
Matrix-free SBP-SAT finite difference methods and the multigrid
preconditioner on GPUs

Alexandre Chen

University of Oregon

Eugene, Oregon, USA

yiminc@uoregon.edu

Brittany A. Erickson

University of Oregon

Eugene, Oregon, USA

bae@uoregon.edu

Jeremy Kozdon

Naval Postgraduate School

Monterey, California, USA

jeremy@kozdon.net

Jee Choi

University of Oregon

Eugene, Oregon, USA

jeec@uoregon.edu

ABSTRACT
Summation-by-parts (SBP) finite difference methods are widely

used in scientific applications alongside a special treatment of

boundary conditions through the simultaneous-approximate-term

(SAT) technique which enables the valuable proof of numerical

stability. Our work is motivated by multi-scale earthquake cycle

simulations described by partial differential equations (PDEs) whose

discretizations lead to huge systems of equations and often rely

on iterative schemes and parallel implementations to make the nu-

merical solutions tractable. In this study, we consider 2D, variable

coefficient elliptic PDEs in complex geometries discretized with the

SBP-SAT method. The multigrid method is a well-known, efficient

solver or preconditioner for traditional numerical discretizations,

but they have not been well-developed for SBP-SAT methods on

HPC platforms. We propose a custom geometric-multigrid pre-

conditioned conjugate-gradient (MGCG) method that applies SBP-

preserving interpolations. We then present novel, matrix-free GPU

kernels designed specifically for SBP operators whose differences

from traditional methods make this task nontrivial but that perform

3× faster than SpMV while requiring only a fraction of memory.

The matrix-free GPU implementation of our MGCG method per-

forms 5× faster than the SpMV counterpart for the largest problems

considered (67 million degrees of freedom). When compared to off-

the-shelf solvers in the state-of-the-art libraries PETSc and AmgX,

our implementation achieves superior performance in both itera-

tions and overall runtime. The method presented in this work offers

an attractive solver for simulations using the SBP-SAT method.
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1 INTRODUCTION
Computational modeling of the natural world involves pervasive

material and geometric complexities that are hard to understand,

incorporate, and analyze. The partial differential equations (PDEs)

governing many of these systems are subject to boundary and inter-

face conditions, and all numerical methods share the fundamental

challenge of how to enforce these conditions in a stable manner.

Additionally, applications involving elliptic PDEs or implicit time-

stepping require efficient solution strategies for linear systems of

equations.

Most applications in the natural sciences are characterized by

multiscale features in both space and time which can lead to huge

linear systems of equations after discretization. Our work is moti-

vated by large-scale (∼hundreds of kilometers) earthquake cycle

simulations where frictional faults are idealized as geometrically

complex interfaces within a 3D material volume and are character-

ized by much smaller-scale features (∼microns) [21, 28]. In contrast

to the single-event simulations, e.g. [49], where the computational

work at each time step is a single matrix-vector product, earthquake

cycle simulations must integrate with adaptive time-steps through

the slow periods between earthquakes, and are tasked with a much

more costly linear solve. For example, even with upscaled param-

eters so that larger grid spacing can be used, the 2D simulations

in [21] generated matrices of size ∼106, and improved resolution

and 3D domains would increase the system size to ∼109 or greater.
Because iterative schemes are most often implemented for the lin-

ear solve (since direct methods require a matrix factorization that is

often too large to store in memory), it is no surprise that the sparse

matrix-vector product (SpMV) arises as the main computational

workhorse. The matrix sparsity and condition number depend on

several physical and numerical factors including the material het-

erogeneity of the Earth’s material properties, order of accuracy,

the coordinate transformation (for irregular grids), and the mesh
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size. For large-scale problems, matrix-free (on-the-fly) techniques

for the SpMV are fundamental when the matrix cannot be stored

explicitly.

In this work, we use summation-by-parts (SBP) finite difference

methods [30, 40, 52, 53], which are distinct from traditional finite

differencemethods in their use of specific one-sided approximations

at domain boundaries that enable the highly valuable proof of

stability, a necessity for numerical convergence. Weak enforcement

of boundary conditions has additional superior properties over

traditional methods, for example, the simultaneous-approximation-

term (SAT) technique, which relaxes continuity requirements (of

the grid and the solution) across physical or geometrical interfaces,

with low communication overhead for efficient parallel algorithms

[18]. For these reasons SBP-SAT methods are widely used in many

areas of scientific computing, from the flow over airplane wings to

biological membranes, to earthquakes and tsunamigenesis [20, 36,

43, 46, 54, 60]; these studies, however, have not been developed for

linear solves or were limited to small-scale simulations.

With this work, we contribute a novel iterative scheme for lin-

ear systems based on SBP-SAT discretizations where nontrivial

computations arise due to boundary treatment. These methods

are integrated into our existing, public software for simulations of

earthquake sequences. Specifically, we make the following contri-

butions:

• Since preconditioning of iterative methods is a hugely con-

sequential step towards improving convergence rates, we

develop a custom geometric multigrid preconditioned con-

jugate gradient (MGCG) algorithm which shows a near-

constant number of iterations with increasing system size.

The required iterations (and time-to-solution) are much

lower compared to several off-the-shelf preconditioners of-

fered by the PETSc library [4], a state-of-the-art library for

scientific computing.

• We develop custom, matrix-free GPU kernels (specifically

for SBP-SAT methods) for computations in the volume and

boundaries, which show improved performance as compared

to the native, matrix-explicit implementation, while requir-

ing only a fraction of memory.

• GPU-acceleration of our resulting matrix-free, precondi-

tioned iterative scheme shows superior performance com-

pared to state-of-the-art methods offered by NVIDIA.

Furthermore, the ubiquity of SBP-SATmethods in modern scientific

computing applications means our work has the propensity to

advance scientific studies currently limited to small-scale problems.

The paper is organized as follows: First, we present related (albeit

limited) work on preconditioning and GPU acceleration of itera-

tive schemes for SBP-SAT methods. Next, we provide a detailed

description of our model problem, followed by the corresponding

SBP-SAT discretization which generates the linear system we focus

on in this work. We include details of our code development in the

Julia programming language and its HPC capabilities and verify our

solutions through rigorous spatial convergence tests to ascertain

correctness. We next discuss a two-pronged approach for accel-

erating time-to-solution, with developed methods customized for

SBP-SAT methods. The first is through a preconditioning approach,

which can be thought of as a mathematical means for reducing

the number of overall iterations required for the iterative scheme

to converge. Second, individual iterations can be accelerated by

GPU parallelism and the development of matrix-free operations.

Preconditioning and parallel performance are compared against

options from several state-of-the-art libraries (PETSc and NVIDIA

AmgX). We conclude with a summary of our results and proposed

future work.

2 RELATEDWORK
Conjugate gradient (CG) is a standard iterative method for solving

linear systems involving symmetric positive-definite (SPD)matrices.

But the performance of CG often relies fundamentally on specialized

preconditioning techniques specific to the application, e.g. [1, 25,

44, 59]. To our knowledge, no systematic studies of preconditioning

performance for SBP-SAT methods have been done until this study.

Multigrid (MG) is a technique for both solving and preconditioning

linear systems using a hierarchy of successively coarser grids. Three

key ingredients define multigrid methods, namely, interpolation

operators (prolongation and restriction), smoothers, and (if used)

a direct solve on a coarse grid. MG has inherent high-parallelism,

smooths low-frequency error components and has proven to be a

highly successful preconditioner for improving convergence rates

in a wide range of application problems [55]. In [50], MG methods

were explored for SBP-SAT methods, and the development of SBP-

preserving interpolation operators showed improved performance

by modifying standard interpolation operators near boundaries.

However, these studies only explored MG as a solver, and not its

effectiveness as a preconditioner. In addition, they applied Galerkin

coarsening to produce the coarse grid operators rather than through

a rediscretization of the original PDE. Because part of the focus

of our work is the development of matrix-free methods, defining

the coarse grid operators in this fashion would require writing an

entirely different kernel for every grid level, as well as morememory

for data storage [11]. Therefore, to fully utilize the efficiency of our

matrix-free methods, as well as to reduce complexity in and number

of kernels needed, our focus is on rediscretization approaches when

using MG as a preconditioner for CG (denoted MGCG).

The CG iteration itself involves three components: the sparse

matrix data structure (if matrix-explicit methods are used), the

reduction operations to compute inner products, and the matrix-

vector multiply. For such matrix-explicit methods, loading the ma-

trix from device memory often dominates SpMV performance. Even

though GPUs are bandwidth rich (an order of magnitude or higher

than CPUs), making them ideally suited for SpMV [16], the SpMV

constitutes the majority of the computational load. Specifically, per-

formance can be limited by low computational intensity, irregular

memory access, and sparsity [33], and though not the focus of this

work, much effort has been devoted to sparse matrix data structures

such as CSR (our baseline comparison), ELL, COO, and BELLPACK

(GPU only) [3, 5, 7, 8, 16, 56, 58].

To our knowledge, the only previous work on SBP-SAT methods

on the GPU considered a matrix-explicit SpMV [32], or used stencil

computations in seismic wave propagations but did not solve linear

systems [45]. Here we develop a matrix-free implementation of

the SpMV and corresponding MGCG method to solve our model

problem. Matrix-free methods include the additional benefits of
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increased arithmetic intensity and reduced memory footprint, and

do not require matrix assembly (which can be cumbersome for

complex applications), all of which can improve performance on

modern, bandwidth-limited processors [13, 24, 35, 42].

3 MODEL PROBLEM AND METHODS
3.1 Partial Differential Equations for the Solid

Earth
Our work is motivated by the study of quasi-static deformation of

the solid Earth over the time-scales of earthquake cycles. Motion is

governed by the equilibrium equation and a constitutive relation-

ship describing the material properties. The standard assumption is

that the Earth is linear elastic, defined on a sub-domain ofR3. While

solutions to the 3D elasticity equations are the eventual target, 2D

problems are considered in this work in order to sort out implemen-

tation details with reduced computational costs. The 2D anti-plane

shear problem [37] is particularly ubiquitous in earthquake cycle

benchmark problems [22], where a vertical cross-section of a 3D

problem (assuming invariance in one-direction) gives rise to an

elliptic equation at each time-step, where only one non-zero com-

ponent of the displacement vector exists and depends on two spatial

variables, namely,

−∇ · (𝜇∇𝑢) = 𝑓 for (𝑥,𝑦) ∈ Ω, (1)

where 𝜇 (𝑥,𝑦) is the spatially-varying shear modulus, 𝑢 is Earth’s

material displacement in the 𝑧-direction, and 𝑓 comprises body

forces. In order to enable complex fault geometries and topography,

we assume that Ω is a curved quadrilateral in R2, which enables

extensions to arbitrary domains partitioned into computational

blocks, e.g. [29]. As Figure 1(a) illustrates, the boundary can be

partitioned into four curves 𝜕Ω𝑖 , 𝑖 = 1, ..., 4, where (for example),

𝜕Ω3 represents Earth’s surface and the shear modulus 𝜇 (𝑥,𝑦) can
vary in order to represent heterogeneities in the crust, for example,

a shallow sedimentary basin, as illustrated.

For generality we consider both Dirichlet and Neumann bound-

ary conditions, namely

𝑢 = 𝑔1, 𝜕Ω1, (2a)

𝑢 = 𝑔2, 𝜕Ω2, (2b)

𝒏 · 𝜇∇𝑢 = 𝑔3, 𝜕Ω3, (2c)

𝒏 · 𝜇∇𝑢 = 𝑔4, 𝜕Ω4, (2d)

where vector 𝒏 is the outward pointing normal to the domain

boundary and 𝑔𝑖 , 𝑖 = 1, ..., 4 represent boundary data.

3.2 Coordinate Transformation
In order to solve (1)-(2) with SBP-SAT methods, the domain Ω
is transformed (via a conformal mapping) to the regular, square
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Figure 1: (a) Geometrically complex physical domain Ω with
material stiffness that increases from 𝜇in within a shallow,
ellipsoidal sedimentary basin, to stiffer host rock given by
𝜇out. (b) Ω is transformed to the regular, square domain Ω̄
via conformal mapping.

domain (𝑟, 𝑠) ∈ Ω̄ = −1 ≤ (𝑟, 𝑠) ≤ 1, as in Figure 1(b). The trans-

formed equations are given by

− ¯∇ ·
(
c ¯∇𝑢

)
= 𝐽 𝑓 , for (𝑟, 𝑠) ∈ Ω̄, (3a)

𝑢 = 𝑔1, face 1, (3b)

𝑢 = 𝑔2, face 2, (3c)

𝒏̂3 · c ¯∇𝑢 = 𝑆3
𝐽
𝑔3, face 3, (3d)

𝒏̂4 · c ¯∇𝑢 = 𝑆4𝐽 𝑔4, face 4, (3e)

where
¯∇𝑢 =

[
𝜕𝑢
𝜕𝑟 ,

𝜕𝑢
𝜕𝑠

]𝑇
, face 𝑘 for 𝑘 = 1, ...4 define the domain

boundaries of Ω̄, given in Figure 1(b). 𝐽 > 0 is the Jacobian and 𝑆𝑘
𝐽

is the surface Jacobian on face 𝑘 . Vector 𝒏̂𝑘 is the outward pointing

normal to the face and 2 × 2 matrix c is symmetric positive definite

(SPD) and encodes the variable material properties 𝜇 (𝑥,𝑦) and the

coordinate transform, see [23, 29] for more details.

3.3 SBP-SAT Finite Difference Methods
SBP methods approximate partial derivatives using one-sided differ-

ences at all points close to the boundary node, generating a matrix

approximating a partial derivative operator. In this work we focus

on second-order derivatives that appear in (3), however, the matrix-

free methods we derive are applicable to any second-order PDE. We

consider SBP finite-difference approximations to boundary-value

problem (3), i.e. on the square computational domain Ω̄; solutions
on the physical domain Ω are obtained by the inverse coordinate

transformation.

In this work, we focus on SBP operators with second-order ac-

curacy which contains abundant complexity at domain boundaries

to enable insight into implementation design extendable to higher-

order methods. To provide background on the SBP methods we first

describe the 1D operators, as Kronecker products are used to form

their multi-dimensional counterparts.

3.3.1 1D Operators. We discretize the spatial domain −1 ≤ 𝑟 ≤ 1

with 𝑁 + 1 evenly spaced grid points 𝑟𝑖 = −1 + 𝑖ℎ, 𝑖 = 0, . . . , 𝑁 with

grid spacing ℎ = 2/𝑁 . A function 𝑢 projected onto the computa-

tional grid is denoted by 𝒖 = [𝑢0, 𝑢1, . . . , 𝑢𝑁 ]𝑇 and is often taken to

be the interpolant of 𝑢 at the grid points. We define the grid basis
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vector ®𝑒 𝑗 to be a vector with value 1 at grid point 𝑗 and 0 for the

rest, which allows us to extract the jth component: 𝑢 𝑗 = ®𝑒𝑇𝑗 ®𝑢.

Definition 3.1 (First Derivative). A matrix 𝑫𝑟 is an SBP approxi-

mation to the first derivative operator 𝜕/𝜕𝑟 if it can be decomposed

as 𝑯𝑫𝑟 = 𝑸 with 𝑯 being SPD and 𝑸 satisfying ®𝑢𝑇 (𝑸 + 𝑸𝑇 )®𝑣 =

𝑢𝑁 𝑣𝑁 − 𝑢0𝑣0.

Here, 𝑯 is a diagonal quadrature matrix and 𝑫𝑟 is the standard

central finite difference operator in the interior which transitions

to one-sided at boundaries.

Definition 3.2 (Second Derivative). Letting 𝑐 = 𝑐 (𝑟 ) denote a

material coefficient, we define matrix 𝑫 (𝑐 )𝑟𝑟 to be an SBP approxima-

tion to
𝜕
𝜕𝑟

(
𝑐 𝜕
𝜕𝑟

)
if it can be decomposed as 𝑫 (𝑐 )𝑟𝑟 = 𝑯−1 (−𝑴 (𝑐 ) +

𝑐𝑁 ®𝑒𝑁 ®𝑑𝑇𝑁 − 𝑐0®𝑒0 ®𝑑
𝑇
0
) where 𝑴 (𝑐 ) is SPD and

®𝑑𝑇
0
®𝑢 and

®𝑑𝑇
𝑁
®𝑢 are ap-

proximations of the first derivative of 𝑢 at the boundaries.

With these properties, both 𝑫𝑟 and 𝑫 (𝑐 )𝑟𝑟 mimic integration-by-

parts in a discrete form which enables the proof of discrete stability

[39, 40].

𝑫 (𝑐 )𝑟𝑟 is a centered difference approximation within the interior

of the domain, but includes approximations at boundary points

as well. For illustrative purposes alone, if 𝑐 = 1 (e. g. a constant

coefficient case), the matrix is given by

𝑫 (𝑐 )𝑟𝑟 =
1

ℎ2



1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2 1


,

which, as highlighted in red, resembles the traditional (second-

order-accurate) Laplacian operator in the domain interior.

3.3.2 2D SBPOperators. The 2D domain Ω̄ is discretized using𝑁+1
grid points in each direction, resulting in an (𝑁 +1) × (𝑁 +1) grid of
points where grid point (𝑖, 𝑗) is at (𝑥𝑖 , 𝑦 𝑗 ) = (−1+𝑖ℎ,−1+ 𝑗ℎ) for 0 ≤
𝑖, 𝑗 ≤ 𝑁 with ℎ = 2/𝑁 . Here we have assumed equal grid spacing

in each direction, only for notational ease; the generalization to

different numbers of grid points in each dimension does not impact

the construction of the method and is implemented in our code. A

2D grid function 𝒖 is ordered lexicographically and we let 𝑪𝑖 𝑗 =
diag(𝒄𝑖 𝑗 ) define the diagonal matrix of coefficients, see [29].

In this work we imply summation notation whenever indices

are repeated. Multi-dimensional SBP operators are obtained by

applying the Kronecker product to 1D operators, for example, the

2D second derivative operators are given by

𝜕

𝜕𝑖
𝑐𝑖 𝑗

𝜕

𝜕 𝑗
≈ 𝑫̃

𝑐𝑖 𝑗
𝑖 𝑗

= (𝑯 ⊗ 𝑯 )−1
[
−𝑴̃ (𝑐𝑖 𝑗 )

𝑖 𝑗
+ 𝑻

]
, (4)

for 𝑖, 𝑗 ∈ {𝑟, 𝑠}. Here 𝑴̃ (𝑐𝑖 𝑗 )
𝑖 𝑗

is the sum of SPD matrices approximat-

ing integrated second derivatives (i.e. sum over repeated indices

𝑖, 𝑗 ) for example

∫
Ω̄

𝜕
𝜕𝑟 𝑐𝑟𝑟

𝜕
𝜕𝑟 ≈ 𝑴̃

(𝑐𝑟𝑟 )
𝑟𝑟 and matrix 𝑻 involves the

boundary derivative computations, see [23] for complete details.

0 5 10 15 20 25

0

5

10

15

20

25

M̃
(cij)

ij∑

k=1,2

C k

Figure 2: Sparsity pattern for matrix𝑨with 𝑁 = 5 grid points
in each direction. Traditional 5-point Laplacian stencil in
black circles. Contributions to 𝑨 are separated into contri-
butions from the volume (red +) and from the boundary
enforcement (red ×), so that contributions from both (red ∗)
cancel deviations from symmetry and render 𝑨 SPD.

3.3.3 SAT Penalty Terms. SBP methods are designed to work with

various impositions of boundary conditions that lead to provably

stable methods, for example through weak enforcement via the

simultaneous-approximation-term (SAT) [14] which we adopt here.

As opposed to traditional finite difference methods that “inject"

boundary data by overwriting grid points with the given data, the

SAT technique imposes boundary conditions weakly (through pe-

nalization), so that all grid points approximate both the PDE and the

boundary conditions up to a certain level of accuracy. The combined

approach is known as SBP-SAT. Where traditional methods that use

injection or strong enforcement of boundary/interface conditions

destroy the discrete integration-by-parts property, using SAT terms

enables proof of the method’s stability (a necessary property for

numerical convergence) [38].

4 PROBLEM DISCRETIZATION
The SBP-SAT discretization to (3) is given by

−𝑫̃ (𝑐𝑖 𝑗 )
𝑖 𝑗

𝒖 = 𝑱𝒇 +
∑︁
𝑘

𝒑𝑘 (5)

where 𝒑𝑘 are SAT vectors formed from the boundary condition

on face 𝑘 . To illustrate the structure of the SAT vectors, enforcing

Dirichlet conditions on faces 𝑘 = 1, 2 generates

𝒑𝑘 = (𝑯 ⊗ 𝑯 )−1
(
𝑮𝑇
𝑘
− 𝑳𝑇

𝑘
𝑯𝑘𝝉𝑘

) (
𝑳𝑘𝒖 − 𝒈𝑘

)
, (6)
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where matrix G𝑘 computes the weighted derivative on face 𝑘 , L𝑘
is the face extraction operator and 𝑯𝑘 is the 1D 𝑯 matrix in the

direction parallel to face 𝑘 . Matrix 𝝉𝑘 = 𝑛̂𝑘
𝑖
𝑪𝑘
𝑖 𝑗
𝑛̂𝑘
𝑗
𝚪𝑘 , where 𝑪

𝑘
𝑖 𝑗
is

the diagonal matrix of coefficients restricted face 𝑘 and 𝚪𝑘 is the di-

agonal penalty matrix on face 𝑘 with sufficiently large components

to ensure discrete stability, according to

𝚪𝑘 ≥
4

ℎ𝑘⊥
I + 1

ℎ𝑘⊥
P𝑘 , (7)

where

P𝑘 =

{
𝑪𝑘𝑟𝑟 (𝑪

𝑘,𝑚𝑖𝑛
𝑟𝑟 )−1, k = 1, 2,

𝑪𝑘𝑠𝑠 (𝑪
𝑘,𝑚𝑖𝑛
𝑠𝑠 )−1, k = 3, 4.

(8)

Here 𝑪𝑘,𝑚𝑖𝑛
is the minimum value of 𝑐 in the two points orthogonal

to the boundary and ℎ𝑘⊥ is the grid spacing orthogonal to face 𝑘

[23].

In order to render the linear system (5) SPD, we multiply by

(𝑯 ⊗ 𝑯 ) (the discrete equivalent of integrating over Ω̄ and dis-

cretizing the weak form). This process yields the final linear system

𝑨𝒖 = 𝒃 (9)

where

𝑨 = 𝑴̃
(𝑐𝑖 𝑗 )
𝑖 𝑗
+

∑︁
𝑘=1,2

𝑪𝑘 , (10)

is SPD [23], and matrices

𝑪𝑘 = −L𝑇
𝑘
G𝑘 − G𝑇

𝑘
L𝑘 + L𝑇𝑘𝑯𝑘𝝉𝑘L𝑘 . (11)

Right-hand side vector 𝒃 is given by

𝒃 = (𝑯 ⊗ 𝑯 )
[
𝑱𝒇 +

∑︁
𝑘

𝑲𝑘𝒈𝑘

]
(12)

which encodes the source term and boundary data. Here matrices

𝑲 depend on boundary conditions; for those given in (3) they are

𝑲1 = 𝑳𝑇
1
𝑯 1𝝉1 − 𝑮𝑇

1
(13)

𝑲2 = 𝑳𝑇
2
𝑯 2𝝉2 − 𝑮𝑇

2
(14)

𝑲3 = 𝑳𝑇
3
𝑯 3 (15)

𝑲4 = 𝑳𝑇
4
𝑯 4 . (16)

Note that 𝑨 includes contributions from both volume operators

(𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

) and from the SAT enforcement of boundary terms (𝑪𝑘 ),

and differs from the traditional discrete Laplacian near all domain

boundaries; see Figure 2. At Dirichlet boundaries (faces 1 and 2),

𝑪𝑘 modifies the layer of three points normal to the face (i.e. the

SAT imposition penalizes all points used in the computation of the

derivative normal to the face).

5 DEVELOPMENT AND VERIFICATION
In this work all code is written in the Julia programming language.

Julia is a dynamically typed language for scientific computing de-

signed with high performance in mind [10]. Julia supports general-

purpose GPU computing with the package CUDA.jl. Through com-

munications in LLVM intermediate representations with NVIDIA’s

compiler, it is claimed that CUDA.jl achieves the same level of per-

formance as CUDA C according to previous research[9]. Aimed to

address the “two-language" problem, Julia enables implementation

Table 1: Discretization error and convergence rate for the
SBP-SAT method. The use of more digits illustrates the con-
vergence rate approaching the theoretical rate 2.

𝑁 Discretization error Convergence rate

2
9

1.353609E-05 1.998341E+00

2
10

3.385302E-06 1.999455E+00

2
11

8.464360E-07 1.999811E+00

2
12

2.116192E-07 1.999930E+00

2
13

5.290578E-08 1.999973E+00

ease of complex mathematical algorithms while achieving high per-

formance, an ideal match for computational scientists without ex-

pertise in low-level language-based HPC. Julia has gained attention

among the HPC community, with notable examples including The

Climate Machine [51], a new Earth System model written purely in

Julia that is capable of running on both CPUs and GPUs by utilizing

KernelAbstractions.jl [17], a pure Julia device abstraction similar

to Raja, Kokkos, and OCCA [6, 15, 41]. In addition, because a large

body of researchers studying SBP methods use Julia in serial, e.g.

[29, 47], our developments will enable these users to gain HPC

capabilities in their code with minimal overhead.

The SBP-SAT discretization used to form system (9) is rigorously

verified for correctness by confirming numerical convergence to-

wards a known, analytical solution [48]. For the exact solution

(denoted with an asterisk) we take

𝑢∗ (𝑥,𝑦) = sin(𝜋𝑥) sinh(𝜋𝑦), (17)

on the domain Ω with corners (𝑥,𝑦) =

{(−0.3, 0), (0.5,−.25), (0, 1), (1, 1.5)}, illustrated in Figure 1(a),

with curved edges defined by sinusoids; the grid is formed with

transfinite interpolation. The spatially variable shear modulus is

taken to be

𝜇 (𝑥,𝑦) = 𝜇out − 𝜇in
2

tanh((𝑥2 + 𝑐2𝑦2 − 𝑟 )/𝑟𝑤) + 1) + 𝜇in (18)

which forms a semi-ellipse representing a shallow, sedimentary

basin. The basin contains compliant material with 𝜇in = 20, sur-

rounded by stiffer host rock, with 𝜇out = 32. The basin parameters

𝑐 = 0.5, 𝑟 = 6.25E-4 and 𝑟𝑤 = 0.015, which implicitly define a basin

depth and width of 0.05. The discrete L2-error is defined by the

𝐻−norm, namely

𝐸ℎ = | |𝒖∗ − 𝒖 | |𝐻

=

√︃
(𝒖∗ − 𝒖)𝑇 𝑱 (𝑯 ⊗ 𝑯 ) (𝒖∗ − 𝒖), (19)

where 𝒖∗ is the exact solution (17) evaluated on the grid. 𝐸ℎ is

reported in Table 1 using a direct solve (i.e. we compute the dis-

cretization error), which shows that we have achieved convergence

at the theoretical rate.

6 PERFORMANCE: PRECONDITIONING
Iterative methods enable the solution to larger problems of the form

(9) compared to a direct solve that requires storing a matrix factor-

ization. However, the convergence of CG depends predominantly

on the condition number of the matrix 𝑨, which can be reduced (to

accelerate convergence) through preconditioning techniques. The
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preconditioning matrix 𝑴 has to be SPD and fixed, and although it

need not be explicitly assembled nor inverted, good preconditioners

should satisfy 𝑴 ≈ 𝑨−1.
In this work we develop a custom MG preconditioner by first

adopting the second-order SBP-preserving prolongation/restriction

operators from[50], which maintain accuracy at domain boundaries

and correctly transfer residual vectors to the coarser grids. The 2D

restriction operator is given by

𝑰 2ℎ
ℎ

= 𝑯−1
2ℎ

(
𝑰ℎ
2ℎ

)𝑇
𝑯ℎ (20)

where 𝑯ℎ and 𝑯
2ℎ denote 𝑯 ⊗ 𝑯 with grid spacing ℎ and 2ℎ,

respectively. The 2D prolongation operator 𝑰ℎ
2ℎ

is defined by 𝑰ℎ
2ℎ

=

𝐼ℎ
2ℎ
⊗ 𝐼ℎ

2ℎ
, where 𝐼ℎ

2ℎ
is the standard 1D prolongation operator [12],

see Appendix A in [50].

One feature that differentiates our problem formulation from

those in [50] is that our matrix in (9) is rendered SPD only after the

multiplication of (4) on the left by (𝑯 ⊗ 𝑯 ), which introduces ad-

ditional grid information when calculating the associated residual

vector. To properly transfer this grid information we found im-

proved performance of our preconditioner when further modifying

the restriction operator to account for grid spacing. This is achieved

by excluding the (𝑯 ⊗ 𝑯 ) term when computing the residual on

the fine grid, then restricting using 𝑰 𝑟 , and then re-introducing

the grid spacing on the coarse grid. In addition, we explored both

Galerkin coarsening and rediscretization to form the coarse-grid

operators and found the latter to give superior performance. The

pseudo-code for the custom MG method (which we will apply as a

preconditioner) is given in Algorithm 1.

We first compare the preconditioning performance of our cus-

tom geometric multigrid against the multigrid using Galerkin’s

condition from [50]. To avoid the influence of hyperparameters

in smoothers, we use the Gauss-Seidel method as smoother. This

method is not suitable for GPU parallelization, so we only focus

on the preconditioning performance in terms of iteration reduc-

tion here. For a 2D computational grid of 𝑁 = 2
𝑘
points in each

direction, we use a single V-cycle multigrid of 𝑘 − 1 levels with

5 smoothing steps on each level including the coarsest grid (i.e.

taking 𝜈1 = 𝜈2 = 𝜈3 = 5 and 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 1 in Algorithm 1) as

the preconditioner. The MGCG stops when the relative residual is

reduced to less than 10
−8

times the initial residual. For all tests in

this work we initialize the iterative scheme with the zero vector. We

report results in Table 2. Our custom geometric multigrid method

achieves comparable preconditioning results with the multigrid

method using Galerkin’s condition from [50], both having near-

constant iteration counts for different problem sizes. The iteration

count for non-preconditioned CG almost doubles when 𝑁 is dou-

bled, indicating worse condition numbers on finer grids.

Many types of smoothers for multigrid methods can be explored

for best performance. For the rest of the work, we focus on Richard-

son iteration given by x𝑘+1 = x𝑘 + 𝜔 (b − Ax𝑘 ) because it can be

easily accommodated by our subsequent development of matrix-

free kernels for 𝑨. Here 𝜔 is chosen to satisfy the convergence

criteria and its optimal value depends on the eigenvalues of 𝑨 as

𝜔𝑜𝑝𝑡 =
2

𝜆𝑚𝑎𝑥+𝜆𝑚𝑖𝑛
, where 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 are the largest and small-

est eigenvalues of 𝑨 respectively. We use Arpack.jl, which is a Julia

Algorithm 1 (𝑘 + 1)-level MG for 𝑨ℎ𝒖ℎ = 𝒇ℎ , with smoothing

𝑆𝜈
ℎ𝑘

applied 𝜈 times. SBP-preserving restriction and interpolation

operators are applied. Grid coarsening (𝑘 → 𝑘 + 1) is done through
successive doubling of grid spacing until reaching the coarsest grid.

The multigrid cycle can be performed 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 times. 𝒓 represents
the residual, and 𝒗 represents the solution to the residual equation

used during the correction step. This algorithm is adapted from

[34].

function MG(𝒇ℎ𝑘 , 𝑨ℎ𝑘 , 𝒖
(0)
ℎ𝑘

, 𝑘 , 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 )

for 𝑛 = 0, 1, 2, . . . , 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 do

𝒖 (𝑛)
ℎ𝑘

𝑆
𝜈
1

ℎ𝑘←−−− 𝒖 (𝑛)
ℎ𝑘

⊲ Pre-smoothing 𝜈1 times

𝒓 (𝑛)
ℎ𝑘

= 𝒇 (𝑛)
ℎ𝑘
−𝑨(𝑛)

ℎ𝑘
𝒖 (𝑛)
ℎ𝑘

⊲ Calculating residual

𝒓ℎ𝑘 = (𝑯𝑘 ⊗ 𝑯𝑘 )−1𝒓
(𝑛)
ℎ𝑘

⊲ Removing grid info

𝒓ℎ𝑘+1 = (𝑯𝑘+1 ⊗ 𝑯𝑘+1)𝑰
ℎ𝑘+1
ℎ𝑘

𝒓ℎ𝑘 ⊲ Restriction

if 𝑘 + 1 = 𝑘max then

𝒗 (𝑛)
ℎ𝑘+1

𝑆
𝜈
2

ℎ𝑘+1←−−−−− 0
ℎ𝑘+1

⊲ Smoothing on coarsest grid

else
𝒗 (𝑛)
ℎ𝑘+1

= MG(𝒓ℎ𝑘+1 , 𝑨ℎ𝑘+1 , 0ℎ𝑘+1 , 𝑘 + 1, 1)
⊲ Recursive definition of MG

end if
𝒗𝑛
𝑘
= 𝑰ℎ𝑘

ℎ𝑘+1
𝒗 (𝑛)
𝑘+1 ⊲ Interpolation

𝒖 (𝑛+1)
𝑘

= 𝒖 (𝑛)
𝑘
+ 𝒗𝑛

𝑘
⊲ Correction

𝒖 (𝑛+1)
𝑘

𝑆
𝜈
3

ℎ𝑘←−−− 𝒖 (𝑛+1)
ℎ𝑘

⊲ Post-smoothing 𝜈3 times

end for
end function

Table 2: Performance of MGCG using our custom pre-
conditioner (denoted MGCG) against the multigrid using
Galerkin’s condition (denoted MGCG-Galerkin) from [50]
and non-preconditioned CG. We report the total iterations
to converge and the final relative residual for three different
algorithms.

N MGCG-Galerkin MGCG CG

64 6 / 2.33 E-9 6 / 2.25 E-09 221 / 9.98 E-9

128 6 / 8.39 E-9 6 / 2.42 E-9 431 / 9.61 E-9

256 7 / 2.44 E-9 6 / 2.16 E-9 839 / 9.79 E-9

512 7 / 2.63 E-9 6 / 1.89 E-9 1643 / 9.70 E-9

1024 7 / 2.72 E-9 6 / 1.73 E-9 3208 / 9.93 E-9

wrapper of ARPACK that uses the Implicitly Restarted Arnoldi

Method to calculate eigenvalues for sparse matrices. For small 𝑁 ,

we can compute 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 directly, but for large 𝑁 values,

these become computationally intractable. We use extrapolation

to approximate values for 𝜆𝑚𝑎𝑥 and 𝜆𝑚𝑖𝑛 for 𝑁 ≥ 32 based on

observation of eigenvalues for 𝑁 ≤ 32, namely,

𝜆𝑚𝑖𝑛,2𝑁 = 𝜆𝑚𝑖𝑛,𝑁 /4,
𝜆𝑚𝑎𝑥,2𝑁 = 𝜆𝑚𝑎𝑥,𝑁 + 0.6 ∗ (𝜆𝑚𝑎𝑥,𝑁 − 𝜆𝑚𝑎𝑥,𝑁 /2),
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Table 3: Iterations and time to converge for 𝑁 = 2
10 using 1

smoothing step in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson iteration as smoother
(last row)

mg_levels_ksp_type mg_levels_pc_type iters time

chebyshev

sor 18 4.105 s

jacobi 22 3.382 s

bjacobi 17 3.945 s

richardson

sor 18 3.581 s

jacobi 49 3.729 s

bjacobi 16 3.729 s

cg

sor 17 4.081 s

jacobi 23 3.849 s

bjacobi 16 3.971 s

richardson none 11 0.086 s

Table 4: Iterations and time to converge for 𝑁 = 2
10 using 5

smoothing steps in PETSc PAMGCG with V cycle (first three
rows) vs. our MGCG using Richardson iteration as smoother
(last row)

mg_levels_ksp_type mg_levels_pc_type iters time

chebyshev

sor 10 10.76 s

jacobi 14 10.20 s

bjacobi 9 10.58 s

richardson

sor 9 10.13 s

jacobi DV 9.24 s

bjacobi 8 10.28 s

cg

sor 9 10.47 s

jacobi 13 10.54 s

bjacobi 8 10.45 s

richardson none 8 0.069s

where 𝜆𝑚𝑖𝑛,𝑁 represents the minimal eigenvalue of a linear system

formed for our 2D problem with 𝑁 + 1 grid points in each direction

and 𝜆𝑚𝑎𝑥,𝑁 is the corresponding maximum value. There are many

configurations for the multigrid method, but we found that the total

number of iterations required by MGCG is largely determined by

the number of grid levels and smoothing steps and is less impacted

by the choice of smoother itself.

MG methods have many tunable parameters. For this initial

study, we explored the MGCG performance varying the number of

Richardson pre- and post-smoothing steps on every level between

1 and 5. We considered a single V-cycle (i.e. taking 𝜈1 = 𝜈2 = 𝜈3 = 5

and 𝑁𝑚𝑎𝑥𝑖𝑡𝑒𝑟 = 1 in Algorithm 1), including on the coarsest grid (5

grid points in each direction). For all tests in this work we initialize

the iterative scheme with the zero vector. All algorithms stop when

the relative residual is reduced to less than 10
−6

times the initial

residual.

Comparisons against an unpreconditioned CG are not generally

appropriate as most real-world applications require precondition-

ing to make any solution tractable. The Portable, Extensible Toolkit

for Scientific Computing (PETSc) [4] is one of the most widely

used parallel numerical software libraries, featuring extensive pre-

conditioning methods, many of which can be tested by users via

relatively simple command-line options. We experimented with

several of PETSc’s off-the-shelf algebraic multigrid preconditioned

CG solvers (denoted PAMGCG). PETSc’s PAMGCG is similar to our

MGCG and only requires loading PETSc formatted A and b (from

which it forms the coarse grid operators).

We tested PAMGCG with various configurations against our cus-

tom MGCG, applying the same stopping criterion (here based on

the relative norm of the residual vector reduced to 1E-6), with

results provided in Tables 3 and 4. The mg_levels_ksp_type
and mg_levels_pc_type in the tables stand for Krylov subspace

method types and preconditioner types used at each level of the

multigrid in PAMGCG.When classical iterative methods are used as

smoothers, mg_levels_ksp_type is set as richardson and the par-
ticular smoother (e.g. Jacobi) is set by mg_levels_pc_type. Since
our MGCG uses Richardson iteration as the smoother for multigrid,

we report mg_levels_ksp_type as richardson and

mg_levels_pc_type as none to maintain coherence across the

columns. Iterations and total time to converge are reported. We

found that the Jacobi iteration is not a good choice as smoother

in PAMGCG. When using 1 smoothing step, it takes more itera-

tions than other configurations. It does not converge (denoted as

DV) when using 5 smoothing steps. Aside from this configuration,

other PETSc configurations in the table exhibit comparable perfor-

mance in both the number of iterations and the convergence time.

We found that additional options within PAMGCG play relatively

minor roles in performance. Our MGCG results (reported in the

last rows), however, show superior performance in terms of both

iteration counts and overall time.

7 ENVIRONMENT AND IMPLEMENTATIONS
Preconditioning reduces the total number of iterations required by

CG, but time-to-solution can be further accelerated by reducing

individual time-per-iteration. We achieve these improvements by

adding GPU-capabilities to our MGCGmethod, specifically through

the development of matrix-free kernels for computing the SpMV

(the action of matrix 𝑨).

7.1 Environment Configuration
For the GPU implementation, the matrix-vector product is tested

using an NVIDIA V100-SXM2 GPU with 32 GB of memory and

an A100-PCIE with 40 GB of memory. Tests are carried out using

CUDA 12.0. In addition, we have a dual E5-2690v4 (28 cores) CPU

with 256 GB of system memory. The results for CG and MGCG are

conducted on the A100 GPU.

7.2 Kernel Design
Stencil computations have proven efficient in utilizing GPU re-

sources to achieve optimal performance [31, 57]. In this work we

implement a similar GPU kernel for our 2D problem by matching

each spatial node to a GPU thread, however, our work requires
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specialized treatment for domain boundaries. The most computa-

tionally expensive operator is the volume operator 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

, which

differs from traditional finite difference operators in that it involves

derivative approximations at domain boundaries. However, the use

of else statements in GPU kernels tends to lead to warp divergence

and should be avoided. We construct the matrix-free action of 𝑨,
referred to as mfA!() based on node location. Algorithm 2 provides

the partial pseudocode, i.e. it includes pseudocode for the 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

calculation; boundary condition calculations are further detailed in

Algorithm 3. At interior nodes the action of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

is defined by a sin-

gle stencil (with spatially varying coefficients). The action of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

on boundary nodes, however, has a different stencil depending on

the face number and whether the node is at a corner of the domain.

To avoid race conditions at corners (while minimizing conditional

statements), only normal components of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

are computed (as

they correspond to the same stencil). For example on face 1 only the

action of 𝑴̃
𝑐𝑟𝑟
𝑟𝑟 and 𝑴̃

𝑐𝑟𝑠
𝑟𝑠 are computed at the corners, see Figure

3. The action of the remaining components of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

on the corner

nodes are computed in computations associated with adjacent faces

(faces 3 and 4).

At boundary nodes we must also compute boundary condition

operators 𝑪𝑘 , with differing stencils depending on face number and

whether a node is an interior node, an interior boundary node

(i.e. not a corner), or a corner node. Algorithm 3 provides the

pseudocode for nodes on face 1; stencils are differentiated with

superscripts 𝑖𝑛𝑡, 𝑠𝑤, 𝑛𝑤 , corresponding to the interior boundary,

northwest, and southwest corner nodes, respectively. Figure 3 fur-

ther illustrates the nodes involved in each computation: black dots

correspond to nodes within the 2D domain. Black circles correspond

to the interior nodes that are modified by the action of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

. On the

western boundary (face 1), the three-node layer adjacent to face 1 is

used to compute the actions of the volume and boundary operators.

Blue diamonds and red stars correspond to nodes that are modified

by the different components of 𝑴̃
𝑐𝑖 𝑗
𝑖 𝑗

. Green squares correspond to

the nodes that are modified by the boundary operator 𝑪1 in order

to impose the Dirichlet condition (in this case a layer of three nodes

normal to the face).

8 PERFORMANCE: MATRIX-FREE GPU
KERNELS

8.1 Performance Comparison
With mfA!() we can carry out the matrix-vector product without

explicitly storing the matrix. In this section we compare its perfor-

mance against the matrix-explicit cuSPARSE SpMV implementation

available through CUDA.jl. We note that this is not an exhaustive

comparison against all possible sparse matrix data structures. Our

goal is to establish a baseline comparison of our matrix-free im-

plementation against the standard sparse matrix format CSR in

CUDA.jl, with a focus on integration with preconditioning for im-

proving CG performance.

We set up our benchmark as follows: We discretize the domain Ω̄
in each direction using𝑁+1 grid points, varying𝑁 from 2

4
to 2

13
, so

thematrix𝑨 is of size (𝑁+1)2×(𝑁+1)2. Figures 4 and 5 compare the

s

r

-1

1

1
fa

ce
 1

fa
ce

 2

face 4

face 3

face 1 layer:

M̃
(csr)

sr , M̃
(css)

ss

interior:
M̃

(cij)

ij

C 1

M̃
(crr)

rr , M̃
(crs)

rs

Figure 3: Schematic of 2D computational domain; nodes de-
notedwith solid black dots. mfA!() modifies interior nodes, de-
noted with circles. For face 1, contributions to mfA!() from co-
ordinate transformation matrices modify nodes correspond-
ing to different shapes. Calculations by boundary operator
𝑪1 modify nodes in green squares.

performance of the matrix-free implementation against the matrix-

explicit SpMV provided with cuSPARSE using the CSR format on

both the A100 GPU and V100 GPU. The performance is measured by

profiling 10,000 SpMV calculations with NVIDIA Nsight Systems,

and the time results shown in the figures represent the time to

perform one SpMV calculation. For problem sizes large enough for

GPUs with 𝑁 greater than 2
10
, we see consistent speedup from

mfA!() kernel with higher speedup achieved for larger problem

sizes. On the A100 GPU, our speedup ranges from 3.0× to 3.1×, .
On the V100 GPU, we see a similar trend, with our speedup ranging

from 3.1× to 3.6×.
The mfA!() kernel has a low arithmetic intensity of 0.28 based

on the computation of the interior points (which accounts for more

than 99% of the total computation and data access). This puts the

mfA!() kernel in the bandwidth-limited regime [19]. If we plot this

on the Roofline model, as shown in Figure 6 as the left red dot,

we see that our kernel achieves performance that is higher than
what is possible for the given arithmetic intensity. If we calculate

the arithmetic intensity based on the assumption that the data is

read from the DRAM only once (i.e., the ideal case when the kernel

only incurs compulsory cache misses), as shown in Figure 6 as the

right red dot, we see a higher arithmetic intensity of 1.85 and our

achieved performance falls below the Roofline. This suggests that

a large portion of our data is coming from the fast memory (e.g., L1

or L2 caches), leading to performance that is better than what can

be achieved if the data is only coming from the DRAM.
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Algorithm 2 Matrix-Free GPU kernel Action of matrix-free A for interior nodes.

function mfA!(odata, idata, 𝑐𝑟𝑟 , 𝑐𝑟𝑠 , 𝑐𝑠𝑠 , ℎ𝑟 , ℎ𝑠 )

𝑖, 𝑗 =get_global_thread_IDs()

𝑔 = (𝑖 − 1) ∗ (𝑁 + 1) + 𝑗 ⊲ compute global index

if 2 ≤ 𝑖, 𝑗 ≤ 𝑁 then ⊲ interior nodes

odata[g] = (hs/hr)(- (0.5𝑐𝑟𝑟 [𝑔-1] + 0.5𝑐𝑟𝑟 [𝑔])idata[𝑔-1] +

+ (0.5𝑐𝑟𝑟 [𝑔-1] + 𝑐𝑟𝑟 [𝑔] - 0.5𝑐𝑟𝑟 [𝑔+1])idata[𝑔] +

- (0.5𝑐𝑟𝑟 [𝑔] + 0.5𝑐𝑟𝑟 [𝑔+1])idata[𝑔+1]) + ⊲ compute𝑀𝑟𝑟 stencil

+ 0.5𝑐𝑟𝑠 [𝑔-1](-0.5idata[𝑔-𝑁 -2] + 0.5idata[𝑔+𝑁 ]) +

- 0.5𝑐𝑟𝑠 [𝑔+1](-0.5idata[𝑔-𝑁 ] + 0.5idata[𝑔+𝑁+1]) + ⊲ compute𝑀𝑟𝑠 stencil

+ 0.5𝑐𝑟𝑠 [𝑔-𝑁 -1](-0.5idata[𝑔-𝑁 -2] + 0.5idata[𝑔-𝑁 ]) +

- 0.5𝑐𝑟𝑠 [𝑔+𝑁+1](-0.5idata[𝑔-𝑁 ] + 0.5idata[𝑔+𝑁+2]) + ⊲ compute𝑀𝑠𝑟 stencil

- (0.5𝑐𝑠𝑠 [𝑔-𝑁 -1] + 0.5𝑐𝑠𝑠 [𝑔])idata[𝑔-𝑁 -1] +

+ (0.5𝑐𝑠𝑠 [𝑔-𝑁 -1] + 𝑐𝑠𝑠 [𝑔] + 0.5𝑐𝑠𝑠 [𝑔+𝑁+1])idata[𝑔] -

- (0.5𝑐𝑠𝑠 [𝑔] + 0.5𝑐𝑠𝑠 [𝑔+𝑁+1])idata[𝑔+𝑁+1])) ⊲ compute𝑀𝑠𝑠 stencil

end if
. . . ⊲ boundary nodes, e.g. Algorithm 3

return 𝑛𝑜𝑡ℎ𝑖𝑛𝑔

end function

Algorithm 3 Matrix-Free GPU kernel Action of matrix-free A for west boundary (face 1).

if 2 ≤ 𝑖 ≤ 𝑁 and 𝑗 = 1 then ⊲ interior west nodes

odata[𝑔] =

(
𝑀𝑖𝑛𝑡
𝑟𝑟 +𝑀𝑖𝑛𝑡

𝑟𝑠 +𝑀𝑖𝑛𝑡
𝑠𝑟 +𝑀𝑖𝑛𝑡

𝑠𝑟 +𝐶𝑖𝑛𝑡
1

)
(idata) ⊲ apply boundary𝑀 and 𝐶 stencils

odata[𝑔+1] = 𝐶𝑖𝑛𝑡
1
(idata) ⊲ apply interior 𝐶 stencil

odata[𝑔+2] = 𝐶𝑖𝑛𝑡
1
(idata) ⊲ apply interior 𝐶 stencil

end if
if 𝑖 = 1 and 𝑗 = 1 then ⊲ southwest corner node

odata[𝑔] =

(
𝑀𝑠𝑤
𝑟𝑟 +𝑀𝑠𝑤

𝑟𝑠 +𝐶𝑠𝑤
1

)
(idata) ⊲ apply southwest partial𝑀 and 𝐶 stencils

odata[𝑔+1] = 𝐶𝑠𝑤
1
(idata) ⊲ apply southwest interior boundary 𝐶 stencil

odata[𝑔+2] = 𝐶𝑠𝑤
1
(idata) ⊲ apply southwest interior boundary 𝐶 stencil

end if
if 𝑖 = 𝑁 + 1 and 𝑗 = 1 then ⊲ northwest corner node

odata[𝑔] =
(
𝑀𝑛𝑤
𝑟𝑟 +𝑀𝑛𝑤

𝑟𝑠 +𝐶𝑛𝑤
)
(idata) ⊲ apply northwest partial𝑀 and 𝐶 stencils

odata[𝑔+1] = 𝐶𝑛𝑤 (idata) ⊲ apply northwest interior boundary 𝐶 stencil

odata[𝑔+2] = 𝐶𝑛𝑤 (idata) ⊲ apply northwest interior boundary 𝐶 stencil

end if

To confirm our hypothesis, we use NVIDIA Nsight Compute to

profile our code for the problem size of N=2
13
. The profile shows

that we achieve 72% L1 cache hit rate and 57% L2 cache hit rate,

which indicates that the majority of our data is coming from the L1

and L2 caches (approximately 88%), and that our DRAM reads are

due mostly to compulsory cache misses (i.e., when the input data is

read for the first time). This explains why our code performs better

than the DRAM-bounded performance. Figure 7 shows the Roofline

model generated byNsight Compute, based on performance counter

measurements of how much of the overall data is coming from

different levels of the memory hierarchy. Figure 7 confirms that

the majority of our data comes from the L1 cache, followed by

L2 and DRAM. It also suggests that we can further improve the

performance of our mfA!() kernel by improving data reuse in the

L1 cache, which will yield up to 3.8× speedup.

In future work, we will target improved performance of mfA!(),
for example through additional memory optimization techniques to

improve L1 cache hit rate, especially with respect to its performance

on newer architectures. In the present work, however, we focus on

utilizing mfA!() to solve the linear system with preconditioning.

8.2 Memory Usage Comparison
Next we compare the memory usage of mfA!() against the SpMV

kernel via the built-in memory status function in CUDA.jl. CUDA.jl

currently has good support for only three different sparse matrices:

CSR, CSC, and COO. In Julia, the default sparsematrix format is CSC,

but in CUDA.jl, the default sparse matrix format is CSR, and thus,
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Figure 4: Performance of SpMV vsmatrix-free mfA!() on A100
GPU. Total time formatrix-free (red) andmatrix-explicit CSR
(blue) formats are shown in charts plotted against 𝑁 , where
the matrix is size (𝑁 + 1)2 × (𝑁 + 1)2.
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Figure 5: Performance of SpMV vsmatrix-free mfA!() on V100
GPU. Total time formatrix-free (red) andmatrix-explicit CSR
(blue) formats are shown in charts plotted against 𝑁 , where
the matrix is size (𝑁 + 1)2 × (𝑁 + 1)2.

there is a necessary conversion between these two formats when

converting the CPU arrays to GPU arrays in Julia. However, for our

problem, where the matrix is SPD, both CSR and CSC formats use

exactly the same amount of memory; the only difference is in the use

of row pointer rowptr values (for CSR) instead of column pointer

values colptr (for CSC), and the order of nonzero values nzval. To
avoid redundancy, we merge key results in memory consumption

for CSC and CSR formats into three different numbers for each 𝑁 .

The collected data is given in Table 5.
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Figure 6: Roofline model analysis for our matrix-free mfA!()
on the A100 GPU. The red dot on the left represents the per-
formance achieved by our kernel and its arithmetic intensity
(0.28). The red dot on the right represents the same but assum-
ing data is loaded only once from DRAM (i.e., compulsory
misses), which yields a higher arithmetic intensity (1.85). The
fact that our kernel (red dot) achieves higher performance
than what is predicted by the Roofline model suggests that a
large portion of our data is coming from the caches.
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Figure 7: Rooflinemodel generated byNsight Compute, based
on performance counter measurements of how much of the
overall data is coming from different levels of the memory
hierarchy. This confirms our hypothesis that the majority
of our data is coming from the L1 cache, and that further
improving data reuse in L1 will yield up to 3.8× speedup.

For the matrix-free method, memory consumption is reported

in Table 6. In order to perform the matrix-vector product, we need

to allocate memory to store the coefficients 𝑐𝑟𝑟 , 𝑐𝑠𝑠 and 𝑐𝑟𝑠 ; each

requires the same size of memory as the numerical solution and

must be stored on each grid level when using geometric multigrid

as a preconditioner. In addition, we must compute and store the

minimum coefficient values 𝑪𝑘,𝑚𝑖𝑛
𝑟𝑟 on faces 1 and 2, as specified in

(8), which we denote Ψ1 = and Ψ2, respectively.
These are associated with Dirichlet boundary conditions and are

significantly smaller in size, and thus reported in KB. Adding up
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𝑁 m nzval memory size

2
10

1050625 9447429 0.1596 GB

2
11

4198401 37769221 0.6379 GB

2
12

16785409 151035909 2.5509 GB

2
13

67125249 604061701 10.2020 GB

Table 5: Number of nonzero values (nzval) for CSC or CSR
sparse matrices with different 𝑁 , where matrix size is (𝑁 +
1)2 × (𝑁 + 1)2. The matrices are SPD. Here, m represents the
number of rows, and nzval represents the number of nonzero
values. The total memory size (last column) is calculated
using previous columns.

𝑁 crr/css/crs Ψ1/Ψ2 total memory size

2
10

0.008405 GB 8 KB 0.02523 GB

2
11

0.03359 GB 16 KB 0.1008 GB

2
12

0.1343 GB 32 KB 0.4029 GB

2
13

0.5370 GB 65 KB 1.6111 GB

Table 6: Memory allocation for matrix-free methods where
matrix size is (𝑁+1)2×(𝑁+1)2. Here crr, css, and csr correspond
to coefficient matrices of size (𝑁 + 1)2. Ψ1 and Ψ2 are used in
Dirichlet boundary conditions and are vectors of length 𝑁 +1.
Total memory allocated (last column) is calculated using
previous columns.

these contributions, we can compute the total memory size, which

we provide in the last columns of Tables 5 and 6: We can see that

there is a significant reduction in additional required memory for

the matrix-free method than the memory to store sparse matrices

in CSC or CSR format. When calculating the total memory used for

an SpMV operation (including writing results into output vectors),

we need to add additional memory allocated for the input data and

output data, which require the same memory as the coefficients

(the first column of Table 6). A simple calculation can show that the

total memory required when using an SpMV kernel is a constant

4.2× of that required for the matrix-free method.

9 PERFORMANCE: MATRIX-FREE MGCG ON
GPUS

With the matrix-free action of 𝑨 established, we can solve sys-

tem (9) with a matrix-free version of our custom MGCG method

(MF-MGCG). Other than low-level GPU kernels, Julia also sup-

ports high-level vectorization for GPU computing, which we utilize

extensively in our MGCG code for convenience. In this section,

we compare its performance against MGCG using the cuSPARSE

(matrix-explicit) SpMV (SpMV-MGCG) and also against the state-

of-the-art off-the-shelf methods offered by NVIDIA, namely, AmgX

- the GPU accelerated algebraic multigrid. The solvers and precondi-

tioners used byAmgX are stored as JSONfiles.We explored different

sample JSON configuration files for AmgX in the source code and

found that CG preconditioned by classical AMG performed best

for our problem. To maintain a multigrid setup comparable to our

MGCG, we modified the PCG_CLASSICAL_V_JACOBI.json to use

1 and 5 smoothing steps with block Jacobi as the smoother. All

algorithms stop when the relative residual is reduced to less than

10
−6

times the initial residual. We report our results in Table 7.

Also included in the table are results using a direct solve (using

LU factorization in LAPACK in Julia) only because it is so often

used in the earthquake cycle community for volume based codes

[22] and our developed methods offer promising alternatives. As

illustrated, the GPU-accelerated iteratives schemes achieve much

better performance for the problem sizes tested.

Table 7 illustrates that our MGCG method uses fewer iterations

to converge compared to AmgX, while iterations for both remain

generally constant with increasing problem size. When we increase

smoothing steps from 1 to 5, the AmgX sees reduced iterations, but

the time to solve also increases by roughly 3×. Because we apply
rediscretization (rather than Galerkin coarsening) for MGCG, the

setup time is negligible. The setup time in the AmgX is comparable

to the solve time however, which adds additional cost to use AmgX

as a solver. Our SpMV-MGCG is roughly 2× slower than the AmgX

using 1 smoothing step, but our MF-MGCG is faster than AmgX,

up to 2× speedup for 𝑁 = 2
13
. Compared to our SpMV-MGCG, our

MF-MGCG achieves more than 2× speedup, and the speedup is

more obvious at 𝑁 = 2
13
, indicating that the MF-MGCG is suitable

for large problems.

10 SUMMARY AND FUTUREWORK
In this work we present a matrix-free implementation of multigrid

preconditioned conjugate gradient in order to solve 2D, variable

coefficient elliptic problems discretized with an SBP-SAT method.

Our custommultigrid preconditioner achieves similar precondition-

ing performance against the multigrid using Galerkin’s condition

from previous work, and it is more suitable for GPU code. The

MGCG algorithm requires a nearly constant number of iterations

to converge for various problem sizes. We explored several compa-

rable solvers and preconditioners in PETSc and found that MGCG

requires fewer iterations for the same convergence criteria. We de-

veloped matrix-free kernels that outperform the cuSPARSE SpMV

kernels from NVIDIA (i.e. using CUDA.jl) in both runtime and

memory usage. We used Nsight Compute to analyze the perfor-

mance of our matrix-free kernel. This offers us more insights into

the achieved computation and memory performance, which points

directions for future kernel-level optimizations on newer GPU archi-

tectures. The resulting matrix-free MGCG method achieves better

performance than several off-the-shelf solvers offered by NVIDIA’s

AmgX when tested on the same GPU. We also demonstrate Julia’s

ability to leverage both high-level vectorization and low-level GPU

kernels for GPU computing, achieving comparable performance to

packages in native CUDA C. This facilitates seamless integration

of GPU-accelerated MGCG solvers into existing Julia code without

external reliance on C solvers.

This work is a fundamental first step towards high-performance

implementations to solve linear systems using SBP-SAT methods.

Future work will target SBP-SAT methods with higher-order ac-

curacy in 3D, as well as explorations of additional GPU kernel
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Table 7: Time to perform a direct solve after LU factorization on CPUs vs PCG on GPUs.We report time in seconds and iterations
to converge. For AmgX, we report setup + solve time. For our MGCG, setup time is negligible. “ns” is short for the number of
smoothing steps. GPU results are tested on A100.

𝑁 Direct Solve AmgX (ns = 1) AmgX (ns = 5) SpMV-MGCG (ns = 5) MF-MGCG (ns = 5)

2
10

0.912 s (0.0319 s + 0.0243 s) / 25 (0.0321 s + 0.0435 s) / 17 7.019E-2 s / 8 2.851E-2 s / 8

2
11

6.007 s (0.086 s + 0.161 s) / 55 (0.086 s + 0.311 s) / 38 0.158 s / 7 0.0605 s / 7

2
12

22.382 s (0.310 s + 0.235 s) / 24 (0.323 s + 0.488 s) / 15 0.564 s / 7 0.207 s / 7

2
13

134.697 s (1.334 s + 1.643 s) / 24 (1.217 s + 1.865 s) / 16 5.028 s / 7 0.865 s / 7

optimization and multi-GPU implementation. We also plan to im-

prove the performance of the preconditioner by systematic exper-

iments with different preconditioner configurations using PETSc

and applying second-order smoothers that have exhibited improved

performance in the multigrid method as well as the mixed-precision

techniques [2, 26, 27].
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