MIXED VOLUMES OF NORMAL COMPLEXES
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ABSTRACT. Normal complexes are orthogonal truncations of simplicial fans. In this paper,
we develop the study of mixed volumes for normal complexes. Our main result is a sufficiency
condition that ensures when the mixed volumes of normal complexes associated to a given fan
satisfy the Alexandrov—Fenchel inequalities. By specializing to Bergman fans of matroids, we
give a new proof of the Heron—Rota—Welsh Conjecture as a consequence of the Alexandrov—

Fenchel inequalities for normal complexes.

1. INTRODUCTION

The Alexandrov-Fenchel inequalities [Ale37] lie at the heart of convex geometry, asserting

that, for any convex bodies Po, Py, Ps ..., P; € R%, their mixed volumes satisfy
MVol(Py, Py, Py, ..., P))? > MVol(Py, Po, Py, ..., Py) MNol(Py, Py, Ps, ..., Py).

This paper is centered around developing an analogue of the Alexandrov—Fenchel inequalities
in a decidedly nonconvex setting. The geometric objects of interest to us are normal com-
plexes, which were recently introduced by A. Nathanson and the third author [NR21]. Given
a pure simplicial fan ¥, a normal complex associated to X is, roughly speaking, a polyhedral
complex obtained by truncating each cone of ¥ with half-spaces perpendicular to the rays of
Y. The choice of where to place the truncating half-spaces results in a family of normal com-
plexes associated to each fan 32, and the question that motivates this work is: for a given fan
Y2, do the mixzed volumes of the associated normal complexes satisfy the Alexandrov—Fenchel
inequalities? Our main result (Theorem 5.1) describes two readily verifiable conditions on

Y that guarantee an affirmative answer to this question.

One of the motivations for studying mixed volumes of normal complexes is that, in the
special setting of tropical fans, mixed volumes correspond to mixed degrees of divisors in
associated Chow rings. Thus, Alexandrov—Fenchel inequalities for normal complexes lead
to nontrivial numerical inequalities in these Chow rings. A class of tropical fans that have
garnered a great deal of attention in recent years are Bergman fans of matroids, and one
application of our main result (Theorem 6.2) is that normal complexes associated to Bergman

fans of matroids satisfy the Alexandrov—Fenchel inequalities. Translating these inequalities
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back to matroid Chow rings, we obtain a volume-theoretic proof of the log-concavity of
characteristic polynomials of matroids, a result that was conjectured by Heron, Rota, and
Welsh [Rot71, Her72, Wel76] and first proved by Adiprasito, Huh, and Katz [AHK18|.

1.1. Overview of the paper. We begin in Section 2 by briefly recalling the construction
of normal complexes and their volumes. Normal complexes, denoted Cy, .(2), depend on a
marked simplicial d-fan ¥ in a vector space Ng with an inner product * € Inn(/Ng), as well as
a choice of pseudocubical truncating values z € Cub(X, ) € R¥® (see Section 2 for precise
definitions). The volume of Cy ,(z), denoted Voly, .(2), where w is a weight function on the
top-dimensional cones of I, is defined as the weighted sum of the volumes of the maximal
polytopes in Cy .(z). The main result of [NR21] asserts that, if (¥, w) is a tropical fan, then

volumes have a Chow-theoretic interpretation:

(1.1) Volyx(2) = degy ,(D(2)?)  where D(2) = Y 2,X, € AY(%).
peX(1)
In Section 3, we introduce mixed volumes of normal complexes Ct .(21),...,Cx.«(24),
denoted MVoly , «(21, . .., z4), which are weighted sums of mixed volumes of maximal poly-

topes. Analogous to mixed volumes in convex geometry, we show that mixed volumes of
normal complexes are characterized by symmetry, multilinearity, and normalization by vol-
ume (Proposition 3.1). Furthermore, we prove that mixed volumes are nonnegative on the
pseudocubical cone Cub(X, *) and positive on the cubical cone Cub(X, ) (Proposition 3.5).
For all tropical fans (2, w), we leverage (1.1) to show (Theorem 3.6) that

(1.2) MVolyg (21, ..., 2a) = degy ,(D(21) - - D(zq)).

In Section 4, we develop the face structure of normal complexes, closely paralleling the
classical face structure of polytopes. In particular, the faces of a normal complex Cy .(z)
are indexed by cones 7 € ¥, and each face is obtained as the intersection of Cy, .(z) with the
truncating hyperplanes indexed by the rays of 7. We describe how each face can, itself, be
viewed as a normal complex associated to the star fan 37, and use this to define (mixed)
volumes of faces. Our main result of this section (Proposition 4.13), shows how mixed
volumes of normal complexes can be computed in terms of mixed volumes of facets.

In Section 5, we introduce what it means for a triple (X, w, %) to be AF—mnamely, that the
mixed volumes of cubical values satisfy the Alexandrov—Fenchel inequalities. Our main result
(Theorem 5.1), inspired by work of Cordero-Erausquin, Klartag, Merigot, and Santambrogio
[CEKMS19] and Bréandén and Leake [BL21], states that (X, w, ) is AF if (i) all star fans 37
of dimension at least three remain connected after removing the origin and (ii) the quadratic

volume polynomials associated to the two-dimensional star fans of 3 have exactly one positive
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eigenvalue. In fact, under these conditions, we argue that the volume polynomial Voly, .(2)
is Cub(X, *)-Lorentzian, which then implies that (X, w, *) is AF.

In Section 6, we briefly recall relevant notions regarding matroids and Bergman fans, and
then we use Theorem 5.1 to prove that Bergman fans of matroids are AF (Theorem 6.2).
We conclude the paper by deducing the Heron-Rota-Welsh Conjecture as a consequence of

the Alexandrov—Fenchel inequalities for normal complexes.

1.2. Relation to other work on the Heron—Rota—Welsh Conjecture. Since the orig-
inal proof of the Heron-Rota~Welsh Conjecture by Adiprasito, Huh, and Katz [AHK18],
there have been a number of alternative proofs, generalizations, and exciting related devel-
opments (an incomplete list includes [BHM*22, BHM*20, BES20, ADH20, AP20, AP21,
BH20, AGV21, ALGV19, ALGV18, CP21]). We view the volume-theoretic approach in this
paper as a new angle from which to view log-concavity of characteristic polynomials of ma-
troids, but we also want to acknowledge that our methods share features of and are indebted
to the approaches of several other teams of mathematicians. In particular, our methods rely
on the Chow-theoretic interpretation of characteristic polynomials of matroids, proved by
Huh and Katz [HK12], which was central in the original proof of Adiprasito, Huh, and Katz
[AHK18], as well as in the subsequent proofs by Braden, Huh, Matherne, Proudfoot, and
Wang [BHM 22| and Backman, Eur, and Simpson [BES20]. In addition, our methods prove
that volume polynomials are Lorentzian, which is also a central feature in the methods of
both Backman, Eur, and Simpson [BES20] and Bridndén and Leake [BL21]. By adding a
new volume-theoretic interpretation of the Heron—Rota—Welsh Conjecture to the literature,
we hope that this paper will serve to welcome a new batch of geometrically-minded folks

into the fold of this flourishing area of research, opening the door for further developments.

The approach of this paper is inspired by geometry, and the main arguments are valid
for mixed volumes of normal complexes associated to fans that are not necessarily tropical.
However, if we restrict ourselves purely to the setting of tropical fans, this approach has some
drawbacks, primarily centered around the notion of (pseudo)cubicalness. In particular, it
is not clear when a tropical fan can be endowed with an inner product for which cubical
values exist, and even if it can, the pseudocubical cone is typically a strict subcone of the
cone of locally convex divisors, which is where one would usually want properties like the
Alexandrov—Fenchel inequalities to hold. One possible generalization to get around these
issues would be to develop the notion of virtual normal complexes, in the spirit of Pukhlikov
and Khovanskii [PK92|. Alternatively, another way around this is to import the ideas used in
this paper into a more algebraic setting and study them purely in the context of intersection

theory on tropical fans. This latter approach is investigated in two papers that followed the
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appearance of this one [Ros23] and [BL23], where a version of the main result here is proved

at the generality of locally convex divisors on tropical fans.

1.3. Acknowledgements. The authors would like to express their gratitude to Federico
Ardila, Matthias Beck, Emily Clader, Chris Eur, and Serkan Hosten for sharing insights
related to this project. This work was supported by a grant from the National Science
Foundation: DMS-2001439.

2. BACKGROUND ON NORMAL COMPLEXES

In this section, we establish notation, conventions, and preliminary results regarding poly-

hedral fans and normal complexes.

2.1. Fan definitions and conventions. Let Nr be a real vector spaces of dimension n.
Given a polyhedral fan ¥ C Ng, we denote the k-dimensional cones of ¥ by (k). Let <
denote the face containment relation among the cones of ¥, and for each cone o € 3, let
o(k) C X(k) denote the k-dimensional faces of o. For any cone o, let ¢° denote the relative

interior of o and denote the linear span of o by N,r C Ng.

We say that a fan ¥ is pure if all of the maximal cones in ¥ have the same dimension.
We say that ¥ is marked if we have chosen a distinguished generating vector 0 # u, € p for
each ray p € ¥(1). Henceforth, we assume that all fans are pure, polyhedral, and marked,

and we use the term d-fan to refer to a pure, polyhedral, marked fan of dimension d.

We say that ¥ is simplicial if dim(N,g) = |o(1)] for all o € . The faces of a simplicial
cone o are in bijective correspondence with the subsets of o(1). For every face containment
7 < 0 in a simplicial fan ¥, let o \ 7 denote the face of o with rays (1) \ 7(1). Given two

faces 7, m < o, denote by 7 U m the face of o with rays 7(1) Un(1).
Given a simplical d-fan ¥ and a weight function w : ¥(d) — R, we say that the pair
(3,w) is a tropical fan if it satisfies the weighted balancing condition:

Z w(o)ue\; € Nyp forall 7€ X(d—1).

ceX(d)
T<0

While the definition of tropical fans can be generalized to nonsimplicial fans, we will assume
throughout this paper that all tropical fans are simplicial. If w(o) = 1 for all o € 3(d), we

say that ¥ is balanced and we omit w from the notation.

2.2. Chow rings and degree maps. Let Mg denote the dual of N and let (—, —) be the
duality pairing. Given a simplicial fan > C Ni, the Chow ring of X is defined by
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where

71 := <$p1 .."ka | RZO{p17' .. 7,0]€} ¢ Z> and j = < Z <U>up>xﬁ

pEX(1)

UEMR>.

As both Z and J are homogeneous, the Chow ring A®*(X) is a graded ring, and we denote
by A¥(X) the subgroup of homogeneous elements of degree k. We denote the generators of
A*(X) by X, == [z,] € AL(Z), and for any o € X(k), we define

Xo= [] X, €44
pEa(l)
If ¥ is a simplicial d-fan, then every element of A*(X) can be written as a linear combination
of X, with o € (k) (see, for example, [AHK18, Proposition 5.5]). It follows that A*(3) =0
for all &k > d. If, in addition, (X, w) is tropical, then there is a well-defined degree map

degy, : AYX) > R

such that degy, ,(X,) = w(o) for every o € X(d) (see, for example, [AHK18, Proposition 5.6]).

2.3. Normal complexes. We now recall the construction of normal complexes from [NR21].
In addition to a simplicial d-fan ¥ C Nk, the normal complex construction requires an
additional choice of an inner product * € Inn(Ng) and a value z € R¥. Given such a *

and z, we define a set of hyperplanes and half-spaces in Ny associated to each p € ¥ by
H,.(2) ={ve€ Ng|v*u, =2} and H, (2)={v€ Ng|vxu, <z}

We then define polytopes F, (%), one for each o € X, by

Notice that P, .(z) is simply a truncation of the cone o by hyperplanes that are normal to the
rays of o—what it means to be normal is determined by *, and the locations of the normal
hyperplanes along the rays of the cone are determined by z. We would like to construct a
polytopal complex from these polytopes, but in general, they do not meet along faces (see
Example 2.4 of [NR21]). To ensure that they meet along faces, we require a compatibility
between z and .

For each o € X, let w,.(2) € N,r be the unique vector such that w, .(z) * u, = z, for all
p € o(1). That such a vector exists and is unique follows from the fact that the vectors u,
with p € o(1) are linearly independent—this is equivalent to the simplicial hypothesis. We
then say that z is cubical (pseudocubical) with respect to (X, %) if

Woi(2) € 0° (Weu(2) €0) forall oeX.
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In other words, the pseudocubical values are those values of z for which the truncating
hyperplanes intersect within each cone, and the cubical values are those for which they
intersect in the relative interior of each cone. The collection of cubical values are denoted
Cub(%, *) € R¥W and the pseudocubical values are denoted Cub(X, ) C R¥M.

We now summarize key results from [NR21| that will be necessary for the developments
in this paper (see [NR21, Propositions 3.2, 3.3, and 3.7 ]).

Proposition 2.1. Let ¥ C Ny be a simplicial d-fan and let * € Inn(Ng) be an inner product.

(1) The set Cub(X, ) C R*W is a polyhedral cone with Cub(X, x)° = Cub(X, *).
(2) For z € Cub(X, %), the vertices of P,.(z) are {w,.(z) | T < o}.
(3) For z € Cub(X, %), the polytopes P, .(z) meet along faces.

For any polytope P, let P denote the set of all faces of P. The third part of Proposition 2.1
implies that

is a polytopal complex whenever z € Cub(X, %), and this polytopal complex is called the
normal complex of ¥ with respect to x and z.

Below, we depict a two-dimensional tropical fan and an associated normal complex. The
fan is comprised of nine two-dimensional cones glued along faces, and each of these nine

cones corresponds to a quadrilateral in the normal complex.

7

The next pair of images depict a three-dimensional fan comprised of two maximal cones
meeting along a two-dimensional face, and a corresponding normal complex. While this
fan is not tropical, the reader is welcome to view this image as just one small piece of a

three-dimensional tropical fan in some higher-dimensional vector space.
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2.4. Volumes of normal complexes. Let ¥ C Ni be a simplicial d-fan, x € Inn(/Vg)
an inner product, and z € Cub(X, *) a pseudocubical value. Informally, the volume of the
normal complex Cy. ,(z) is the sum of the volumes of the polytopes P, .(z) with o € 3(d);
however, some care is required in specifying what we mean by volume in each subspace N, g.

For each cone o € ¥, define the discrete subgroup
N, = span(u, | p € o(1)) C Na,

and let M, denote its dual: M, := Homy(N,,Z) C M, == Homg(N,g,R). Using the inner
product *, we can identify M, with N,r and thus, we can view M, as a lattice in N, g.
For each o € X, let

Vol, : {polytopes in NU,R} — R>o

be the volume function determined by the property that a fundamental simplex of the lattice
M, C N, has unit volume. Define the volume of the normal complex Cy ,(z), denoted

Vol . (z) for brevity, as the sum of the volumes of the constituent d-dimensional polytopes:

In slightly more generality, suppose that w : ¥(d) — R.q is a weight function on the maximal

cones of ¥.. The volume of the normal complex Cfy .(z) weighted by w is defined by
Volg(2) = Y w(0) Volo(Py.(2)).
oeX(d)

Remark 2.2. In [NR21] the authors use the notation Vol(Cy, .(z);w) instead of Volg, .(2).
We chose to use the latter notation here because the former becomes quite cumbersome once

we pass to mixed volumes below, where there are d arguments instead of just one.

The main result of [NR21] is a Chow-theoretic interpretation of the weighted volumes of

normal complexes, valid whenever (3, w) is tropical.
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Theorem 2.3 ([NR21, Theorem 6.3]). Let (3,w) be a tropical d-fan, * € Inn(Ng) an inner
product, and z € Cub(X, *) a pseudocubical value. Then

Volg . (2) = degy , (D(2)7)

where
D(z)= ) zX,eA(%).

peEX(1)

In particular, we note that Theorem 2.3 implies that Voly, .(#) is independent of the inner

product *, so long as it is chosen so that z € Cub(X, *).

3. MIXED VOLUMES OF NORMAL COMPLEXES

Our first aim in this paper is to enhance Theorem 2.3 to a statement about mixed volumes.
In order to do this, we briefly recall the classical theory of mixed volumes, for which we

recommend the comprehensive text by Schneider [Sch14] as a reference.

3.1. Mixed volumes of polytopes. Mixed volumes are the natural result of combining the
notion of volume with the operation of Minkowski addition. We start with a d-dimensional
real vector space V' and a volume function Vol : {polytopes in V} — Rsy. The mixed

volume function
MVol : {polytopes in V}% — Rxq
is the unique function determined by the following three properties.

e (Symmetry) For any permutation 7 € Sy,
MVOl(P,, ..., Py) = MVol(=(P, ..., Py)).
e (Multilinearity) For any ¢ =1,...,d and A € R,

MVOl(Py, ..., AP+ Pl,...,Py) = AMVol(Py,..., P, ..., Py)
+MVol(Py,...,Pl,.... Py,

where the linear combination of polytopes is defined by
AP, + P ={\v+w|veP,we P/}
e (Normalization) For any polytope P,
MVol(P, ..., P) = Vol(P).

That such a mixed volume function exists and is unique is due to Minkowski [Min03], who

proved that such a function exists more generally for convex bodies, not just for polytopes.
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3.2. Mixed volumes of normal complexes. We now define a notion of mixed volumes

of normal complexes. Let ¥ C Ny be a simplicial d-fan and let * € Inn(Ng) be an inner

product. Given pseudocubical values zy, ..., zg € Cub(X, *), we define the mixed volume
of the normal complexes Cy .(z1),...,Cx.(z4), denoted MVoly . (z1, ..., z4) for brevity,
by

MVoly (21, ..., 2a) = 3 MVoly(Pyu(21), ..., Pru(za)).

In other words, the mixed volume is the sum of the mixed volumes of the polytopes associated
to the top-dimensional cones of ¥. More generally, if w : 3(d) — Ry is a weight function,
then the mixed volume of the normal complexes Cfy .(21),...,Cx .(24) weighted by
w is defined by

MVoly g u(21:- -, 2a) = Y w(0) MVoly(Pru(21), .- Prs(za))-

oeXx(d)
In order to verify that this is a meaningful notion of mixed volumes for normal complexes,
we check that it is characterized by an analogue of the three characterizing properties of

mixed volumes of polytopes.

Proposition 3.1. Let ¥ C Ny be a simplicial d-fan, x € Inn(Ng) an inner product, and
w: X(d) = Reg a weight function.

(1) For any z1,...,2z4 € Cub(3, %) and m € Sy,
MVoly (21, - .., 24) = MVolg .« (7(21, - . ., 2a))-
(2) For anyi=1,....d, and for any 21, ..., 2,2, ..., 24 € Cub(%, %) and X € Rx,
MVoly 4 (21, .-y A2i + 25y ooy 2a) = AMVols i (21, oy 24y -+ -4 24)
+ MVoly s (215 -y 20 - -y Za)-
(3) For any z € Cub(X, *),
MVoly , (2, ..., 2) = Volg 4 «(2).

Moreover, any function Cub(X, x)® — Rsq satisfying Properties (1) — (3) must be MVoly, ..
Proof. Given that
MVoly (21, .-, 2a) = Y w(0) MVole(Pyu(z1), ., Pru(2a))
ceX(d)
and the summands in the right-hand side are simply mixed volumes of polytopes, Proper-

ties (1) and (3) follow from the symmetry and normalization properties of mixed volumes in

the polytope setting. Moreover, once we prove that

(3.2) P,.(Az+2') = AP, . (2) + P,.(2)
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for all z, 2 € Cub(X, %) and A € Rsg, then Property (2) also follows from the multilinearity
property of mixed volumes in the polytope setting. Thus, it remains to prove (3.2), which

we accomplish by proving both inclusions.

First, suppose that v € P, ,(Az + 2’). By Proposition 2.1, the vertices of P, ,(Az + 2') are

{w, . (Az+2') | T < o}, so we can write v as a convex combination:

(3.3) v = Z ar wr(Az +2')  for some a, € Ry with Z a, = 1.

T=0 70

To prove that v € AP, .(z) + P,.(Z"), our next step is to prove that the vertices are linear:
(3.4) Wr (A2 + 2') = A, (2) + w, . (2).

Since w,(Az + 2') is the unique vector in N,g with w,,(Az + 2') xu, = (A\z + 2), for
all p € 7(1), proving (3.4) amounts to proving that A\w, .(2) + w,.(z") also satisfies these

equations. Using bilinearity of the inner product and the definition of the w vectors, we have
(AW (2) + wrk(2) % up = Mori(2) *u, + wri(2') * u,
=Xz, + 2,

=Nz +2),.
Therefore, (3.4) holds, and substituting (3.4) into (3.3) implies that

U=\ Z a;wr(2) + Z a,wr 4 (2') € AP, (2) + Py i (2).

T=0 T=0

To prove the other inclusion, suppose that v € AP, .(z) + P, .(2). Then v = Aw + v’ for
some w € F,,(z) and w’ € P, (). This means that w,w’ € o and, in addition, w - u, < 2,
and w'-u, < z, for all p € o(1). Since o is a cone, u = Aw +w' € o and, for every p € o(1),

we have
o !
v u, = (Aw+w') *xu,
_ /
= AW * U, + W *u,
/
S)\zp+zp,

from which we conclude that v € P, .(Az + 2).

Finally, to prove the final assertion of the proposition, suppose that F' : Cub(3, )¢ — R>o
satisfies Properties (1) — (3). Our goal is to prove that F(zy,...,2z4s) = MVolg ,.(21, ..., 24)
for any pseudocubical values zq,...,2z4 € m(& x). Set z = Aiz1 + -+ + Agzq with
Aty ...y Ag € Ry arbitrary. Property (3) implies that

F(z,...,2) = Volg,.(2) = MVoly ,, (2, ..., 2).
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Using Properties (1) and (2) we can expand both the left- and right-hand sides of this

equation as polynomials in Ay, ..., Ay

d
Z (kh-..,kd) (u  Zds s Zd)A] k

k1,....kq

k1 ka
d
E k k
= MVoly i (215« o s 215 ooy Zds oo oy Za) AT - A
L ki,..., kg ——_—— ———
1yeeskg ky kg

Equating the coefficients of A; - - - Ay in these two polynomials leads to the desired conclusion:
F(z,...,24) = MVolg o . (21, - - -, 24)- O

Our methods for studying Alexandrov—Fenchel inequalities will also require the following

positivity result.

Proposition 3.5. Let ¥ C Ny be a simplicial d-fan, x € Inn(Ng) an inner product, and
w: X(d) = Rsg a weight function. Then

MVoly (21, ..,24) >0 forall z,...,z4 € Cub(X, )

and
MVols (21, .. .,24) >0 forall zy,...,z4 € Cub(X, %).

Proof. The first statement follows from the definition of MVoly,,, . and the nonnegativity
of mixed volumes of polytopes [Sch14, Theorem 5.1.7]. For the second statement, we first
observe that z € Cub(X, %) implies that P,.(z) has dimension d for every o € ¥(d), which
follows from the fact that P, .(z) is combinatorially equivalent to a d-cube [NR21, Propo-
sition 3.8]. Thus, the second statement follows from the fact that mixed volumes of full-
dimensional polytopes are strictly positive [Sch14, Theorem 5.1.8] (we empasize that the
polytope P, .(z) is not full-dimensional in Ng, but it is full-dimensional in N, g, which is

where the appropriate volume function is defined). O

3.3. Mixed volumes and mixed degrees. We now extend Theorem 2.3 to give a Chow-

theoretic interpretation of mixed volumes of normal complexes associated to tropical fans.

Theorem 3.6. Let (X,w) be a tropical d-fan, let * € Inn(Ng) be an inner product, and let

21,...,24 € Cub(%, %) be pseudocubical values. Then
MVols ,, «(21, - - -, 2a) = degy ,(D(21) - - D(zq)).
Proof. By Proposition 3.1, it suffices to prove that the function
Cub(%, ¥)* = Rxg
(21,...,2a) = degy ,(D(21) - - D(zq))
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is symmetric, multilinear, and normalized by Voly, .. Symmetry follows from the fact that
A*(X) is a commutative ring, multilinearity follows from the fact that degy,, : A4(X) — R

is a linear map, and normalization is the content of Theorem 2.3. 0

4. FACES OF NORMAL COMPLEXES

In this section, we develop a face structure for normal complexes, analogous to the face
structure of polytopes (see [Zie95] for a standard reference on polytopes). Parallel to the
polytope case, we will see that each face is obtained by intersecting the normal complex with
supporting hyperplanes, that each face can, itself, be viewed as a normal complex, and that
a face of a face is, itself, a face. We then prove fundamental properties relating (mixed)
volumes of normal complexes to the (mixed) volumes of their facets, which perfectly parallel

central results in the classical polytope setting.

4.1. Orthogonal decompositions. The face construction for normal complexes makes
heavy use of an orthogonal decomposition of Nk associated to each cone 7 € 3, which
we now describe. Associated to each 7 € ¥, we have already met the subspace N.r C N,

which is the linear span of 7, and we now introduce notation for the quotient space
Ng = Nr/N;R.
With the inner product *, we may identify Ng as the orthogonal complement of N g:
Ni=Nip={veNg|vsu=0forallue N} C Ng,

allowing us to decompose Ng as an orthogonal sum Ng = N g @ Ng. We denote the

orthogonal projections onto the factors of this decomposition by pr. and pr”.

As we will see below, given a normal complex Cy. .(z) and a cone 7 € X, we will associate
a face F7(Cy.(2)), and this face will lie in the space NZ. In order to help the reader
digest the construction of F7(Cy, . (z)) and its subsequent interpretation as a normal complex,
we henceforth make the convention that 7 superscripts will be used exclusively for objects
associated to the vector space N§. For example, 7 will denote a fan in N} and #” will denote

an inner product on Ng.

4.2. Faces of normal complexes. There are two primary steps in the face construction
for normal complexes. The first step is completely analogous to the polytope setting: we
intersect the normal complex with a collection of supporting hyperplanes to obtain a sub-
complex. However, in order to view this resulting subcomplex as a normal complex itself,
the second step of the construction requires us to translate this polytopal subcomplex to the

origin, where we can then endow it with the structure of a normal complex inside Nj.
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Let ¥ C Ng be a simplicial d-fan, * € Inn(/Ng) an inner product, and z € Cub(X,*) a

pseudocubical value. For each cone 7 € 3, define the neighborhood of 7 in ¥ by
N, Y = {7 | 7m <o for some ¢ € ¥ with 7 < 7}.

To illustrate this definition, we have darkened the neighborhood of the ray p in the following

two-dimensional fan.

Notice that N,X is, itself, a simplicial d-fan in Ng whose cones are a subset of ¥, and the
maximal cones of N, comprise all of the maximal cones of ¥ that contain 7. Since every
maximal cone o € N,3(d) contains 7 as a face, it follows from the definitions that each
hyperplane H,.(z) with p € 7(1) is a supporting hyperplane of P, ,(z):

Pyu(2) CH, (2) forall oeNX(d) and per(l).

Thus, for each o € N,X(d), we obtain a face of P, ,.(z) by intersecting with all of these
hyperplanes:

Fr(Pou(2)) = Pou(2) N () Hpul(2).

The collection of these polytopes along with all of their faces forms a polytopal subcomplex

of Cy .(z), which we denote

F(Cs.(2) = |J F(Bal2)).

oEN-X(d)

To illustrate how the polytopal subcomplex F,(Cy .(z)) is constructed in a concrete exam-
ple, the following image depicts a two-dimensional normal complex where we have darkened
the collection of maximal polytopes associated to the neighborhood of a ray p. We have
also drawn in the hyperplane associated to p. The intersection of the hyperplane and the
darkened polytopes is F,(Cy, «(z)), which, in this example, is a polytopal complex comprised

of three line segments meeting at the point w, .(z).
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One might be tempted to call F,(Cx.(2)) a “face” of Cx, .(z); however, a drawback would
be that F.(Cyx .(2)) is not, itself, a normal complex (all normal complexes contain the origin,
for example, while F,(Cyx.(z)) generally does not). Thus, our construction involves one
more step, which is to translate F,(Cx.(z)) by the vector w,.(z). Notice that, tracking

back through the definitions, there is an identification of affine subspaces

ﬂ H,.(2) = Ny +w;.(2).

peT(1)

Since F,(Cx «(2)) is, by definition, contained in the left-hand side, it follows that its trans-
lation by —w, .(2) is a polytopal complex in Nj. We define the face of Cy (%) associated

to 7 € ¥ to be this polytopal complex:
F7(C(2) = Fr(Cra(2)) — wra() € NG

The face associated to the ray p in our running example is depicted below inside Nf.

Ni = Hyu(2) — wp,(2)

The next pair of images depicts the subcomplex F,(Cy .(2)) € Cx .(2) and, after trans-

lating to the origin, the face F?(Cy .(2)), where p is a ray of a three-dimensional fan.
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Fr(Csa(2))

)

In the following subsections, it will also be useful to have notation for translates of the
polytopes F.(P,.(z)). We define

FT(P,.(2)) = Fr(Pri(2)) — wrs(2).

In terms of these translated polytopes, we can write the 7-face of Cx .(z) as

—

F'(Cs(2) = |J F(Pul2)

0EN,X(d)

4.3. Faces as normal complexes. Our aim in this subsection is to realize each face
F7(Cx .(#)) as a normal complex. In order to do so, we require several ingredients; namely,
we require a marked, pure, simplicial fan X7 in Ny, an inner product *” on Ng, and a

pseudocubical value 2™ € Cub(X7, 7). We now define each of these ingredients.

For each cone 7 € ¥, define the star of X at 7 € ¥ to be the fan in Nj comprised of all

projections of cones in the neighborhood of 7:
YT i={pr"(m) | ™€ N.X}.

The star of a two-dimensional fan X at a ray p is depicted below. In the image, there
are three two-dimensional cones in the neighborhood of p that are projected onto three

one-dimensional cones that comprise the maximal cones in the star fan >*.

p
¥ C Ngr

/Zp C N

Henceforth, we use the shorthand n™ = pr” (7).
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Given any cone 77 € X7 with 7 € N3, we can also view 77 as the projection of the larger
cone 0 = mUT € N, Y. Note that ¢ is the unique maximal cone in N, that projects onto
7«7, from which it follows that each cone in 37 is the projection of a distinguished cone in

N, 3. In other words, there is a bijection

{ceNE| 70} %

oo,

From the assumptions that X is a simplicial d-fan, it follow that ¥7 is a simplicial fan in Ng
that is pure of dimension d” = d — dim(7). Moreover, the simplicial hypothesis on ¥ implies
that each ray n € X7(1) is the projection of a unique ray 7 € N, X(1), and we can use this
to mark each ray n € X7(1) with the vector pr”(u;).

We now have a marked, pure, simplicial fan in Nj, so it remains to define an inner product
and pseudocubical value. The inner product *™ € Inn(/Nf) is simply defined as the restriction
of the inner product * € Inn(Ng) to the subspace Nj. Lastly, given any z € R we define
27 € R¥ MW by the rule

Zp = 2y — Wrk(2) * Up,

where, as before, 77 € N,.X(1) is the unique ray with pr7(7) = 7.
We now have all the ingredients necessary to state and prove the following result, which

asserts that faces of normal complexes are, themselves, normal complexes.

Proposition 4.1. Let ¥ C Ny be a simplicial d-fan, x € Inn(Ng) an inner product, and
7 €Y acone. If z € R*W is (pseudo)cubical with respect to (X, %), then 27 is (pseudo)cubical
with respect to (X7, %7) and

FT(CE,* (Z)) = CET’*T (ZT).

We note that the first statement—that 27 is (pseudo)cubical—is necessary in order for
Cyr 4+ (27) to even be well-defined. Proposition 4.1 is a statement about normal complexes,
or equivalently, about the polytopes that comprise those complexes. In order to prove
Proposition 4.1, we first prove the following key lemma, which concerns just the vertices of

the polytopes that comprise normal complexes.

Lemma 4.2. Let X C Ny be a simplicial d-fan, * € Inn(Ng) an inner product, and 7 € ¥

a cone. For any o € ¥ with 7 < o, we have
P (Wok(2)) = Wou(2) — Wra(2) = wor o (27).

Proof. We start by establishing the first equality. To do so, we begin by arguing that

Wei(2) — wrW(2) € Ng. Since Ng = Njg, it suffices to prove that wy.(z) — w-.(z) is

T
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orthogonal to the basis {u, | p € 7(1)} € N,r. By definition of the w vectors and the

assumption that 7 < o, we compute
(Wou(2) —wri(2)) xu, =2,—2,=0 forall per(l),

from which it follows that w, .(2) — w;.(2) € N§. Since Ng = N, g & Nj, the orthogonal

decomposition wy . (2) = W, «(2) + (W i(2) — W, .(2)) then implies that
(4.3) pr(Wes(2)) = wru(z) and  pri(we.(2)) = Wou(2) — wri(2).

To prove that Wy .(z) — Wr.(2) = Wer . (27), we now argue that w,.(z) — w,.(2) is an

clement of N,- g and is a solution of the equations defining wyr 4 (27):
(4.4) v*"u, =z, forall neo’(1).

To check that w,.(z) — wr.(z) € N,- g, we start by observing that we can write

Woi(2) = Z a, u,

peEo(l)

for some values a, € R, in which case

Wo s (Z) — wT,*(Z) = prT(wa’*(z))

= D apr(u)

pea(\7(1)

= E: Qp Up,

n€oT(1)

where the first equality uses (4.3), the second uses that pr” vanishes on N, g, and the third
uses that the rays of ¢ are in natural bijection with o(1) \ 7(1). Lastly, we peel back the

definitions to check that w, .(2) — w..(2) is a solution of Equations (4.4):

(Wo,x(2) = wrk(2)) %" Uy = (Wou(2) — wri(2)) * (uy — prr(uz))
= Wo i (2) % Uy — Wri(2) *uy — (wa’*(z) — wm(z)) * pr(uy)
= 2 — Wri(2) * uy

:Z7]7

where the first equality uses the orthogonal decomposition of wu; and the fact that *7 is
just the restriction of x, the second equality uses linearity of the inner product, and the
third equality uses the definition of w, .(z) along with the fact that the vectors pr.(u;) and

Wox(2) — wr.(2) = pr7(w,.(2)) are in orthogonal subspaces. O
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Proof of Proposition 4.1. To prove the first statement in the cubical setting, assume that

2z € R¥Y is cubical. This means that, for every o € ¥, we can write

We(2) = Z a,u,

p€a(1)
for some positive values a, € Rso. Consider any cone of X7, which we can write as 07 with

7 =< 0. Applying the lemma, we then see that

Wor a7 (27) = P’ (Wo,+(2))

= Z a, pr’(u,)

pea(\7(1)

= E CLﬁ un .

n€o7(1)
This shows that w,+ .~(27) can be written as a positive combination of the ray generators of
o7, proving that 2™ € Cub(X7, *7). The proof in the pseudocubical setting is identical but

with “positive” replaced by “nonnegative.”
To prove that
FT(Csi(2)) = Cyr ur (27),
it suffices to identify the maximal polytopes in these complexes. In other words, we must

prove that, for every o € N.X(d), we have
(4.5) FT(Py(2)) = Pyraur(27).
To prove (4.5), we analyze the vertices of these polytopes.

By Proposition 2.1, the vertices of P, ,(z) are {wx.(z) | m# < o}. Since

L (Pou(2)) = Pou(2) N ﬂ H,. (),

pET(1)

it follows that the vertices of F,. (P, .(z)) are
{wr(2) | ™ =0 and w, .(2) *u, = 2, for all p € 7(1)}.

If a cone ™ < o satisfies wy .(2) xu, = 2, for all p € 7(1), then the definition of the w-vectors

implies that wy .(z) = wxur.(2), and it follows that the vertices of F,(FP,.(z)) are
Vert (Fr(Py.(2))) = {wru(2) | 7 =1 < 0},
Upon translating by w; .(z) to get from F.(F,.(z)) to F7(P,.(z)), we see that
Vert (F7(Py.(2))) = {wrnu(2) —wrs(2) | 7 27 <0}
={wprur (7)) | 7" 207}

= Vert (PJT,*T(ZT»)’
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where the second equality is an application of Lemma 4.2 and the third is an application
of Proposition 2.1. Having matched the vertices of the polytopes in (4.5), the equality of
polytopes then follows. O

The importance of Proposition 4.1 is that it allows us to endow each of the faces of a
normal complex with the structure of a normal complex, and in particular, it then allows
us to compute (mixed) volumes of faces. More specifically, if w : ¥(d) — Ryq is a weight
function, then we obtain a weight function w”™ : ¥7(d") — R defined by w”(¢7) = w(o) for
all o € ¥(d). The volume of the face F7(Cy .(z)) weighted by w is

VOIET,UJT,*T (ZT)
Similarly, the mixed volume of the faces F7(Cy .(21)), ... F7(Cx «(24)) weighted by w is
MVOIET,wT7*T (ZI, ey Z:i-7—>

In the next two subsections, we use these concepts to prove fundamental results relating
(mixed) volumes of normal complexes to the (mixed) volumes of their facets. In making
arguments using mixed volumes, it will be useful to consider facets of facets; as such, the
next result—asserting that the face of a face of a normal complex is a face of the original

normal complex—will be useful.

Proposition 4.6. Let ¥ C Ng be a simplicial d-fan, * € Inn(Ng) an inner product, and
z € Cub(X, %) a pseudocubical value. If T,m € ¥ with T <7, then

F™(F7(Csu(2))) = F7(Cru(2)).
Proof. By Proposition 4.1, the claim in this proposition is equivalent to
FWT(CZT’*T (ZT)) — C’ETF’*TF (Zﬂ—)

It suffices to match the maximal polytopes in these complexes, so we must prove:

T

(4.7) FT (Pyryr(27)) = Por yn(27) forall o€ X(d) with 7<o.
The vertices of the polytope in the left-hand side of (4.7) are

{wpr wr (27) = Wpr yr (27) | 77 2" 207}
while the vertices in the right-hand side of (4.7) are

{wyr o= (27) | p" <07}
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Notice that both sets of vertices are indexed by p € ¥ with 7 < ¢ < o, and we have
Wyr s (27) = Wer wr (27) =PI (Wyr 4r (27))
= pr" (pr” (wy.(2)))
= pri(wu«(2))
= Wy (27),
where the first, second, and fourth equalities are Lemma 4.2, while the second is the obser-

vation that the projection pr™ can be broken up into two steps: pr™ = pr™ o pr”. Thus, the

vertices of the polytopes in (4.7) match up, and the proposition follows. 0

4.4. Volumes and facets. This subsection is devoted to proving the following result, which

relates the volume of a normal complex to the volumes of its facets.

Proposition 4.8. Let ¥ C Ny be a simplicial d-fan with weight function w : ¥(d) — Rxq,
let x € Inn(Ng) be an inner product, and let z € Cub(3, %) be a pseudocubical value. Then

Vol we(2) = Y 2, Volup e (2°).

peEX(1)

The sum in the right-hand side of the theorem corresponds to decomposing the normal

complex into pyramids over its facets, as depicted in the next image.

Proposition 4.8 follows from the following lemma relating the volume function Vol, on

N, r to the volume function Vol,, on the hyperplane N,»r C N, .

Lemma 4.9. Under the hypotheses of Proposition 4.8, let 0 € ¥(d) and p € o(1). For any
polytope P C Nyor and a € R>g, we have

Vol, (conv(0, P + au,)) = a(u, * u,) - Vol,»(P).

For intuition, we note that the polytope conv(0, P + au,) appearing in the left-hand side
of Lemma 4.9 is obtained from the polytope P by first translating P along the ray p, which
is orthogonal to N,» g, then taking the convex hull with the origin, the result of which can

be thought of as a pyramid with P as base and the origin as apex. The right-hand side can
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then be thought of as a “base-times-height” formula for the volume of this pyramid, where

the “height” of the vector au, is a(u, * u,). We now make this informal discussion precise.

Proof of Lemma 4.9. Let {v, | n € 0(1)} C M, be the dual basis of {u, | n € o(1)} C Ny,
defined uniquely by the equations

L p=n
0 wpu#n.

Recall that each ray generator of o is of the form pr*(u,) for a unique n € o(1) \ {p}; we

Uy *Uu =

claim that the dual vector of pr”(u,) in M, is v, —in other words, the dual vector of pr(u,)
is the same as the dual vector of u,. To verify this, note that, for any 7, u € o(1) \ {p}, we
have

pr’(u,) *” v, = (u; — pr,(uy)) * v,

:un*vu
1 op=n
0 p#n,

where the first equality uses the decomposition of u, into its orthogonal components, along
with the fact that *° is just the restriction of *, and the second equality uses that pr(u,) is

a multiple of u,, along with u, * v, = 0.

Using these dual bases, we defined simplices in each of vector spaces N,r and Ny»r by
A(o) = conv(0,{v, | n € o(1)}) C Nyr
and
A(0?) = conv (0, {vy [ n € (1) \ {p}}) € Nov .
By our convention on how volumes are normalized in N, r and N, g, along with our verifi-

cation above that {v, | n € o(1) \ {p}} is the dual basis of the ray generators of o”, these

simplices have unit volume:
Vol, (A(o)) = Vol (A(c?)) = 1.

Notice that A(o”) is a facet of A(0) and we can write A(o) = conv(v,, A(o”)). If we project

the vertex v, of A(c) onto the line spanned by p, we obtain a new simplex
As(or) = conv(pr, (1), A(o”).
Since the projection pr, is parallel to the facet A(o”?), it follows that

Vol, (A1 (0)) = Vol (A(0)) = Vol,»(A(0”)).
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Now define a new simplex by sliding the vertex pr,(v,) along p to the new vertex au,:
Aq (o) = conv(au,, A(a”)).

Up

)
Up*Up

is obtained from A;(c) by scaling the height of the vertex pr,(v,) by a factor of a(u, * u,).

By the standard projection formula, we have pr,(v,) = from which we see that Ay(0)

It follows that the volume also scales by a(u, * u,):

Vol (As(0)) = a(u, * u,) - Vol,(A1(0)) = a(u, *u,) - Vol (A(a?)).
More concisely, we have proved that
(4.10) Vol, (conv(au,, P)) = a(u, * u,) - Vol,»(P)

when P = A(o?).
As avisual aid, we have depicted below the sequence of polytopes from the above discussion

in the specific setting of a two-dimensional cone o, which we have visualized in R? with the

usual dot product.

We now extend (4.10) to any simplex P C N,, g. To do so, first note that a simplex P can
be obtained from the specific simplex A(o”) by a composition of a translation and a linear

transformation on N,,g. Translating P within Ny, g does not affect the volume on either
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side of (4.10). Given a linear transformation 7" on N,» g, on the other hand, we can extend

it to a linear transformation 7' on Ny r by simply fixing the vector u,, in which case we have

~

T(conv(au,, P)) = conv(au,, T(P)).

-~

Since det(7") = det(T") and linear transformations scale volumes by the absolute values of
their determinants, we conclude that the equality in (4.10) is preserved upon taking linear
transforms of P:

Vol, (conv(au,, T(P))) = Vol, (T\(conv(aup, P)))
= | dct(f)| Vol, (conv(au,, P))
= |det(T")| - a(u, * u,) - Vol,» (P)
= a(u, * u,) - Vol (T(P)).
Knowing that (4.10) holds for simplices, we extend it to arbitrary polytopes P C N,»r
by triangulating P and applying (4.10) to each simplex in the triangulation. The lemma

then follows from (4.10) along with the observation that conv(au,, P) is just a reflection of

conv(0, P + au,), so has the same volume. 0
We now use Lemma 4.9 to prove Proposition 4.8.

Proof of Proposition 4.8. For each top-dimensional cone o € 3(d) and p € o(1), consider
the polytope face F, (P, .(2)) C P,.(z). By definition, we have

Fo(Pox(2)) = FP(Fru(2)) + wp(2).

Noting that w, .(z) = Z”up u,, Lemma 4.9 computes the volume of the pyramid conv(0, F,(F, .(2))):

(4.11) Vol, (conv(0,F, (P4 (2)))) = 2, Volgo (F? (P (2)) = 2, VOlgs (Poo w0 (7)),

where the second equality is an application of (4.5).

Next, note that we can decompose each polytope P, .(z) into pyramids over the faces
F,(P,.(z)) with p € (1), implying that

(4.12) Vol (Pru(2)) = Y Vol (conv(0,Fy(Pr.(2))).

pea(l)
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We then compute:

Volswa(2) = Y w(0) Voly(Pyu(2))

oeX(d)

= Z w( Z Vol, (conv (0, F,(Py.(2)))
ceX(d) pEa(l)

= Y w(o) Y 2, Volos(Porsr(2))
oex(d) peo(l)

=Yz Y w(0”) Volg(Por (7))

peX(1)  orexr(d—1)

= Z ZpV()lZp’wp’*p(Zp),

peX(1)

where the first equality is the definition of Voly, .(2), the second and third are (4.12) and
(4.11), respectively, the fourth follows from the definition of w” and the fact that cones in

¥P(d — 1) are in bijection with the cones in 3(d) containing p via o” <+ o, and the fifth is
the definition of Volss yp .0 (7). O

4.5. Mixed volumes and facets. The aim of this subsection is to enhance Proposition 4.8
to the following more general statement about mixed volumes. See [Sch14, Lemma 5.1.5] for

the analogous result in the classical setting of strongly isomorphic polytopes.
Proposition 4.13. Let X C Ny be a simplicial d-fan with weight function w : ¥(d) — Rxq,

let x € Inn(Ng) be an inner product, and let z1,. .., zq € Cub(X, *) be pseudocubical values.
Then

MVoly, (21, ..., 24) = Z 21,p MVOlyo o wr (25, ..., 25).

peEX(1)

Proof. We proceed by induction on d. If d = 1, then mixed volumes are just volumes,
in which case Proposition 4.13 is a special case of Proposition 4.8. Assume, now, that

Proposition 4.13 holds in dimension less than d > 1. Define

F(z1,...,2q4) = Z 21,p MVolsp o o (25, ..., 25).

pEX(1)

To prove that F' = MVoly ,,,, Proposition 3.1 tells us that it suffices to prove that F'is (1)
symmetric, (2) multilinear, and (3) normalized correctly with respect to volume; we check

these properties in reverse order.



MIXED VOLUMES OF NORMAL COMPLEXES 25

To check (3), we note that

F(z,...,z) = Z 2p MVOlsp oo 4o (27, ..., 27)

peEX(1)
ES Z ZpVlepMp’*p(Zp)
peEX(1)

= V0127w’* (Z),

where the first equality is the definition of F', the second is Proposition 3.1 Part (3), and the
third is Proposition 4.8.

To check (2), there are two cases to consider: linearity in the first coordinate and linearity
in every other coordinate. Linearity in the first coordinate follows quickly from the definition
of F', while linearity in every other coordinate follows from Proposition 3.1 Part (2) applied

0 (3P, %P wP).

Finally, to check (1), we first note that Proposition 3.1 Part (1) applied to (X, %, w”)
implies that F' is symmetric in the entries zs,...,24. Thus, it remains to prove that F' is
invariant under transposing z; and z,. To do so, we first apply the induction hypothesis to

the mixed volumes appearing in the definition of F' to obtain
(4.14) F(z1,.ooza) = Y 215 Y 25,0 MVolson gonwon (257, .. 257),

peEX(1) nPeXr(1)
where, to avoid the proliferation of parentheses and superscripts, we have written, for exam-
ple, 377 as short-hand for (3°)"". Notice that the mixed volumes appearing in the right-hand
side of (4.14) are mixed volumes associated to faces of faces. Proposition 4.6 tells us that

the n”-face of the p-face of a normal complex is the same as the 7 face of the original normal

complex, where 7 € ¥(2) is the 2-cone containing p and 7 as rays. Therefore,
MVO]EP,nMp,m*pm (23’71, .. PJ]) MVOlz-r W7 T (23, N Zg)

Keeping in mind that each 2-cone 7 appears twice in (4.14), once for each ordering of the

rays, we have

_ p " T T
F(z1,...,2q) = g (21,025 o + 21,979 n) MVOlgr 7 w7 (23, .., 23).
TEX(2)
()={p,n}
Therefore, it remains to prove that z; 25 ., + 21,25 , is invariant under transposing 1 and

2. Computing directly from the definition of 2, we have
ZLng,nP + Zl,nzg,pn = Z1,p (22,77 — Wy« (22) * un) + 21y (ZQ,p — Wy« (22) * “p)a
from which we see that it suffices to prove that both

21,pWoi(22) ¥ uy  and 21wy . (22) * u,
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are invariant under transposing 1 and 2. This invariance follows from the computations
Z9, z2,
Wya(22) = —L—u, and w,.(z)=—""lu,. O
P u, *u, | " Uy * Uy
p *Up n "
The following analytic consequence of Proposition 4.13 will be useful in our computations

in the next section.

Corollary 4.15. In addition to the hypotheses of Proposition 4.13, assume that Cub(3, x)

is nonempty. Then for any fived z1, ...,z € Cub(3, %), we have
0
— MVoly i (21, -+ 2k 25 oo 2) = (d — k) MVOlso o wo (27, . . ., 25, 201 .., 2P).
azp N—— N——
d—k d—k—1

Proof. The assumption that Cub(X,*) # () implies that MVols (21, .., 2k, 2,...,2) is &
degree d — k polynomial in Rz, | p € X(1)], so the derivatives are well-defined. Proposi-

tion 4.13 and symmetry of mixed volumes imply that

0
5o MVols g, (21, - - -, Za) = MVl o wo (27, ..o, 20 1, 2000, ..., 2).
P
Viewing MVoly , (21, ..., 2k, 2, ..., 2) as the composition of MVoly, .(z1,...,24) with the
specialization
Bk+1 = """ =24 = %,
the result then follows from the multivariable chain rule. O

5. ALEXANDROV—FENCHEL INEQUALITIES

One of the most consequential properties of mixed volumes of polytopes (or, more gener-
ally, of mixed volumes of convex bodies) is the Alexandrov—Fenchel inequalities. Given
polytopes Py, ..., P; in a d-dimensional real vector space V' with volume function Vol, the

Alexandrov—Fenchel inequalities state that
MVOI<P17P27P3,...,PC[)2 > MVOI(Pl,Pl,Pg,,...,Pd)MVOI(PQ,PQ,Pg,...,Pd)

(see, for example, [Sch14, Theorem 7.3.1] for a proof and historical references). It is our aim
in this section to study Alexandrov—Fenchel inequalities in the setting of mixed volumes of
normal complexes.

Let ¥ C Ny be a simplicial d-fan, w : ¥(d) — Ry a weight function, and * € Inn(Ng)
an inner product. We say that the triple (X, w, %) is Alexandrov—Fenchel, or just AF for
short, if Cub(X, %) # () and

2
MVOIZ,w,* (217 R25 235+ -+ Zd) > MVOIZ,w,*(zb 15 %35+ Zd) MVOIZ,w,*(ZQa 22y %35+ Zd)

for all z1,...,24 € Cub(X, *). In this section, we prove the following result, which provides

sufficient conditions for proving that a triple (2,w, *) is AF.
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Theorem 5.1. Let ¥ C Ny be a simplicial d-fan, w : ¥(d) — Rso a weight function, and
x € Inn(Ng) an inner product such that Cub(X, %) # (0. The triple (X,w,*) is AF if the

following two conditions are satisfied:

(i) X7\ {0} is connected for any cone T € X(k) with k < d — 3;

(ii) HCSS(VOIET,WT7*T(z)) has ezxactly one positive eigenvalue for any T € 3(d — 2).

Remark 5.2. Condition (i) in Theorem 5.1 can be thought of as requiring that the fan %
does not have any “pinch” points. For example, in dimension four, this condition rules out
fans that locally look like a pair of four-dimensional cones meeting along a ray, because the
star fan associated to that ray would comprise two three-dimensional cones that meet only

at the origin.

Remark 5.3. Condition (ii) of Theorem 5.1 concerns only the two-dimensional stars of 3.
Since the volume polynomial of a two-dimensional fan is a quadratic form, the Hessians
appearing in Condition (ii) are constant matrices. Condition (ii) can be viewed as an ana-
logue of the Brunn—Minkowski inequality for polygons. For an example of a two-dimensional
(tropical) fan that does not satisfy Condition (ii), see [BH17].

5.1. Proof of Theorem 5.1. Our proof of Theorem 5.1 is largely inspired by a proof of the
classical Alexandrov—Fenchel inequalities recently developed by Cordero-Erausquin, Klartag,
Merigot, and Santambrogio [CEKMS19]. In order to adapt their proof, the key geometric
input is Proposition 4.13. While the arguments in [CEKMS19] can be employed in this
setting more-or-less verbatim, we present a more streamlined proof using ideas regarding
Lorentzian polynomials recently developed by Brandén and Leake [BL21]. Before presenting

a proof of Theorem 5.1, we pause to introduce key ideas regarding Lorentzian polynomials.

5.1.1. Lorentzian polynomials on cones. One way to view the AF inequalities for normal

complexes is as the nonpositivity of the 2 x 2 matrix

MVOIE,w,*(Zla R1y %35 - - - 7Zd) MVOIZ,w,*(Zla 225235+ -+ Zd)

MVoly, (22, 21, 23, . . ., 24) MVoly (22, 22, 23, - - ., 24)

and this nonpositivity is equivalent to the matrix having exactly one positive eigenvalue.
Lorentzian polynomials are a clever tool for capturing the essence of this observation, and

are therefore a natural setting for understanding AF-type inequalities.

Our discussion of Lorentzian polynomials follows Briandén and Leake [BL21]. Suppose
that C' C RZ, is a nonempty open convex cone, and let f € Rlzy,...,z,] be a homogeneous

polynomial of degree d. Foreachi =1,...,nand v = (vq,...,v,) € R", we use the following
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shorthand for partial and directional derivatives
8 n
= and 0, = Zviﬁi.
(]

=1

0;

We say that f is C-Lorentzian if, for all vy,...,v4 € C,
(P) Oy, -+ Oy, f > 0, and

(H) Hess(0y, - - - 0y, f) has exactly one positive eigenvalue.

To relate Lorentzian polynomials back to AF-type inequalities, we recall the following key
observation (see [BH20, Proposition 4.4]).

Lemma 5.4. Let C' C RZ be a nonempty open convex cone, and let f € Rlxy,...,x,] be

C-Lorentzian. Then for all vi,vq,v3...,v4 € C, we have
(D1 Doy Dy - -+ Doy f)2 > (O, 0o, Oy * + * Oy [ ) (D Oy Oy -+ Doy f ).

Proof. Consider the symmetric 2 x 2 matrix

o 81)1 81)1 81)3 e 8vdf avl avgavg T 8vdf
B 8U2avl a1}3 T avdf avzavzavs o '&)df '

By (P), the entries of M are positive, so an elementary eigenvalue computation shows that
M has at least one positive eigenvalue. On the other hand, M is a principal minor of
Hess(Oy, - - - Oy, f), which, by (H), has exactly one positive eigenvalue; Cauchy’s Interlacing
Theorem then implies that M has at most one positive eigenvalue. Thus, M has exactly one

positive eigenvalue, so the determinant of M is nonpositive, proving the lemma. O

The following result, proved by Brandén and Leake [BL21], is particularly useful for the
study of Lorentzian polynomials on cones. We view this result as an effective implementation
of the key insights in [CEKMS19]; in essence, it eliminates the need for one of the induction
parameters in [CEKMS19] because that induction parameter is captured within the recursive

nature of Lorentzian polynomials.

Lemma 5.5 ([BL21|, Proposition 2.4). Let C C RZ, be a nonempty open convex cone, and
let f € Rlxy,...,x,] be a homogeneous polynomial of degree d. If

(1) Opy -+ Oy f >0 forallvy,...,vq € C,
(2) Hess(é’v1 . --8%72_]‘) is irreducible’ and has nonnegative off-diagonal entries for all

V1,...,09-2 € C, and
(3) 0;f is C-Lorentzian for alli=1,...,n,

then f is C-Lorentzian.

1An n x n matrix M is irreducible if the associated adjacency graph—the undirected graph on n labeled

vertices with an edge between the ith and jth vertex whenever the (i, j) entry of M is nonzero—is connected.
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5.1.2. Lorentzian volume polynomials. We now explain how the above discussion of Lorentzian
polynomials on cones can be used to study mixed volumes of normal complexes. Let ¥ C N

be a simplicial d-fan, w : ¥(d) — R a weight function, and % € Inn(/Ng) an inner product.

We assume that Cub(X, %) # (), in which case the function Voly, . : Cub(3,%) — R is a

homogeneous polynomial of degree d in R[z, | p € ¥(1)]. By Proposition 3.1(3), we have

Voly, . (2) = MVoly 4, « (2, .. ., 2).

It then follows from Proposition 3.1(1) and (2) (and the chain rule) that

d!
(5.6) 0y, -+ 0y, Voly i (2) = @ MVols 4 (215 oy 28y 2y .-, 2)
d—Fk
for any z1,..., 2z, € Cub(X, x). In particular, in order to prove that (X, w, *) is AF, we now

see that it suffices (by Lemma 5.4) to prove that Voly,, . is Cub(X, )-Lorentzian. Thus,

Theorem 5.1 is a consequence of the following stronger result.

Theorem 5.7. Let ¥ C Ng be a simplicial d-fan, w : 3(d) — Rs¢ a weight function,
and * € Inn(Ng) an inner product such that Cub(X,*) # (. Then Voly,, . is Cub(X, *)-

Lorentzian if the following two conditions are satisfied:

(i) X7\ {0} is connected for any cone T € X(k) with k < d — 3;
(ii) Hess( Volgr wr «r(2)) has ezactly one positive eigenvalue for any 7 € S(d — 2).

Proof. We prove Theorem 5.7 by induction on d.

First consider the base case d = 2 (in which case Condition (i) is vacuous). Note that
Voly, ..« satisfies (P) by (5.6) and the positivity of mixed volumes (Proposition 3.5), while
(H) for Voly,, . is equivalent to Condition (ii). Therefore, Theorem 5.7 holds when d = 2.

Now let d > 2 and assume (X, w,*) satisfies Conditions (i) and (ii) in Theorem 5.7.
To prove that Voly, . is Cub(, %)-Lorentzian, we use Lemma 5.5. Translating the three

conditions of Lemma 5.5 using (5.6), we must prove that

(1) MVoly, (21, ...,24) > 0 for all zq,...,zg € Cub(3, ),
(2) Hess(MVolgﬁwﬁ*(zl, ey Rd—2, 2, z)) is irreducible and has nonnegative off-diagonal en-
tries for all z1,..., 242 € Cub(%, %), and
(3) 0, Voly, (2) is Cub(X, *)-Lorentzian for all p € 3(1).
Note that (1) is just the positivity of mixed volumes (Proposition 3.5).

To prove (2), we use Corollary 4.15 to compute

0, MVoly (21, ..., Za—2, 2, 2) = 2MVoly ,, . (2, ..., 2o, 2°).
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If 7 € ¥(2) with rays p and 7, then

Uy * U
(5.8) Zpo = 2y — Wpk(2) ¥ Uy = 2y — Uz . uZZp,
from which it follows that,
(5.9) 00, MVOly, o, (21, - - ., Zd—2, 2, 2) = 2MVolyr o 7 (27, .., 25_5)

On the other hand, if p and 7 do not lie on a common cone 7 € ¥(2), then
(5.10) 0,0, MVoly, , (21, . . ., Zd—2, 2, 2) = 0.

The positivity of mixed volumes for cubical values together with (5.9) and (5.10) imply
that Hess( MVoly, . (21, - - -, Zd—2, 2, z)) has nonnegative off-diagonal entries that are positive
whenever the row and column index are the rays of a cone 7 € 3(2). The first condition in
Theorem 5.7 implies that we can travel from any ray of X to any other ray by passing only
through the relative interiors of one- and two-dimensional cones, which then implies that
Hess( MVols (21, - - -, Zd—2, 2, z)) is irreducible, verifying (2).

To prove (3), note that Proposition 3.1(3) and Corollary 4.15 (with & = 0) together imply
that

0, Vols 4y.4(2) = d Volspe w40 (2°).

Applying the induction hypothesis to (X7, w”, *”)—which we can do because any star fan
of ¥ is a star fan of 3, so our assumption that (X,w,*) satisfies the two conditions of
Theorem 5.7 implies that (X°,w”, %”) also satisfies the two conditions of Theorem 5.7—
implies that 0, Voly,, .(2) is Cub(¥”, #)-Lorentzian. To further prove that d, Voly, .(2) is
Cub(X, %)-Lorentzian, we must verify the relevant properties (P) and (H). To verify Property
(P), note that for any 21, ...,24—1 € Cub(X,*), we have 2, ..., 2, € Cub(X,*") and

az1 R 8zd_1 (8p VO]E,w,*(Z)) = (d — l)lap MVOIZW%* (Zl, ce ey Zd—1, Z)
— (d — 1)' MVOlgpwp,*p(Zf, ce. 725_1) > 0.

To verify (H), note that, for any z1,...,2z4_3 € Cub(X, %), we have

d—2)!
(9Z3 s azd71 (ap VOIE’W7*(Z)) = % MVOIEP,wP,*P (va Zpa Z§7 cee 7’25—1)'
For any n € ¥(1), (5.8) implies that
azzp n < NPE<1) \ {p}a
Uy * U
0., =" 2 uada n=v

peN, S\ (py P e

0 else.

Therefore, Hess (823 Oy (0p Volg,wy*(z))) is zero in all rows and columns indexed by rays

of ¥ that do not lie in the neighborhood of p, it is (dEZ)EHess ((9Z§ w0z Volsp v (z)) in
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the rows and columns indexed by rays in N,3(1) \ {p}, while the row/column indexed by p
is simply a linear combination of the rows/columns indeed by N,X(1) \ {p}. By Sylvester’s
law of inertia, it follows that the nonzero eigenvalues of Hess (0., - - - 0., , (8, Volyu,..(2))) are
equal to the nonzero eigenvalues of Hess(d.p - -- Dp Volsyp w0 (2)). Since Volsp g0 (2) is
Cub(3?, ”)-Lorentzian, there is exactly one positive eigenvalue, verifying (H) and finishing
the proof. O

6. APPLICATION: THE HERON-ROTA-WELSH CONJECTURE

As an application of our developments regarding mixed volumes of normal complexes,
we show in this section how Theorem 5.1 can be used to prove the Heron—Rota—Welsh
conjecture, which states that the coefficients of the characteristic polynomial of any matroid
are log-concave. The bridge between matroids and mixed volumes is the Bergman fan; we

begin this section by briefly recalling relevant notions regarding matroids and Bergman fans.

6.1. Matroids and Bergman fans. A (loopless) matroid M = (£, £) consists of a finite
set I, called the ground set, and a collection of subsets £ C 2, called flats, which satisfy

the following three conditions:

(F1) 0 e L,

(F2) if [y, Fy € L, then Fy N Fy € L, and

(F3) if F' € L, then every element of E'\ F' is contained in exactly one flat that is minimal
among the flats that strictly contain F'.

We do not give a comprehensive overview of matroids; rather, we settle for a brief intro-

duction of key concepts. For a more complete treatment, see Oxley’s book [OxI111].

The closure of a set S C FE, denoted cl(5), is the smallest flat containing S. A set
I C FE is called independent if cl(1;) € cl(;) for any Iy C I € I. The rank of a set
S C E, denoted rk(S), is the maximum size of an independent subset of S, and the rank
of M, denoted rk(M) is defined to be the rank of E. While we have chosen to characterize
matroids in terms of their flats, we note that matroids can also be characterized in terms of

their independent sets or their rank function.

A flag of flats (of length k) in M is a chain of the form
.F:(Flgng) with Fl,...,FkEE.

It can be checked from the matroid axioms that every maximal flag has one flat of each rank
0,...,tk(M). We let Ay denote the set of flags of flats, which naturally has the structure of
a simplicial complex of dimension rk(M) + 1. Since every maximal flag contains () and E, we

often restrict our attention to studying proper flats. We use the notation £* = £\ {0, E'}
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for the set of proper flats and Ay, for the set of flags of proper flats, which is a simplicial
complex of dimension rk(M) — 1.

Given a matroid M, consider the vector space RF with basis {v. | e € E}. For each subset

S C FE, define
Vg = Zve € R”.

ecS
Set Ng = R /Rup and denote the image of vg in the quotient space Ng by ug. For each
flag F = (F1 C --- C Fy) € A}, define a polyhedral cone

OfF = RZO{UFN c. ,qu} Q NR.
The Bergman fan of M, denoted Xy, is the polyhedral fan
M Z{Ufl.FG AK/I}

Note that Yy is simplicial, pure of dimension d = rk(M) — 1, and marked by the vectors up.

Consider a cone or € Xpm(d — 1) corresponding to a flag

The d-cones containing o are indexed by flats F' with Fy_1 C F' C Fjy;. If there are ¢ such
flats, then (F3) implies that

Z Up = (€ - 1>qu71 tUup,,,-

FeLl
Fp1GFGFp

Since the right-hand side lies in N, g, this observation implies that ¥y is balanced (tropical
with weights all equal to 1).

In order to check that Bergman fans are AF, we require a working understanding of the
star fans of Bergman fans. Consider a cone ox associated to a flat F = (F; C --- C Fy). Set
Fy =0 and Fyy1 = E, and for each j = 0,...,k consider the matroid minor M[F}, F} 4],
which is the matroid on ground set Fj;; \ Fj with flats of the form F'\ F; where F'is a flat
of M satisfying F; C F' C Fj4y. Notice that the star fan X7 lives in the quotient space

Ni RE X RFe1\Fi

- R{UFN ce ’qu} N R{UFU c. 7UFk+1} - =0 RUF’H‘l\Fk?

and one checks that this natural isomorphism of vector spaces identifies the star of ¥y at

or as the product of the Bergman fans of the associated matroid minors:

k
(6.1) X0 = H LME) Fya]-
j=0
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6.2. Bergman fans are AF. We are now ready to use Theorem 5.1 to prove that Bergman

fans of matroids are AF.

Theorem 6.2. Let M be a matroid of rank d+1 and let Xy C Ng be the associated Bergman
fan. If x € Inn(Ng) is any inner product with Cub(Xy, x) # 0, then (X, *) is AF.

Remark 6.3. We are assuming the weight function w is equal to 1 because, as noted in the

previous subsection, Yy is balanced. Thus, we omit w from the notation in this section.

To prove Theorem 6.2, we verify the two conditions of Theorem 5.1. We accomplish this
through the following three lemmas. The first lemma verifies that Bergman fans satisfy (a

slight strengthening of) Condition (i) of Theorem 6.2.
Lemma 6.4. X7 \ {0} is connected for any cone o € Xu(k) with k < d — 2.

Proof. We begin by arguing that ¥y \ {0} is connected for any matroid of rank at least 3. It
suffices to prove that, for any two rays pr, pr € Xm(1) associated to flats F, F' € L*, there
are sequences pq,...,pr € Ym(1) and 7, ..., 741 € Xm(2) such that

PP =T = pP1 = > Pr =Tyl 7~ PF-
If FONF' =G # 0, then G € L* by (F2) and the following is such a sequence

Pr =X TGcF = PG = TGCF' > PF'-
If, on the other hand, F'N F’ = (), choose rank-one flats G C F and G’ C F’'. By (F3), there
is exactly one rank-two flat H that contains G and G’, so we can construct a sequence
(pr =< Tacr =)pa < Tach = pu < Tarcn = par(= Tarcr = prr),
where the parenthetical pieces should be omitted if G = F or G' = F'.
Now consider any star fan X757 where F = (Fy C --- C Fj) with £ < d — 2. Notice that

such a star fan has dimension at least two, and we can write it as a product of Bergman fans

on matroid minors
k
OF __
z]M = H EM[Fj:Fj+1]'
j=0

Consider two rays p, p’ € X7 (1). If the two rays happen to come from different factors in

the product, then we can connect them through the sequence

p=<pxp=p.

If, on the other hand, they lie in the same factor, there are two cases to consider. If the
matroid minor of the factor that the rays lie in has rank at least 3, then the rays can be

connected via the argument above. If, on the other hand, the matroid minor has rank 2,
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then one of the other matroid minors must also have rank at least 2. Choosing any ray p” in

the Bergman fan of the second matroid minor, we can connect p and p’ through the sequence
p{pxp//>_p//<plxp//>_pl’ |:|

In order to verify Condition (ii) of Theorem 5.1, there are two cases to consider, depending
on whether the two-dimensional star fan in question is, itself, a Bergman fan, or whether it
is the product of two one-dimensional Bergman fans. In both cases, we use the fact that,
in order to prove that the Hessian of a quadratic form f € R[zy,...,z,] has exactly one
eigenvalue, it suffices (by Sylvester’s Law of Inertia) to find an invertible change of variables

y1(), ..., y,(z) such that

n
f=> " awi(x)’
i=1
with exactly one positive a;. We now consider the two cases in the following two lemmas.

Lemma 6.5. If M is a rank-three matroid, then the Hessian of degy, (D(2)?) has exactly

one positive eigenvalue.

Proof. Yor aflat F' € L*, we use the shorthand Xr = X, and zp = z,,. In order to compute
degy,, (D(2)?), we must compute degy, (XrX¢) for any two flats F, G € £*. If ' C G, then
the degree is one, by definition of the degree function, and if F' and G are incomparable,
then the degree is zero. Thus, it remains to compute the degree of the squared terms.
Using the definition of A®*(Xy) and the flat axioms, the reader is encouraged to verify that
degy, (X}) =1—|{G e L* | F C G}| if tk(F) = 1 and degy, (X&) = —1 if 1k(G) = 2. It
follows that

degy, (D(2)%) =2 Z Zpza + Z 22— Z 22— Z Z2.

F,GeL* FeLx F,GeL* GeLx
FC@ rk(F)=1 FCG k(G)=2

By creatively organizing the terms, we can rewrite this as

degzM(D(Z)2)2< Z ZF) - Z <ZG— Z ZF)27

FeL* GeL* FeL*
rk(F)=1 rk(G)=2 FCG

2

where the only key matroid assertion used in the equivalence of these two formulas is that
there exists a unique rank-two flat containing any two distinct rank-one flats. Sylvester’s
Law of Inertia implies that the Hessian of this quadratic form has exactly one positive

eigenvalue. (l

Lemma 6.6. [fM and M’ are rank-two matroids, then the Hessian of degy,, s, ,(D(2)?) has

exactly one positive eigenvalue.
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Proof. By definition of A®*(Xu X Xw), the reader is encouraged to verify that

0 p,me€Xu(l)orp,neXw(l),

degy,,, x5, (XpXy) =
MRS 1 peSw(l) and 7 € Sy(1).

Therefore,
degEM XEM/ (D(Z)2> - Z ZZPZTH

PEXM(L), €S/ (1)
which can be rewritten as

1 2 1 2
degs,en, DD =5( D 2%t X =) —5( X 5w X =)
pEXM(TL) neXy (1) pEXM(L) neEXy (1)
Sylvester’s Law of Inertia implies that the Hessian of this quadratic form has exactly one

positive eigenvalue. 0
We now have all the ingredients we need to prove Theorem 6.2.

Proof of Theorem 6.2. We prove that Bergman fans satisfy the two conditions of Theo-
rem 5.1. That Bergman fans satisfy Condition (i) is the content of Lemma 6.4. To prove
Condition (ii), we first note that, since Bergman fans are balanced, their star fans are also
balanced, so Theorem 2.3 implies that the volume polynomials in Condition (ii) are inde-
pendent of * and are equal to
degyer (D(2)?),

where F is a flag of proper flats of length two less than the maximum. By the product
decomposition of star fans given in (6.1), X7 is either a two-dimensional Bergman fan or a
product of two one-dimensional Bergman fans; in the former case, the Hessian of the volume
polynomial has exactly one positive eigenvalue by Lemma 6.5, and in the latter case, by
Lemma 6.6. U

6.3. Revisiting the Heron—Rota—Welsh Conjecture. The characteristic polynomial
of a matroid M = (E, £) can be defined by
(A = Z(_l)\s\)\rk(M)frk(S).
SCE
It can be checked that xm(A) has a root at A = 1 for any positive-rank matroid, and the

reduced characteristic polynomial is defined by

- xm(A)
A) = 5—-+.
We use the notation p®(M) and (M) for the (unsigned) coefficients of these polynomials:
rk(M) rk(M)—1

m(A) = > (=Dt (MAKMand - (A = Y (1) e (M)A

a=0 a=0
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The Heron—Rota—Welsh Conjecture, developed in [Rot71, Her72, Wel76], asserts that the

sequence of nonnegative integers p°(M), ..., u™*™ (M) is unimodal and log-concave:

Y

0<p'M) <o < pF(M) > - > ™M) >0 for some k€ {0,...,tk(M)}

and
pF (M2 > MY M (M) for every k€ {1,...,tk(M) — 1}.
The Heron-Rota—Welsh Conjecture was first proved by Adiprasito, Huh, and Katz [AHK18].

Our aim here is to show how this result also follows from the developments in this paper.

It is elementary to check that the unimodality and log-concavity of the coefficients of the
characteristic polynomial is implied by the analogous properties for the coefficients of the
reduced characteristic polynomial. The bridge from characteristic polynomials to the content
of this paper, then, is a result of Huh and Katz [HK12, Proposition 5.2] (see also [AHK18,
Proposition 9.5] and [DR22, Proposition 3.11]), which asserts that

fi*(M) = degy,, (3%

where tk(M) = d + 1 and «, 8 € A'(Xy) are defined by

a:ZXF and [)’:ZXF

eg€F 60¢F

for some eg € E (these Chow classes are independent of the choice of ¢).

Choose any ey € F, and let * € Inn(Ng) be the inner product with orthonormal basis
{ue | e # e} € Ng = RF/Rup. For two flats Fy, I, € £*, we compute

|F10F2| 60¢F1 and 60¢FQ,
Up *Up, = § —|F1NES| e ¢ F) and ey € Fy,
|Ff N Fs| eo € Fy and ey € F.

Define 2%, 2% € R*(1) = R£" by

1 ey €F, 1 ey ¢ F,
0 e ¢ F, 0 e€F,

so that D(z%) = o and D(2°) = 38 in AY(Xy). The following lemma allows us to connect

characteristic polynomials to mixed volumes of normal complexes.

Lemma 6.7. 2%, 2° € Cub(Xy, *).
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Proof. We must argue that w,.(2%),w, (") € o for every cone o € Y. Consider a flag
F = (F, C--- C Fy) corresponding to a cone o € Y. It suffices to prove that

Lqu ey € Fy,

(6.8) Wep n(2%) = ¢ 1T
0 €o ¢ Fk,
and
1
(6.9) wy, (P = TR G €0
. O F,*
0 eo € Fi,

We verify (6.8); the verification (6.9) is similar.

To verify (6.8), first suppose that ey € Fy. Then for any j = 1,...,k, it follows from the
definition of * that

|F| o € F,
U, * Up; =
0 € §é Fj.
Using this, we verify that IFL,SIUF’f satisfies the defining equations of w,, .(2%):
L =z% forall j=1 k
Fﬂupk*uF].—sz orall j=1,... k.

Now suppose that ey ¢ Fj,. Then ey ¢ Fj for any j =1,...,k, so zp = 0. Thus, the defining

equation for w,, .(2%) become
Worw(2) xup, =0 forall j=1,...k,
showing that w,, .(2*) = 0. O

Remark 6.10. With our conventions, we note that Cf,, .(2?) is the normal complex obtained

by intersecting the Bergman fan Yy with the simplex

e# 60}),

while Cy,, «(2®) is obtained by intersecting with the fan ¥y with the reflected simplex —A.

A = conv({0} U {u,

It follows from Theorem 3.6 that the coefficients of the reduced characteristic polynomial
have a volume-theoretic interpretation:
a*(M) = MVolg,, . (2%, ...,2% 2% ..., zﬁj)
da o
By [NR21, Proposition 7.4], we know that Cub(Xu,*) # 0, and since the cubical cone
is the interior of the pseudocubical cone, we may approximate z%,z? € Cub(Xy,*) with

22, 27 € Cub(Sy, *) such that

B

5= 2P

limz¥=2% and limz
t
t—0 t—0
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Define
(M) = MVOIEM7*(5,’?, - zf:,ftﬁ, e zi)

d‘:a :
By Theorem 6.2, we know that (X, %) is AF, and the AF inequalities applied to the mixed

volumes 71¢(M) imply that the sequence 7?(M), ..., 1%(M) is log-concave. Since mixed vol-

umes of cubical values are positive (Proposition 3.5), and since all log-concave sequences of
positive values are unimodal, we see that the sequence 1’ (M), ..., 7¢(M) is also unimodal.

Since both unimodality and log-concavity are preserved under limits, we conclude that
(M), ..., (M)

is unimodal and log-concave, verifying the Heron-Rota-Welsh Conjecture.
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