focus on SBP operators with second-order ac-
curacy which contains abundant complexity at domain boundaries
to enable insight into implementation design extendable to higher-
order methods. To provide background on the SBP methods we first
describe the 1D operators, as Kronecker products are used to form
their multi-dimensional counterparts.

3.3.1 1D Operators. We discretize the spatial domain -1 <r <1
with N + 1 evenly spaced grid points r; = —=1+ih,i =0,..., N with
grid spacing h = 2/N. A function u projected onto the computa-
tional grid is denoted by u = [ug, uy, .. ., un]¥ and is often taken to
be the interpolant of u at the grid points. We define the grid basis
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vector €; to be a vector with value 1 at grid point j and 0 for the
rest, which allows us to extract the jth component: u; = EJTH.

Definition 3.1 (First Derivative). A matrix D, is an SBP approxi-
mation to the first derivative operator 9/ar if it can be decomposed
as HD, = Q with H being SPD and Q satisfying #! (Q + Q7)7 =
UNOUN — UpDg.

Here, H is a diagonal quadrature matrix and D, is the standard
central finite difference operator in the interior which transitions
to one-sided at boundaries.

Definition 3.2 (Second Derivative). Letting ¢ = c(r) denote a
material coefficient, we define matrix Dﬁf) to be an SBP approxima-
tion to air (Ca%) if it can be decomposed as Dﬁﬁ) =H 1(-M©) 4+

cNENJJTV - COEOJOT) where M(¢) is SPD and riorﬁ and JJTVIZ are ap-
proximations of the first derivative of u at the boundaries.

With these properties, both D, and Dﬁ? mimic integration-by-
parts in a discrete form which enables the proof of discrete stability
[39, 40].

Dﬁﬁ) is a centered difference approximation within the interior
of the domain, but includes approximations at boundary points
as well. For illustrative purposes alone, if ¢ = 1 (e. g. a constant
coefficient case), the matrix is given by

-2
-2

1
P |

which, as highlighted in red, resembles the traditional (second-
order-accurate) Laplacian operator in the domain interior.

3.3.2 2D SBP Operators. The 2D domain Q is discretized using N+1
grid points in each direction, resulting in an (N +1) X (N +1) grid of
points where grid point (i, j) isat (x;,y;) = (=1+ih, —1+jh) for 0 <
i, j < N with h = 2/N. Here we have assumed equal grid spacing
in each direction, only for notational ease; the generalization to
different numbers of grid points in each dimension does not impact
the construction of the method and is implemented in our code. A
2D grid function u is ordered lexicographically and we let C;; =
diag(c;j) define the diagonal matrix of coefficients, see [29].

In this work we imply summation notation whenever indices
are repeated. Multi-dimensional SBP operators are obtained by
applying the Kronecker product to 1D operators, for example, the
2D second derivative operators are given by

7] 7]

= Ci ~

i ja_j ij
— (Ho H)™! [—Mﬁj”" + T] , @)

~Cij

for i, j € {r,s}. Here ME;U)

ing integrated second derivatives (i.e. sum over repeated indices

is the sum of SPD matrices approximat-

i, j) for example /Q Lo a M 55”) and matrix T involves the

boundary derivative computations, see [23] for complete details.
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Figure 2: Sparsity pattern for matrix A with N = 5 grid points
in each direction. Traditional 5-point Laplacian stencil in
black circles. Contributions to A are separated into contri-
butions from the volume (red +) and from the boundary
enforcement (red X), so that contributions from both (red *)
cancel deviations from symmetry and render A SPD.

3.3.3  SAT Penalty Terms. SBP methods are designed to work with
various impositions of boundary conditions that lead to provably
stable methods, for example through weak enforcement via the
simultaneous-approximation-term (SAT) [14] which we adopt here.
As opposed to traditional finite difference methods that “inject”
boundary data by overwriting grid points with the given data, the
SAT technique imposes boundary conditions weakly (through pe-
nalization), so that all grid points approximate both the PDE and the
boundary conditions up to a certain level of accuracy. The combined
approach is known as SBP-SAT. Where traditional methods that use
injection or strong enforcement of boundary/interface conditions
destroy the discrete integration-by-parts property, using SAT terms
enables proof of the method’s stability (a necessary property for
numerical convergence) [38].

4 PROBLEM DISCRETIZATION
The SBP-SAT discretization to (3) is given by

D u=gf+ Y p %)
k

where p; are SAT vectors formed from the boundary condition
on face k. To illustrate the structure of the SAT vectors, enforcing
Dirichlet conditions on faces k = 1, 2 generates

pe=HOW ™ (6] - L[ Hew) (Lau-gi), ©)
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where matrix G; computes the weighted derivative on face k, Ly
is the face extraction operator and Hy. is the 1D H matrix in the
direction parallel to face k. Matrix 7y = ﬁi‘Ci‘]ﬁf I'y, where C{.‘j is
the diagonal matrix of coefficients restricted face k and T, is the di-
agonal penalty matrix on face k with sufficiently large components

to ensure discrete stability, according to

4 1
T > —I+—
k= h,i1+ h,iPk, (7)
where )
Py = {Clir(clzf”mfn)_l’ oLz ®)
CE (™™™, k=3,4.

Here CK™I js the minimum value of ¢ in the two points orthogonal
to the boundary and hlj_ is the grid spacing orthogonal to face k
[23].

In order to render the linear system (5) SPD, we multiply by
(H ® H) (the discrete equivalent of integrating over Q and dis-
cretizing the weak form). This process yields the final linear system

Au=>b )
where
A=ME 4 N ¢y (10)
k=1,2
is SPD [23], and matrices
Cr = —Lsz - Gsz + LszTkLk' (11)
Right-hand side vector b is given by
b=(H®H) |Jf+ ) Kigy (12)
k

which encodes the source term and boundary data. Here matrices
K depend on boundary conditions; for those given in (3) they are

Ki=LTHz -GT (13)
Ky = LTHt, - G (14)
K3 =Ll1H; (15)
Kys=LIHy (16)

Note that A includes contributions from both volume operators
(M;}j ) and from the SAT enforcement of boundary terms (Cy),
and differs from the traditional discrete Laplacian near all domain
boundaries; see Figure 2. At Dirichlet boundaries (faces 1 and 2),
Cr modifies the layer of three points normal to the face (i.e. the
SAT imposition penalizes all points used in the computation of the
derivative normal to the face).

5 DEVELOPMENT AND VERIFICATION

In this work all code is written in the Julia programming language.
Julia is a dynamically typed language for scientific computing de-
signed with high performance in mind [10]. Julia supports general-
purpose GPU computing with the package CUDA.jl. Through com-
munications in LLVM intermediate representations with NVIDIA’s
compiler, it is claimed that CUDA jl achieves the same level of per-
formance as CUDA C according to previous research[9]. Aimed to
address the “two-language" problem, Julia enables implementation
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Table 1: Discretization error and convergence rate for the
SBP-SAT method. The use of more digits illustrates the con-
vergence rate approaching the theoretical rate 2.

N Discretization error Convergence rate
2°  1.353609E-05 1.998341E+00
210 3.385302E-06 1.999455E+00
211 8.464360E-07 1.999811E+00
212 2.116192E-07 1.999930E+00
213 5290578E-08 1.999973E+00

ease of complex mathematical algorithms while achieving high per-
formance, an ideal match for computational scientists without ex-
pertise in low-level language-based HPC. Julia has gained attention
among the HPC community, with notable examples including The
Climate Machine [51], a new Earth System model written purely in
Julia that is capable of running on both CPUs and GPUs by utilizing
KernelAbstractions.jl [17], a pure Julia device abstraction similar
to Raja, Kokkos, and OCCA [6, 15, 41]. In addition, because a large
body of researchers studying SBP methods use Julia in serial, e.g.
[29, 47], our developments will enable these users to gain HPC
capabilities in their code with minimal overhead.

The SBP-SAT discretization used to form system (9) is rigorously
verified for correctness by confirming numerical convergence to-
wards a known, analytical solution [48]. For the exact solution
(denoted with an asterisk) we take

(17)

u*(x,y) = sin(x) sinh(ry),

on the domain Q with corners (x,y)
{(-0.3,0), (0.5,—.25),(0,1),(1,1.5)}, illustrated in Figure 1(a),
with curved edges defined by sinusoids; the grid is formed with
transfinite interpolation. The spatially variable shear modulus is
taken to be

w tanh((x? + c®y? = 7)/r) + 1) + in

p(x,y) = (18)

which forms a semi-ellipse representing a shallow, sedimentary
basin. The basin contains compliant material with pj, = 20, sur-
rounded by stiffer host rock, with pioyt = 32. The basin parameters
¢ =0.5,7 = 6.25E-4 and r,, = 0.015, which implicitly define a basin
depth and width of 0.05. The discrete L?-error is defined by the
H-norm, namely

Ep = |lu* - ullg

= Jw* - w)TJ (Ho H) (u* - u), (19)

where u* is the exact solution (17) evaluated on the grid. Ej, is
reported in Table 1 using a direct solve (i.e. we compute the dis-
cretization error), which shows that we have achieved convergence
at the theoretical rate.

6 PERFORMANCE: PRECONDITIONING

Iterative methods enable the solution to larger problems of the form
(9) compared to a direct solve that requires storing a matrix factor-
ization. However, the convergence of CG depends predominantly
on the condition number of the matrix A, which can be reduced (to
accelerate convergence) through preconditioning techniques. The
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preconditioning matrix M has to be SPD and fixed, and although it
need not be explicitly assembled nor inverted, good preconditioners
should satisfy M ~ A1,

In this work we develop a custom MG preconditioner by first
adopting the second-order SBP-preserving prolongation/restriction
operators from[50], which maintain accuracy at domain boundaries
and correctly transfer residual vectors to the coarser grids. The 2D
restriction operator is given by

T
2h _ ¢y—-1(th
2" = ;! (Izh) H), (20)

where Hy, and Hy, denote H ® H with grid spacing h and 2h,
respectively. The 2D prolongation operator I }21}1 is defined by I gh =

I h W ® 1" 5y, Where Iélh is the standard 1D prolongation operator [12],
see Appendix A in [50].

One feature that differentiates our problem formulation from
those in [50] is that our matrix in (9) is rendered SPD only after the
multiplication of (4) on the left by (H ® H), which introduces ad-
ditional grid information when calculating the associated residual
vector. To properly transfer this grid information we found im-
proved performance of our preconditioner when further modifying
the restriction operator to account for grid spacing. This is achieved
by excluding the (H ® H) term when computing the residual on
the fine grid, then restricting using I, and then re-introducing
the grid spacing on the coarse grid. In addition, we explored both
Galerkin coarsening and rediscretization to form the coarse-grid
operators and found the latter to give superior performance. The
pseudo-code for the custom MG method (which we will apply as a
preconditioner) is given in Algorithm 1.

We first compare the preconditioning performance of our cus-
tom geometric multigrid against the multigrid using Galerkin’s
condition from [50]. To avoid the influence of hyperparameters
in smoothers, we use the Gauss-Seidel method as smoother. This
method is not suitable for GPU parallelization, so we only focus
on the preconditioning performance in terms of iteration reduc-
tion here. For a 2D computational grid of N = 2k points in each
direction, we use a single V-cycle multigrid of k — 1 levels with
5 smoothing steps on each level including the coarsest grid (i.e.
taking vi = v2 = v3 = 5 and Npgaxiter = 1 in Algorithm 1) as
the preconditioner. The MGCG stops when the relative residual is
reduced to less than 1078 times the initial residual. For all tests in
this work we initialize the iterative scheme with the zero vector. We
report results in Table 2. Our custom geometric multigrid method
achieves comparable preconditioning results with the multigrid
method using Galerkin’s condition from [50], both having near-
constant iteration counts for different problem sizes. The iteration
count for non-preconditioned CG almost doubles when N is dou-
bled, indicating worse condition numbers on finer grids.

Many types of smoothers for multigrid methods can be explored
for best performance. For the rest of the work, we focus on Richard-
son iteration given by xj,1 = Xx + @(b — Axy) because it can be
easily accommodated by our subsequent development of matrix-
free kernels for A. Here w is chosen to satisfy the convergence
criteria and its optimal value depends on the eigenvalues of A as
Wopt = —1— where Apax and A are the largest and small-
est eigenvalues of A respectively. We use Arpack.jl, which is a Julia
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Algorithm 1 (k + 1)-level MG for Apuy, = f},, with smoothing
S}‘l’k applied v times. SBP-preserving restriction and interpolation
operators are applied. Grid coarsening (k — k + 1) is done through
successive doubling of grid spacing until reaching the coarsest grid.
The multigrid cycle can be performed Nygxizer times. r represents
the residual, and v represents the solution to the residual equation
used during the correction step. This algorithm is adapted from
[34].

function MG(fy, , A, ui<l(1)<> » k, Nmaxiter)

forn=0,1,2,..., Nmaxiter do
Vl
(n) o u(z) > Pre-smoothing v times
(") f(") A(") (n) > Calculating residual

Uy
=(H® Hk) (n)

Thiw = (Hgs1 ® Hk+1)1hk“
if k + 1 = kpax then

> Removing grid info

> Restriction

SVZ
h
o™ KL g > Smoothing on coarsest grid
hk+1 b1

else

ol =MG(ry,,,, An.,0, . k+1,1)

hk hisr’ . .
> Recursive definition of MG
end ifh ( |
n k n .
%k Ihk+1 k+1 > Interpolation
(n+1) RO .
b =u Y > Correction
S"5
“1(<n+1) — ,gzﬂ) > Post-smoothing v3 times
end for

end function

Table 2: Performance of MGCG using our custom pre-
conditioner (denoted MGCG) against the multigrid using
Galerkin’s condition (denoted MGCG-Galerkin) from [50]
and non-preconditioned CG. We report the total iterations
to converge and the final relative residual for three different
algorithms.

N MGCG-Galerkin MGCG CG
64 6/233E-9 6/2.25E-09 221/9.98E-9

128  6/8.39E-9 6/242E-9 431/9.61E-9
256 7/244E-9 6/216E-9  839/9.79E-9
512 7/2.63E-9 6/1.89E-9 1643 /9.70 E-9
1024 7/2.72E-9 6/173E-9  3208/9.93 E-9

wrapper of ARPACK that uses the Implicitly Restarted Arnoldi
Method to calculate eigenvalues for sparse matrices. For small N,
we can compute Apmgx and Apyin directly, but for large N values,
these become computationally intractable. We use extrapolation
to approximate values for Apgx and Apmin for N > 32 based on
observation of eigenvalues for N < 32, namely,

Amin,ZN = Amin,N/4a
Amax,ZN = /lmax,N +0.6 (Amax,N - Amax,N/Z))
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Table 3: Iterations and time to converge for N = 21° using 1
smoothing step in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson iteration as smoother

(last row)

mg_levels_ksp_type mg_levels_pc_type iters time
sor 18 4.105s
chebyshev jacobi 22 3.382s
bjacobi 17 3.945s
sor 18 3.581s
richardson jacobi 49 3.729 s
bjacobi 16 3.729 s
sor 17 4.081s
cg jacobi 23 3.849 s
bjacobi 16 3.971s
richardson none 11 0.086 s
Table 4: Iterations and time to converge for N = 2! using 5

smoothing steps in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson iteration as smoother
(last row)

mg_levels_ksp_type mg_levels_pc_type iters time
sor 10 10.76 s
chebyshev jacobi 14 10.20 s
bjacobi 9 10.58 s
sor 9 10.13 s
richardson jacobi DV 9245
bjacobi 8 10.28 s
sor 9 1047 s
cg jacobi 13 10.54 s
bjacobi 8 10.45 s
richardson none 8 0.069s

where Ap;in N represents the minimal eigenvalue of a linear system
formed for our 2D problem with N + 1 grid points in each direction
and Ay N is the corresponding maximum value. There are many
configurations for the multigrid method, but we found that the total
number of iterations required by MGCG is largely determined by
the number of grid levels and smoothing steps and is less impacted
by the choice of smoother itself.

MG methods have many tunable parameters. For this initial
study, we explored the MGCG performance varying the number of
Richardson pre- and post-smoothing steps on every level between
1 and 5. We considered a single V-cycle (i.e. taking vi = v =v3 =5
and Npaxirer = 1 in Algorithm 1), including on the coarsest grid (5
grid points in each direction). For all tests in this work we initialize
the iterative scheme with the zero vector. All algorithms stop when
the relative residual is reduced to less than 10~° times the initial
residual.
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Comparisons against an unpreconditioned CG are not generally
appropriate as most real-world applications require precondition-
ing to make any solution tractable. The Portable, Extensible Toolkit
for Scientific Computing (PETSc) [4] is one of the most widely
used parallel numerical software libraries, featuring extensive pre-
conditioning methods, many of which can be tested by users via
relatively simple command-line options. We experimented with
several of PETSc’s off-the-shelf algebraic multigrid preconditioned
CG solvers (denoted PAMGCG). PETSc¢’s PAMGCG is similar to our
MGCG and only requires loading PETSc formatted A and b (from
which it forms the coarse grid operators).

We tested PAMGCG with various configurations against our cus-
tom MGCG, applying the same stopping criterion (here based on
the relative norm of the residual vector reduced to 1E-6), with
results provided in Tables 3 and 4. The mg_levels_ksp_type
and mg_levels_pc_type in the tables stand for Krylov subspace
method types and preconditioner types used at each level of the
multigrid in PAMGCG. When classical iterative methods are used as
smoothers, mg_levels_ksp_type is set as richardson and the par-
ticular smoother (e.g. Jacobi) is set by mg_levels_pc_type. Since
our MGCG uses Richardson iteration as the smoother for multigrid,
we report mg_levels_ksp_type as richardson and
mg_levels_pc_type as none to maintain coherence across the
columns. Iterations and total time to converge are reported. We
found that the Jacobi iteration is not a good choice as smoother
in PAMGCG. When using 1 smoothing step, it takes more itera-
tions than other configurations. It does not converge (denoted as
DV) when using 5 smoothing steps. Aside from this configuration,
other PETSc configurations in the table exhibit comparable perfor-
mance in both the number of iterations and the convergence time.
We found that additional options within PAMGCG play relatively
minor roles in performance. Our MGCG results (reported in the
last rows), however, show superior performance in terms of both
iteration counts and overall time.

7 ENVIRONMENT AND IMPLEMENTATIONS

Preconditioning reduces the total number of iterations required by
CG, but time-to-solution can be further accelerated by reducing
individual time-per-iteration. We achieve these improvements by
adding GPU-capabilities to our MGCG method, specifically through
the development of matrix-free kernels for computing the SpMV
(the action of matrix A).

7.1 Environment Configuration

For the GPU implementation, the matrix-vector product is tested
using an NVIDIA V100-SXM2 GPU with 32 GB of memory and
an A100-PCIE with 40 GB of memory. Tests are carried out using
CUDA 12.0. In addition, we have a dual E5-2690v4 (28 cores) CPU
with 256 GB of system memory. The results for CG and MGCG are
conducted on the A100 GPU.

7.2 Kernel Design

Stencil computations have proven efficient in utilizing GPU re-
sources to achieve optimal performance [31, 57]. In this work we
implement a similar GPU kernel for our 2D problem by matching
each spatial node to a GPU thread, however, our work requires
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specialized treatment for domain boundaries. The most computa-
tionally expensive operator is the volume operator Mlcj” , which
differs from traditional finite difference operators in that it involves
derivative approximations at domain boundaries. However, the use
of else statements in GPU kernels tends to lead to warp divergence
and should be avoided. We construct the matrix-free action of A,
referred to as mfA!() based on node location. Algorithm 2 provides
the partial pseudocode, i.e. it includes pseudocode for the J\N/Ifi.j
calculation; boundary condition calculations are further detailed in
Algorithm 3. At interior nodes the action of M ICJ” is defined by a sin-

gle stencil (with spatially varying coefficients). The action of Mf]”
on boundary nodes, however, has a different stencil depending on
the face number and whether the node is at a corner of the domain.
To avoid race conditions at corners (while minimizing conditional
statements), only normal components of Mf]” are computed (as
they correspond to the same stencil). For example on face 1 only the
action of M"" and M,* are computed at the corners, see Figure
3. The action of the remaining components of Mf]” on the corner
nodes are computed in computations associated with adjacent faces
(faces 3 and 4).

At boundary nodes we must also compute boundary condition
operators Cy, with differing stencils depending on face number and
whether a node is an interior node, an interior boundary node
(i.e. not a corner), or a corner node. Algorithm 3 provides the
pseudocode for nodes on face 1; stencils are differentiated with
superscripts int, sw, nw, corresponding to the interior boundary,
northwest, and southwest corner nodes, respectively. Figure 3 fur-
ther illustrates the nodes involved in each computation: black dots
correspond to nodes within the 2D domain. Black circles correspond
to the interior nodes that are modified by the action of M lcj” .On the
western boundary (face 1), the three-node layer adjacent to face 1 is
used to compute the actions of the volume and boundary operators.
Blue diamonds and red stars correspond to nodes that are modified
by the different components of Mlcj” . Green squares correspond to
the nodes that are modified by the boundary operator C; in order
to impose the Dirichlet condition (in this case a layer of three nodes
normal to the face).

8 PERFORMANCE: MATRIX-FREE GPU
KERNELS

8.1 Performance Comparison

With mfA!() we can carry out the matrix-vector product without
explicitly storing the matrix. In this section we compare its perfor-
mance against the matrix-explicit cuSPARSE SpMV implementation
available through CUDA.jl. We note that this is not an exhaustive
comparison against all possible sparse matrix data structures. Our
goal is to establish a baseline comparison of our matrix-free im-
plementation against the standard sparse matrix format CSR in
CUDA.jl, with a focus on integration with preconditioning for im-
proving CG performance.

We set up our benchmark as follows: We discretize the domain Q
in each direction using N+1 grid points, varying N from 24 to 23, so
the matrix A is of size (N+1)?x(N+1)?. Figures 4 and 5 compare the
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Figure 3: Schematic of 2D computational domain; nodes de-
noted with solid black dots. mfA!() modifies interior nodes, de-
noted with circles. For face 1, contributions to mfA!() from co-
ordinate transformation matrices modify nodes correspond-
ing to different shapes. Calculations by boundary operator
C1 modify nodes in green squares.

performance of the matrix-free implementation against the matrix-
explicit SpMV provided with cuSPARSE using the CSR format on
both the A100 GPU and V100 GPU. The performance is measured by
profiling 10,000 SpMV calculations with NVIDIA Nsight Systems,
and the time results shown in the figures represent the time to
perform one SpMV calculation. For problem sizes large enough for
GPUs with N greater than 2!°, we see consistent speedup from
mfA! () kernel with higher speedup achieved for larger problem
sizes. On the A100 GPU, our speedup ranges from 3.0X to 3.1x, .
On the V100 GPU, we see a similar trend, with our speedup ranging
from 3.1X to 3.6X.

The mfA!() kernel has a low arithmetic intensity of 0.28 based
on the computation of the interior points (which accounts for more
than 99% of the total computation and data access). This puts the
mfA!() kernel in the bandwidth-limited regime [19]. If we plot this
on the Roofline model, as shown in Figure 6 as the left red dot,
we see that our kernel achieves performance that is higher than
what is possible for the given arithmetic intensity. If we calculate
the arithmetic intensity based on the assumption that the data is
read from the DRAM only once (i.e., the ideal case when the kernel
only incurs compulsory cache misses), as shown in Figure 6 as the
right red dot, we see a higher arithmetic intensity of 1.85 and our
achieved performance falls below the Roofline. This suggests that
a large portion of our data is coming from the fast memory (e.g., L1
or L2 caches), leading to performance that is better than what can
be achieved if the data is only coming from the DRAM.
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Algorithm 2 Matrix-Free GPU kernel Action of matrix-free A for interior nodes.

function mfA!(odata, idata, c;r, ¢rs, Css, hr, hs)
i, j =get_global_thread_IDs()
g=(G{—-1)*=(N+1)+j
if 2 <i,j < N then
odata[g] = (hs/hr)(- (0.5crr[g-1] + 0.5¢,r[g])idata[g-1] +
+(0.5¢rr[g-1] + crrlg] - 0.5¢,r[g+1])idatalg] +
- (0.5¢rr[g] + 0.5¢,1[g+1])idata[g+1]) +

+ 0.5¢r5[g-1](-0.5idata[g-N-2] + 0.5idata[g+N]) +
- 0.5¢r5[g+1](-0.51data[g-N] + 0.5idata[g+N+1]) +

+ 0.5¢r5[g-N-1](-0.5idata[g-N-2] + 0.5idata[g-N]) +
- 0.5¢r5[g+N+1](-0.5idata[g-N] + 0.5idata[g+N+2]) +

- (0.5¢55[g-N-1] + 0.5¢ss[g])idata[g-N-1] +
+(0.5¢s5[g-N-1] + css[g] + 0.5¢5s[g+N+1])idata[g] -
- (0.5¢s5[g] + 0.5¢c5s[g+N+1])idata[g+N+1]))

> compute global index
> interior nodes

> compute M,, stencil

> compute M, stencil

> compute Mg, stencil

> compute Mg stencil

end if

return nothing
end function

> boundary nodes, e.g. Algorithm 3

Algorithm 3 Matrix-Free GPU kernel Action of matrix-free A for west boundary (face 1).

if 2<i< Nandj=1then
odata[g] = (M;",?f + Mt 4 Mint 4 pfint 4 c;‘"f) (idata)
odata[g+1] = Ci"t(idata)
odata[g+2] = Ci’” (idata)

end if

if i =1and j = 1 then
odata[g] = (MﬁrW + MY+ wa) (idata)
odata[g+1] = C}%(idata)
odata[g+2] = C]"(idata)

end if

ifi=N+1andj=1then
odata[g] = (MY + MY + C"V) (idata)
odata[g+1] = C"" (idata)
odata[g+2] = C™" (idata)

end if

> interior west nodes
> apply boundary M and C stencils

> apply interior C stencil
> apply interior C stencil

> southwest corner node
> apply southwest partial M and C stencils

> apply southwest interior boundary C stencil
> apply southwest interior boundary C stencil

> northwest corner node

> apply northwest partial M and C stencils

> apply northwest interior boundary C stencil
> apply northwest interior boundary C stencil

To confirm our hypothesis, we use NVIDIA Nsight Compute to
profile our code for the problem size of N=2'3. The profile shows
that we achieve 72% L1 cache hit rate and 57% L2 cache hit rate,
which indicates that the majority of our data is coming from the L1
and L2 caches (approximately 88%), and that our DRAM reads are
due mostly to compulsory cache misses (i.e., when the input data is
read for the first time). This explains why our code performs better
than the DRAM-bounded performance. Figure 7 shows the Roofline
model generated by Nsight Compute, based on performance counter
measurements of how much of the overall data is coming from
different levels of the memory hierarchy. Figure 7 confirms that
the majority of our data comes from the L1 cache, followed by
L2 and DRAM. It also suggests that we can further improve the
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performance of our mfA!() kernel by improving data reuse in the
L1 cache, which will yield up to 3.8 speedup.

In future work, we will target improved performance of mfA!(),
for example through additional memory optimization techniques to
improve L1 cache hit rate, especially with respect to its performance
on newer architectures. In the present work, however, we focus on
utilizing mfA!() to solve the linear system with preconditioning.

8.2 Memory Usage Comparison

Next we compare the memory usage of mfA!() against the SpMV
kernel via the built-in memory status function in CUDA.jl. CUDA.jl
currently has good support for only three different sparse matrices:
CSR, CSC, and COO. In Julia, the default sparse matrix format is CSC,
but in CUDA.jl, the default sparse matrix format is CSR, and thus,
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Runtime Comparison(A100)
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Figure 4: Performance of SpMV vs matrix-free mfA!() on A100
GPU. Total time for matrix-free (red) and matrix-explicit CSR
(blue) formats are shown in charts plotted against N, where
the matrix is size (N + 1)% X (N + 1),

Runtime Comparison (V100)
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Figure 5: Performance of SpMV vs matrix-free mfA!() on V100
GPU. Total time for matrix-free (red) and matrix-explicit CSR
(blue) formats are shown in charts plotted against N, where
the matrix is size (N +1)% x (N + 1),

there is a necessary conversion between these two formats when
converting the CPU arrays to GPU arrays in Julia. However, for our
problem, where the matrix is SPD, both CSR and CSC formats use
exactly the same amount of memory; the only difference is in the use
of row pointer rowptr values (for CSR) instead of column pointer
values colptr (for CSC), and the order of nonzero values nzval. To
avoid redundancy, we merge key results in memory consumption
for CSC and CSR formats into three different numbers for each N.
The collected data is given in Table 5.
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Figure 6: Roofline model analysis for our matrix-free mfA!()
on the A100 GPU. The red dot on the left represents the per-
formance achieved by our kernel and its arithmetic intensity
(0.28). The red dot on the right represents the same but assum-
ing data is loaded only once from DRAM (i.e., compulsory
misses), which yields a higher arithmetic intensity (1.85). The
fact that our kernel (red dot) achieves higher performance
than what is predicted by the Roofline model suggests that a
large portion of our data is coming from the caches.

Floating Point Operations Roofline (Double Precision)
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Figure 7: Roofline model generated by Nsight Compute, based
on performance counter measurements of how much of the
overall data is coming from different levels of the memory
hierarchy. This confirms our hypothesis that the majority
of our data is coming from the L1 cache, and that further
improving data reuse in L1 will yield up to 3.8x speedup.

For the matrix-free method, memory consumption is reported
in Table 6. In order to perform the matrix-vector product, we need
to allocate memory to store the coeflicients ¢,,, css and c,s; each
requires the same size of memory as the numerical solution and
must be stored on each grid level when using geometric multigrid
as a preconditioner. In addition, we must compute and store the
minimum coefficient values Clrc;mi" on faces 1 and 2, as specified in
(8), which we denote ¥; = and ¥y, respectively.

These are associated with Dirichlet boundary conditions and are
significantly smaller in size, and thus reported in KB. Adding up
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N m nzval memory size
210 1050625 9447429 0.1596 GB
211 4198401 37769221  0.6379 GB

212 16785409 151035909 2.5509 GB
213 67125249 604061701 10.2020 GB

Table 5: Number of nonzero values (nzval) for CSC or CSR
sparse matrices with different N, where matrix size is (N +
1)2 x (N + 1)2. The matrices are SPD. Here, m represents the
number of rows, and nzval represents the number of nonzero
values. The total memory size (last column) is calculated
using previous columns.

N crr/css/crs ¥1/¥, total memory size

210 0.008405 GB 8KB  0.02523 GB
211 0.03359 GB 16 KB 0.1008 GB
212 0.1343 GB 32KB  0.4029 GB
213 0.5370 GB 65KB 1.6111 GB

Table 6: Memory allocation for matrix-free methods where
matrix size is (N+1)2x(N+1)2. Here crr, css, and csr correspond
to coefficient matrices of size (N + 1)2. ¥; and ¥, are used in
Dirichlet boundary conditions and are vectors of length N +1.
Total memory allocated (last column) is calculated using
previous columns.

these contributions, we can compute the total memory size, which
we provide in the last columns of Tables 5 and 6: We can see that
there is a significant reduction in additional required memory for
the matrix-free method than the memory to store sparse matrices
in CSC or CSR format. When calculating the total memory used for
an SpMV operation (including writing results into output vectors),
we need to add additional memory allocated for the input data and
output data, which require the same memory as the coefficients
(the first column of Table 6). A simple calculation can show that the
total memory required when using an SpMV kernel is a constant
4.2x of that required for the matrix-free method.

9 PERFORMANCE: MATRIX-FREE MGCG ON
GPUS

With the matrix-free action of A established, we can solve sys-
tem (9) with a matrix-free version of our custom MGCG method
(MF-MGCG). Other than low-level GPU kernels, Julia also sup-
ports high-level vectorization for GPU computing, which we utilize
extensively in our MGCG code for convenience. In this section,
we compare its performance against MGCG using the cuSPARSE
(matrix-explicit) SpMV (SpMV-MGCG) and also against the state-
of-the-art off-the-shelf methods offered by NVIDIA, namely, AmgX
- the GPU accelerated algebraic multigrid. The solvers and precondi-
tioners used by AmgX are stored as JSON files. We explored different
sample JSON configuration files for AmgX in the source code and
found that CG preconditioned by classical AMG performed best
for our problem. To maintain a multigrid setup comparable to our
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MGCG, we modified the PCG_CLASSICAL_V_JACOBI. json to use
1 and 5 smoothing steps with block Jacobi as the smoother. All
algorithms stop when the relative residual is reduced to less than
107° times the initial residual. We report our results in Table 7.
Also included in the table are results using a direct solve (using
LU factorization in LAPACK in Julia) only because it is so often
used in the earthquake cycle community for volume based codes
[22] and our developed methods offer promising alternatives. As
illustrated, the GPU-accelerated iteratives schemes achieve much
better performance for the problem sizes tested.

Table 7 illustrates that our MGCG method uses fewer iterations
to converge compared to AmgX, while iterations for both remain
generally constant with increasing problem size. When we increase
smoothing steps from 1 to 5, the AmgX sees reduced iterations, but
the time to solve also increases by roughly 3x. Because we apply
rediscretization (rather than Galerkin coarsening) for MGCG, the
setup time is negligible. The setup time in the AmgX is comparable
to the solve time however, which adds additional cost to use AmgX
as a solver. Our SpMV-MGCG is roughly 2X slower than the AmgX
using 1 smoothing step, but our MF-MGCG is faster than AmgX,
up to 2x speedup for N = 213, Compared to our SpMV-MGCG, our
MF-MGCG achieves more than 2X speedup, and the speedup is
more obvious at N = 213, indicating that the MF-MGCG is suitable
for large problems.

10 SUMMARY AND FUTURE WORK

In this work we present a matrix-free implementation of multigrid
preconditioned conjugate gradient in order to solve 2D, variable
coeflicient elliptic problems discretized with an SBP-SAT method.
Our custom multigrid preconditioner achieves similar precondition-
ing performance against the multigrid using Galerkin’s condition
from previous work, and it is more suitable for GPU code. The
MGCG algorithm requires a nearly constant number of iterations
to converge for various problem sizes. We explored several compa-
rable solvers and preconditioners in PETSc and found that MGCG
requires fewer iterations for the same convergence criteria. We de-
veloped matrix-free kernels that outperform the cuSPARSE SpMV
kernels from NVIDIA (i.e. using CUDA jl) in both runtime and
memory usage. We used Nsight Compute to analyze the perfor-
mance of our matrix-free kernel. This offers us more insights into
the achieved computation and memory performance, which points
directions for future kernel-level optimizations on newer GPU archi-
tectures. The resulting matrix-free MGCG method achieves better
performance than several off-the-shelf solvers offered by NVIDIA’s
AmgX when tested on the same GPU. We also demonstrate Julia’s
ability to leverage both high-level vectorization and low-level GPU
kernels for GPU computing, achieving comparable performance to
packages in native CUDA C. This facilitates seamless integration
of GPU-accelerated MGCG solvers into existing Julia code without
external reliance on C solvers.

This work is a fundamental first step towards high-performance
implementations to solve linear systems using SBP-SAT methods.
Future work will target SBP-SAT methods with higher-order ac-
curacy in 3D, as well as explorations of additional GPU kernel
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Table 7: Time to perform a direct solve after LU factorization on CPUs vs PCG on GPUs. We report time in seconds and iterations
to converge. For AmgX, we report setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the number of
smoothing steps. GPU results are tested on A100.

N  Direct Solve AmgX (ns = 1) AmgX (ns=5) SpMV-MGCG (ns =5) MF-MGCG (ns = 5)
210 0.912s  (0.0319s +0.0243s) /25 (0.0321 s + 0.0435s) / 17 7.019E-2s/8 2.851E-2s/8
2! 6.007s  (0.086s+0.161s)/55  (0.086s +0.3115)/38 0.158s/7 0.06055s /7
212 22382s (03105 +0.2355)/24  (0.323s+0.4885)/15 05645 /7 0.207s /7
213 134.697s  (1.334s+1.643s)/24  (1.217s+1.8655)/ 16 5028s/7 0.8655 /7

optimization and multi-GPU implementation. We also plan to im-
prove the performance of the preconditioner by systematic exper-
iments with different preconditioner configurations using PETSc
and applying second-order smoothers that have exhibited improved
performance in the multigrid method as well as the mixed-precision
techniques [2, 26, 27].
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