LORENTZIAN FANS

DUSTIN ROSS

ABSTRACT. We introduce the notion of Lorentzian fans, which form a special class of tropical fans
that are particularly well-suited for proving Alexandrov—Fenchel type inequalities. To demonstrate
the utility of Lorentzian fans, we prove a practical characterization of them in terms of their
two-dimensional star fans. We also show that Lorentzian fans are closed under many common
tropical fan operations, and we discuss how the Lorentzian property descends to the underlying
tropical variety, allowing us to deduce Alexandrov—Fenchel type inequalities in the general setting

of tropical intersection theory on tropical fan varieties.

1. INTRODUCTION

This paper investigates an analogue of the Alexandrov—Fenchel (AF) inequalities in the setting
of tropical fans. More precisely, given a tropical d-fan 3 = (3, w), comprised of a simplicial d-fan
Y and a positive Minkowski d-weight w, there is an open cone K(X) C D(X) of strictly convex
divisors, and for Do, D¢, D3, ..., Dg € K(X), we aim to understand when their mixed degrees

satisfy the following inequalities
(AF) degs (Do DDy - -- Dg)? > degs (D3 D3 - - - Dy) - degs (D D3 - - Dy).

In the setting of complete fans, these inequalities are a special case of the classical Alexandrov—
Fenchel inequalites for mixed volumes of polytopes, but recent developments have suggested the
importance of generalizing these inequalities beyond the complete setting. For example, the cel-
ebrated resolution of the Heron-Rota—Welsh conjecture by Adiprasito, Huh, and Katz [AHKIS]
proceeds by way of proving AF inequalites in the setting where ¥ is the (incomplete, in general)

Bergman fan of a matroid.

The ingenious approach to AF inequalities developed by Adiprasito, Huh, and Katz relied on
building a notion of combinatorial Hodge theory in the setting of Bergman fans, and the structure
they developed has since been further refined and generalized in a number of ways [BHM™22,
BHM ™20, [ADH20, [AP20, [AP21]. While the Hodge-theoretic approach has been powerful and
illuminating, it is also a much bigger hammer than is necessary if one is simply interested in AF
inequalities, which follow from just one small part of the so-called Kéahler package developed in
[AHK18]. With an aim of developing more refined tools for studying AF inequalities, Brandén
and Huh [BH20] and Bréandén and Leake [BL21] have recently developed the notion of Lorentzian
polynomials, which hone in on the specific part of the Kéhler package that is most relevant to
AF inequalities. This paper builds on these recent developments of Lorentzian polynomials by
introducing a notion of Lorentzian fans, which we propose as a refined tool that gets at the heart

of AF inequalities in the setting of tropical fans. As a tool for demonstrating AF inequalities in the
1
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setting of tropical fans, our thesis is that the theory of Lorentzian fans introduced here is simple to
employ and applies in settings that were previously inaccessible using combinatorial Hodge theory

techniques.

To motivate the definition of Lorentzian fans, we make two important observations. First, we
note that it has long been understood—indeed, it is already apparent in Aleksandrov’s original
proof [Ale37]—that a particularly useful way to prove AF inequalities is to show that, for all
Ds,...,D; € K(X), the quadratic form

®:D(Z) x D(T) = R
(Dl, Dg) — degE(DngDg s Dd)

has exactly one positive eigenvalue. To see why this implies the AF inequalities, consider the

following 2 x 2 principal minor of ® associated to a fixed pair Do, D¢, € K(X):

_ degz(D%D:g...Dd) degs; (D DoDs -+ - Dy)
degE(D@DQD?) NN Dd) degE(D%Dg C Dd)

If ® has exactly one positive eigenvalue, then Cauchy’s interlacing theorem implies that M has at
most one positive eigenvalue. On the other hand, elementary computations with the characteristic
polynomial imply that M has at least one positive eigenvalue, simply because it is a symmetric
2 x 2 matrix with positive entries. Thus, M has exactly one positive eigenvalue, implying that its

determinant is nonpositive, and the AF inequalites follow.

The second observation that motivates us is that most proofs of the AF inequalities in the classical
polytope setting—again, Aleksandrov’s original proof is an example—use an induction argument,
where the induction step reduces dimension by computing mixed volumes of polytopes in terms of
the mixed volumes of their facets. Since faces of polytopes translate to stars of normal fans, this
suggests that any study of AF inequalities in a more general tropical fan setting should be stable
under taking star fans. Importantly, we note that if 3 = (X, w) is a tropical fan and 7 € ¥ is a
cone, we can aways endow the star fan X7 with a compatible tropical structure w” (only determined
up to positive scaling).

From the two observations above, we now arrive at the definition of a Lorentzian fan (Defi-
nition 3.1): it is a tropical fan ¥ with K(X) # () such that the quadratic forms ® associated to
all of the stars X7 have exactly one positive eigenvalue. The discussion above proves that mixed
degrees of strictly convex divisors on Lorentzian fans satisfy AF inequalities (Proposition , but
what is not clear is whether the Lorentzian property is any easier to study than the AF inequalities
themselves. Our main result is a practical characterization of Lorentzian fans, reducing the defining

condition to the case of 2-dimensional star fans.

Theorem (Theorem [4.1)). A tropical fan 3 with K (X) # 0 is Lorentzian if and only if

(A) X7\ {0} is connected for every cone 7 of codimension at least 2, and

(B) every 2-dimensional tropical star fan X7 is Lorentzian.
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We note that (A) is a mild connectedness assumption on ¥, disallowing, for example, fans
that are locally a pair of d-dimensional cones meeting along a cone of dimension less than d — 1,
while (B) is completely concrete to check in practice. In particular, since (B) only concerns 2-
dimensional star fans, there is only one quadratic form ® associated to 37, independent of choosing
any strictly convex divisors. Thus, verifying (B) amounts simply to computing the eigenvalues
of a finite set of explicitly computable matrices. As a proof of concept, we note that (A) and
(B) are relatively straightforward to verify for Bergman fans of matroids (Theorem see also
IBES20, BL21, NOR23]).

In addition to the above characterization of Lorentzian fans, this paper develops a number of
additional properties that make Lorentzian fans a particularly convenient class of tropical fans to
work with; for example Lorentzian fans are closed under the operations of (i) passing to star fans,
(ii) taking products, (iii) acting by strictly convex divisors, (iv) taking tropical modifications along
strictly convex divisors, and (v) changing the fan structure on . We also show that it is not hard
to derive examples of Lorentzian fans that do not satisfy the suite of properties included in the
Kéhler package (Example ; these are fans for which the theory of Lorentzian fans is applicable
but the theory of combinatorial Hodge theory is not. Additionally, we note that Lorentzian fans
are a strict subset of tropical fans: there exist examples of tropical fans that fail to be Lorentzian
(Example from [BH17]).

It is worth elaborating on point (v) in the previous paragraph and making a few observations
regarding our conventions. A key principle of tropical geometry is that, given a tropical structure
on a fan, it induces a canonical tropical structure on any fan with the same support, allowing
one to define a tropical fan variety as an equivalence class of tropical fans [AR10]. While tropical
fans are often assumed to be rational, we do not make that assumption in this paper, and we
instead work with simplicial, possibly irrational fans. However, as we discuss in Section [6] the key
observations regarding rational tropical varieties can be extended in a natural way to the simplicial,
irrational setting, and this allows one to define tropical fan varieties in the irrational setting, as
well. In this general setting, we define a Lorentzian fan variety to be a tropical fan variety
for which at least one—and thus, by (v) above, all—of its representatives are Lorentzian fans.
We prove (Theorem [7.9)) that mixed degrees of divisors on Lorentzian fan varieties satisfy the AF
inequalities, which demonstrates that Lorentzian fan varieties have a natural place within tropical
intersection theory. In particular, these observations inspire further developments of the Lorentzian

property for more general tropical varieties beyond those supported on fan sets.

Contents. In Section [2| we establish the background required to study mixed degrees of divisors
on tropical fans, including Chow rings, Minkowski weights, and piecewise linear functions. There
is some novelty in how we deal with the markings on the fans, given that our fans are not assumed
to be rational. In Section (3| we give a precise definition of Lorentzian fans and relate them to the
notion of Lorentzian polynomials on cones. Section [4] is devoted to the statement and the proof
of the two-dimensional characterization of Lorentzian fans. We then collect a number of results

in Section [5| that describe common fan operations under which Lorentzian fans are closed. In
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Section @ we develop tropical fan varieties, following Allerman and Rau [ARI0], although our fans
are not assumed to be rational, and we conclude the paper in Section [7| with the introduction and

development of Lorentzian fan varieties.

Related work. While in the final stages of preparing this paper, the author became aware that
Petter Brandén and Jonathan Leake had independently been developing a project on hereditary
Lorentzian polynomials on cones, and many of the results proved here are a consequence of their
more general theory. We collectively agreed to post the two papers simultaneously, and it is this
author’s hope that this paper, written through the geometric lens of tropical fans and tropical
intersection theory, will serve as a useful companion to the general polynomial theory developed in

the work of Brandén and Leake.

Gratitude. The author warmly acknowledges Anastasia Nathanson, Lauren Nowak, and Patrick
O’Melveny for many insights that they shared while working on related collaborations [NR21,
NOR23], and Federico Ardila, Emily Clader, Chris Eur, and Matt Larson for enlightening con-
versations that influenced this project. The author is grateful to Petter Brandén and Jonathan
Leake for explaining their related project to him, and for the kindness they demonstrated while
navigating the overlap between the two projects. This work has been partially supported by two
grants from the National Science Foundation: DMS-2001439 and DMS-1401873.

2. ALGEBRAIC STRUCTURES ON SIMPLICIAL FANS

In this section, we present an introduction to simplicial fans and natural algebraic structures
associated to them, with an eye toward establishing notational conventions and the particular
properties that will be relevant to our development of Lorentzian fans. Our primary aim is to
introduce mixed degrees of divisors on tropical fans, interpreting them both algebraically using
Chow rings and more geometrically using the action of piecewise linear functions on Minkowski
weights. While we are unaware of a precise reference for these topics in the setting of simplicial,
possibly irrational fans, the well-known properties from the rational setting carry through in a
straightforward manner. Where appropriate, we provide references for justifications in the rational
setting, but our goal in this introductory section is to present the material in such a way that all
assertions can be viewed as practical exercises for a learner with some prior familiarity with algebra
and polyhedral geometry. At the end of this section, we present a few important classes of examples

that connect the ideas of this section to well-studied notions in convex and toric geometry.

2.1. Fan conventions. Let V be an n-dimensional vector space over R with dual space V. For

any ¢ € V'V, the associated hyperplane and halfspace in V are defined by
Hy={ueV|p(u)=0} and H, ={ueV |p(u) <0},

respectively. A polyhedral cone in V is a finite intersection of halfspaces.

Let ¢ C V be a polyhedral cone. The span of o, denoted V,, is the smallest subspace of V'

containing 0. The dimension of o, denoted dim(o), is the vector space dimension of V,. The
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relative interior of o, denoted ¢°, is the topological interior of o as a subset of V,. A face of o

is any subset of the form

ocNH, where O’QH;.

We use =< to denote the face containment relation, and we denote the k-dimensional faces of o by
o(k). We say that o is strongly convex if it does not contain a nonzero subspace of V', and we
say that o is simplicial if it is strongly convex and dim(c) = |0(1)|. A fan in V is a finite set X

of polyhedral cones in V such that

(1) if o € ¥ and 7 < o, then 7 € ¥, and
(2) if 01,09 € X, then 01 Noy <X 01 and 01 Noy = 09.

Let ¥ be a fan in V. The collection of k-dimensional cones of ¥ is denoted 3(k), and the k-
skeleton of ¥, denoted X[k], is the fan comprised of all cones in ¥ that have dimension at most
k. We say that ¥ is simplicial if all of its cones are simplicial. We say that X is pure if every
inclusion-maximal cone of ¥ has the same dimension, and we say that ¥ is a d-fan if it is pure
of dimension d. The support of X, denoted |X|, is the union of all o € 3, and we say that ¥ is
complete if |¥| = V. We say that a fan ¥; is a refinement of ¥ if they have the same support
and every cone of ¥ is a subset of some cone of ¥3. A marking of ¥ is a choice of vector u, € p°

for every p € 3(1); we denote a choice of marking by u = (u,),ex(1)-

2.2. Chow rings of simplicial fans. Let X be a simplicial d-fan in V' with marking v. The Chow
ring of (3, u) is defined by
R e X(1
A.(E,U) — [xp | p ( )}
Iy, + Jsu

where
I = (@p, - xp, | {p1,-.-,pr} € o for any o € )

and

Isu =< Z p(up)zp

pEX(1)

cpEVV>.

As both Iy, and Jy,, are homogeneous, the Chow ring A*(X, u) is a graded ring, and we denote by
A¥(3, u) the subgroup of homogeneous elements of degree k. The algebra generators of A®(3,u)
are denoted X, , = [24,,] € A'(Z, u), and we extend this notation to any cone o € $(k) by defining

the associated cone monomial
Xuo = H X, € AF(Z, ).
peEo(l)
It follows from the simplicial hypothesis that A*(X,u) is spanned by cone monomials [ATTKIS,
Proposition 5.5], and it then follows from the d-fan hypothesis that A¥(%,u) = 0 for all k& > d.

We say that two Chow classes X € A*(X,u) and X' € A®*(X,u) are equivalent if there exists
A € RZ(Y such that

W =X and X' =X"1-X,
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where the action on the right is defined on generators by A~* cXup = A;lXu,,p, A Chow class
on Y is an equivalence class of pairs (X,u) where X € A®*(X,u), and the Chow ring of X,
denoted A*(Y), is the ring of Chow classes on . For any choice of marking u, there is a canonical
isomorphism A®(X) = A*(X, u).

2.3. Minkowski weights. Let ¥ be a simplicial d-fan in V' with marking . A Minkowski k-
weight on (X, u) is a function w : 3(k) — R such that, for every 7 € 3(k — 1), we have the

following balancing condition

(21) Z W(O')’LLG\T € Vr,

ocex(k)
T<0o

where o\ 7 € X(1) represents the unique ray in o(1)\7(1). We denote the vector space of Minkowski
k-weights on (X, u) by MWy (X, u) and the associated graded vector space by

d
MW, (S,u) = ) MWi(Z, ).
k=0

The balancing condition on a Minkowski k-weight w € MW} (X, u) is sufficient and necessary for
there to exist a linear map fx 4. : A¥(X,u) — R such that fs . (Xue) = w(o) for every o € X(k)
[AHK18|, Proposition 5.6], and this gives an isomorphism of graded vector spaces

MW (2, u) — A%(S,u)Y

w— fE,u,w-

We say that two Minkowski k-weights w € MWy(X,u) and ' € MW (X, u') are equivalent if
there exists \ € Rzgl) such that

W' =Xu and W =X"1-w
where, for every T € ¥(k), we define

AW w)@) = ] A wn).

pET(1)

A Minkowski k-weight on ¥ is an equivalence class of pairs (w,u) where w € MW, (3, u), and
the vector space of Minkowski weights on X, denoted MW,(X), comprises all Minkowski
weights on X. For any u, there is a canonical isomorphism MW, (%) & MW, (3, u), and the vector

space isomorphism MW, (3, u) = A®*(X,u) for any marking u induces a canonical isomorphism

MW, () = A%(D)Y

w — fE,w'
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2.4. Tropical divisors. Let X be a simplicial d-fan in V. A piecewise linear function on X
is a continuous function ¢ : |3| — R such that, for every o € ¥, there is a linear map ¢, € V'V
such that |, = ¢,. Let PL(X) denote the vector space of piecewise linear functions on ¥, and
let L(X) € PL(X) denote the subspace of linear functions—that is, restrictions to |X| of linear
functions ¢ € VV. The vector space of divisors on ¥ is the quotient
() = PL(Y)
L(¥)

Upon choosing a marking u of 3, a piecewise linear function on 3 is determined uniquely by its
values at the marks. Let D, , € D(X) denote the class of the piecewise linear function that takes
value 1 at u, and value 0 at u, for n # p. Then {D, , | p € (1)} spans D(X), and there is a vector

space isomorphism
D(T) = AY(Z,u)
Dy pr— Xy p.
These isomorphisms are compatible with scaling the markings, so they descend to a canonical

isomorphism D(X) = Al(X); given a divisor D € D(X), let Xp € A(X) denote the corresponding

Chow class.

The vector space A*(X,u)" can naturally be viewed as an A'(¥,u)-module via the action
AN, u) x A%, u)Y — A2, u)Y
(X, f) = f(X-—)
where f(X - —) simply precomposes the map f with multiplication by X. Viewed instead as an
action of D(X) on MW, (X, u), one carefully traces back through the vector space isomorphisms to
see that the action of A'(3,u) on A*(X,u)Y induces the action
D() x MWa(S,u) — MWe_1(Z, )
(D,w) — D - w,

where, for any w € MWy (X, u) and 7 € ¥(k — 1), we define

(D-w)1) = 3 wolw@)uns) —or( D wl@hun,),

oceX(k) oex(k)
o7 o7

where ¢ is any piecewise linear function representing D [ARI0]. Intuitively, one can think of

(D - w)(7) as a measure of the failure of ¢ to be linear at .

The actions of AL(Z,u) on A*(Z,u)Y and D(Z) on MW,(X,u) are compatible with equivalence

of Chow classes and Minkowski weights, so they descend to give canonical actions
AYD) x A*(D)Y = A*H(X)Y  and  D(X) x MW (Z) — MW,_1(X)

that are compatible with the isomorphisms A(X) 2 D(X) and A*(X)Y & MW, ().
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2.5. Mixed degrees of divisors. Let X be a simplicial d-fan and let w € MWy(X) be a Minkowski
d-weight. Given divisors Dq,..., Dy € D(X), notice that Dy --- Dy - w is a Minkowski 0-weight,
which is nothing more than a function from the origin to R. We define the mixed degree of
Dq,...,D4 € D(X) with respect to (3,w) by

(22) degz,w(Dl s Dd) = (D1 -+ Dy - w)(O) € R.

Equivalently, using the compatibility of the actions in the previous subsection, one may define

mixed degrees of divisors Chow-theoretically by
(2.3) degs; (D1 -+ Da) = fow(Xp, -+ Xp,) €R.

When working with a specific representative w € MWy(X,u) associated to a marking u, we will

often include v in the notation and write degy, ,, -

While studying mixed degrees of divisors, it is useful to keep in mind both of the perspectives
and : the perspective in terms of Minkowski weights is more geometric, related to how
piecewise linear functions bend across the faces of 3, while the perspective in terms of the Chow
ring is more algebraic, computable by using the relations in A*(X) to manipulate polynomials in the
generators. We also note that the Chow ring perspective is motivated by intersection theory on toric
varieties, so this perspective benefits from a wealth of intuition from algebraic geometry, intuition
that has certainly influenced these developments but that is not a prerequisite to understanding
them.

2.6. Star fans. Star fans are a useful tool for computing mixed degrees of divisors recursively in
dimension, as we now describe. Suppose that ¥ is a simplicial d-fan in V. Given a cone 7 € X,
define the neighborhood of 7 in ¥ by

N;¥ ={n|m =<0 for some o € ¥ with 7 < o}.

The star of ¥ at 7 € ¥ is the fan in V7 = V/V, comprised of all quotients of cones in the
neighborhood of 7:

ST = {7 | m € N,3},

where T C V7 denotes the quotient of the cone # C V by V;. The assumption that X is a simplicial
d-fan implies that X7 is a simplicial d"-fan, where d” = d — dim(7).

Given w € MWy(X, u), we obtain a Minkowski weight w™ € MWy- (X7, u") as follows:

r_ -
n—u

e every maximal cone o0 € X7(d") is the quotient of a unique maximal cone 6 € N X(d);

define w7 (o) = w(5).

e every ray n € X7(1) is the quotient of a unique ray 7 € N;X(1); define w

9

(IS

Importantly, we note that equivalent Minkowski weights on ¥ do not generally induce equivalent
Minkowski weights on X7, so the choice of marking is essential in our discussion of star fans. In

particular, if us = Auj are two markings and w1 € MWy (X, uq) and we € MW4(3, ug) are equivalent
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Minkowski weights in M W4(X), then one readily checks that

(2.4) wi=( [T »Het-wh.
peT(1)

If the product in the right-hand side of is not one, then wj is not equivalent to wj. Thus,
a Minkowski weight w € MWy(X) does not determine a unique Minkowski weight in MWy (X7);
rather, it determines a family of Minkowski weights that are related by positive scaling. Since
positive scalings of Minkowski weights do not affect the properties we are most interested in—such
as Alexandrov—Fenchel type inequalities—this will not be a serious issue, but it is certainly worth
noting.

For every cone o € N;X, let o \ 7 denote the cone with rays o(1) \ 7(1). Define the boundary
of 7 to be the subfan

B:¥={o\7|0€ N3},

and note that the quotient map V' — V7 induces a cone-wise bijection of fans B, — 7. Given
any Minkowski k-weight v € MWy (N,X,u) with & < d7, we obtain a Minkowski k-weight 7 €
MW (X7,u") defined by
y(7) = (),

where 7 € B;Y and 7 is its image in 7. This induces, for any k < d”, a linear map MWy (N3, u) —
MW (X7,u") that sends v to 7. Given D € D(X), we can always choose a piecewise linear rep-
resentative ¢ such that ¢, = 0, and any such ¢ descends to a piecewise linear function @ on X7;
let D denote the divisor on X7 represented by @. This gives us a linear map D(X) — D(X7)
that sends D to D. It follows from the definition of the D(X)-action that the linear maps
MWi(N:X,u) - MW (X7,u") and D(X) — D(X7) are compatible with the associated module

structures in the following sense:

(2.5) D-y=D-7ye€ MW, 1(Z7,u").

Label the rays of 7 by 7(1) = {p1, ..., pr}. Given any Minkowski d-weight w € MWy(3, u), it is
straightforward to see that D, , -w is supported on N,X(d — 1) for any ray p € 3(1), and iterating
this process, it follows that D, ,, - - Dy, - w is supported on N.X(d”). Furthermore, by analyzing
the D(X)-action more closely, we see that, for any 7 € B;X(d,), we have

(Du,py -+ Duyp,, - w)(m) = w' ().

It then follows from ([2.5) that, for any Dy,..., Dy € D(X), we have

D1 v Dg . Du’p1 ce Du,pk W= ﬁl .. ‘E@ -w' € MWd,k,g(ET,UT).
In particular, if £ = d — k, we have argued that
(2.6) degz’u’w(Dl s Dd—k . Du”01 s Du,pk) = degETyuvaT (El s Ed—k)'

The upshot of (2.6) is that, upon choosing a marking u, it allows us to reduce mixed degree

computations from X to X7, providing a means for inductive arguments on dimension.
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2.7. Convex divisors. Let ¥ be a simplicial d-fan. We say that a divisor D € D(X) is convex
if, for every 7 € 3, there exists a representative ¢ that vanishes on 7 and is nonnegative on
its neighborhood N,¥. We say that D is strictly convex if, for every 7 € 3, there exists a
representative o that vanishes on 7 and is strictly positive on N3\ 7. To justify the terminology,
we note that, when X is complete, convex divisors are those that admit a representative ¢ that is

convex in the usual sense:
olu+v) <p(u)+pw) foral wuvelX|=V.

Convex divisors form a closed convex cone K (X) C D(X) whose interior is the set of strictly convex
divisors K (X) = K(X)° [AHKIS, Proposition 4.3]. Borrowing terminology from toric geometry, we
say that ¥ is quasiprojective if K(X) # ().

We say that a Minkowski weight is nonnegative/positive if all of its values are nonnega-

tive/positive. It follows from the definition of the D(X)-action that

e D -w is nonegative whenever w is nonnegative and D € K(X), and

e D - w is positive whenever w is positive and D € K(X).

Intuitively, this just means that convex divisors are represented by piecewise linear functions whose
graphs only bend upward, while strictly convex functions are additionally required to be bend

upward along every cone of Y. It follows from the above bullet points that

(2.7) degy ,(D1---Dg) >0 if w e MWy(X) is nonnegative and D1,..., Dy € K(X)
and
(2.8) degy, ,(D1--+Dg) >0 if w € MWy(X) is positive and Dy, ..., Dy € K(%).

Positive Minkowski weights in MWy(X) are particularly relevant to our story. We define a
tropical d-fan ¥ to be a pair ¥ = (X, w) where ¥ is a simplicial d-fan and w € MWy(X) is a
positive Minkowski d-weight. Given a marking u of ¥, we write 3(u) = (X, u,w) for the canonical
representative on the marked fan (X,u). Given a cone 7 € X, we denote the marked tropical
structure induced by ¥(u) on the star fan X7 by ¥(u)” = (X7, u”,w").

2.8. Grounding examples in convex and toric geometry. We close this section by discussing
several important classes of examples that motivate and inspire the constructions above. In par-
ticular, we interpret the main ideas of this section in terms of both convex and toric geometry,
primarily within the setting of complete fans. Careful understanding of these special classes of ex-
amples is not essential to the main results of this paper, but we hope that the connections made in

these examples will help ground a reader with background knowledge in convex or toric geometry.

Example 2.9 (Complete fans). Let ¥ be a complete simplicial fan in V. Choosing an inner
product on V', there is a standard way to endow X with the structure of a tropical fan, which we

now describe. For each ray p € (1), let u, be the unit vector that lies on p, and for each o € %,
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let P, be the parallelepiped determined by the ray generators of o. Define

1

o) = LB

where voly is the volume function associated to the inner product. To see that (X, u,w) is tropical,
let 7 € ¥(d — 1). Completeness implies that there are exactly two cones 01,09 € 3(d) with 7 < 7.

By the base-times-height formula for the volume of P,, we see that

V01d<Pgi) = VOld,1 (PT)htT(ugi\T),

where ht; (uai\T) is the distance between u,,\, and V;. Since u,,\; and u,,\; lie in opposite half-
spaces associated to the hyperplane V., it then follows that
1 u0'1\7' uO'Q\T )
w(o1)Ug\ s +w(02)Ug )\ = + eV,
( 1) 1\ ( 2) 2\ VOld—l(PT) <ht7-(uo.1\7_) ht‘r(ugz\»r) T

and we conclude that (X, u,w) is tropical.

Example 2.10 (Normal fans and (mixed) volumes of polytopes). Let P C V be a polytope and

choose an inner product on V. Consider the support function of P, defined by

hp:V—)R

— .
u Iglgg{(u, v)

The function hp is convex and piecewise-linear on V', and the chambers of linearity form a complete
fan ¥ p, called the normal fan of P. Let ¥ be any simplicial refinement of ¥p, let Dp € K(X) be
the convex divisor represented by hp, and let w be the positive Minkowski d-weight introduced in
Example We claim that

(2.11) deg27u7w(D§lD) = dlvoly(P),

and this can be justified by induction. For the base case d = 0, both sides are simply equal to 1. To
prove the induction step, we can assume that P contains the origin because neither side is affected

by translations of P. For each ray p € ¥(1), define a corresponding face of P by
Fy=Pn{veV|(up,v)=h(up)}

Each facet of P corresponds to one of these faces, and subdividing P into pyramids over its facets,

with vertex at the origin, gives
1
volg(P) = — > hp(up)volg_y(Fp).
peEX(1)
On the other hand, (2.6)) implies that

degz,u,w(D%): Z hP(up)degE,u,w(DdP_lDu,p)
pEX(1)

7d7
= Z hp(up) degso 4o o (Dp Y,
pEX(1)
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and the induction step then follows from the observation that Dp is the divisor on ¥ associated
the polytope F, C V.

Now suppose that P, ..., P; C V are polytopes and let % be a common simplicial refinement of
the normal fans ¥p,...,Yp,. Since scalar multiplication and Minkowki summation of polytopes
correspond to scalar multiplication and addition of support functions, it follows from and

multilinearity that
(2.12) deg27w(Dpl cee Dpd) = d!VOld(Pl e Pd),

where the right-hand side is the mized volume of Py, ..., P;. In the context of (2.12), we note that
(2.6) is a standard result of convex geometry that allows one to compute mixed volumes recursively
by dimension [Sch14, Lemma 5.1.5].

Example 2.13 (Rational fans and toric varieties). If ¥ is a simplicial fan in V' that is rational
with respect to a fixed lattice A C V, then ¥ corresponds to a normal toric variety Xx. Choosing
u, to be the primitive lattice generator on p, the Chow ring A®*(X, u) defined above is the standard
presentation for the (intersection-theoretic) Chow ring A®(Xy) [Dan78, BDCP90, Brio6] (with
coefficients extended to R). In general, one does not expect there to be an (intersection-theoretic)
degree map associated to the incomplete toric variety Xx; however, if ¥ is complete, then the
associated toric variety Ay is also complete, so there exists an (intersection-theoretic) degree map
deg : A%(Xs) — R. This degree map is uniquely determined by its value on torus-fixed points, and
if [p,] € A%(Xs) is the class of the torus-fixed point associated to o € ¥(d), then

deg([ 0']) - V()L‘ll(]:’a)7

where voly(Py) is the lattice-normalized volume of the parallelepiped determined by the ray gener-
ators of o. In other words, the intersection-theoretic degree map corresponds to the one obtained
from the positive Minkowski d-weight defined by

w(o) = !

volg(Py)’
In this special setting, star fans of ¥ correspond to torus-invariant subvarieties of Xs; and
follows from the projection formula applied to the inclusion of torus-invariant subvarieties.

We note that convex divisors on a rational complete fan 3 correspond to nef divisors on Xy, and
a recursive analysis similar to that in Example shows that, for any convex divisor D = [¢], we
have

degy, (D) = dlvoly(Pp)

where Pp C V'V is the dual polytope, defined (up to translation) by
Pp={0e VY| lu,) <p(uy) for all p € T(1)},

and voly is normalized by the dual lattice AV C VV. This recovers the standard toric geometry
fact that the degree of the top power of a nef divisor on a complete toric variety is the simplicial
volume of the dual polytope |[CLS11, Theorem 13.4.3].
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3. LORENTZIAN FANS
We now introduce the central definition of this paper.

Definition 3.1. A marked tropical d-fan ¥(u) = (X, u,w) is said to be Lorentzian if ¥ is quasipro-
jective and, for each 7 € ¥ and all Ds, ..., Dy € K(X7), the quadratic form

D7) x D(X7) — R
(D1, D2) = degsyyr (D1D2Ds - -+ Dar)

has signature (1, q,r).

We recall that the signature (p,q,r) of a quadratic form records the number—counted with
multiplicity—of positive, negative, and zero eigenvalues, respectively, of any symmetric matrix
representing the quadratic form with respect to some basis. That the signature does not depend

on the choice of basis is a consequence of Sylvester’s law of inertia.

By ([2.4]), we see that different choices of u result in quadratic forms that differ by a positive scalar,
and since positive scaling does not affect the signature of a quadratic form, being Lorentzian does
not depend on u. Consequently, we say that a tropical fan 3 is Lorentzian if 3(u) is Lorentzian

for some—and, thus, for every—marking w.

Note that every star of a star is, itself, a star; more precisely, (X7)" = X7, where # € ¥ is the
unique cone containing 7 and whose quotient is 7. It then follows that a tropical fan is Lorentzian
if and only if all of its stars are Lorentzian. Moreover, we observe that the stipulation on the stars
in Definition [3.1] is vacuously true for star fans of dimension zero and one, and it follows that a

tropical fan is Lorentzian if and only all of its stars of dimension at least two are Lorentzian.

One of the primary motivations for studying Lorentzian fans is the following observation.

Proposition 3.2. Let ¥ be a Lorentzian d-fan. For any D1, ..., Dy € K(X), we have

(AF) degs;(D1DoD3 - - - Dg)? > degsy(D3Ds3 - - - Dy) - degsy(D3Ds - - - Dy).
Furthermore, for any D1, Dy € K(X), the sequence
(degz(leDgik)Z:o
1s unimodal and log-concave.
We recall that a nonnegative sequence (ay, .. .,aq) is unimodal if
ag < <ap>--->aq forsome [(€{0,...,d}
and log-concave if
a; > ap_1apy;  forall ke {l,...,d—1}.

Proof of Proposition[3.9. If we assume that Di,...,Dy € K(X), then (AF) was justified in the
introduction, the log-concavity assertion is just a special case of (AF), and the unimodality assertion

follows from the observation that every log-concave sequence of positive numbers is unimodal. To



14 D. ROSS

extend these statements to D; € K(X), we approximate each D; by an element of K(X) = K(%)°
(using the fact that K(X) # (), and then take a limit, noting that all of the desired assertions are

closed conditions and therefore pass to the limit. ]

Definition [3.1| is inspired, in part, by recent developments of Briandén and Leake regarding
Lorentzian polynomials on cones [BL21]. We now recall the main definition from [BL21] in or-
der to make this connection precise.

Suppose that C C R™ is a nonempty open convex cone, and let f € R[zy,...,x,] be a homo-

geneous polynomial of degree d. For each i € {1,...,n} and v = (v1,...,v,) € R™, we use the

following shorthand for partial and directional derivatives:

n
0; = aii and 0, = ;vi@-.
Following Brandén and Leake, we say that f is C-Lorentzian if, for all vy,...,vqs € C,
(P) Oy, -+ Ov, f >0, and
(H) the quadratic form
R"x R" - R

(.T,', y) = axayavg e a’udf
has exactly one positive eigenvalue.

More concretely, (H) is equivalent to the condition that the Hessian of the quadratic form
Opg -+ Opy f € Rlz1, ..., 2]

has exactly one positive eigenvalue, which is also equivalent to the condition that there exists an

invertible linear change of variables ¢ (), ..., ¢,(z) such that
vy -+ Ouyf = 1(2)? = ba(2)? — -+ — Ly ()?

for some k € {2,...,n}.

To connect the definition of Lorentzian fans in Definition [3.1] with the definition of C-Lorentzian
functions, we require a few additional notions. Given a simplicial d-fan ¥, consider the vector space
R with basis vectors {e, | p € £(1)}. A general element of R*() is written

z = Z 2p€p.
)

peX(1
Given a marking u on X, there is a natural exact sequence
VvV SR 5 D(®) =0

where the maps are given by

o= zu(p) = Z o(uple, and z+— Dy(z) = Z 2pDup
pEX(1) pEX(1)
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Given a Minkowski weight w € MWy(X, u), define the volume polynomial of (X, u,w) by
Vols o : REH 5 R
Z deggu?w(Du(z)d).

Alternatively, using the equivalent definitions (2.2)) and ([2.3)) of mixed degrees, we may also realize

the volume polynomial in terms of Chow classes:
Volsuw(2) = fouw(Xu(2)?)  where Xu(2)= Y 2,Xu, € AY(D).
peX(1)

Note that Vols ., is a homogeneous polynomial of degree d in Rz, | p € ¥(1)] and it vanishes
on the image of VV. Consider the open cone K,(X) € R*M consisting of all z € R¥(!) such
that D,(z) € K(X). The characterization in the next result builds a concrete bridge between

Definition [3.1] and the concept of C-Lorentzian functions.

Proposition 3.3. If 3(u) is a quasiprojective tropical d-fan, then 3(u) is Lorentzian if and only
if, for every T € ¥, the volume polynomial Vols,y- is Ky~ (X7)-Lorentzian.

Proof. For any z1, ...,z € R*() notice that

d _
(3.4) 0z -+ 0z, Volg(y) = m degz(u)(Du(z)d k. Dy(z1) -+ Dy(zr)).

Thus, from (2.8]), we see that
Oz + 0+ 0y Volg(yy >0 forall 2p,...,24 € K, (%),

showing that Vols,,) satisfies (P), without assuming that 3(u) is Lorentzian. Since Vols,,y vanishes
on the image of V'V, it follows from (3.4) that the quadratic form
R¥M x R 5 R
(l’, y) — Omayazg s Ozd VOIE(U),

descends to %d! times the quadratic form

DX)xDEX)—=R
(Dl, Dg) — degz(u)(DngDu(zg) s Du(zd)),
so the two quadratic forms have the same signature. Thus, Volx,) satisfies (H) if and only if the

latter quadratic form has exactly one positive eigenvalue, and the proposition then follows from

applying these arguments to 3(u)” for every 7 € 3. d

Because the assertion that Vols, is Ky(%)-Lorentzian is independent of the choice of u, we

often abbreviate it and simply write that Voly is K (X)-Lorentzian.

We close this section with two illustrative examples. The first is an example of a Lorentzian fan
that is not Lefschetz, in the sense of Ardila, Denham, and Huh [ADH20].
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Example 3.5 (A Lorentzian fan that is not Lefschetz). Let ¥ be the 2-skeleton of the coordinate
subspaces in R3, marked by the vectors +e;, ey, and Fes, and let w : 3(2) — R be the constant
function that maps each cone to 1. One readily verifies that w € MW5(X, u), so we obtain a marked
tropical fan X (u) = (X, u,w).

Denote the 12 top-dimensional cones of ¥ by 0172, a{’?), 03,3 where i € {1,2,3,4} denotes the
respective quadrant in the coordinate plane determined by the indices in the subscripts. For any
values a,b, c € R, one checks that the function wgp. : £(2) — R defined by

Wa,b,c(Uiz) = ab, Wa,b,c(o-i;{) = ac, wayb’c(aéﬁ) = bc

is a Minkowski 2-weight on ¥, and it follows that dimg(A2(X)) = dimg(MW2(X)) > 3. In par-
ticular, since the top-degree Chow group is not one-dimensional, A*(X) is not a Poincaré duality
algebra, showing that 3(u) cannot be Lefschetz in the sense of [ADH20]. On the other hand,
denoting the rays of X by ¥(1) = {p, pz, pgt}, the volume polynomial can be computed explicitly:

Volsw) = 2(2,+ +2,-)(2,5 +2,2) + 2024 +2,-) (2,5 +2,2) +2(2,0 +2,) (2,0 +2,-)

1 1
= 5(21 + 29 + 223)% — 5(21 — 29)% — 2(23)%,

where z; = (zpl+ + pr) and similarly for zo and z3. It follows that ¥(u) is Lorentzian.

The next example, due to Babaece and Huh [BH17], shows that not all tropical fans are Lorentzian.

Example 3.6 (A tropical fan that is not Lorentzian). In [BHIT7, Section 5|, Babaee and Huh
construct a two-dimensional fan ¥ in R* by performing certain modifications to the fan over a
realization of the complete bipartite graph K44. Their construction is rather intricate, so we do
not describe the details, but we note that it is a rational fan and marked by the primitive ray
generators, and it is tropical with respect to a positive Minkowski weight w € MW (X, u). Their
main result concerning this fan (Theorem 5.1) implies that Hess(Vols,)) has more than one positive

eigenvalue. Thus, 3(u) is tropical but not Lorentzian.

4. A TWO-DIMENSIONAL CHARACTERIZATION OF LORENTZIAN FANS

We now describe a more practical characterization of Lorentzian tropical fans, which essentially
reduces the verification of the Lorentzian property to checking it for just the two-dimensional
stars. Before stating this result, we first introduce a property of d-fans that is essential to our
characterization.

Given a d-fan ¥ in V and a cone 7 € ¥ with dim(7) < d — 2, we say that ¥ is pinched at 7 if
|X7]\ {0} is disconnected (or equivalently, if | N;X|\ 7 is disconnected). If ¥ is not pinched at any
T € 3, then we say that ¥ is unpinched. For example, a 3-fan comprised of two maximal cones
meeting along a ray is pinched at the ray, but a 3-fan comprised of two maximal cones meeting

along a 2-cone is unpinched.

We are now ready to state our characterization of Lorentzian tropical fans.

Theorem 4.1. A quasiprojective tropical d-fan 3(u) is Lorentzian if and only if
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(A) X is unpinched, and
(B) X(u)7 is Lorentzian for every T € ¥(d — 2).

Recall that stars of quasiprojective fans are quasiprojective and the Lorentzian condition is

vacuous for stars of dimension at most one. Thus, is equivalent to imposing that
DX")x D(XT) - R
(D1, D2) + degs() (D1D2)
has exactly one positive eigenvalue for every 7 € ¥(d — 2), which is also equivalent to the condition
that Voly,) has exactly one positive eigenvalue for every 7 € ¥(d — 2). We emphasize, again,
that these conditions are independent of u. Interestingly, we note that this characterization of

Lorentzian fans does not require one to have any knowledge about convex divisors on Y or its star

fans.

Before proving Theorem we discuss a few preliminary results. The first result shows that

the unpinched condition is necessary for a tropical fan to be Lorentzian.

Lemma 4.2. Let X(u) be a quasiprojective tropical d-fan with d > 2. If ¥\ {0} is disconnected,

then 3 (u) is not Lorentzian.

Proof. Assume that ¥\ {0} is disconnected and, using this assumption, choose d-fans ¥1,%y C %
such that X1 Uy = X and 31 N X = {0}. Set w; = w|s,(q) and u; = uly,(1). Note that
K(2) = K(Z1) ® K(Zy) CR¥ D g ¥ = g=(),
Given Dy € K(X1) and Dy € K (%), it follows that Dy = (Dy,0) and Dy = (0, Dy) are in K ().
Noting that Dy - Dyy-w =0 MWy _o(X,w) for any p € ¥1(1) and n € ¥(1), it follows that
degzl(D(fl)
degs, (leDg_k) = degzz(Dg)
0

d,
0,
1,...,d—1.

> x>
I

Since D; € K(%;), (2.8)) implies that the first two cases are positive, and since d > 2, the sequence

d

(degs (DYD5 ™))y

is not unimodal. Thus, Proposition implies that 3(u) is not Lorentzian. O

The next preparatory result was proved by Brandén and Leake [BL2I]. To state it, we require
a few additional notions. The lineality space of an open convex cone C' C R" is defined to be
Lc = C N —C; in other words, it is the largest subspace contained in the closure of C. We say
that an open convex cone C C R" is effective if C' = CNRY, + Lo. A k x k matrix M is said
to be irreducible if its adjacency graph—the undirected graph on k labeled vertices with an edge
between the ith and jth vertex whenever the (7, ) entry of M is nonzero—is connected. Brandén

and Leake proved the following result.
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Lemma 4.3 ([BL2I], Proposition 2.4). Let f € Rlz1,...,xy,] be a homogeneous polynomial of

degree d > 3, and let C' be an open, convex, and effective cone in R™. If
(1) f(z+w) = f(x) for all z € R™ and w € L¢,
(2) Oy, -+ Oy, f >0 for allvy,...,vq € C,
(3) the Hessian of Oy, - -+ Ov, ,f is irreducible and its off-diagonal entries are nonnegative for

all vi,...,v49_9 € C, and
(4) 0;f is C-Lorentzian for alli=1,...,n,

then f is C-Lorentzian.

In order to apply Lemma in our setting, the following result is necessary.
Lemma 4.4. If 3(u) is a quasiprojective tropical d-fan, then K, (X) is effective.

Proof. We first prove that the lineality space L, (x) is the image of the map VY = R,

To see that the image of VV — R*() is contained in L Ku(x) let p € VY and observe that

Dy(zu(p)) = 0 = Dy(—2u(¥)).
Since 0 € K(X), it follows that z,(¢) € Lk, (x)-
Conversely, suppose that z € Ly, (s). By definition, this means that both D,(z) and —D,(z)

are convex divisors. Thus, we can represent D, (z) = [p] and —D,(z) = [¢] for some nonnegative
v, ¢ € PL(X). Adding these nonnegative functions, we obtain a nonnegative function representing
0 € D(X); in other words, a nonnegative linear function on ¥. On the other hand, using the
assumption that ¥ is quasiprojective and w is positive, we see that D% !.w is a positive Minkowski
1-weight for any D € K(X), from which it follows that 0 can be written as a positive linear
combination of the markings. In particular, this implies that the only nonnegative linear function
on X is the zero function, from which we see that ¢ and ¢’ must both be the zero functions. Thus,
Dy (z) =0, and it follows that z = z,(¢) for some ¢ € V.

We now argue that K, (X) is effective; more precisely, we show that
(1
Ku(8) = Ku(8) NRZ + L, )

Suppose z € K, (). Then D,(z) € K(X), and the definition of strict convexity applied to the
zero-dimensional cone of ¥ implies that there exists a linear function ¢ € V'V such that

201
z—zu(p) € R>g ),

Since 2zy(p) € Lk, (), it follows that

z= (2= zu(p)) + zu(p) € Ky(2)N RES) + Lk, (s)-

Conversely, suppose that z € K,(X) N Rzg) + L, (x)- Then z = 2’ + z,(y) for some 2’ € K, (%)

and ¢ € VV. Translating by z,(¢) does not affect membership in K, (%), so z € K,(X). O

We are now prepared to prove our characterization of Lorentzian tropical fans.
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Proof of Theorem[{.1]. Let X(u) be a quasiprojective tropical d-fan. Assume, first, that X (u) is
Lorentzian. It follows that 3(u)” is Lorentzian for every 7 € X, implying Furthermore,
Lemma implies that |X7|\ {0} is connected for every 7 € (k) with 0 < k < d — 2, showing
that ¥ is unpinched, proving

Conversely, assume that 3 (u) satisfies and we prove that 3(u) is Lorentzian. By
Proposition it suffices to show that Volg,)- is Ky~ (X7)-Lorentzian for every 7 € X (k) with
0 <k <d—2. We accomplish this by induction on the codimension of 7. The base case dim(7) =
d — 2 follows from For the induction step, assume that Vols - is Kyr(X7)-Lorentzian for
every 7 € X(k) with £ +1 < k < d — 2 for some £ € {0,...,d — 3}, we must show that Vols,) is
K, (X7)-Lorentzian for every 7 € 3(¢). For the purposes of this argument, and to ease notation,
it suffices to assume that ¥™ = X.

To prove that Vols,) is K, (X)-Lorentzian, we prove the four conditions of Lemma . Condition
(1) follows from the fact that every element of L, (5 is z4(p) for some ¢ € V'V (as was shown in
the proof of Lemma [£.4), along with the fact that D,(z) € D(X) is invariant under shifting the
argument by z,(¢). Condition (2) follows from and (3.4). Thus, it remains to verify (3) and

(4); to do so, we study derivatives of the volume polynomial.
For any two rays p,n € 3(1), we have
9 Volsy(yy = (d — £) - degs () (Du,p - Du(2)7h),
and
On0, Vols(yy = (d — £)(d — £ — 1) - degsy(y (DuyDu,p - Du(2)73).
Applying to the right-hand sides of the above equations, we obtain

——d—{—-1
(4.5) 9p Vols () = (d — £) - degsy(yr (Du(2) ),
and, assuming that n and p are distinct rays, we have
———d—{—2
d—0)(d—£€—1)-de x (Dy(z if {p,n} =n(1
08 oy el = | (€011 ety D) i o) = (1)
0 else.

To prove Condition (3), let z1,...,24-¢—2 € K, (X). It follows from (4.6) that the off-diagonal
(p;m)-entry of the Hessian of 0,, - -+ 0., ,_, Volsyy is either 0 if p and 1 do not form the rays of a

2-cone in X, or it is

(d—20)!- degs () (Du(zl) e Du(Zd_g_Q))

if {p,n} = m(1) for some 7 € X(2). Since D € K= (™) for every D € K(X), it follows from ({2.8))
that all of the off-diagonal entries of the Hessian are nonnegative, and the entries indexed by pairs
(p,n) that form the rays of a 2-cone in ¥ are strictly positive. Condition ensures that |X|\ {0}
is connected, from which the above positivity in off-diagonal terms implies that the Hessian of
Oz Oz, Volsy(y) is irreducible, verifying (3).

Finally, to prove (4), we must argue that d, Vols,) is K, (%)-Lorentzian. Property (P) follows
from , so it remains to prove Property (H), which is equivalent to the assertion that, for any
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23y ..., 2d—o—1 € Ky (X), the quadratic form
(4.7) Oz 0zy_y_,0p Vol ()
has exactly one positive eigenvalue. The induction hypothesis implies that, given any z3,...,2q_¢_1 €

Ky (XP), the quadratic form

(48) 82’3 te 8Zd_g_1 VOlz(u)p
has exactly one positive eigenvalue. Note that (4.7) and (4.8) can be related using (4.5)), which
implies that, for any zs,...,24_¢_1 € R we have
(d—10)!
(4.9) Ozg = Ozq_y_10p Volxy () = 5 Oz Oz,_,_, Volx(uyes

where z; € R*¥(1) is any vector such that D(%;) = D(2;). If we choose ¢ € V¥ such that ¢(u,) = —1,
then for any z € R¥(M) we can define z € R*() by
(4.10) Zn = Zn + 2p(uy).
It then follows that (4.8) specializes to (4.7)) under the linear change of variables (4.10)):
(d—10)!

8Z3 . 8Zd72718p VOIE('U,)(Z) = 5 6%3 . 82117271 Volg(u)p (E)

Extending the change of variables to an invertible change of variables by introducing an extraneous
variable Z; = 2, it follows that the two quadratic forms (4.7) and (4.8)) have the same signature,
so the fact that the (4.8]) has exactly one positive eigenvalue implies that (4.7)) also has exactly one

positive eigenvalue. O

In order to apply Theorem in practice, it is necessary to understand the volume polynomials of
the two-dimensional star fans of 3. As it turns out, these two-dimensional volume polynomials can
be computed in full generality, as we describe in the next result, which then makes the applicability
of Theorem completely concrete.

Proposition 4.11. If ¥(u) is a tropical 2-fan, then

2
Vols () = Z 2w(0) 2, 2py — Z apz,
ceX(2) peX(1)
o(1)={p1.,r2}
where a, is determined by the formula

Z w(0o)ug/p = apup.

oeX(1)
p=<o

Proof. By the Chow-theoretic definition of the volume polynomial
Vol () (2) = faw) (Xu(2)?),
we must verify that

(1) fs(u)(Xup Xum ) = 0 for all 91,12 € 3(1) that do not lie on a common cone,
(2) fs(u) (Xum Xuy) = w(o) for all o € ¥(2) with rays 71 and 7, and
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(3) few(X2,) = —ay, for all p € X(1).
The first follows immediately from definition of A®(3, u), and the second is essentially the definition

of fsu). To prove the third, choose ¢ € V'V such that ¢(u,) = —1, and write

Xup= g o(un) Xy, € Al(E,u).
neX(1)
n#p

We then compute

few(Xe,) = fsw (Xu,p Z ‘P(un)Xn)

nex(1)
n#p
= Z Sp(ua/p)w(o')
cexn(2)
p=<o
= p(apup)
= —ap_ D

An important class of Lorentzian fans is the class of Bergman fans (which we do not define
here). The proof of the following result, in the case of matroids, is essentially contained in [NOR23|,
Section 6] (see also [BES20] and [BL21] for similar treatments of Condition |(B)).

Theorem 4.12. Bergman fans of (poly)matroids are Lorentzian.

Proof. For matroids, it suffices, by Theorem to prove that Bergman fans satisfy and
Property is [NOR23, Lemma 6.4] and Property follows from [NOR23, Lemmas 6.5 and
6.6]. To extend this result to polymatroids, one uses the observation that the Bergman fan of a
polymatroid is supported on the Bergman fan of an associated matroid |[CHL™], along with the
fact that the Lorentzian property does not depend on the support of a fan, a property that is made

precise and proved in Sections [6] and [7] below. O

4.1. Disentangling geometry from analysis. We close this section with reflections on the de-
velopments that led to Theorem As we emphasized in the introduction, the ideas in this paper
are heavily influenced by the AF inequalities, and if we specialize Theorem to the setting of
complete fans, it essentially tells us that the AF inequalities (for simple strongly isomorphic poly-
topes) can be deduced from the two-dimensional AF inequalities with only a little bit of geometric
insight—Dbasically, the only geometric insight required is the reduction . This is quite differ-
ent in style from Aleksandrov’s original proof of the AF inequalities in [Ale37] (see [Schl4] for a
reproduction in English), where the geometric and analytic arguments are closely intertwined, and
it was only very recently that the key geometric insight was disentangled from the rest of
the analytic arguments. We view the key first step in this disentanglement to be the recent proof
of the AF inequalities by Cordero-Erausquin, Klartag, Merigot, and Santambrogio [CEKMS19],
where it became clear that was the only essential geometric input required to deduce the
AF inequalities from the two-dimensional setting. However, the analytic arguments in [CEKMST9]

were still quite complex, requiring a doubly-indexed induction, and we view the second key step in
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the disentanglement to be the recent work of Bréandén and Leake [BL21], which, by changing the
focus away from the AF inequalities and instead focusing on the Lorentzian property, significantly
simplified and clarified the analytic arguments in [CEKMSI9]. Now that the disentanglement seems

complete, it will be interesting to see what other settings one might be able to apply these ideas.

5. BASIC PROPERTIES OF LORENTZIAN FANS

In this short section, we collect several useful ways to construct new Lorentzian fans from old ones.
Our first result shows that the Lorentzian property is compatible with tropical products. Before
stating it, we recall that the product of two fans is simply the collection of pairwise products of

their cones:

21X22:{01X02’O’Z‘€Ei}.

If ¥; is a simplicial d;-fan and w; € MWy, (%;) for ¢ = 1,2, we naturally obtain a Minkowski weight
w1 X wy € MWy, +4,(X1 X X9) defined by

(w1 X wg)(O'l X 02) = wl(O'l)OJQ(O'Q) for all g1 € El(dl), o9 € ZQ(dQ).

Thus, if 3; = (¥1,w;) and ¥y = (X9,ws) are tropical fans, we can define their product in the

setting of tropical fans as

21 X 22 = (21 X Eg,wl X WQ).

Proposition 5.1. If 3 and 3o are tropical fans, then 31 X X9 is Lorentzian if and only if 3

and X9 are Lorentzian.

Proof. The key observation is that, for 71 € X1 and 7 € Y9, we have
(52) (21 X 22)7'1><7'2 = 271—1 X 2;2

One readily checks that K (X; x ¥X9) = K(X1) x K(X2), so the product is quasiprojective if and only
if each factor is quasiprojective. By taking 7 or 7 to be maximal cones, we see from that the
star fans of X1 X X9 are a superset of the star fans of 31 and X9, and since the Lorentzian condition
is a stipulation on all of the star fans, this implies that 37 and 3, are Lorentzian whenever 37 X 39
is Lorentzian. To prove the converse, it suffices, by Theorem to show that and are
satisfied for all stars (37 x 39)™*™ where neither 71 nor 75 is maximal. For this amounts to
the observation that any product of two positive dimensional fans remains connected after removing
the origin; thus, 31 x X9 satisfies if both ¥; and X satisfy For notice that the only
case to consider is when dim(7;) = dim(X;) — 1 for ¢ = 1,2. In this case, one readily verifies that,

for any markings u; on ¥;, we have

Vol 52, (u1) xSy (u))m1 %72 = VOIs, (ug)71 VOl (ug)™ -

Since a product of linear forms in disjoint variables always has one positive eigenvalue (because
010y = i(ﬁl + £3)% — %(61 — £3)?), it follows that 37 x X satisfies [(B)| if both X1 and X5 satisfy
completing the proof. O
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To state the next property, we describe first describe an action of strictly convex divisors on
tropical fans. Suppose that ¥(u) is a tropical d-fan and D € K(X) is a strictly convex divisor. We
define D - ¥(u) to be the tropical (d — 1)-fan

D -3(u) = (2[d—-1],u, D - w).
We now show that this action is compatible with the Lorentzian property.

Proposition 5.3. If ¥(u) is Lorentzian and D € K(X), then D - 3(u) is Lorentzian.

Proof. Suppose that ¥(u) is a Lorentzian d-fan and D € K(X). First of all, we observe that
D descends to an element of K(X[d — 1]), so X[d — 1] is quasiprojective. Additionally, for any
7 € X[d — 1], note that the star of the codimension-one skeleton is the codimension-one skeleton of
the star:

Sld - 17 = 27[d" — 1].

It then follows from the definition of the D(X)-action on Minkowski weights that

degD,z(u)T (Dl cee Ddf_l) = degz(u)T (Dl cee Dd"'—l . D)

Since D € K(X), it follows that D € K(X7), and thus, the quadratic forms in Definition
associated to D - ¥(u)” are all special cases of the quadratic forms associated to ¥X(u)", so the

Lorentizan property for D - 3(u) follows from the Lorentzian property for 3 (u). ([l

Our final result in this section regards tropical modifications, which are yet another way of
producing new tropical fans from old ones. The input of a tropical modification consists of a
tropical d-fan ¥ = (¥,w) in V and a strictly convex piecewise-linear function ¢ € PL(X); the
output is a new tropical d-fan M, ¥ in V' x R. More precisely, the tropical modification of X
along ¢ is defined by

M3 = (Zgp, wy)

where the fan X, has cones

Yo ={e(r) [T € X} U{r0-1) | T € B\ X(d)}

where v, (7) = {(2,¢(7)) € Ng xR |2 € 7} and 79 _1) = {u + A(0,—1) | u € 7, € Rx¢}, and the
Minkowski weight w,, is defined by
w(T) if o = 7, (7) for some 7 € ¥(d);
wy(0) = )
(p-w)(r) if o =71 for some 7 € X(d - 1).
It is straightforward to check that w, € MWy(3,) is a positive Minkowski weight.
We note that the graph v,(X) of ¥ under the function ¢ is contained within X, but is not a

tropical fan with respect to the induced weights on the maximal cones—the tropical modification

M3 is, in some sense, the unique minimal way of appending weighted cones to 7,(X) to obtain
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a tropical fan. Whenever ¢ and ¢ differ by a linear function f € L(X), we note that M, ¥ and

M, % are isomorphic under the linear automorphism
VxR—=VxR
(v, w) = (v,w + f(v)),

S0, up to linear isomorphism, we view the tropical modification as happening along a strictly convex
divisor D = [¢] € K(X) and we denote it by Mp(X). The following result shows that the Lorentzian

property is compatible with tropical modifications.

Proposition 5.4. If X is a tropical fan and D € K(X), then MpX is Lorentzian if and only if X

1s Lorentzian.

Proof. Choose a representative ¢ for D and a marking u on X, and let u,, be the associated marking
on X,:

up = {(up, 0(up)) } U{(0, —1)}.
There are two key observations, both of which are straightforward to verify from the definitions.

The first is that there is a natural isomorphism
A*(S,u) — A*(Sy, u,)

X“vp — X“wv%o(ﬂ)’

that commutes with the maps fx ., and fx, 4, w, and identifies the cones of strictly convex divisors
(via the isomorphisms D(X) & AY(Z,u) and D(X,) = AY(Z,, uy,)). In particular, this shows that
the quadratic forms associated to (X, u,w) have exactly one positive eigenvalue if and only if the
same holds for (X, uy,w,). This conclusion does not apply to the quadratic forms associated to
nontrivial stars of X and MpX; for that, we need the second key observation, which is that, for
any 7 € Xp(k),

(D-=) ifr = T(/O _y) for some e X(k—1),

(MpX)" =
Mp(XT)  if 7 = 7,(7’) for some 7" € X(k).

Suppose that X is Lorentzian. By the second observation, every star fan of MpX is either a star
of D -3 or a tropical modification of a star of 3. In the first case, the associated quadratic forms
have exactly one positive eigenvalue by Proposition [5.3] while in the latter case, the associated
quadratic forms have exactly one positive eigenvalue by the first observation and the assumption
that ¥ is Lorentzian. Thus, MpX is Lorentzian.

Conversely, suppose that Mp3: is Lorentzian. By the second observation, every star of 3 can
be tropically modified by D to become a star of MpX. The assumption that Mp3 is Lorentzian
along with the first observation then imply that X is Lorentzian. (|

It would be natural, at this point, to continue our list of Lorentzian-preserving constructions by
showing that the Lorentzian property is preserved by stellar subdivisions (it is!). We choose not to

do that here, however, because our ultimate aim is to prove a stronger result: that the Lorentzian
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property does not actually depend on the fan structure at all, it only depends on the underlying
tropical variety. In order to state this result precisely, we take a detour in the next section to
introduce the theory of tropical fan varieties, before returning to the study of stellar subdivisions

and the independence of the Lorentzian property on the fan structure in Section

6. MINKOWSKI WEIGHTS ON FAN SETS AND TROPICAL FAN VARIETIES

In this section, we introduce a general theory of Minkowski weights on fan sets. Because we
do not require the supports of our Minkowski weights to be rational fans, the notions developed
here generalize the affine tropical cycles introduced by Allerman and Rau [AR10], which built on
prior work of Gathmann, Kerber, and Markwig [GKM09]. Many of the arguments from those
earlier papers carry over in a more-or-less straightforward way to the general setting, but since the
development here seems sufficiently novel, we carefully spell out the details of the most important

aspects.

6.1. Minkowski weights on vector spaces. Let V' be an n-dimensional real vector space. A

marked Minkowski d-weight on V is a triple (3, u,w) where

e Y is a simplicial d-fan,
e y is a marking of 3, and
o we MWy(X,u) is a Minkowski d-weight on the marked fan (X, u).

We define the support of a marked Minkowski d-weight on V' to be the support of the subfan
where w is nonzero:

(S uw)|= ] @

ocex(d)
w(o)#0

Two marked Minkowski d-weights (X1, u1,w1) and (32, ug,ws) are equivalent if

(31, w1, wi)| = | (32, uz, wa)|
and, for every pair of cones o1 € £;(d) and oy € ¥g(d) such that

(i) o; C (%4, uj,w;)| for i = 1,2 and
(i) o5 N g 0,

we have

(6.1) wi(oy) = Mw(@)y

vol(og, ug)

vol(o1,u1)

where =8 (o2u2)

denotes the absolute value of the determinant of any linear tranformation of V,, =

vol(o1,u1) -
— 7 1S
vol(o2,u2)

the just ratio of the volumes of the parallelepipeds determined by the markings on o and o9,

Vs, that takes the markings of o2 to the markings of o;. Geometrically, notice that

respectively, justifying the notation. While the volumes, themselves, depend on a metric, the ratio
does not, and the condition (6.1) can interpreted as the imposition that the weights are equal after

normalizing by the volume of the associated parallelepipeds.
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We define a Minkowski d-weight on V to be an equivalence class of marked Minkowski d-
weights on V| and we denote the set of Minkowski d-weights on V' by MW;(V'). We aim to endow
MWy(V') with the structure of a real vector space; the following result is the key observation that

we need.

Proposition 6.2. If (X, u,w) is a marked Minkowski d-weight and (X', u') is any marked simplicial
fan with |X'| = |X|, then there exists a unique w' € MWy(X' u') such that (X,u,w) and (X', u,w’)

are equivalent.

Proof. Given two fans ¥ and ¥’ with the same support, one can construct a common refinement
comprising the pairwise intersections o N ¢’ with ¢ € ¥ and ¢’ € ¥'. By adding additional cones
where necessary, this common refinement can be further refined to be a simplicial fan. Since any
two simplicial fans with the same support admit a common refinement by a simplicial fan, the proof

of the proposition reduces to studying two cases:

(1) ¥’ is a refinement of X, and

(2) X is a refinement of 3.

The considerations in each of these cases is similar to the discussions in [GKMO09].

If ¥/ refines ¥ and o’ € ¥/(d), then there is a unique o € X(d) such that ¢’ C o; define

vol(a’, u')

(o) = w(o).

vol(o, u)
In fact, we must define w’ in this way in order for (X', u/,w’) to be equivalent to (X, u,w); what’s
not immediately apparent is that w’ is actually a Minkowski weight on (X', 4'). To check that
W e MWy(X u'), let 7/ € ¥'(d — 1). We consider two cases:

(la) 7/ C 7 for some 7 € 3(d — 1), and
(1b) 7" & 7 for any 7 € X(d — 1).

In Case (1la), note that there is a natural bijection between {¢’ € ¥'(d) | 7/ <X ¢’} and {0 €
Y(d) | T 2 o}. A linear algebra argument shows that

vol(o’,u) , vol(7/,u)

(6.3) vol(o,w) "\ = Vol(r,u) o\

mod V.,

and it follows that the balancing condition ([2.1]) holds at 7’ if and only if it holds at .

In Case (1b), there is a unique o € X(d) such that 7/ C o and there are exactly two cones
o, ol € ¥(d) with 7/ < o/, 0}, both contained within . Another linear algebra argument implies
1,02 1,02
that

vol(oy, ') vol(a, u) o
o\ 7’/ VOl(O’, ’U,) oh\T

(6.4) ;=0 mod V;,

vol(o, u)

which, upon multiplying by w(o), is equivalent to the balancing condition (2.1)) at 7.
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Next, we turn to the case where X refines ¥'. For each ¢’ € ¥'(d), choose some o € X(d) such
that o C o/, and define

(o) = YO oy

Again, this is how we must define w’ if we want (X', /,w’) to be equivalent to (X, u,w). We first

vol(o, u)

argue that the definition of w’ is independent of the choice of o; to do so, it suffices to show that
we get the same value for w'(0”) if we choose 1,09 C ¢’ such that 01 Noy =7 € 3X(d — 1). Note
that the balancing condition ([2.1)) at 7 implies that

(6.5) w(01)Ug,\r + W(02)Ugy\r =0 mod V.
As in (6.4]), we have
vol(oy,u) vol(og, u)

. N YN = d T
(6:6) Vol(a’,u’)uUl\T Vol(a’,u’)u@\T 0 modV,
Combining (6.5)) and implies that

vol(o’, u') vol(o’, u')
vol(oy, u) wlon) = vol(og, u) w(@2),

showing that w’(c’) does not depend on the choice of o C ¢

To check that w' € MWy(X' '), let 7 € ¥'(d — 1). There must be some 7 € X(d — 1) with
7 C 7/, and the argument in (1a) shows that the balancing condition (2.1 holds at 7’ if and only
if it holds at 7, completing the proof of Case (2). O

We now describe the vector space structure on MWy (V).

Proposition 6.7. The set of Minkowski d-weights on V is a real vector space. More precisely,
given Q1,Q9 € MW4(V) and A € R, we define Xy + Qo € MWy(V) by

A+ Qy = [E, u, Awi + (UQ]

where (X, u,w;) represents §; for i =1,2.

Proof. Given two Minkowski d-weights Q1,Qs € MWy(V), we first argue that they can be repre-
sented on a common marked fan (X, u). To do so, we begin by constructing a fan ¥ whose support
is |©1]| U |©22] and such that ¥ contains two subfans X1, ¥ C ¥ with |3;| = |Q;] (see, for example,
[AR10, Construction 2.13]). Upon triangulating, if necessary, we may assume that 3 is simplicial,
and we can choose any marking w of 3. By Proposition [6.2] each €); has a unique representative
supported on (¥;,u), which we can extend by zero to all of ¥. Thus, we may represent both {2

and 2 on a common marked simplicial fan (3, u).

Next, we argue that the operation is well-defined. If (X' v') is any other choice of marked
simplicial fan on which we can represent 2; and {29, then Proposition [6.2] ensures that there exists
a unique w; such that (X, u,w;) is equivalent to (X', v/, w}). By definition of equivalence, we know
that, for any o € X(d) and o’ € ¥'(d) with 0° N0’ # 0, w;(o) # 0, and w,(o’) # 0, we have

wi(o) = ng(al).

vol(a’, u')
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Adding and scaling these relations, we then conclude that (3, u, Aw;+ws) is equivalent to (X', v/, Aw|+

w}), as desired. The vector space axioms are straightforward to verify. O

We denote the associated graded vector space of Minkowski weights on V' by

mwmzémey
d=0

6.2. Minkowski weights on fan sets. A d-fan set X C V is a subset of V that can be realized
as the support of a d-fan in V. A Minkowski k-weight on a d-fan set X C V is any Minkowski
weight in MW} (V') that is supported within X. Denote the subspace of Minkowski k-weights on
X by

MW (X) € MW(V)

and the associated graded vector space by
d
MW,(X) = @ MW,(x).
k=0

The following result describes how the general Minkowski weights of this section relate to the
Minkowski weights on fans studied in Subsection

Proposition 6.8. If X is a d-fan set and ¥ is a simplicial d-fan such that |X| = X, then there is

a canonical inclusion
MWy (L) € MW,(X)

for every k < d that is an isomorphism when k = d.

Proof. For each w € MWy(X,u) = MW(X), we map it to the equivalence class in MW (X)
represented by (3, u,w). Proposition implies that this map is injective for all £ < d and also
surjective for k = d. We note that the map is not surjective for k < d because there are Minkowski

k-weights that are supported within X but not supported on |X[k]|. O

6.3. Divisors and mixed degrees. Let A be a d-fan set in V. Given a continuous function
¢ : X = R, we say that ¢ is piecewise linear on X if there is some fan 3 with |X| = X such that
¢ € PL(X). Denote the piecewise linear functions on X by PL(X). We observe that PL(X) is a
vector space under the usual addition and scalar multiplication of functions to R—the only subtle
detail to note is that PL(X) is closed under addition: if ¢ is piecewise linear on ¥; and @9 is
piecewise linear on ¥y with |X1] = |X2| = X, then 1 + ¢2 is piecewise linear on the intersection
fan

Y1 Ay = {Jlmag ’ o1 € X1,09 € 22}.

Denote the subspace of linear functions on X by L(X), and define the vector space of divisors

on X by the quotient
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For any divisor D € D(X) and fan ¥ with |X| C X, let Dy, denote the natural restriction of D to
|X|. We say that ¥ is D-admissible if Dy, € D(X). The next result endows MW, (X) with the

structure of a D(X)-module.

Proposition 6.9. For any d-fan set X C V', the vector space MW(X) is a D(X)-module under
a canonical action
D(X) x MWa(X) — MWa_y(X).
More precisely, if D € D(X) and Q € MWy(X), we define D -Q € MWjy_1(X) by
D-Q =[Sk —1],u, D - wl.

where (X, u,w) is a representative for Q such that ¥ is D-admissible.

Proof. For any D and (2, we first note that it is possible to find a representative (X, u,w) for Q for
which ¥ is D-admissible: let ¥ be a fan with |X;| = |Q[, let X2 be a fan with |X2| = X on which
D can be represented by a piecewise linear function, and let ¥ be any simplicial refinement of the

intersection fan 1 A Y.

To prove that the action is independent of the representative (3, u,w), suppose that (X', v/, w’)

is another representative for which ¥’ is D-admissible; we must verify that
(6.10) (X[k —1],u, Dy - w) is equivalent to (X'[k — 1],4/, Dsy - ).

Since any two fans admit a common simplicial refinement, it suffices to assume that ¥’ refines 3.
We first note that the support of each of these marked Minkowski weights is contained in X[k —1]—
this is because, by virtue of ¥ being D-admissible, D is linear across any cone 7 € X/[k — 1] that
is not contained in some 7 € X(k — 1), so (Dys - &')(7’) = 0. Now given any 7" € ¥/(k — 1) and
7 € X(k — 1) such that 7° N 7° # (), we must have 7/ C 7, in which case it follows from and
the definition of the action of D(X) on MW (X) that

1(7, u')

Dsr - D) = VOUT,u) Ds- -

(Dgr- ) = (D)),

which verifies (6.10). The module axioms are straightforward to verify. (|

Given a d-fan set X C V, a Minkowski d-weight 2 € MWy(X), and a collection of d divisors
Dy,...,D; € D(X), we note that Dy---Dy - is a Minkowski 0-weight, or in other words, a
function {0} — R. We define the mixed degree of D,..., D; with respect to (X,(2) by

degX@(Dl . ~-Dd) = (Dl Dy Q)(O) e R.

The next result computes the general mixed degrees defined here to those defined for fixed fans
in Subsection

Proposition 6.11. Let X be a d-fan set, @ € MWy(X), and D1,...,Dg € D(X). There exists a
stmplicial fan 3 supported on X that is D;-admissible for all i = 1,...,d. Moreover, given such a

fan ¥ and the unique Minkowski weight w € MWy(X) representing 2, we have

degy (D1 -+ Dg) = degy, ,,(D1 -+ Da).
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Proof. To find such a fan X, let 31, ..., ¥4 be fans supported on X such that ¥; is D;-admissible for

each 7, and let 3 be any simplicial common refinement of >, ..., %;. The equality of mixed degrees
then follows from the definition of the D(X)-module structure on MW, (X) in Proposition [6.9] in
relation to the D(X)-module structure on MW, (). O

6.4. Convex divisors. Let X be a d-fan set in V. We say that a divisor D € D(X) is convex if
Dy is convex (in the sense of Subsection for some D-admissible fan 3 supported on X. The

following observation shows that this notion does not depend on the choice of D-admissible fan X..

Proposition 6.12. Let X be a fan set in V and let D € D(X) be a convexr divisor. Then Dy, is

convex for every D-admissible fan .

Proof. This follows from the fact that two fans on the same support admit a common refinement,
along with the fact that, for any D-admissible fan ¥ and refinement ¥’ of 3, the fan X’ is also

D-admissible, and Dy is convex on Y if and only if Dy is convex on X. O

We let K(X) C D(X) denote the set of convex divisors. This is a cone—in the sense that it is
closed under addition and positive scaling—but the reader should be warned that D(X) is generally
an infinite-dimensional vector space in this setting. Because strict convexity is not well-behaved

with respect to refinement, it is not a natural notion to define in the general setting of fan sets.

Given a d-fan set X C V', we say that a Minkowski d-weight Q@ € MWy(X') is nonnegative if it
has a representative (3, w) for which w € MW,;(X) is nonnegative. Being nonnegative is preserved
by equivalence, so knowing that one representative is nonnegative implies that all representatives

are nonnegative. In the general setting of fan sets, we have the following analogue of (2.7)).

Proposition 6.13. Given a d-fan set X CV, a nonnegative Minkowski weight Q € MWy(X), and
convex divisors D1, ..., Dy € K(X), we have

degX,Q(Dh' . '7Dd) > 0.

Proof. Using Propositions and this is a consequence of Equation ((2.7)). O

We say that X = (X,Q) is a tropical d-fan variety if X' is d-fan set and Q € MWy(X) is a
nonnegative Minkowski weight such that |Q2] = X. Our ultimate aim is to study mixed degrees of
convex divisors on tropical fan varieties, and especially to explore when they satisfy Alexandrov—
Fenchel type inequalities. We accomplish this in the next section by introducing the notion of

Lorentzian fan varieties.

7. LORENTZIAN FAN VARIETIES

We now come to the definition of Lorentzian fan varieties, which builds on our earlier definition

of Lorentzian fans.

Definition 7.1. A Lorentzian d-fan variety is a tropical d-fan variety X that can be represented

by a Lorentzian fan.
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We have two primary goals in this section. Our first goal is to prove that X is Lorentzian if
and only if all of its representatives on quasiprojective fans are Lorentzian fans. In other words,
the Lorentzian property on quasiprojective tropical fans is independent of the fan structure. Our
second goal is to use the independence on fan structures to prove an analogue of Proposition for
Lorentzian fan varieties, showing that mixed degrees of convex divisors on Lorentzian fan varieties
satisfy Alexandrov—Fenchel type inequalities, and that the sequence of mixed degrees for any pair

of convex divisors is log-concave and unimodal.

7.1. The Lorentzian property descends to fan varieties. The purpose of this subsection is

to prove the following result.

Theorem 7.2. If (¥,u,w) is any representative of a Lorentzian d-fan variety X for which ¥ is

quasiprojective and |X| = X, then (X, u,w) is Lorentzian.

We will leverage the characterization in Theorem [£.1]to prove Theorem[7.2] Before presenting the
proof, we discuss several preliminary results. The first preliminary result asserts that Property [(A)]
of Theorem [£.1] depends only on the support of a fan.

Lemma 7.3. If X1 and X9 are simplicial fans with |X1] = |Xa], then X1 is unpinched if and only
if o is unpinched.

Proof. The lemma is a consequence of the observation that a simplicial fan ¥ is unpinched if and
only if, for every v € |X| and any linear subspace L of dimension at most d — 2, the set (U \ L) N|X|
remains connected for any sufficiently small neighborhood U of v. This characterization of being

unpinched only depends on the support of the fan. O

Stellar subdivisions will play a central role in the proof of Theorem [7.2} we now recall the
definition. Suppose that ¥ is a fan in V' and choose a nonzero vector v € |¥|. For any ¢ € ¥ with

v € o and any face 7 < o with v ¢ 7, define the cone
Ty = {au—i—bv | u € 7 and a,bERZO}.
The stellar subdivision of ¥ at v, denoted ¥, is the fan in V' defined by

Yo={o|oceXandv ¢ o} U{r |7 =0 for some o € ¥ with v € o\ 7}.

The following result of Wlodarczyk [Wto97] is an important tool regarding stellar subdivisions.
We note that Wilodarczyk states this result for rational fans in vector spaces over QQ, but the

methods readily generalize to R (see the note after Theorem 8.1 in [W1o97]).
Lemma 7.4 ([Wlo97], Theorem A). If ¥ and X' are simplicial fans with the same support, then

there exists a sequence of simplicial fans X, ..., %, such that

(1) Yo =3 and 3, =Y/, and

(2) ¥ is a stellar subdivision of X1 or Xit1 is a stellar subdivision of X; for every i.
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To prove Theorem we will to show that the essence of Property everything except
possibly the quasiprojectivity—is preserved by stellar subdivisions. Toward that end, it is useful

to have a complete understanding of the two-dimensional stars of stellar subdivisions.

Lemma 7.5. Let ¥ be a simplicial d-fan in 'V with d > 2, let v € ©° for some w € 3(k), and let
T € X¥y(d —2). One of the following must be true:

(i) v & |N; Xy, implying that (3,)" = X7;
(ii) v € [N;Xy| \ 7, implying that (X,)” = (X7)g where T is the image of v in V7;
(iii) T = 7! for some 7 € %(d — 3) with |7'(1) N w(1)| = k — 1, implying that (X,)T = X7UT
where 7' Um € X(d — 2) is the cone with rays 7'(1) Un(1);
(iv) T = 7, for some T € X(d — 3) with |7'(1) N w(1)| = k — 2, implying that (X,)” has the
following structure:
o the rays of (X,)" are of the form {p=,pT,p1,..., pm} with V,- =V,
o the 2-cones are of the form o= where o (1) = {p;, p*} fori=1,...,m.
(v) T =T, for some 7' € X(d —3) with |7'(1) N7 (1)| = k — 3, implying that (X,)7 is the normal

fan of a triangle within a 2-dimensional subspace of V7.

Proof. The classification into the five possible cases follows from the fact that the first two cases
account for all situations where v ¢ 7, whereas the latter three cases account for all situations

where v € 7. In the latter three cases, we must have 7 = 7 for some 7' € ¥(d — 3) with
E=3<|r(1)nn(1)] <k-—1.

The lower bound is because dim(7’) = d — 3, along with the fact that 7" and 7 are both contained

within a common d-cone. The upper bound is because v, and thus , is not contained within 7’.

The descriptions of (X,)7 in (i), (ii), and (iii) are explicit, and their justification is straightforward.
For (iv), note that 7 contains two rays p= that are not contained in 7/, and every maximal cone
containing 7 must contain exactly one of these two rays. There is also a symmetry: for every
maximal cone containing one of p*, there is another maximal cone with rays obtained by swapping
out the special ray. If we denote the projection of these two rays by p* € (¥,)7(1), then the
description of (X,)7 follows. For (v), note that = contains three rays pi, g2, p3 that are not in 7/,
and every maximal cone containing 7 must contain exactly two of these three rays. In other words,
there are only three maximal cones containing 7—the rays of any such cone are the rays of 7 and
two of the three rays p1, po, p3. Let p1, p2, ps denote the projections of p1, p2, p3 in (X,)7. Since v
is a positive linear combination of the ray generators of m, and because both v and all of the rays
of m except p1, P2, p3 are in the kernel of the projection map V' — V7, it follows that p1, po, p3 lie

in a 2-plane of V7, and it then follows that (X,)” is the normal fan of a triangle.

In the rational setting, an algebraic geometer may recognize each of the separate cases in the

lemma as a different type of torus-invariant surface inside a blowup of a toric variety. 0
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We conclude our preparation for the proof of Theorem with three computational results
about eigenvalues of quadratic volume polynomials associated to the different types of star fans

that appeared in the previous lemma.

Lemma 7.6. Let X be a tropical 2-fan variety and let (X,w) and (X',w') be two representatives
of X for which ¥/ is a stellar subdivision of ¥.. For any markings u and u’, the quadratic forms

Vols. 4, and Volgl,ugwu, have the same number of positive eigenvalues.

Proof. Suppose ¥ = X, for some v € |X|. If v € p° for some p € X(1), then ¥ = ¥/, and the
associated volume polynomials are equal. Suppose, then, that v € ¢° with o € ¥(2). Denote the
rays of o by p1 and ps with markings u; and ug, and let a1, as € Rsg be such that aju; + agugs = v.
Let 01,02 € ¥/(2) denote the 2-cones in ¥’ that are contained in o, and let n denote the ray
generated by v. Since the conclusion is independent of the markings u’, we choose v’ to agree with
u on all rays of 3 and we set u% = v. A tedious computation using Proposition shows that

w(o
( )(Zn — a1z, — a22p,)%.

Volsy o = Vols 40 —
aiaz

It follows that Volsy . . has the same number of positive eigenvalues as Voly, ,, ., and one additional

negative eigenvalue. ([l

Lemma 7.7. Let X be simplicial 2-fan with the structure described in Lemma (w) If w e

MWy(X,u), then Vols,,, ., has exactly one positive and one negative eigenvalue.

Proof. Using notation from Lemma (iv) for the rays and cones of ¥ and choosing a marking such
Jr

that u,+ +u,- = 0, the balancing condition implies that w(o;") = w(o; ); denote this real number
by w;. Since the weights on 0'?: are the same, it also follows that a,+ = —a,-; set a = a,-. Using

Proposition [£.11 we compute

m m
2 2
Voly, . = az,; —az, + 2 E WiZp Zpt + 2 E WiZp; Zp—

i=1 i=1
1 - 2 1 - 2
=12 (zp+ +z,- tazyr —az,- +2 Z wizpi> 1 (zp+ +z,- —azpr +az,- — 2 Z wizpi) )
i=1 =1
implying that Voly, ., has exactly one positive and one negative eigenvalue. (I

Lemma 7.8. Let X be the normal fan of a triangle. Ifw € MW, (X, u) is positive, then Hess(Vols; 4, )

has one positive eigenvalue and no negative eigenvalues.

Proof. Denote the rays of 3 by p1, p2, p3 and denote the 2-cone with rays p;, p; by o;;. Since the
conclusion is independent of our choice of u, we may choose a marking such that u,, +u,, +u,, = 0.
It then follows from the balancing condition that there is a positive number w such that w(o;;) =
= w for all 4, j, k. Proposition [£.11] then implies that

—Qpy

2
Vols yw = w(2p, + 2py + 2p3) 7,

and the result follows. O
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We now prove that the Lorentzian property descends to tropical fan varieties.

Proof of Theorem [7.2. Assume that X is a Lorentzian d-fan variety and let (X, u,w) be a repre-
sentative of X for which ¥ is quasiprojective with |X| = X. We aim to show that (¥, u,w) is
Lorentzian, and by Theorem it suffices to prove that

(1) ¥ is unpinched, and

(2) Volsr 7 4~ has exactly one positive eigenvalue for every 7 € ¥(d — 2).

By definition of Lorentzian fan varieties, we know that X admits a Lorentzian representative
(Y, o/, w) with || = X = |S|. By Theorem [4.1] we know that ¥’ is unpinched, and it then follows
from Lemma that ¥ is unpinched, proving (1).

To verify (2), note that Lemma allows us to find a sequence of stellar subdivisions interpolating
between ¥ and ¥/, and since we know that (2) holds for (3, u/,w’), this reduces the proof of (2) to

studying two special cases:

(2a) X is a stellar subdivision of X', or
(2b) X' is a stellar subdivision of .

Assume that we are in the setting of (2a) and let 7 € X(d — 2). By Lemma there are five
possibilities for X7. In each of the cases (i) and (iii), we see that X7 is equal to (X')" for an
appropriate cone m € ¥'(d — 2), so (2) follows from our assumptions on (¥/,v/,w’). In case (ii),
Y7 is a stellar subdivision of a two-dimensional star fan of ¥/, and the conclusion follows from
Lemma and our assumption on (¥/,u/,w’). In cases (iv) and (v), the conclusion follows from
Lemma [7.7] and Lemma respectively.

Now assume that we are in the setting of (2b). Let v € |X| be the point at which we are
performing the stellar subdivision, and let 7 € ¥(d — 2). There are three cases to consider: (i)
v ¢ IN;X|, (ii) v € [IN;X|\ 7, and (iii) v € 7—these three cases essentially correspond to the first
three cases in Lemma the other two cases being irrelevant in this direction of the argument.
In cases (i) and (iii), the star X7 is equal to (X')™ for an appropriate cone 7 € ¥'(d — 2), and the
conclusion follows from our assumption on (X', u/,w’). In case (ii), there is a cone m € ¥/(d — 2)
for which (X')™ is a stellar subdivision of 37, so the conclusion follows from Lemma and our

assumption on (X, u/,w’). O

7.2. Alexandrov—Fenchel inequalities for Lorentzian fan varieties. In this subsection, we

prove the following analogue of Proposition [3.2] for Lorentzian fan varieties.

Theorem 7.9. Let X be a Lorentzian d-fan variety. For any D1, ..., D4 € K(X), we have
degx(D1D2D3 - Dyg)?* > degx(DiDs - Dyg) - degx(D3D3 -+ - Dy).

Furthermore, for D1, Dy € K(X), the sequence

d

(degX(D’ng_k))k:()

1s log-concave and unimodal.
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In order to prove Theorem [7.9) we would like to choose a particular representative (2, u,w) and
apply Proposition [3.2]—the only subtle point that could possibly get in the way is whether we can
choose such a representative that is quasiprojective. We now present two lemmas that ensure we

can always choose a quasiprojective representative.

Lemma 7.10. If ¥ is a simplicial quasiprojective fan, then any stellar subdivision of ¥ is also

quasiprojective.

Proof. In the rational setting, this is a well-known result of toric geometry [CLS11, Proposi-
tion 11.1.6], and the proof generalizes to the general setting. To summarize the main point: given
v € |X]\ |X[1]], let D, be the divisor on ¥, represented by the piecewise linear function that takes
value 1 at v and value 0 at u, for all p € 3(1). One checks that D —eD, € K(3,) for any D € K(X)
and sufficiently small € > 0 [ADH20, Proposition 5.4]. O

Lemma 7.11. If ¥ and ¥’ are simplicial fans in V with the same support, then they admit a

common refinement that can be obtained from % by a sequence of stellar subdivisions.

Proof. Note that each of the finitely many cones of Y’ is an intersection of finitely-many half-spaces,
and a fan ¥ with the same support as Y’ is a refinement of Y’ if each 7 € 3 lies entirely on one
side of each of the hyperplanes associated to the finitely-many half-spaces defining all the cones
of ¥'. Thus, it suffices to prove that, for a given hyperplane H, we can find a sequence of stellar
subdivisions of ¥ such that every cone in the resulting fan is contained entirely on one side of
H. To do this, we simply perform a sequence of stellar subdivisions along every ray that can be
obtained as H N7 for some 7 € ¥(2); it is readily verified that the resulting fan satisfies the desired
property. ]

We are now prepared to prove Theorem

Proof of Theorem[7.9. By Proposition[6.11], we may choose a simplicial fan 31 supported on X that
is Dj-admissible for each i. Furthermore, knowing that X is Lorentzian tells us that there is at least
one simplicial, quasiprojective fan s supported on X. By Lemma we may find a refinement
¥ of ¥; that is obtained from Y by a sequence of stellar subdivisions, and by Lemma [7.10} we can
conclude that ¥ is simplicial and quasiprojective, and furthermore, since ¥ refines ¥y, it follows
that ¥ is D;-admissible for each . By Proposition each D; is convex on ¥. Let w € MWy(%)
be the unique Minkowski weight such that (X, w) represents X. By Theorem we conclude that
(¥, w) is Lorentzian, and the result is now a direct consequence of Propositions and g

7.3. Alexandrov—Fenchel inequalities for polytopes. We have seemingly come a long way
from the original inspiration for the ideas in this paper—the Alexandrov—Fenchel inqualities for
mixed volumes of polytopes—and we now bring the discussion full-circle by briefly outlining how

the Alexandrov—Fenchel inequalites sit within this story.

Let V be a d-dimensional vector space with fixed inner product. If 1 and X9 are complete sim-

plicial fans in V/, then it is essentially immediate from the definitions that the standard Minkowski
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d-weights on X1 and X9 introduced in Example are equivalent in the sense of Section [6] In
other words, the vector space V', viewed as a fan set, has a distinguished Minkowski d-weight 2
associated to the fixed inner product. It is not hard to see that (V,{2) is a Lorentzian fan variety,
simply by picking one’s favorite representative and showing that it is Lorentzian using Theorem
For example, the “orthant” fan with respect to any orthonormal basis of V' has symmetry that is

particularly amenable to this argument. Given polytopes Pi,..., P, € V, it then follows from

Proposition and Example that
1

VOld(Pl cee Pd) = dl

deg‘/’Q(Dpl te Dpd)

Thus, we see that the Alexandrov—Fenchel inqualities for mixed volumes of polytopes
volg(PLPoPs - - - Py)? > voly(P2Ps - - - Py)voly(PiPs - -- Py)

are captured by Theorem simply by considering the special case of X = (V,Q). Two interesting
aspects of this proof are that (i) it does not require a proof of the two-dimensional Brunn—Minkowski
inequalities, and (ii) it does not require one to approximate sets of polytopes with sets of simple

strongly isomorphic polytopes.
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