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Abstract. We introduce the notion of Lorentzian fans, which form a special class of tropical fans

that are particularly well-suited for proving Alexandrov–Fenchel type inequalities. To demonstrate

the utility of Lorentzian fans, we prove a practical characterization of them in terms of their

two-dimensional star fans. We also show that Lorentzian fans are closed under many common

tropical fan operations, and we discuss how the Lorentzian property descends to the underlying

tropical variety, allowing us to deduce Alexandrov–Fenchel type inequalities in the general setting

of tropical intersection theory on tropical fan varieties.

1. Introduction

This paper investigates an analogue of the Alexandrov–Fenchel (AF) inequalities in the setting

of tropical fans. More precisely, given a tropical d-fan Σ = (Σ, ω), comprised of a simplicial d-fan

Σ and a positive Minkowski d-weight ω, there is an open cone K(Σ) ⊆ D(Σ) of strictly convex

divisors, and for D♥, D♦, D3, . . . , Dd ∈ K(Σ), we aim to understand when their mixed degrees

satisfy the following inequalities

(AF) degΣ(D♥D♦D3 · · ·Dd)
2 ≥ degΣ(D2

♥D3 · · ·Dd) · degΣ(D2
♦D3 · · ·Dd).

In the setting of complete fans, these inequalities are a special case of the classical Alexandrov–

Fenchel inequalites for mixed volumes of polytopes, but recent developments have suggested the

importance of generalizing these inequalities beyond the complete setting. For example, the cel-

ebrated resolution of the Heron–Rota–Welsh conjecture by Adiprasito, Huh, and Katz [AHK18]

proceeds by way of proving AF inequalites in the setting where Σ is the (incomplete, in general)

Bergman fan of a matroid.

The ingenious approach to AF inequalities developed by Adiprasito, Huh, and Katz relied on

building a notion of combinatorial Hodge theory in the setting of Bergman fans, and the structure

they developed has since been further refined and generalized in a number of ways [BHM+22,

BHM+20, ADH20, AP20, AP21]. While the Hodge-theoretic approach has been powerful and

illuminating, it is also a much bigger hammer than is necessary if one is simply interested in AF

inequalities, which follow from just one small part of the so-called Kähler package developed in

[AHK18]. With an aim of developing more refined tools for studying AF inequalities, Brändén

and Huh [BH20] and Brändén and Leake [BL21] have recently developed the notion of Lorentzian

polynomials, which hone in on the specific part of the Kähler package that is most relevant to

AF inequalities. This paper builds on these recent developments of Lorentzian polynomials by

introducing a notion of Lorentzian fans, which we propose as a refined tool that gets at the heart

of AF inequalities in the setting of tropical fans. As a tool for demonstrating AF inequalities in the
1
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setting of tropical fans, our thesis is that the theory of Lorentzian fans introduced here is simple to

employ and applies in settings that were previously inaccessible using combinatorial Hodge theory

techniques.

To motivate the definition of Lorentzian fans, we make two important observations. First, we

note that it has long been understood—indeed, it is already apparent in Aleksandrov’s original

proof [Ale37]—that a particularly useful way to prove AF inequalities is to show that, for all

D3, . . . , Dd ∈ K(Σ), the quadratic form

Φ : D(Σ)×D(Σ)→ R

(D1, D2) 7→ degΣ(D1D2D3 · · ·Dd)

has exactly one positive eigenvalue. To see why this implies the AF inequalities, consider the

following 2× 2 principal minor of Φ associated to a fixed pair D♥, D♦ ∈ K(Σ):

M =

[
degΣ(D2

♥D3 · · ·Dd) degΣ(D♦D♥D3 · · ·Dd)

degΣ(D♥D♦D3 · · ·Dd) degΣ(D2
♦D3 · · ·Dd)

]
.

If Φ has exactly one positive eigenvalue, then Cauchy’s interlacing theorem implies that M has at

most one positive eigenvalue. On the other hand, elementary computations with the characteristic

polynomial imply that M has at least one positive eigenvalue, simply because it is a symmetric

2× 2 matrix with positive entries. Thus, M has exactly one positive eigenvalue, implying that its

determinant is nonpositive, and the AF inequalites follow.

The second observation that motivates us is that most proofs of the AF inequalities in the classical

polytope setting—again, Aleksandrov’s original proof is an example—use an induction argument,

where the induction step reduces dimension by computing mixed volumes of polytopes in terms of

the mixed volumes of their facets. Since faces of polytopes translate to stars of normal fans, this

suggests that any study of AF inequalities in a more general tropical fan setting should be stable

under taking star fans. Importantly, we note that if Σ = (Σ, ω) is a tropical fan and τ ∈ Σ is a

cone, we can aways endow the star fan Στ with a compatible tropical structure ωτ (only determined

up to positive scaling).

From the two observations above, we now arrive at the definition of a Lorentzian fan (Defi-

nition 3.1): it is a tropical fan Σ with K(Σ) 6= ∅ such that the quadratic forms Φ associated to

all of the stars Στ have exactly one positive eigenvalue. The discussion above proves that mixed

degrees of strictly convex divisors on Lorentzian fans satisfy AF inequalities (Proposition 3.2), but

what is not clear is whether the Lorentzian property is any easier to study than the AF inequalities

themselves. Our main result is a practical characterization of Lorentzian fans, reducing the defining

condition to the case of 2-dimensional star fans.

Theorem (Theorem 4.1). A tropical fan Σ with K(Σ) 6= ∅ is Lorentzian if and only if

(A) Στ \ {0} is connected for every cone τ of codimension at least 2, and

(B) every 2-dimensional tropical star fan Στ is Lorentzian.
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We note that (A) is a mild connectedness assumption on Σ, disallowing, for example, fans

that are locally a pair of d-dimensional cones meeting along a cone of dimension less than d − 1,

while (B) is completely concrete to check in practice. In particular, since (B) only concerns 2-

dimensional star fans, there is only one quadratic form Φ associated to Στ , independent of choosing

any strictly convex divisors. Thus, verifying (B) amounts simply to computing the eigenvalues

of a finite set of explicitly computable matrices. As a proof of concept, we note that (A) and

(B) are relatively straightforward to verify for Bergman fans of matroids (Theorem 4.12, see also

[BES20, BL21, NOR23]).

In addition to the above characterization of Lorentzian fans, this paper develops a number of

additional properties that make Lorentzian fans a particularly convenient class of tropical fans to

work with; for example Lorentzian fans are closed under the operations of (i) passing to star fans,

(ii) taking products, (iii) acting by strictly convex divisors, (iv) taking tropical modifications along

strictly convex divisors, and (v) changing the fan structure on Σ. We also show that it is not hard

to derive examples of Lorentzian fans that do not satisfy the suite of properties included in the

Kähler package (Example 3.5); these are fans for which the theory of Lorentzian fans is applicable

but the theory of combinatorial Hodge theory is not. Additionally, we note that Lorentzian fans

are a strict subset of tropical fans: there exist examples of tropical fans that fail to be Lorentzian

(Example 3.6, from [BH17]).

It is worth elaborating on point (v) in the previous paragraph and making a few observations

regarding our conventions. A key principle of tropical geometry is that, given a tropical structure

on a fan, it induces a canonical tropical structure on any fan with the same support, allowing

one to define a tropical fan variety as an equivalence class of tropical fans [AR10]. While tropical

fans are often assumed to be rational, we do not make that assumption in this paper, and we

instead work with simplicial, possibly irrational fans. However, as we discuss in Section 6, the key

observations regarding rational tropical varieties can be extended in a natural way to the simplicial,

irrational setting, and this allows one to define tropical fan varieties in the irrational setting, as

well. In this general setting, we define a Lorentzian fan variety to be a tropical fan variety

for which at least one—and thus, by (v) above, all—of its representatives are Lorentzian fans.

We prove (Theorem 7.9) that mixed degrees of divisors on Lorentzian fan varieties satisfy the AF

inequalities, which demonstrates that Lorentzian fan varieties have a natural place within tropical

intersection theory. In particular, these observations inspire further developments of the Lorentzian

property for more general tropical varieties beyond those supported on fan sets.

Contents. In Section 2, we establish the background required to study mixed degrees of divisors

on tropical fans, including Chow rings, Minkowski weights, and piecewise linear functions. There

is some novelty in how we deal with the markings on the fans, given that our fans are not assumed

to be rational. In Section 3, we give a precise definition of Lorentzian fans and relate them to the

notion of Lorentzian polynomials on cones. Section 4 is devoted to the statement and the proof

of the two-dimensional characterization of Lorentzian fans. We then collect a number of results

in Section 5 that describe common fan operations under which Lorentzian fans are closed. In
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Section 6, we develop tropical fan varieties, following Allerman and Rau [AR10], although our fans

are not assumed to be rational, and we conclude the paper in Section 7 with the introduction and

development of Lorentzian fan varieties.

Related work. While in the final stages of preparing this paper, the author became aware that

Petter Brändén and Jonathan Leake had independently been developing a project on hereditary

Lorentzian polynomials on cones, and many of the results proved here are a consequence of their

more general theory. We collectively agreed to post the two papers simultaneously, and it is this

author’s hope that this paper, written through the geometric lens of tropical fans and tropical

intersection theory, will serve as a useful companion to the general polynomial theory developed in

the work of Brändén and Leake.

Gratitude. The author warmly acknowledges Anastasia Nathanson, Lauren Nowak, and Patrick

O’Melveny for many insights that they shared while working on related collaborations [NR21,

NOR23], and Federico Ardila, Emily Clader, Chris Eur, and Matt Larson for enlightening con-

versations that influenced this project. The author is grateful to Petter Brändén and Jonathan

Leake for explaining their related project to him, and for the kindness they demonstrated while

navigating the overlap between the two projects. This work has been partially supported by two

grants from the National Science Foundation: DMS–2001439 and DMS–1401873.

2. Algebraic structures on simplicial fans

In this section, we present an introduction to simplicial fans and natural algebraic structures

associated to them, with an eye toward establishing notational conventions and the particular

properties that will be relevant to our development of Lorentzian fans. Our primary aim is to

introduce mixed degrees of divisors on tropical fans, interpreting them both algebraically using

Chow rings and more geometrically using the action of piecewise linear functions on Minkowski

weights. While we are unaware of a precise reference for these topics in the setting of simplicial,

possibly irrational fans, the well-known properties from the rational setting carry through in a

straightforward manner. Where appropriate, we provide references for justifications in the rational

setting, but our goal in this introductory section is to present the material in such a way that all

assertions can be viewed as practical exercises for a learner with some prior familiarity with algebra

and polyhedral geometry. At the end of this section, we present a few important classes of examples

that connect the ideas of this section to well-studied notions in convex and toric geometry.

2.1. Fan conventions. Let V be an n-dimensional vector space over R with dual space V ∨. For

any ϕ ∈ V ∨, the associated hyperplane and halfspace in V are defined by

Hϕ = {u ∈ V | ϕ(u) = 0} and H−ϕ = {u ∈ V | ϕ(u) ≤ 0},

respectively. A polyhedral cone in V is a finite intersection of halfspaces.

Let σ ⊆ V be a polyhedral cone. The span of σ, denoted Vσ, is the smallest subspace of V

containing σ. The dimension of σ, denoted dim(σ), is the vector space dimension of Vσ. The
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relative interior of σ, denoted σ◦, is the topological interior of σ as a subset of Vσ. A face of σ

is any subset of the form

σ ∩Hϕ where σ ⊆ H−ϕ .

We use � to denote the face containment relation, and we denote the k-dimensional faces of σ by

σ(k). We say that σ is strongly convex if it does not contain a nonzero subspace of V , and we

say that σ is simplicial if it is strongly convex and dim(σ) = |σ(1)|. A fan in V is a finite set Σ

of polyhedral cones in V such that

(1) if σ ∈ Σ and τ � σ, then τ ∈ Σ, and

(2) if σ1, σ2 ∈ Σ, then σ1 ∩ σ2 � σ1 and σ1 ∩ σ2 � σ2.

Let Σ be a fan in V . The collection of k-dimensional cones of Σ is denoted Σ(k), and the k-

skeleton of Σ, denoted Σ[k], is the fan comprised of all cones in Σ that have dimension at most

k. We say that Σ is simplicial if all of its cones are simplicial. We say that Σ is pure if every

inclusion-maximal cone of Σ has the same dimension, and we say that Σ is a d-fan if it is pure

of dimension d. The support of Σ, denoted |Σ|, is the union of all σ ∈ Σ, and we say that Σ is

complete if |Σ| = V . We say that a fan Σ1 is a refinement of Σ2 if they have the same support

and every cone of Σ1 is a subset of some cone of Σ2. A marking of Σ is a choice of vector uρ ∈ ρ◦

for every ρ ∈ Σ(1); we denote a choice of marking by u = (uρ)ρ∈Σ(1).

2.2. Chow rings of simplicial fans. Let Σ be a simplicial d-fan in V with marking u. The Chow

ring of (Σ, u) is defined by

A•(Σ, u) =
R
[
xρ | ρ ∈ Σ(1)

]
IΣ + JΣ,u

where

IΣ =
〈
xρ1 · · ·xρk | {ρ1, . . . , ρk} 6⊆ σ for any σ ∈ Σ

〉
and

JΣ,u =

〈 ∑
ρ∈Σ(1)

ϕ(uρ)xρ

∣∣∣∣ ϕ ∈ V ∨〉.
As both IΣ and JΣ,u are homogeneous, the Chow ring A•(Σ, u) is a graded ring, and we denote by

Ak(Σ, u) the subgroup of homogeneous elements of degree k. The algebra generators of A•(Σ, u)

are denoted Xu,ρ = [xu,ρ] ∈ A1(Σ, u), and we extend this notation to any cone σ ∈ Σ(k) by defining

the associated cone monomial

Xu,σ =
∏

ρ∈σ(1)

Xu,ρ ∈ Ak(Σ, u).

It follows from the simplicial hypothesis that Ak(Σ, u) is spanned by cone monomials [AHK18,

Proposition 5.5], and it then follows from the d-fan hypothesis that Ak(Σ, u) = 0 for all k > d.

We say that two Chow classes X ∈ A•(Σ, u) and X ′ ∈ A•(Σ, u′) are equivalent if there exists

λ ∈ RΣ(1)
>0 such that

u′ = λu and X ′ = λ−1 ·X,
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where the action on the right is defined on generators by λ−1 · Xu,ρ = λ−1
ρ Xu′,ρ. A Chow class

on Σ is an equivalence class of pairs (X,u) where X ∈ A•(Σ, u), and the Chow ring of Σ,

denoted A•(Σ), is the ring of Chow classes on Σ. For any choice of marking u, there is a canonical

isomorphism A•(Σ) ∼= A•(Σ, u).

2.3. Minkowski weights. Let Σ be a simplicial d-fan in V with marking u. A Minkowski k-

weight on (Σ, u) is a function ω : Σ(k) → R such that, for every τ ∈ Σ(k − 1), we have the

following balancing condition

(2.1)
∑
σ∈Σ(k)
τ≺σ

ω(σ)uσ\τ ∈ Vτ ,

where σ\τ ∈ Σ(1) represents the unique ray in σ(1)\τ(1). We denote the vector space of Minkowski

k-weights on (Σ, u) by MWk(Σ, u) and the associated graded vector space by

MW•(Σ, u) =
d⊕

k=0

MWk(Σ, u).

The balancing condition on a Minkowski k-weight ω ∈ MWk(Σ, u) is sufficient and necessary for

there to exist a linear map fΣ,u,ω : Ak(Σ, u)→ R such that fΣ,u,ω(Xu,σ) = ω(σ) for every σ ∈ Σ(k)

[AHK18, Proposition 5.6], and this gives an isomorphism of graded vector spaces

MW•(Σ, u)
∼=−→ A•(Σ, u)∨

ω 7−→ fΣ,u,ω.

We say that two Minkowski k-weights ω ∈ MWk(Σ, u) and ω′ ∈ MWk(Σ, u
′) are equivalent if

there exists λ ∈ RΣ(1)
>0 such that

u′ = λu and ω′ = λ−1 · ω

where, for every τ ∈ Σ(k), we define

(λ−1 · ω)(τ) =
( ∏
ρ∈τ(1)

λ−1
ρ

)
ω(τ).

A Minkowski k-weight on Σ is an equivalence class of pairs (ω, u) where ω ∈ MW•(Σ, u), and

the vector space of Minkowski weights on Σ, denoted MW•(Σ), comprises all Minkowski

weights on Σ. For any u, there is a canonical isomorphism MW•(Σ) ∼= MW•(Σ, u), and the vector

space isomorphism MW•(Σ, u) ∼= A•(Σ, u) for any marking u induces a canonical isomorphism

MW•(Σ)
∼=−→ A•(Σ)∨

ω 7−→ fΣ,ω.
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2.4. Tropical divisors. Let Σ be a simplicial d-fan in V . A piecewise linear function on Σ

is a continuous function ϕ : |Σ| → R such that, for every σ ∈ Σ, there is a linear map ϕσ ∈ V ∨

such that ϕ|σ = ϕσ. Let PL(Σ) denote the vector space of piecewise linear functions on Σ, and

let L(Σ) ⊆ PL(Σ) denote the subspace of linear functions—that is, restrictions to |Σ| of linear

functions ϕ ∈ V ∨. The vector space of divisors on Σ is the quotient

D(Σ) =
PL(Σ)

L(Σ)
.

Upon choosing a marking u of Σ, a piecewise linear function on Σ is determined uniquely by its

values at the marks. Let Du,ρ ∈ D(Σ) denote the class of the piecewise linear function that takes

value 1 at uρ and value 0 at uη for η 6= ρ. Then {Du,ρ | ρ ∈ Σ(1)} spans D(Σ), and there is a vector

space isomorphism

D(Σ)
∼=−→ A1(Σ, u)

Du,ρ 7−→ Xu,ρ.

These isomorphisms are compatible with scaling the markings, so they descend to a canonical

isomorphism D(Σ) ∼= A1(Σ); given a divisor D ∈ D(Σ), let XD ∈ A1(Σ) denote the corresponding

Chow class.

The vector space A•(Σ, u)∨ can naturally be viewed as an A1(Σ, u)-module via the action

A1(Σ, u)×A•(Σ, u)∨ → A•−1(Σ, u)∨

(X, f) 7→ f(X · −)

where f(X · −) simply precomposes the map f with multiplication by X. Viewed instead as an

action of D(Σ) on MW•(Σ, u), one carefully traces back through the vector space isomorphisms to

see that the action of A1(Σ, u) on A•(Σ, u)∨ induces the action

D(Σ)×MW•(Σ, u)→MW•−1(Σ, u)

(D,ω) 7→ D · ω,

where, for any ω ∈MWk(Σ, u) and τ ∈ Σ(k − 1), we define

(D · ω)(τ) =
∑
σ∈Σ(k)
σ�τ

ϕσ
(
ω(σ)uσ\τ

)
− ϕτ

( ∑
σ∈Σ(k)
σ�τ

ω(σ)uσ\τ

)
,

where ϕ is any piecewise linear function representing D [AR10]. Intuitively, one can think of

(D · ω)(τ) as a measure of the failure of ϕ to be linear at τ .

The actions of A1(Σ, u) on A•(Σ, u)∨ and D(Σ) on MW•(Σ, u) are compatible with equivalence

of Chow classes and Minkowski weights, so they descend to give canonical actions

A1(Σ)×A•(Σ)∨ → A•−1(Σ)∨ and D(Σ)×MW•(Σ)→MW•−1(Σ)

that are compatible with the isomorphisms A1(Σ) ∼= D(Σ) and A•(Σ)∨ ∼= MW•(Σ).
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2.5. Mixed degrees of divisors. Let Σ be a simplicial d-fan and let ω ∈MWd(Σ) be a Minkowski

d-weight. Given divisors D1, . . . , Dd ∈ D(Σ), notice that D1 · · ·Dd · ω is a Minkowski 0-weight,

which is nothing more than a function from the origin to R. We define the mixed degree of

D1, . . . , Dd ∈ D(Σ) with respect to (Σ, ω) by

(2.2) degΣ,ω(D1 · · ·Dd) = (D1 · · ·Dd · ω)(0) ∈ R.

Equivalently, using the compatibility of the actions in the previous subsection, one may define

mixed degrees of divisors Chow-theoretically by

(2.3) degΣ,ω(D1 · · ·Dd) = fΣ,ω(XD1 · · ·XDd) ∈ R.

When working with a specific representative ω ∈ MWd(Σ, u) associated to a marking u, we will

often include u in the notation and write degΣ,u,ω.

While studying mixed degrees of divisors, it is useful to keep in mind both of the perspectives

(2.2) and (2.3): the perspective in terms of Minkowski weights is more geometric, related to how

piecewise linear functions bend across the faces of Σ, while the perspective in terms of the Chow

ring is more algebraic, computable by using the relations in A•(Σ) to manipulate polynomials in the

generators. We also note that the Chow ring perspective is motivated by intersection theory on toric

varieties, so this perspective benefits from a wealth of intuition from algebraic geometry, intuition

that has certainly influenced these developments but that is not a prerequisite to understanding

them.

2.6. Star fans. Star fans are a useful tool for computing mixed degrees of divisors recursively in

dimension, as we now describe. Suppose that Σ is a simplicial d-fan in V . Given a cone τ ∈ Σ,

define the neighborhood of τ in Σ by

NτΣ = {π | π � σ for some σ ∈ Σ with τ � σ}.

The star of Σ at τ ∈ Σ is the fan in V τ = V/Vτ comprised of all quotients of cones in the

neighborhood of τ :

Στ = {π | π ∈ NτΣ},

where π ⊆ V τ denotes the quotient of the cone π ⊆ V by Vτ . The assumption that Σ is a simplicial

d-fan implies that Στ is a simplicial dτ -fan, where dτ = d− dim(τ).

Given ω ∈MWd(Σ, u), we obtain a Minkowski weight ωτ ∈MWdτ (Στ , uτ ) as follows:

• every ray η ∈ Στ (1) is the quotient of a unique ray η̂ ∈ NτΣ(1); define uτη = uη̂;

• every maximal cone σ ∈ Στ (dτ ) is the quotient of a unique maximal cone σ̂ ∈ NτΣ(d);

define ωτ (σ) = ω(σ̂).

Importantly, we note that equivalent Minkowski weights on Σ do not generally induce equivalent

Minkowski weights on Στ , so the choice of marking is essential in our discussion of star fans. In

particular, if u2 = λu1 are two markings and ω1 ∈MWd(Σ, u1) and ω2 ∈MWd(Σ, u2) are equivalent
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Minkowski weights in MWd(Σ), then one readily checks that

(2.4) ωτ2 =
( ∏
ρ∈τ(1)

λ−1
ρ

)
(λ−1 · ωτ1 ).

If the product in the right-hand side of (2.4) is not one, then ωτ1 is not equivalent to ωτ2 . Thus,

a Minkowski weight ω ∈ MWd(Σ) does not determine a unique Minkowski weight in MWd(Σ
τ );

rather, it determines a family of Minkowski weights that are related by positive scaling. Since

positive scalings of Minkowski weights do not affect the properties we are most interested in—such

as Alexandrov–Fenchel type inequalities—this will not be a serious issue, but it is certainly worth

noting.

For every cone σ ∈ NτΣ, let σ \ τ denote the cone with rays σ(1) \ τ(1). Define the boundary

of τ to be the subfan

BτΣ = {σ \ τ | σ ∈ NτΣ},

and note that the quotient map V → V τ induces a cone-wise bijection of fans BτΣ → Στ . Given

any Minkowski k-weight γ ∈ MWk(NτΣ, u) with k ≤ dτ , we obtain a Minkowski k-weight γ ∈
MWk(Σ

τ , uτ ) defined by

γ(π) = γ(π),

where π ∈ BτΣ and π is its image in Στ . This induces, for any k ≤ dτ , a linear mapMWk(NτΣ, u)→
MWk(Σ

τ , uτ ) that sends γ to γ. Given D ∈ D(Σ), we can always choose a piecewise linear rep-

resentative ϕ such that ϕτ = 0, and any such ϕ descends to a piecewise linear function ϕ on Στ ;

let D denote the divisor on Στ represented by ϕ. This gives us a linear map D(Σ) → D(Στ )

that sends D to D. It follows from the definition of the D(Σ)-action that the linear maps

MWk(NτΣ, u) → MWk(Σ
τ , uτ ) and D(Σ) → D(Στ ) are compatible with the associated module

structures in the following sense:

(2.5) D · γ = D · γ ∈MWk−1(Στ , uτ ).

Label the rays of τ by τ(1) = {ρ1, . . . , ρk}. Given any Minkowski d-weight ω ∈MWd(Σ, u), it is

straightforward to see that Du,ρ · ω is supported on NρΣ(d− 1) for any ray ρ ∈ Σ(1), and iterating

this process, it follows that Du,ρ1 · · ·Du,ρk ·ω is supported on NτΣ(dτ ). Furthermore, by analyzing

the D(Σ)-action more closely, we see that, for any π ∈ BτΣ(dτ ), we have

(Du,ρ1 · · ·Du,ρk · ω)(π) = ωτ (π).

It then follows from (2.5) that, for any D1, . . . , D` ∈ D(Σ), we have

D1 · · ·D` ·Du,ρ1 · · ·Du,ρk · ω = D1 · · ·D` · ωτ ∈MWd−k−`(Σ
τ , uτ ).

In particular, if ` = d− k, we have argued that

(2.6) degΣ,u,ω(D1 · · ·Dd−k ·Du,ρ1 · · ·Du,ρk) = degΣτ ,uτ ,ωτ (D1 · · ·Dd−k).

The upshot of (2.6) is that, upon choosing a marking u, it allows us to reduce mixed degree

computations from Σ to Στ , providing a means for inductive arguments on dimension.
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2.7. Convex divisors. Let Σ be a simplicial d-fan. We say that a divisor D ∈ D(Σ) is convex

if, for every τ ∈ Σ, there exists a representative ϕ that vanishes on τ and is nonnegative on

its neighborhood NτΣ. We say that D is strictly convex if, for every τ ∈ Σ, there exists a

representative ϕ that vanishes on τ and is strictly positive on NτΣ \ τ . To justify the terminology,

we note that, when Σ is complete, convex divisors are those that admit a representative ϕ that is

convex in the usual sense:

ϕ(u+ v) ≤ ϕ(u) + ϕ(v) for all u, v ∈ |Σ| = V.

Convex divisors form a closed convex cone K(Σ) ⊆ D(Σ) whose interior is the set of strictly convex

divisors K(Σ) = K(Σ)◦ [AHK18, Proposition 4.3]. Borrowing terminology from toric geometry, we

say that Σ is quasiprojective if K(Σ) 6= ∅.

We say that a Minkowski weight is nonnegative/positive if all of its values are nonnega-

tive/positive. It follows from the definition of the D(Σ)-action that

• D · ω is nonegative whenever ω is nonnegative and D ∈ K(Σ), and

• D · ω is positive whenever ω is positive and D ∈ K(Σ).

Intuitively, this just means that convex divisors are represented by piecewise linear functions whose

graphs only bend upward, while strictly convex functions are additionally required to be bend

upward along every cone of Σ. It follows from the above bullet points that

(2.7) degΣ,ω(D1 · · ·Dd) ≥ 0 if ω ∈MWd(Σ) is nonnegative and D1, . . . , Dd ∈ K(Σ)

and

(2.8) degΣ,ω(D1 · · ·Dd) > 0 if ω ∈MWd(Σ) is positive and D1, . . . , Dd ∈ K(Σ).

Positive Minkowski weights in MWd(Σ) are particularly relevant to our story. We define a

tropical d-fan Σ to be a pair Σ = (Σ, ω) where Σ is a simplicial d-fan and ω ∈ MWd(Σ) is a

positive Minkowski d-weight. Given a marking u of Σ, we write Σ(u) = (Σ, u, ω) for the canonical

representative on the marked fan (Σ, u). Given a cone τ ∈ Σ, we denote the marked tropical

structure induced by Σ(u) on the star fan Στ by Σ(u)τ = (Στ , uτ , ωτ ).

2.8. Grounding examples in convex and toric geometry. We close this section by discussing

several important classes of examples that motivate and inspire the constructions above. In par-

ticular, we interpret the main ideas of this section in terms of both convex and toric geometry,

primarily within the setting of complete fans. Careful understanding of these special classes of ex-

amples is not essential to the main results of this paper, but we hope that the connections made in

these examples will help ground a reader with background knowledge in convex or toric geometry.

Example 2.9 (Complete fans). Let Σ be a complete simplicial fan in V . Choosing an inner

product on V , there is a standard way to endow Σ with the structure of a tropical fan, which we

now describe. For each ray ρ ∈ Σ(1), let uρ be the unit vector that lies on ρ, and for each σ ∈ Σ,
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let Pσ be the parallelepiped determined by the ray generators of σ. Define

ω(σ) =
1

vold(Pσ)
,

where vold is the volume function associated to the inner product. To see that (Σ, u, ω) is tropical,

let τ ∈ Σ(d− 1). Completeness implies that there are exactly two cones σ1, σ2 ∈ Σ(d) with τ � σi.
By the base-times-height formula for the volume of Pσ, we see that

vold(Pσi) = vold−1(Pτ )htτ (uσi\τ ),

where htτ (uσi\τ ) is the distance between uσi\τ and Vτ . Since uσ1\τ and uσ2\τ lie in opposite half-

spaces associated to the hyperplane Vτ , it then follows that

ω(σ1)uσ1\τ + ω(σ2)uσ2\τ =
1

vold−1(Pτ )

(
uσ1\τ

htτ (uσ1\τ )
+

uσ2\τ

htτ (uσ2\τ )

)
∈ Vτ ,

and we conclude that (Σ, u, ω) is tropical.

Example 2.10 (Normal fans and (mixed) volumes of polytopes). Let P ⊆ V be a polytope and

choose an inner product on V . Consider the support function of P , defined by

hP : V → R

u 7→ max
v∈P
〈u, v〉.

The function hP is convex and piecewise-linear on V , and the chambers of linearity form a complete

fan ΣP , called the normal fan of P . Let Σ be any simplicial refinement of ΣP , let DP ∈ K(Σ) be

the convex divisor represented by hP , and let ω be the positive Minkowski d-weight introduced in

Example 2.9. We claim that

(2.11) degΣ,u,ω(Dd
P ) = d!vold(P ),

and this can be justified by induction. For the base case d = 0, both sides are simply equal to 1. To

prove the induction step, we can assume that P contains the origin because neither side is affected

by translations of P . For each ray ρ ∈ Σ(1), define a corresponding face of P by

Fρ = P ∩ {v ∈ V | 〈uρ, v〉 = h(uρ)}.

Each facet of P corresponds to one of these faces, and subdividing P into pyramids over its facets,

with vertex at the origin, gives

vold(P ) =
1

d

∑
ρ∈Σ(1)

hP (uρ)vold−1(Fρ).

On the other hand, (2.6) implies that

degΣ,u,ω(Dd
P ) =

∑
ρ∈Σ(1)

hP (uρ) degΣ,u,ω(Dd−1
P Du,ρ)

=
∑

ρ∈Σ(1)

hP (uρ) degΣρ,uρ,ωρ(D
d−1
P ),
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and the induction step then follows from the observation that DP is the divisor on Σρ associated

the polytope Fρ ⊆ V ρ.

Now suppose that P1, . . . , Pd ⊆ V are polytopes and let Σ be a common simplicial refinement of

the normal fans ΣP1 , . . . ,ΣPd . Since scalar multiplication and Minkowki summation of polytopes

correspond to scalar multiplication and addition of support functions, it follows from (2.11) and

multilinearity that

(2.12) degΣ,ω(DP1 · · ·DPd) = d!vold(P1 . . . Pd),

where the right-hand side is the mixed volume of P1, . . . , Pd. In the context of (2.12), we note that

(2.6) is a standard result of convex geometry that allows one to compute mixed volumes recursively

by dimension [Sch14, Lemma 5.1.5].

Example 2.13 (Rational fans and toric varieties). If Σ is a simplicial fan in V that is rational

with respect to a fixed lattice Λ ⊂ V , then Σ corresponds to a normal toric variety XΣ. Choosing

uρ to be the primitive lattice generator on ρ, the Chow ring A•(Σ, u) defined above is the standard

presentation for the (intersection-theoretic) Chow ring A•(XΣ) [Dan78, BDCP90, Bri96] (with

coefficients extended to R). In general, one does not expect there to be an (intersection-theoretic)

degree map associated to the incomplete toric variety XΣ; however, if Σ is complete, then the

associated toric variety XΣ is also complete, so there exists an (intersection-theoretic) degree map

deg : Ad(XΣ)→ R. This degree map is uniquely determined by its value on torus-fixed points, and

if [pσ] ∈ Ad(XΣ) is the class of the torus-fixed point associated to σ ∈ Σ(d), then

deg([pσ]) =
1

vold(Pσ)
,

where vold(Pσ) is the lattice-normalized volume of the parallelepiped determined by the ray gener-

ators of σ. In other words, the intersection-theoretic degree map corresponds to the one obtained

from the positive Minkowski d-weight defined by

ω(σ) =
1

vold(Pσ)
.

In this special setting, star fans of Σ correspond to torus-invariant subvarieties of XΣ and (2.6)

follows from the projection formula applied to the inclusion of torus-invariant subvarieties.

We note that convex divisors on a rational complete fan Σ correspond to nef divisors on XΣ, and

a recursive analysis similar to that in Example 2.10 shows that, for any convex divisor D = [ϕ], we

have

degΣ,u,ω(Dd) = d!vold(PD)

where PD ⊆ V ∨ is the dual polytope, defined (up to translation) by

PD = {` ∈ V ∨ | `(uρ) ≤ ϕ(uρ) for all ρ ∈ Σ(1)},

and vold is normalized by the dual lattice Λ∨ ⊆ V ∨. This recovers the standard toric geometry

fact that the degree of the top power of a nef divisor on a complete toric variety is the simplicial

volume of the dual polytope [CLS11, Theorem 13.4.3].
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3. Lorentzian fans

We now introduce the central definition of this paper.

Definition 3.1. A marked tropical d-fan Σ(u) = (Σ, u, ω) is said to be Lorentzian if Σ is quasipro-

jective and, for each τ ∈ Σ and all D3, . . . , Ddτ ∈ K(Στ ), the quadratic form

D(Στ )×D(Στ )→ R

(D1, D2) 7→ degΣ(u)τ (D1D2D3 · · ·Ddτ )

has signature (1, q, r).

We recall that the signature (p, q, r) of a quadratic form records the number—counted with

multiplicity—of positive, negative, and zero eigenvalues, respectively, of any symmetric matrix

representing the quadratic form with respect to some basis. That the signature does not depend

on the choice of basis is a consequence of Sylvester’s law of inertia.

By (2.4), we see that different choices of u result in quadratic forms that differ by a positive scalar,

and since positive scaling does not affect the signature of a quadratic form, being Lorentzian does

not depend on u. Consequently, we say that a tropical fan Σ is Lorentzian if Σ(u) is Lorentzian

for some—and, thus, for every—marking u.

Note that every star of a star is, itself, a star; more precisely, (Στ )π = Σπ̂, where π̂ ∈ Σ is the

unique cone containing τ and whose quotient is π. It then follows that a tropical fan is Lorentzian

if and only if all of its stars are Lorentzian. Moreover, we observe that the stipulation on the stars

in Definition 3.1 is vacuously true for star fans of dimension zero and one, and it follows that a

tropical fan is Lorentzian if and only all of its stars of dimension at least two are Lorentzian.

One of the primary motivations for studying Lorentzian fans is the following observation.

Proposition 3.2. Let Σ be a Lorentzian d-fan. For any D1, . . . , Dd ∈ K(Σ), we have

(AF) degΣ(D1D2D3 · · ·Dd)
2 ≥ degΣ(D2

1D3 · · ·Dd) · degΣ(D2
2D3 · · ·Dd).

Furthermore, for any D1, D2 ∈ K(Σ), the sequence(
degΣ(Dk

1D
d−k
2

)d
k=0

is unimodal and log-concave.

We recall that a nonnegative sequence (a0, . . . , ad) is unimodal if

a0 ≤ · · · ≤ a` ≥ · · · ≥ ad for some ` ∈ {0, . . . , d}

and log-concave if

a2
k ≥ ak−1ak+1 for all k ∈ {1, . . . , d− 1}.

Proof of Proposition 3.2. If we assume that D1, . . . , Dd ∈ K(Σ), then (AF) was justified in the

introduction, the log-concavity assertion is just a special case of (AF), and the unimodality assertion

follows from the observation that every log-concave sequence of positive numbers is unimodal. To
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extend these statements to Di ∈ K(Σ), we approximate each Di by an element of K(Σ) = K(Σ)◦

(using the fact that K(Σ) 6= ∅), and then take a limit, noting that all of the desired assertions are

closed conditions and therefore pass to the limit. �

Definition 3.1 is inspired, in part, by recent developments of Brändén and Leake regarding

Lorentzian polynomials on cones [BL21]. We now recall the main definition from [BL21] in or-

der to make this connection precise.

Suppose that C ⊆ Rn is a nonempty open convex cone, and let f ∈ R[x1, . . . , xn] be a homo-

geneous polynomial of degree d. For each i ∈ {1, . . . , n} and v = (v1, . . . , vn) ∈ Rn, we use the

following shorthand for partial and directional derivatives:

∂i =
∂

∂xi
and ∂v =

n∑
i=1

vi∂i.

Following Brändén and Leake, we say that f is C-Lorentzian if, for all v1, . . . , vd ∈ C,

(P) ∂v1 · · · ∂vdf > 0, and

(H) the quadratic form

Rn × Rn → R

(x, y) 7→ ∂x∂y∂v3 · · · ∂vdf

has exactly one positive eigenvalue.

More concretely, (H) is equivalent to the condition that the Hessian of the quadratic form

∂v3 · · · ∂vdf ∈ R[x1, . . . , xn]

has exactly one positive eigenvalue, which is also equivalent to the condition that there exists an

invertible linear change of variables `1(x), . . . , `n(x) such that

∂v3 · · · ∂vdf = `1(x)2 − `2(x)2 − · · · − `k(x)2

for some k ∈ {2, . . . , n}.

To connect the definition of Lorentzian fans in Definition 3.1 with the definition of C-Lorentzian

functions, we require a few additional notions. Given a simplicial d-fan Σ, consider the vector space

RΣ(1) with basis vectors {eρ | ρ ∈ Σ(1)}. A general element of RΣ(1) is written

z =
∑

ρ∈Σ(1)

zρeρ.

Given a marking u on Σ, there is a natural exact sequence

V ∨ → RΣ(1) → D(Σ)→ 0

where the maps are given by

ϕ 7→ zu(ϕ) =
∑

ρ∈Σ(1)

ϕ(uρ)eρ and z 7→ Du(z) =
∑

ρ∈Σ(1)

zρDu,ρ
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Given a Minkowski weight ω ∈MWd(Σ, u), define the volume polynomial of (Σ, u, ω) by

VolΣ,u,ω : RΣ(1) → R

z 7→ degΣ,u,ω(Du(z)d).

Alternatively, using the equivalent definitions (2.2) and (2.3) of mixed degrees, we may also realize

the volume polynomial in terms of Chow classes:

VolΣ,u,ω(z) = fΣ,u,ω(Xu(z)d) where Xu(z) =
∑

ρ∈Σ(1)

zρXu,ρ ∈ A1(Σ).

Note that VolΣ,u,ω is a homogeneous polynomial of degree d in R[zρ | ρ ∈ Σ(1)] and it vanishes

on the image of V ∨. Consider the open cone Ku(Σ) ⊆ RΣ(1) consisting of all z ∈ RΣ(1) such

that Du(z) ∈ K(Σ). The characterization in the next result builds a concrete bridge between

Definition 3.1 and the concept of C-Lorentzian functions.

Proposition 3.3. If Σ(u) is a quasiprojective tropical d-fan, then Σ(u) is Lorentzian if and only

if, for every τ ∈ Σ, the volume polynomial VolΣ(u)τ is Kuτ (Στ )-Lorentzian.

Proof. For any z1, . . . , zk ∈ RΣ(1), notice that

(3.4) ∂z1 · · · ∂zk VolΣ(u) =
d!

(d− k)!
degΣ(u)(Du(z)d−k ·Du(z1) · · ·Du(zk)).

Thus, from (2.8), we see that

∂z1 · · · ∂zd VolΣ(u) > 0 for all z1, . . . , zd ∈ Ku(Σ),

showing that VolΣ(u) satisfies (P), without assuming that Σ(u) is Lorentzian. Since VolΣ(u) vanishes

on the image of V ∨, it follows from (3.4) that the quadratic form

RΣ(1) × RΣ(1) → R

(x, y) 7→ ∂x∂y∂z3 · · · ∂zd VolΣ(u),

descends to 1
2d! times the quadratic form

D(Σ)×D(Σ)→ R

(D1, D2) 7→ degΣ(u)(D1D2Du(z3) · · ·Du(zd)),

so the two quadratic forms have the same signature. Thus, VolΣ(u) satisfies (H) if and only if the

latter quadratic form has exactly one positive eigenvalue, and the proposition then follows from

applying these arguments to Σ(u)τ for every τ ∈ Σ. �

Because the assertion that VolΣ(u) is Ku(Σ)-Lorentzian is independent of the choice of u, we

often abbreviate it and simply write that VolΣ is K(Σ)-Lorentzian.

We close this section with two illustrative examples. The first is an example of a Lorentzian fan

that is not Lefschetz, in the sense of Ardila, Denham, and Huh [ADH20].
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Example 3.5 (A Lorentzian fan that is not Lefschetz). Let Σ be the 2-skeleton of the coordinate

subspaces in R3, marked by the vectors ±e1, ±e2, and ±e3, and let ω : Σ(2)→ R be the constant

function that maps each cone to 1. One readily verifies that ω ∈MW2(Σ, u), so we obtain a marked

tropical fan Σ(u) = (Σ, u, ω).

Denote the 12 top-dimensional cones of Σ by σi1,2, σi1,3, σi2,3 where i ∈ {1, 2, 3, 4} denotes the

respective quadrant in the coordinate plane determined by the indices in the subscripts. For any

values a, b, c ∈ R, one checks that the function ωa,b,c : Σ(2)→ R defined by

ωa,b,c(σ
i
1,2) = ab, ωa,b,c(σ

i
1,3) = ac, ωa,b,c(σ

i
2,3) = bc

is a Minkowski 2-weight on Σ, and it follows that dimR(A2(Σ)) = dimR(MW2(Σ)) ≥ 3. In par-

ticular, since the top-degree Chow group is not one-dimensional, A•(Σ) is not a Poincaré duality

algebra, showing that Σ(u) cannot be Lefschetz in the sense of [ADH20]. On the other hand,

denoting the rays of Σ by Σ(1) = {ρ±1 , ρ
±
2 , ρ

±
3 }, the volume polynomial can be computed explicitly:

VolΣ(u) = 2(zρ+
1

+ zρ−1
)(zρ+

2
+ zρ−2

) + 2(zρ+
1

+ zρ−1
)(zρ+

3
+ zρ−3

) + 2(zρ+
2

+ zρ−2
)(zρ+

3
+ zρ−3

)

=
1

2
(z1 + z2 + 2z3)2 − 1

2
(z1 − z2)2 − 2(z3)2,

where z1 = (zρ+
1

+ zρ−1
) and similarly for z2 and z3. It follows that Σ(u) is Lorentzian.

The next example, due to Babaee and Huh [BH17], shows that not all tropical fans are Lorentzian.

Example 3.6 (A tropical fan that is not Lorentzian). In [BH17, Section 5], Babaee and Huh

construct a two-dimensional fan Σ in R4 by performing certain modifications to the fan over a

realization of the complete bipartite graph K4,4. Their construction is rather intricate, so we do

not describe the details, but we note that it is a rational fan and marked by the primitive ray

generators, and it is tropical with respect to a positive Minkowski weight ω ∈ MW2(Σ, u). Their

main result concerning this fan (Theorem 5.1) implies that Hess(VolΣ(u)) has more than one positive

eigenvalue. Thus, Σ(u) is tropical but not Lorentzian.

4. A two-dimensional characterization of Lorentzian fans

We now describe a more practical characterization of Lorentzian tropical fans, which essentially

reduces the verification of the Lorentzian property to checking it for just the two-dimensional

stars. Before stating this result, we first introduce a property of d-fans that is essential to our

characterization.

Given a d-fan Σ in V and a cone τ ∈ Σ with dim(τ) ≤ d− 2, we say that Σ is pinched at τ if

|Στ | \ {0} is disconnected (or equivalently, if |NτΣ| \ τ is disconnected). If Σ is not pinched at any

τ ∈ Σ, then we say that Σ is unpinched. For example, a 3-fan comprised of two maximal cones

meeting along a ray is pinched at the ray, but a 3-fan comprised of two maximal cones meeting

along a 2-cone is unpinched.

We are now ready to state our characterization of Lorentzian tropical fans.

Theorem 4.1. A quasiprojective tropical d-fan Σ(u) is Lorentzian if and only if
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(A) Σ is unpinched, and

(B) Σ(u)τ is Lorentzian for every τ ∈ Σ(d− 2).

Recall that stars of quasiprojective fans are quasiprojective and the Lorentzian condition is

vacuous for stars of dimension at most one. Thus, (B) is equivalent to imposing that

D(Στ )×D(Στ )→ R

(D1, D2) 7→ degΣ(u)τ (D1D2)

has exactly one positive eigenvalue for every τ ∈ Σ(d− 2), which is also equivalent to the condition

that VolΣ(u)τ has exactly one positive eigenvalue for every τ ∈ Σ(d − 2). We emphasize, again,

that these conditions are independent of u. Interestingly, we note that this characterization of

Lorentzian fans does not require one to have any knowledge about convex divisors on Σ or its star

fans.

Before proving Theorem 4.1, we discuss a few preliminary results. The first result shows that

the unpinched condition is necessary for a tropical fan to be Lorentzian.

Lemma 4.2. Let Σ(u) be a quasiprojective tropical d-fan with d ≥ 2. If Σ \ {0} is disconnected,

then Σ(u) is not Lorentzian.

Proof. Assume that Σ \ {0} is disconnected and, using this assumption, choose d-fans Σ1,Σ2 ⊆ Σ

such that Σ1 ∪ Σ2 = Σ and Σ1 ∩ Σ2 = {0}. Set ωi = ω|Σi(d) and ui = u|Σi(1). Note that

K(Σ) = K(Σ1)⊕K(Σ2) ⊆ RΣ1(1) ⊕ RΣ2(1) = RΣ(1).

Given D1 ∈ K(Σ1) and D2 ∈ K(Σ2), it follows that D̃1 = (D1, 0) and D̃2 = (0, D2) are in K(Σ).

Noting that Du,ρ ·Du,η · ω = 0 ∈MWd−2(Σ, ω) for any ρ ∈ Σ1(1) and η ∈ Σ2(1), it follows that

degΣ
(
D̃k

1D̃
d−k
2

)
=


degΣ1

(Dd
1) k = d,

degΣ2
(Dd

2) k = 0,

0 k = 1, . . . , d− 1.

Since Di ∈ K(Σi), (2.8) implies that the first two cases are positive, and since d ≥ 2, the sequence(
degΣ

(
D̃k

1D̃
d−k
2

))d
k=0

is not unimodal. Thus, Proposition 3.2 implies that Σ(u) is not Lorentzian. �

The next preparatory result was proved by Brändén and Leake [BL21]. To state it, we require

a few additional notions. The lineality space of an open convex cone C ⊆ Rn is defined to be

LC = C ∩ −C; in other words, it is the largest subspace contained in the closure of C. We say

that an open convex cone C ⊆ Rn is effective if C = C ∩ Rn>0 + LC . A k × k matrix M is said

to be irreducible if its adjacency graph—the undirected graph on k labeled vertices with an edge

between the ith and jth vertex whenever the (i, j) entry of M is nonzero—is connected. Brändén

and Leake proved the following result.
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Lemma 4.3 ([BL21], Proposition 2.4). Let f ∈ R[x1, . . . , xn] be a homogeneous polynomial of

degree d ≥ 3, and let C be an open, convex, and effective cone in Rn. If

(1) f(x+ w) = f(x) for all x ∈ Rn and w ∈ LC ,

(2) ∂v1 · · · ∂vdf > 0 for all v1, . . . , vd ∈ C,

(3) the Hessian of ∂v1 · · · ∂vd−2
f is irreducible and its off-diagonal entries are nonnegative for

all v1, . . . , vd−2 ∈ C, and

(4) ∂if is C-Lorentzian for all i = 1, . . . , n,

then f is C-Lorentzian.

In order to apply Lemma 4.3 in our setting, the following result is necessary.

Lemma 4.4. If Σ(u) is a quasiprojective tropical d-fan, then Ku(Σ) is effective.

Proof. We first prove that the lineality space LKu(Σ) is the image of the map V ∨ → RΣ(1).

To see that the image of V ∨ → RΣ(1) is contained in LKu(Σ), let ϕ ∈ V ∨ and observe that

Du(zu(ϕ)) = 0 = Du(−zu(ϕ)).

Since 0 ∈ K(Σ), it follows that zu(ϕ) ∈ LKu(Σ).

Conversely, suppose that z ∈ LKu(Σ). By definition, this means that both Du(z) and −Du(z)

are convex divisors. Thus, we can represent Du(z) = [ϕ] and −Du(z) = [ϕ′] for some nonnegative

ϕ,ϕ′ ∈ PL(Σ). Adding these nonnegative functions, we obtain a nonnegative function representing

0 ∈ D(Σ); in other words, a nonnegative linear function on Σ. On the other hand, using the

assumption that Σ is quasiprojective and ω is positive, we see that Dd−1 ·ω is a positive Minkowski

1-weight for any D ∈ K(Σ), from which it follows that 0 can be written as a positive linear

combination of the markings. In particular, this implies that the only nonnegative linear function

on Σ is the zero function, from which we see that ϕ and ϕ′ must both be the zero functions. Thus,

Du(z) = 0, and it follows that z = zu(ϕ) for some ϕ ∈ V ∨.

We now argue that Ku(Σ) is effective; more precisely, we show that

Ku(Σ) = Ku(Σ) ∩ RΣ(1)
>0 + LKu(Σ).

Suppose z ∈ Ku(Σ). Then Du(z) ∈ K(Σ), and the definition of strict convexity applied to the

zero-dimensional cone of Σ implies that there exists a linear function ϕ ∈ V ∨ such that

z − zu(ϕ) ∈ RΣ(1)
>0 .

Since zu(ϕ) ∈ LKu(Σ), it follows that

z = (z − zu(ϕ)) + zu(ϕ) ∈ Ku(Σ) ∩ RΣ(1)
>0 + LKu(Σ).

Conversely, suppose that z ∈ Ku(Σ) ∩ RΣ(1)
>0 + LKu(Σ). Then z = z′ + zu(ϕ) for some z′ ∈ Ku(Σ)

and ϕ ∈ V ∨. Translating by zu(ϕ) does not affect membership in Ku(Σ), so z ∈ Ku(Σ). �

We are now prepared to prove our characterization of Lorentzian tropical fans.
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Proof of Theorem 4.1. Let Σ(u) be a quasiprojective tropical d-fan. Assume, first, that Σ(u) is

Lorentzian. It follows that Σ(u)τ is Lorentzian for every τ ∈ Σ, implying (B). Furthermore,

Lemma 4.2 implies that |Στ | \ {0} is connected for every τ ∈ Σ(k) with 0 ≤ k ≤ d − 2, showing

that Σ is unpinched, proving (A).

Conversely, assume that Σ(u) satisfies (A) and (B); we prove that Σ(u) is Lorentzian. By

Proposition 3.3, it suffices to show that VolΣ(u)τ is Kuτ (Στ )-Lorentzian for every τ ∈ Σ(k) with

0 ≤ k ≤ d− 2. We accomplish this by induction on the codimension of τ . The base case dim(τ) =

d − 2 follows from (B). For the induction step, assume that VolΣ(u)τ is Kuτ (Στ )-Lorentzian for

every τ ∈ Σ(k) with `+ 1 ≤ k ≤ d− 2 for some ` ∈ {0, . . . , d− 3}, we must show that VolΣ(u)τ is

Kuτ (Στ )-Lorentzian for every τ ∈ Σ(`). For the purposes of this argument, and to ease notation,

it suffices to assume that Στ = Σ.

To prove that VolΣ(u) is Ku(Σ)-Lorentzian, we prove the four conditions of Lemma 4.3. Condition

(1) follows from the fact that every element of LKu(Σ) is zu(ϕ) for some ϕ ∈ V ∨ (as was shown in

the proof of Lemma 4.4), along with the fact that Du(z) ∈ D(Σ) is invariant under shifting the

argument by zu(ϕ). Condition (2) follows from (2.8) and (3.4). Thus, it remains to verify (3) and

(4); to do so, we study derivatives of the volume polynomial.

For any two rays ρ, η ∈ Σ(1), we have

∂ρ VolΣ(u) = (d− `) · degΣ(u)(Du,ρ ·Du(z)d−`−1),

and

∂η∂ρ VolΣ(u) = (d− `)(d− `− 1) · degΣ(u)(Du,ηDu,ρ ·Du(z)d−`−2).

Applying (2.6) to the right-hand sides of the above equations, we obtain

(4.5) ∂ρ VolΣ(u) = (d− `) · degΣ(u)ρ
(
Du(z)

d−`−1)
,

and, assuming that η and ρ are distinct rays, we have

(4.6) ∂η∂ρ VolΣ(u) =

(d− `)(d− `− 1) · degΣ(u)π
(
Du(z)

d−`−2)
if {ρ, η} = π(1)

0 else.

To prove Condition (3), let z1, . . . , zd−`−2 ∈ Ku(Σ). It follows from (4.6) that the off-diagonal

(ρ, η)-entry of the Hessian of ∂z1 · · · ∂zd−`−2
VolΣ(u) is either 0 if ρ and η do not form the rays of a

2-cone in Σ, or it is

(d− `)! · degΣ(u)π
(
Du(z1) · · ·Du(zd−`−2)

)
if {ρ, η} = π(1) for some π ∈ Σ(2). Since D ∈ Kuπ(Σπ) for every D ∈ K(Σ), it follows from (2.8)

that all of the off-diagonal entries of the Hessian are nonnegative, and the entries indexed by pairs

(ρ, η) that form the rays of a 2-cone in Σ are strictly positive. Condition (A) ensures that |Σ| \ {0}
is connected, from which the above positivity in off-diagonal terms implies that the Hessian of

∂z1 · · · ∂zd−`−2
VolΣ(u) is irreducible, verifying (3).

Finally, to prove (4), we must argue that ∂ρ VolΣ(u) is Ku(Σ)-Lorentzian. Property (P) follows

from (2.8), so it remains to prove Property (H), which is equivalent to the assertion that, for any
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z3, . . . , zd−`−1 ∈ Ku(Σ), the quadratic form

(4.7) ∂z3 · · · ∂zd−`−1
∂ρ VolΣ(u)

has exactly one positive eigenvalue. The induction hypothesis implies that, given any z3, . . . , zd−`−1 ∈
Kuρ(Σ

ρ), the quadratic form

(4.8) ∂z3 · · · ∂zd−`−1
VolΣ(u)ρ

has exactly one positive eigenvalue. Note that (4.7) and (4.8) can be related using (4.5), which

implies that, for any z3, . . . , zd−`−1 ∈ RΣ(1), we have

(4.9) ∂z3 · · · ∂zd−`−1
∂ρ VolΣ(u) =

(d− `)!
2

· ∂z3 · · · ∂zd−`−1
VolΣ(u)ρ ,

where zi ∈ RΣρ(1) is any vector such that D(zi) = D(zi). If we choose ϕ ∈ V ∨ such that ϕ(uρ) = −1,

then for any z ∈ RΣ(1), we can define z ∈ RΣρ(1) by

(4.10) zη = zη + zρϕ(uη).

It then follows that (4.8) specializes to (4.7) under the linear change of variables (4.10):

∂z3 · · · ∂zd−`−1
∂ρ VolΣ(u)(z) =

(d− `)!
2

∂z3 · · · ∂zd−`−1
VolΣ(u)ρ(z)

Extending the change of variables to an invertible change of variables by introducing an extraneous

variable zρ = zρ, it follows that the two quadratic forms (4.7) and (4.8) have the same signature,

so the fact that the (4.8) has exactly one positive eigenvalue implies that (4.7) also has exactly one

positive eigenvalue. �

In order to apply Theorem 4.1 in practice, it is necessary to understand the volume polynomials of

the two-dimensional star fans of Σ. As it turns out, these two-dimensional volume polynomials can

be computed in full generality, as we describe in the next result, which then makes the applicability

of Theorem 4.1 completely concrete.

Proposition 4.11. If Σ(u) is a tropical 2-fan, then

VolΣ(u) =
∑
σ∈Σ(2)

σ(1)={ρ1,ρ2}

2ω(σ)zρ1zρ2 −
∑

ρ∈Σ(1)

aρz
2
ρ

where aρ is determined by the formula∑
σ∈Σ(1)
ρ≺σ

ω(σ)uσ/ρ = aρuρ.

Proof. By the Chow-theoretic definition of the volume polynomial

VolΣ(u)(z) = fΣ(u)(Xu(z)2),

we must verify that

(1) fΣ(u)(Xu,η1Xu,η1) = 0 for all η1, η2 ∈ Σ(1) that do not lie on a common cone,

(2) fΣ(u)(Xu,η1Xu,η1) = ω(σ) for all σ ∈ Σ(2) with rays η1 and η2, and
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(3) fΣ(u)(X
2
u,ρ) = −aρ for all ρ ∈ Σ(1).

The first follows immediately from definition of A•(Σ, u), and the second is essentially the definition

of fΣ(u). To prove the third, choose ϕ ∈ V ∨ such that ϕ(uρ) = −1, and write

Xu,ρ =
∑
η∈Σ(1)
η 6=ρ

ϕ(uη)Xu,η ∈ A1(Σ, u).

We then compute

fΣ(u)(X
2
u,ρ) = fΣ(u)

(
Xu,ρ

∑
η∈Σ(1)
η 6=ρ

ϕ(uη)Xη

)
=
∑
σ∈Σ(2)
ρ≺σ

ϕ(uσ/ρ)ω(σ)

= ϕ(aρuρ)

= −aρ. �

An important class of Lorentzian fans is the class of Bergman fans (which we do not define

here). The proof of the following result, in the case of matroids, is essentially contained in [NOR23,

Section 6] (see also [BES20] and [BL21] for similar treatments of Condition (B)).

Theorem 4.12. Bergman fans of (poly)matroids are Lorentzian.

Proof. For matroids, it suffices, by Theorem 4.1, to prove that Bergman fans satisfy (A) and (B).

Property (A) is [NOR23, Lemma 6.4] and Property (B) follows from [NOR23, Lemmas 6.5 and

6.6]. To extend this result to polymatroids, one uses the observation that the Bergman fan of a

polymatroid is supported on the Bergman fan of an associated matroid [CHL+], along with the

fact that the Lorentzian property does not depend on the support of a fan, a property that is made

precise and proved in Sections 6 and 7 below. �

4.1. Disentangling geometry from analysis. We close this section with reflections on the de-

velopments that led to Theorem 4.1. As we emphasized in the introduction, the ideas in this paper

are heavily influenced by the AF inequalities, and if we specialize Theorem 4.1 to the setting of

complete fans, it essentially tells us that the AF inequalities (for simple strongly isomorphic poly-

topes) can be deduced from the two-dimensional AF inequalities with only a little bit of geometric

insight—basically, the only geometric insight required is the reduction (2.6). This is quite differ-

ent in style from Aleksandrov’s original proof of the AF inequalities in [Ale37] (see [Sch14] for a

reproduction in English), where the geometric and analytic arguments are closely intertwined, and

it was only very recently that the key geometric insight (2.6) was disentangled from the rest of

the analytic arguments. We view the key first step in this disentanglement to be the recent proof

of the AF inequalities by Cordero-Erausquin, Klartag, Merigot, and Santambrogio [CEKMS19],

where it became clear that (2.6) was the only essential geometric input required to deduce the

AF inequalities from the two-dimensional setting. However, the analytic arguments in [CEKMS19]

were still quite complex, requiring a doubly-indexed induction, and we view the second key step in
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the disentanglement to be the recent work of Brändén and Leake [BL21], which, by changing the

focus away from the AF inequalities and instead focusing on the Lorentzian property, significantly

simplified and clarified the analytic arguments in [CEKMS19]. Now that the disentanglement seems

complete, it will be interesting to see what other settings one might be able to apply these ideas.

5. Basic properties of Lorentzian fans

In this short section, we collect several useful ways to construct new Lorentzian fans from old ones.

Our first result shows that the Lorentzian property is compatible with tropical products. Before

stating it, we recall that the product of two fans is simply the collection of pairwise products of

their cones:

Σ1 × Σ2 = {σ1 × σ2 | σi ∈ Σi}.

If Σi is a simplicial di-fan and ωi ∈MWdi(Σi) for i = 1, 2, we naturally obtain a Minkowski weight

ω1 × ω2 ∈MWd1+d2(Σ1 × Σ2) defined by

(ω1 × ω2)(σ1 × σ2) = ω1(σ1)ω2(σ2) for all σ1 ∈ Σ1(d1), σ2 ∈ Σ2(d2).

Thus, if Σ1 = (Σ1, ω1) and Σ2 = (Σ2, ω2) are tropical fans, we can define their product in the

setting of tropical fans as

Σ1 ×Σ2 = (Σ1 × Σ2, ω1 × ω2).

Proposition 5.1. If Σ1 and Σ2 are tropical fans, then Σ1 × Σ2 is Lorentzian if and only if Σ1

and Σ2 are Lorentzian.

Proof. The key observation is that, for τ1 ∈ Σ1 and τ2 ∈ Σ2, we have

(5.2) (Σ1 ×Σ2)τ1×τ2 = Στ1
1 ×Στ2

2 .

One readily checks that K(Σ1×Σ2) = K(Σ1)×K(Σ2), so the product is quasiprojective if and only

if each factor is quasiprojective. By taking τ1 or τ2 to be maximal cones, we see from (5.2) that the

star fans of Σ1×Σ2 are a superset of the star fans of Σ1 and Σ2, and since the Lorentzian condition

is a stipulation on all of the star fans, this implies that Σ1 and Σ2 are Lorentzian whenever Σ1×Σ2

is Lorentzian. To prove the converse, it suffices, by Theorem 4.1, to show that (A) and (B) are

satisfied for all stars (Σ1 ×Σ2)τ1×τ2 where neither τ1 nor τ2 is maximal. For (A), this amounts to

the observation that any product of two positive dimensional fans remains connected after removing

the origin; thus, Σ1 ×Σ2 satisfies (A) if both Σ1 and Σ2 satisfy (A). For (B), notice that the only

case to consider is when dim(τi) = dim(Σi) − 1 for i = 1, 2. In this case, one readily verifies that,

for any markings ui on Σi, we have

Vol(Σ1(u1)×Σ2(u2))τ1×τ2 = VolΣ1(u1)τ1 VolΣ2(u2)τ2 .

Since a product of linear forms in disjoint variables always has one positive eigenvalue (because

`1`2 = 1
4(`1 + `2)2 − 1

4(`1 − `2)2), it follows that Σ1 × Σ2 satisfies (B) if both Σ1 and Σ2 satisfy

(B), completing the proof. �
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To state the next property, we describe first describe an action of strictly convex divisors on

tropical fans. Suppose that Σ(u) is a tropical d-fan and D ∈ K(Σ) is a strictly convex divisor. We

define D ·Σ(u) to be the tropical (d− 1)-fan

D ·Σ(u) = (Σ[d− 1], u,D · ω).

We now show that this action is compatible with the Lorentzian property.

Proposition 5.3. If Σ(u) is Lorentzian and D ∈ K(Σ), then D ·Σ(u) is Lorentzian.

Proof. Suppose that Σ(u) is a Lorentzian d-fan and D ∈ K(Σ). First of all, we observe that

D descends to an element of K(Σ[d − 1]), so Σ[d − 1] is quasiprojective. Additionally, for any

τ ∈ Σ[d− 1], note that the star of the codimension-one skeleton is the codimension-one skeleton of

the star:

Σ[d− 1]τ = Στ [dτ − 1].

It then follows from the definition of the D(Σ)-action on Minkowski weights that

degD·Σ(u)τ (D1 · · ·Ddτ−1) = degΣ(u)τ (D1 · · ·Ddτ−1 ·D).

Since D ∈ K(Σ), it follows that D ∈ K(Στ ), and thus, the quadratic forms in Definition 3.1

associated to D · Σ(u)τ are all special cases of the quadratic forms associated to Σ(u)τ , so the

Lorentizan property for D ·Σ(u) follows from the Lorentzian property for Σ(u). �

Our final result in this section regards tropical modifications, which are yet another way of

producing new tropical fans from old ones. The input of a tropical modification consists of a

tropical d-fan Σ = (Σ, ω) in V and a strictly convex piecewise-linear function ϕ ∈ PL(Σ); the

output is a new tropical d-fan MϕΣ in V × R. More precisely, the tropical modification of Σ

along ϕ is defined by

MϕΣ = (Σϕ, ωϕ)

where the fan Σϕ has cones

Σϕ = {γϕ(τ) | τ ∈ Σ} ∪ {τ(0,−1) | τ ∈ Σ \ Σ(d)}

where γϕ(τ) = {(x, ϕ(x)) ∈ NR × R | x ∈ τ} and τ(0,−1) = {u+ λ(0,−1) | u ∈ τ, λ ∈ R≥0}, and the

Minkowski weight ωϕ is defined by

ωϕ(σ) =

ω(τ) if σ = γϕ(τ) for some τ ∈ Σ(d);

(ϕ · ω)(τ) if σ = τ(0,−1) for some τ ∈ Σ(d− 1).

It is straightforward to check that ωϕ ∈MWd(Σϕ) is a positive Minkowski weight.

We note that the graph γϕ(Σ) of Σ under the function ϕ is contained within Σϕ, but is not a

tropical fan with respect to the induced weights on the maximal cones—the tropical modification

MϕΣ is, in some sense, the unique minimal way of appending weighted cones to γϕ(Σ) to obtain
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a tropical fan. Whenever ϕ1 and ϕ2 differ by a linear function f ∈ L(Σ), we note that Mϕ1Σ and

Mϕ2Σ are isomorphic under the linear automorphism

V × R→ V × R

(v, w) 7→ (v, w + f(v)),

so, up to linear isomorphism, we view the tropical modification as happening along a strictly convex

divisor D = [ϕ] ∈ K(Σ) and we denote it by MD(Σ). The following result shows that the Lorentzian

property is compatible with tropical modifications.

Proposition 5.4. If Σ is a tropical fan and D ∈ K(Σ), then MDΣ is Lorentzian if and only if Σ

is Lorentzian.

Proof. Choose a representative ϕ for D and a marking u on Σ, and let uϕ be the associated marking

on Σϕ:

uρ = {(uρ, ϕ(uρ))} ∪ {(0,−1)}.

There are two key observations, both of which are straightforward to verify from the definitions.

The first is that there is a natural isomorphism

A•(Σ, u)
∼=−→ A•(Σϕ, uϕ)

Xu,ρ 7−→ Xuϕ,γϕ(ρ),

that commutes with the maps fΣ,u,ω and fΣϕ,uϕ,ωϕ and identifies the cones of strictly convex divisors

(via the isomorphisms D(Σ) ∼= A1(Σ, u) and D(Σϕ) ∼= A1(Σϕ, uϕ)). In particular, this shows that

the quadratic forms associated to (Σ, u, ω) have exactly one positive eigenvalue if and only if the

same holds for (Σϕ, uϕ, ωϕ). This conclusion does not apply to the quadratic forms associated to

nontrivial stars of Σ and MDΣ; for that, we need the second key observation, which is that, for

any τ ∈ ΣD(k),

(MDΣ)τ =

(D ·Σ)τ
′

if τ = τ ′(0,−1) for some τ ′ ∈ Σ(k − 1),

MD(Στ ) if τ = γϕ(τ ′) for some τ ′ ∈ Σ(k).

Suppose that Σ is Lorentzian. By the second observation, every star fan of MDΣ is either a star

of D ·Σ or a tropical modification of a star of Σ. In the first case, the associated quadratic forms

have exactly one positive eigenvalue by Proposition 5.3, while in the latter case, the associated

quadratic forms have exactly one positive eigenvalue by the first observation and the assumption

that Σ is Lorentzian. Thus, MDΣ is Lorentzian.

Conversely, suppose that MDΣ is Lorentzian. By the second observation, every star of Σ can

be tropically modified by D to become a star of MDΣ. The assumption that MDΣ is Lorentzian

along with the first observation then imply that Σ is Lorentzian. �

It would be natural, at this point, to continue our list of Lorentzian-preserving constructions by

showing that the Lorentzian property is preserved by stellar subdivisions (it is!). We choose not to

do that here, however, because our ultimate aim is to prove a stronger result: that the Lorentzian
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property does not actually depend on the fan structure at all, it only depends on the underlying

tropical variety. In order to state this result precisely, we take a detour in the next section to

introduce the theory of tropical fan varieties, before returning to the study of stellar subdivisions

and the independence of the Lorentzian property on the fan structure in Section 7.

6. Minkowski weights on fan sets and tropical fan varieties

In this section, we introduce a general theory of Minkowski weights on fan sets. Because we

do not require the supports of our Minkowski weights to be rational fans, the notions developed

here generalize the affine tropical cycles introduced by Allerman and Rau [AR10], which built on

prior work of Gathmann, Kerber, and Markwig [GKM09]. Many of the arguments from those

earlier papers carry over in a more-or-less straightforward way to the general setting, but since the

development here seems sufficiently novel, we carefully spell out the details of the most important

aspects.

6.1. Minkowski weights on vector spaces. Let V be an n-dimensional real vector space. A

marked Minkowski d-weight on V is a triple (Σ, u, ω) where

• Σ is a simplicial d-fan,

• u is a marking of Σ, and

• ω ∈MWd(Σ, u) is a Minkowski d-weight on the marked fan (Σ, u).

We define the support of a marked Minkowski d-weight on V to be the support of the subfan

where ω is nonzero:

|(Σ, u, ω)| =
⋃

σ∈Σ(d)
ω(σ)6=0

σ.

Two marked Minkowski d-weights (Σ1, u1, ω1) and (Σ2, u2, ω2) are equivalent if

|(Σ1, u1, ω1)| = |(Σ2, u2, ω2)|

and, for every pair of cones σ1 ∈ Σ1(d) and σ2 ∈ Σ2(d) such that

(i) σi ⊆ |(Σi, ui, ωi)| for i = 1, 2 and

(ii) σ◦1 ∩ σ◦2 6= ∅,

we have

(6.1) ω1(σ1) =
vol(σ1, u1)

vol(σ2, u2)
ω2(σ2),

where vol(σ1,u1)
vol(σ2,u2) denotes the absolute value of the determinant of any linear tranformation of Vσ1 =

Vσ2 that takes the markings of σ2 to the markings of σ1. Geometrically, notice that vol(σ1,u1)
vol(σ2,u2) is

the just ratio of the volumes of the parallelepipeds determined by the markings on σ1 and σ2,

respectively, justifying the notation. While the volumes, themselves, depend on a metric, the ratio

does not, and the condition (6.1) can interpreted as the imposition that the weights are equal after

normalizing by the volume of the associated parallelepipeds.
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We define a Minkowski d-weight on V to be an equivalence class of marked Minkowski d-

weights on V , and we denote the set of Minkowski d-weights on V by MWd(V ). We aim to endow

MWd(V ) with the structure of a real vector space; the following result is the key observation that

we need.

Proposition 6.2. If (Σ, u, ω) is a marked Minkowski d-weight and (Σ′, u′) is any marked simplicial

fan with |Σ′| = |Σ|, then there exists a unique ω′ ∈MWd(Σ
′, u′) such that (Σ, u, ω) and (Σ′, u′, ω′)

are equivalent.

Proof. Given two fans Σ and Σ′ with the same support, one can construct a common refinement

comprising the pairwise intersections σ ∩ σ′ with σ ∈ Σ and σ′ ∈ Σ′. By adding additional cones

where necessary, this common refinement can be further refined to be a simplicial fan. Since any

two simplicial fans with the same support admit a common refinement by a simplicial fan, the proof

of the proposition reduces to studying two cases:

(1) Σ′ is a refinement of Σ, and

(2) Σ is a refinement of Σ′.

The considerations in each of these cases is similar to the discussions in [GKM09].

If Σ′ refines Σ and σ′ ∈ Σ′(d), then there is a unique σ ∈ Σ(d) such that σ′ ⊆ σ; define

ω′(σ′) =
vol(σ′, u′)

vol(σ, u)
ω(σ).

In fact, we must define ω′ in this way in order for (Σ′, u′, ω′) to be equivalent to (Σ, u, ω); what’s

not immediately apparent is that ω′ is actually a Minkowski weight on (Σ′, u′). To check that

ω′ ∈MWd(Σ
′, u′), let τ ′ ∈ Σ′(d− 1). We consider two cases:

(1a) τ ′ ⊆ τ for some τ ∈ Σ(d− 1), and

(1b) τ ′ 6⊆ τ for any τ ∈ Σ(d− 1).

In Case (1a), note that there is a natural bijection between {σ′ ∈ Σ′(d) | τ ′ � σ′} and {σ ∈
Σ(d) | τ � σ}. A linear algebra argument shows that

(6.3)
vol(σ′, u′)

vol(σ, u)
u′σ′\τ ′ =

vol(τ ′, u′)

vol(τ, u)
uσ\τ mod Vτ ,

and it follows that the balancing condition (2.1) holds at τ ′ if and only if it holds at τ .

In Case (1b), there is a unique σ ∈ Σ(d) such that τ ′ ⊆ σ and there are exactly two cones

σ′1, σ
′
2 ∈ Σ′(d) with τ ′ � σ′1, σ′2, both contained within σ. Another linear algebra argument implies

that

(6.4)
vol(σ′1, u

′)

vol(σ, u)
u′σ′1\τ ′

+
vol(σ′2, u

′)

vol(σ, u)
u′σ′2\τ ′

= 0 mod Vτ ,

which, upon multiplying by ω(σ), is equivalent to the balancing condition (2.1) at τ ′.
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Next, we turn to the case where Σ refines Σ′. For each σ′ ∈ Σ′(d), choose some σ ∈ Σ(d) such

that σ ⊆ σ′, and define

ω′(σ′) =
vol(σ′, u′)

vol(σ, u)
ω(σ).

Again, this is how we must define ω′ if we want (Σ′, u′, ω′) to be equivalent to (Σ, u, ω). We first

argue that the definition of ω′ is independent of the choice of σ; to do so, it suffices to show that

we get the same value for ω′(σ′) if we choose σ1, σ2 ⊆ σ′ such that σ1 ∩ σ2 = τ ∈ Σ(d − 1). Note

that the balancing condition (2.1) at τ implies that

(6.5) ω(σ1)uσ1\τ + ω(σ2)uσ2\τ = 0 mod Vτ .

As in (6.4), we have

(6.6)
vol(σ1, u)

vol(σ′, u′)
uσ1\τ +

vol(σ2, u)

vol(σ′, u′)
uσ2\τ = 0 mod Vτ

Combining (6.5) and (6.6) implies that

vol(σ′, u′)

vol(σ1, u)
ω(σ1) =

vol(σ′, u′)

vol(σ2, u)
ω(σ2),

showing that ω′(σ′) does not depend on the choice of σ ⊆ σ′

To check that ω′ ∈ MWd(Σ
′, u′), let τ ′ ∈ Σ′(d − 1). There must be some τ ∈ Σ(d − 1) with

τ ⊆ τ ′, and the argument in (1a) shows that the balancing condition (2.1) holds at τ ′ if and only

if it holds at τ , completing the proof of Case (2). �

We now describe the vector space structure on MWd(V ).

Proposition 6.7. The set of Minkowski d-weights on V is a real vector space. More precisely,

given Ω1,Ω2 ∈MWd(V ) and λ ∈ R, we define λΩ1 + Ω2 ∈MWd(V ) by

λΩ1 + Ω2 = [Σ, u, λω1 + ω2]

where (Σ, u, ωi) represents Ωi for i = 1, 2.

Proof. Given two Minkowski d-weights Ω1,Ω2 ∈ MWd(V ), we first argue that they can be repre-

sented on a common marked fan (Σ, u). To do so, we begin by constructing a fan Σ whose support

is |Ω1| ∪ |Ω2| and such that Σ contains two subfans Σ1,Σ2 ⊆ Σ with |Σi| = |Ωi| (see, for example,

[AR10, Construction 2.13]). Upon triangulating, if necessary, we may assume that Σ is simplicial,

and we can choose any marking u of Σ. By Proposition 6.2, each Ωi has a unique representative

supported on (Σi, u), which we can extend by zero to all of Σ. Thus, we may represent both Ω1

and Ω2 on a common marked simplicial fan (Σ, u).

Next, we argue that the operation is well-defined. If (Σ′, u′) is any other choice of marked

simplicial fan on which we can represent Ω1 and Ω2, then Proposition 6.2 ensures that there exists

a unique ω′i such that (Σ, u, ωi) is equivalent to (Σ′, u′, ω′i). By definition of equivalence, we know

that, for any σ ∈ Σ(d) and σ′ ∈ Σ′(d) with σ◦ ∩ σ′◦ 6= ∅, ωi(σ) 6= 0, and ω′i(σ
′) 6= 0, we have

ωi(σ) =
vol(σ, u)

vol(σ′, u′)
ω′i(σ

′).
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Adding and scaling these relations, we then conclude that (Σ, u, λω1+ω2) is equivalent to (Σ′, u′, λω′1+

ω′2), as desired. The vector space axioms are straightforward to verify. �

We denote the associated graded vector space of Minkowski weights on V by

MW•(V ) =

n⊕
d=0

MWd(V ).

6.2. Minkowski weights on fan sets. A d-fan set X ⊆ V is a subset of V that can be realized

as the support of a d-fan in V . A Minkowski k-weight on a d-fan set X ⊆ V is any Minkowski

weight in MWk(V ) that is supported within X . Denote the subspace of Minkowski k-weights on

X by

MWk(X ) ⊆MWk(V )

and the associated graded vector space by

MW•(X ) =
d⊕

k=0

MWd(X ).

The following result describes how the general Minkowski weights of this section relate to the

Minkowski weights on fans studied in Subsection 2.3.

Proposition 6.8. If X is a d-fan set and Σ is a simplicial d-fan such that |Σ| = X , then there is

a canonical inclusion

MWk(Σ) ⊆MWk(X )

for every k ≤ d that is an isomorphism when k = d.

Proof. For each ω ∈ MWk(Σ, u) ∼= MWk(Σ), we map it to the equivalence class in MWk(X )

represented by (Σ, u, ω). Proposition 6.2 implies that this map is injective for all k ≤ d and also

surjective for k = d. We note that the map is not surjective for k < d because there are Minkowski

k-weights that are supported within X but not supported on |Σ[k]|. �

6.3. Divisors and mixed degrees. Let X be a d-fan set in V . Given a continuous function

ϕ : X → R, we say that ϕ is piecewise linear on X if there is some fan Σ with |Σ| = X such that

ϕ ∈ PL(Σ). Denote the piecewise linear functions on X by PL(X ). We observe that PL(X ) is a

vector space under the usual addition and scalar multiplication of functions to R—the only subtle

detail to note is that PL(X ) is closed under addition: if ϕ1 is piecewise linear on Σ1 and ϕ2 is

piecewise linear on Σ2 with |Σ1| = |Σ2| = X , then ϕ1 + ϕ2 is piecewise linear on the intersection

fan

Σ1 ∧ Σ2 = {σ1 ∩ σ2 | σ1 ∈ Σ1, σ2 ∈ Σ2}.

Denote the subspace of linear functions on X by L(X ), and define the vector space of divisors

on X by the quotient

D(X ) =
PL(X )

L(X )
.
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For any divisor D ∈ D(X ) and fan Σ with |Σ| ⊆ X , let DΣ denote the natural restriction of D to

|Σ|. We say that Σ is D-admissible if DΣ ∈ D(Σ). The next result endows MW•(X ) with the

structure of a D(X )-module.

Proposition 6.9. For any d-fan set X ⊆ V , the vector space MW•(X ) is a D(X )-module under

a canonical action

D(X )×MW•(X )→MW•−1(X ).

More precisely, if D ∈ D(X ) and Ω ∈MWk(X ), we define D · Ω ∈MWk−1(X ) by

D · Ω = [Σ[k − 1], u,DΣ · ω].

where (Σ, u, ω) is a representative for Ω such that Σ is D-admissible.

Proof. For any D and Ω, we first note that it is possible to find a representative (Σ, u, ω) for Ω for

which Σ is D-admissible: let Σ1 be a fan with |Σ1| = |Ω|, let Σ2 be a fan with |Σ2| = X on which

D can be represented by a piecewise linear function, and let Σ be any simplicial refinement of the

intersection fan Σ1 ∧ Σ2.

To prove that the action is independent of the representative (Σ, u, ω), suppose that (Σ′, u′, ω′)

is another representative for which Σ′ is D-admissible; we must verify that

(6.10) (Σ[k − 1], u,DΣ · ω) is equivalent to (Σ′[k − 1], u′, DΣ′ · ω′).

Since any two fans admit a common simplicial refinement, it suffices to assume that Σ′ refines Σ.

We first note that the support of each of these marked Minkowski weights is contained in Σ[k−1]—

this is because, by virtue of Σ being D-admissible, D is linear across any cone τ ′ ∈ Σ′[k − 1] that

is not contained in some τ ∈ Σ(k − 1), so (DΣ′ · ω′)(τ ′) = 0. Now given any τ ′ ∈ Σ′(k − 1) and

τ ∈ Σ(k − 1) such that τ ′◦ ∩ τ◦ 6= ∅, we must have τ ′ ⊆ τ , in which case it follows from (6.3) and

the definition of the action of D(Σ) on MWk(Σ) that

(DΣ′ · ω′)(τ ′) =
vol(τ ′, u′)

vol(τ, u)
(DΣ · ω)(τ),

which verifies (6.10). The module axioms are straightforward to verify. �

Given a d-fan set X ⊆ V , a Minkowski d-weight Ω ∈ MWd(X ), and a collection of d divisors

D1, . . . , Dd ∈ D(X ), we note that D1 · · ·Dd · Ω is a Minkowski 0-weight, or in other words, a

function {0} → R. We define the mixed degree of D1, . . . , Dd with respect to (X ,Ω) by

degX ,Ω(D1 · · ·Dd) = (D1 · · ·Dd · Ω)(0) ∈ R.

The next result computes the general mixed degrees defined here to those defined for fixed fans

in Subsection 2.5.

Proposition 6.11. Let X be a d-fan set, Ω ∈ MWd(X ), and D1, . . . , Dd ∈ D(X ). There exists a

simplicial fan Σ supported on X that is Di-admissible for all i = 1, . . . , d. Moreover, given such a

fan Σ and the unique Minkowski weight ω ∈MWd(Σ) representing Ω, we have

degX ,Ω(D1 · · ·Dd) = degΣ,ω(D1 · · ·Dd).
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Proof. To find such a fan Σ, let Σ1, . . . ,Σd be fans supported on X such that Σi is Di-admissible for

each i, and let Σ be any simplicial common refinement of Σ1, . . . ,Σd. The equality of mixed degrees

then follows from the definition of the D(X )-module structure on MW•(X ) in Proposition 6.9 in

relation to the D(Σ)-module structure on MW•(Σ). �

6.4. Convex divisors. Let X be a d-fan set in V . We say that a divisor D ∈ D(X ) is convex if

DΣ is convex (in the sense of Subsection 2.7) for some D-admissible fan Σ supported on X . The

following observation shows that this notion does not depend on the choice of D-admissible fan Σ.

Proposition 6.12. Let X be a fan set in V and let D ∈ D(X ) be a convex divisor. Then DΣ is

convex for every D-admissible fan Σ.

Proof. This follows from the fact that two fans on the same support admit a common refinement,

along with the fact that, for any D-admissible fan Σ and refinement Σ′ of Σ, the fan Σ′ is also

D-admissible, and DΣ′ is convex on Σ′ if and only if DΣ is convex on Σ. �

We let K(X ) ⊆ D(X ) denote the set of convex divisors. This is a cone—in the sense that it is

closed under addition and positive scaling—but the reader should be warned that D(X ) is generally

an infinite-dimensional vector space in this setting. Because strict convexity is not well-behaved

with respect to refinement, it is not a natural notion to define in the general setting of fan sets.

Given a d-fan set X ⊆ V , we say that a Minkowski d-weight Ω ∈MWd(X ) is nonnegative if it

has a representative (Σ, ω) for which ω ∈MWd(Σ) is nonnegative. Being nonnegative is preserved

by equivalence, so knowing that one representative is nonnegative implies that all representatives

are nonnegative. In the general setting of fan sets, we have the following analogue of (2.7).

Proposition 6.13. Given a d-fan set X ⊆ V , a nonnegative Minkowski weight Ω ∈MWd(X ), and

convex divisors D1, . . . , Dd ∈ K(X ), we have

degX ,Ω(D1, . . . , Dd) ≥ 0.

Proof. Using Propositions 6.11 and 6.12, this is a consequence of Equation (2.7). �

We say that X = (X ,Ω) is a tropical d-fan variety if X is d-fan set and Ω ∈ MWd(X ) is a

nonnegative Minkowski weight such that |Ω| = X . Our ultimate aim is to study mixed degrees of

convex divisors on tropical fan varieties, and especially to explore when they satisfy Alexandrov–

Fenchel type inequalities. We accomplish this in the next section by introducing the notion of

Lorentzian fan varieties.

7. Lorentzian fan varieties

We now come to the definition of Lorentzian fan varieties, which builds on our earlier definition

of Lorentzian fans.

Definition 7.1. A Lorentzian d-fan variety is a tropical d-fan variety X that can be represented

by a Lorentzian fan.
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We have two primary goals in this section. Our first goal is to prove that X is Lorentzian if

and only if all of its representatives on quasiprojective fans are Lorentzian fans. In other words,

the Lorentzian property on quasiprojective tropical fans is independent of the fan structure. Our

second goal is to use the independence on fan structures to prove an analogue of Proposition 3.2 for

Lorentzian fan varieties, showing that mixed degrees of convex divisors on Lorentzian fan varieties

satisfy Alexandrov–Fenchel type inequalities, and that the sequence of mixed degrees for any pair

of convex divisors is log-concave and unimodal.

7.1. The Lorentzian property descends to fan varieties. The purpose of this subsection is

to prove the following result.

Theorem 7.2. If (Σ, u, ω) is any representative of a Lorentzian d-fan variety X for which Σ is

quasiprojective and |Σ| = X , then (Σ, u, ω) is Lorentzian.

We will leverage the characterization in Theorem 4.1 to prove Theorem 7.2. Before presenting the

proof, we discuss several preliminary results. The first preliminary result asserts that Property (A)

of Theorem 4.1 depends only on the support of a fan.

Lemma 7.3. If Σ1 and Σ2 are simplicial fans with |Σ1| = |Σ2|, then Σ1 is unpinched if and only

if Σ2 is unpinched.

Proof. The lemma is a consequence of the observation that a simplicial fan Σ is unpinched if and

only if, for every v ∈ |Σ| and any linear subspace L of dimension at most d−2, the set (U \L)∩ |Σ|
remains connected for any sufficiently small neighborhood U of v. This characterization of being

unpinched only depends on the support of the fan. �

Stellar subdivisions will play a central role in the proof of Theorem 7.2; we now recall the

definition. Suppose that Σ is a fan in V and choose a nonzero vector v ∈ |Σ|. For any σ ∈ Σ with

v ∈ σ and any face τ � σ with v /∈ τ , define the cone

τv =
{
au+ bv | u ∈ τ and a, b ∈ R≥0

}
.

The stellar subdivision of Σ at v, denoted Σv, is the fan in V defined by

Σv = {σ | σ ∈ Σ and v /∈ σ} ∪ {τv | τ � σ for some σ ∈ Σ with v ∈ σ \ τ}.

The following result of W lodarczyk [W lo97] is an important tool regarding stellar subdivisions.

We note that W lodarczyk states this result for rational fans in vector spaces over Q, but the

methods readily generalize to R (see the note after Theorem 8.1 in [W lo97]).

Lemma 7.4 ([W lo97], Theorem A). If Σ and Σ′ are simplicial fans with the same support, then

there exists a sequence of simplicial fans Σ0, . . . ,Σm such that

(1) Σ0 = Σ and Σm = Σ′, and

(2) Σi is a stellar subdivision of Σi+1 or Σi+1 is a stellar subdivision of Σi for every i.
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To prove Theorem 7.2, we will to show that the essence of Property (B)—everything except

possibly the quasiprojectivity—is preserved by stellar subdivisions. Toward that end, it is useful

to have a complete understanding of the two-dimensional stars of stellar subdivisions.

Lemma 7.5. Let Σ be a simplicial d-fan in V with d ≥ 2, let v ∈ π◦ for some π ∈ Σ(k), and let

τ ∈ Σv(d− 2). One of the following must be true:

(i) v /∈ |NτΣv|, implying that (Σv)
τ = Στ ;

(ii) v ∈ |NτΣv| \ τ , implying that (Σv)
τ = (Στ )v where v is the image of v in V τ ;

(iii) τ = τ ′v for some τ ′ ∈ Σ(d − 3) with |τ ′(1) ∩ π(1)| = k − 1, implying that (Σv)
τ = Στ ′∪π

where τ ′ ∪ π ∈ Σ(d− 2) is the cone with rays τ ′(1) ∪ π(1);

(iv) τ = τ ′v for some τ ′ ∈ Σ(d − 3) with |τ ′(1) ∩ π(1)| = k − 2, implying that (Σv)
τ has the

following structure:

• the rays of (Σv)
τ are of the form {ρ−, ρ+, ρ1, . . . , ρm} with Vρ− = Vρ+,

• the 2-cones are of the form σ±i where σ±i (1) = {ρi, ρ±} for i = 1, . . . ,m.

(v) τ = τ ′v for some τ ′ ∈ Σ(d− 3) with |τ ′(1)∩π(1)| = k− 3, implying that (Σv)
τ is the normal

fan of a triangle within a 2-dimensional subspace of V τ .

Proof. The classification into the five possible cases follows from the fact that the first two cases

account for all situations where v /∈ τ , whereas the latter three cases account for all situations

where v ∈ τ . In the latter three cases, we must have τ = τ ′v for some τ ′ ∈ Σ(d− 3) with

k − 3 ≤ |τ ′(1) ∩ π(1)| ≤ k − 1.

The lower bound is because dim(τ ′) = d− 3, along with the fact that τ ′ and π are both contained

within a common d-cone. The upper bound is because v, and thus π, is not contained within τ ′.

The descriptions of (Σv)
τ in (i), (ii), and (iii) are explicit, and their justification is straightforward.

For (iv), note that π contains two rays ρ̂± that are not contained in τ ′, and every maximal cone

containing τ must contain exactly one of these two rays. There is also a symmetry: for every

maximal cone containing one of ρ̂±, there is another maximal cone with rays obtained by swapping

out the special ray. If we denote the projection of these two rays by ρ± ∈ (Σv)
τ (1), then the

description of (Σv)
τ follows. For (v), note that π contains three rays ρ̂1, ρ̂2, ρ̂3 that are not in τ ′,

and every maximal cone containing τ must contain exactly two of these three rays. In other words,

there are only three maximal cones containing τ—the rays of any such cone are the rays of τ and

two of the three rays ρ̂1, ρ̂2, ρ̂3. Let ρ1, ρ2, ρ3 denote the projections of ρ̂1, ρ̂2, ρ̂3 in (Σv)
τ . Since v

is a positive linear combination of the ray generators of π, and because both v and all of the rays

of π except ρ̂1, ρ̂2, ρ̂3 are in the kernel of the projection map V → V τ , it follows that ρ1, ρ2, ρ3 lie

in a 2-plane of V τ , and it then follows that (Σv)
τ is the normal fan of a triangle.

In the rational setting, an algebraic geometer may recognize each of the separate cases in the

lemma as a different type of torus-invariant surface inside a blowup of a toric variety. �
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We conclude our preparation for the proof of Theorem 7.2 with three computational results

about eigenvalues of quadratic volume polynomials associated to the different types of star fans

that appeared in the previous lemma.

Lemma 7.6. Let X be a tropical 2-fan variety and let (Σ, ω) and (Σ′, ω′) be two representatives

of X for which Σ′ is a stellar subdivision of Σ. For any markings u and u′, the quadratic forms

VolΣ,u,ωu and VolΣ′,u′,ωu′ have the same number of positive eigenvalues.

Proof. Suppose Σ′ = Σv for some v ∈ |Σ|. If v ∈ ρ◦ for some ρ ∈ Σ(1), then Σ = Σ′, and the

associated volume polynomials are equal. Suppose, then, that v ∈ σ◦ with σ ∈ Σ(2). Denote the

rays of σ by ρ1 and ρ2 with markings u1 and u2, and let a1, a2 ∈ R>0 be such that a1u1 +a2u2 = v.

Let σ1, σ2 ∈ Σ′(2) denote the 2-cones in Σ′ that are contained in σ, and let η denote the ray

generated by v. Since the conclusion is independent of the markings u′, we choose u′ to agree with

u on all rays of Σ and we set u′η = v. A tedious computation using Proposition 4.11 shows that

VolΣ′,u′,ω′ = VolΣ,u,ω −
ω(σ)

a1a2
(zη − a1zρ1 − a2zρ2)2.

It follows that VolΣ′,u′,ω′ has the same number of positive eigenvalues as VolΣ,u,ω and one additional

negative eigenvalue. �

Lemma 7.7. Let Σ be simplicial 2-fan with the structure described in Lemma 7.5(iv). If ω ∈
MW2(Σ, u), then VolΣ,u,ω has exactly one positive and one negative eigenvalue.

Proof. Using notation from Lemma 7.5(iv) for the rays and cones of Σ and choosing a marking such

that uρ+ + uρ− = 0, the balancing condition implies that ω(σ+
i ) = ω(σ−i ); denote this real number

by wi. Since the weights on σ±i are the same, it also follows that aρ+ = −aρ− ; set a = aρ− . Using

Proposition 4.11, we compute

VolΣ,u,ω = az2
ρ+ − az2

ρ− + 2

m∑
i=1

wizρizρ+ + 2

m∑
i=1

wizρizρ−

=
1

4

(
zρ+ + zρ− + azρ+ − azρ− + 2

m∑
i=1

wizρi

)2
− 1

4

(
zρ+ + zρ− − azρ+ + azρ− − 2

m∑
i=1

wizρi

)2
,

implying that VolΣ,u,ω has exactly one positive and one negative eigenvalue. �

Lemma 7.8. Let Σ be the normal fan of a triangle. If ω ∈MW2(Σ, u) is positive, then Hess(VolΣ,u,ω)

has one positive eigenvalue and no negative eigenvalues.

Proof. Denote the rays of Σ by ρ1, ρ2, ρ3 and denote the 2-cone with rays ρi, ρj by σij . Since the

conclusion is independent of our choice of u, we may choose a marking such that uρ1 +uρ2 +uρ3 = 0.

It then follows from the balancing condition that there is a positive number w such that ω(σij) =

−aρk = w for all i, j, k. Proposition 4.11 then implies that

VolΣ,u,ω = w(zρ1 + zρ2 + zρ3)2,

and the result follows. �
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We now prove that the Lorentzian property descends to tropical fan varieties.

Proof of Theorem 7.2. Assume that X is a Lorentzian d-fan variety and let (Σ, u, ω) be a repre-

sentative of X for which Σ is quasiprojective with |Σ| = X . We aim to show that (Σ, u, ω) is

Lorentzian, and by Theorem 4.1, it suffices to prove that

(1) Σ is unpinched, and

(2) VolΣτ ,ωτ ,uτ has exactly one positive eigenvalue for every τ ∈ Σ(d− 2).

By definition of Lorentzian fan varieties, we know that X admits a Lorentzian representative

(Σ′, u′, ω′) with |Σ′| = X = |Σ|. By Theorem 4.1, we know that Σ′ is unpinched, and it then follows

from Lemma 7.3 that Σ is unpinched, proving (1).

To verify (2), note that Lemma 7.4 allows us to find a sequence of stellar subdivisions interpolating

between Σ and Σ′, and since we know that (2) holds for (Σ′, u′, ω′), this reduces the proof of (2) to

studying two special cases:

(2a) Σ is a stellar subdivision of Σ′, or

(2b) Σ′ is a stellar subdivision of Σ.

Assume that we are in the setting of (2a) and let τ ∈ Σ(d − 2). By Lemma 7.5, there are five

possibilities for Στ . In each of the cases (i) and (iii), we see that Στ is equal to (Σ′)π for an

appropriate cone π ∈ Σ′(d − 2), so (2) follows from our assumptions on (Σ′, u′, ω′). In case (ii),

Στ is a stellar subdivision of a two-dimensional star fan of Σ′, and the conclusion follows from

Lemma 7.6 and our assumption on (Σ′, u′, ω′). In cases (iv) and (v), the conclusion follows from

Lemma 7.7 and Lemma 7.8, respectively.

Now assume that we are in the setting of (2b). Let v ∈ |Σ| be the point at which we are

performing the stellar subdivision, and let τ ∈ Σ(d − 2). There are three cases to consider: (i)

v /∈ |NτΣ|, (ii) v ∈ |NτΣ| \ τ , and (iii) v ∈ τ—these three cases essentially correspond to the first

three cases in Lemma 7.5, the other two cases being irrelevant in this direction of the argument.

In cases (i) and (iii), the star Στ is equal to (Σ′)π for an appropriate cone π ∈ Σ′(d − 2), and the

conclusion follows from our assumption on (Σ′, u′, ω′). In case (ii), there is a cone π ∈ Σ′(d − 2)

for which (Σ′)π is a stellar subdivision of Στ , so the conclusion follows from Lemma 7.6 and our

assumption on (Σ′, u′, ω′). �

7.2. Alexandrov–Fenchel inequalities for Lorentzian fan varieties. In this subsection, we

prove the following analogue of Proposition 3.2 for Lorentzian fan varieties.

Theorem 7.9. Let X be a Lorentzian d-fan variety. For any D1, . . . , Dd ∈ K(X ), we have

degX (D1D2D3 · · ·Dd)
2 ≥ degX (D2

1D3 · · ·Dd) · degX (D2
2D3 · · ·Dd).

Furthermore, for D1, D2 ∈ K(X ), the sequence(
degX (Dk

1D
d−k
2 )

)d
k=0

is log-concave and unimodal.
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In order to prove Theorem 7.9, we would like to choose a particular representative (Σ, u, ω) and

apply Proposition 3.2—the only subtle point that could possibly get in the way is whether we can

choose such a representative that is quasiprojective. We now present two lemmas that ensure we

can always choose a quasiprojective representative.

Lemma 7.10. If Σ is a simplicial quasiprojective fan, then any stellar subdivision of Σ is also

quasiprojective.

Proof. In the rational setting, this is a well-known result of toric geometry [CLS11, Proposi-

tion 11.1.6], and the proof generalizes to the general setting. To summarize the main point: given

v ∈ |Σ| \ |Σ[1]|, let Dv be the divisor on Σv represented by the piecewise linear function that takes

value 1 at v and value 0 at uρ for all ρ ∈ Σ(1). One checks that D−εDv ∈ K(Σv) for any D ∈ K(Σ)

and sufficiently small ε > 0 [ADH20, Proposition 5.4]. �

Lemma 7.11. If Σ and Σ′ are simplicial fans in V with the same support, then they admit a

common refinement that can be obtained from Σ by a sequence of stellar subdivisions.

Proof. Note that each of the finitely many cones of Σ′ is an intersection of finitely-many half-spaces,

and a fan Σ̃ with the same support as Σ′ is a refinement of Σ′ if each σ̃ ∈ Σ̃ lies entirely on one

side of each of the hyperplanes associated to the finitely-many half-spaces defining all the cones

of Σ′. Thus, it suffices to prove that, for a given hyperplane H, we can find a sequence of stellar

subdivisions of Σ such that every cone in the resulting fan is contained entirely on one side of

H. To do this, we simply perform a sequence of stellar subdivisions along every ray that can be

obtained as H ∩ τ for some τ ∈ Σ(2); it is readily verified that the resulting fan satisfies the desired

property. �

We are now prepared to prove Theorem 7.9.

Proof of Theorem 7.9. By Proposition 6.11, we may choose a simplicial fan Σ1 supported on X that

is Di-admissible for each i. Furthermore, knowing that X is Lorentzian tells us that there is at least

one simplicial, quasiprojective fan Σ2 supported on X . By Lemma 7.11, we may find a refinement

Σ of Σ1 that is obtained from Σ2 by a sequence of stellar subdivisions, and by Lemma 7.10, we can

conclude that Σ is simplicial and quasiprojective, and furthermore, since Σ refines Σ1, it follows

that Σ is Di-admissible for each i. By Proposition 6.12, each Di is convex on Σ. Let ω ∈MWd(Σ)

be the unique Minkowski weight such that (Σ, ω) represents X . By Theorem 7.2, we conclude that

(Σ, ω) is Lorentzian, and the result is now a direct consequence of Propositions 6.11 and 3.2. �

7.3. Alexandrov–Fenchel inequalities for polytopes. We have seemingly come a long way

from the original inspiration for the ideas in this paper—the Alexandrov–Fenchel inqualities for

mixed volumes of polytopes—and we now bring the discussion full-circle by briefly outlining how

the Alexandrov–Fenchel inequalites sit within this story.

Let V be a d-dimensional vector space with fixed inner product. If Σ1 and Σ2 are complete sim-

plicial fans in V , then it is essentially immediate from the definitions that the standard Minkowski
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d-weights on Σ1 and Σ2 introduced in Example 2.10 are equivalent in the sense of Section 6. In

other words, the vector space V , viewed as a fan set, has a distinguished Minkowski d-weight Ω

associated to the fixed inner product. It is not hard to see that (V,Ω) is a Lorentzian fan variety,

simply by picking one’s favorite representative and showing that it is Lorentzian using Theorem 4.1.

For example, the “orthant” fan with respect to any orthonormal basis of V has symmetry that is

particularly amenable to this argument. Given polytopes P1, . . . , Pn ∈ V , it then follows from

Proposition 6.11 and Example 2.10 that

vold(P1 · · ·Pd) =
1

d!
degV,Ω(DP1 · · ·DPd).

Thus, we see that the Alexandrov–Fenchel inqualities for mixed volumes of polytopes

vold(P1P2P3 · · ·Pd)2 ≥ vold(P
2
1P3 · · ·Pd)vold(P

2
2P3 · · ·Pd)

are captured by Theorem 7.9 simply by considering the special case of X = (V,Ω). Two interesting

aspects of this proof are that (i) it does not require a proof of the two-dimensional Brunn–Minkowski

inequalities, and (ii) it does not require one to approximate sets of polytopes with sets of simple

strongly isomorphic polytopes.
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