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In this article, we develop CausalEGM, a deep learning framework for nonlinear
dimension reduction and generative modeling of the dependency among covariate
features affecting treatment and response. CausalEGM can be used for estimating causal
effects in both binary and continuous treatment settings. By learning a bidirectional
transformation between the high-dimensional covariate space and a low-dimensional
latent space and then modeling the dependencies of different subsets of the latent
variables on the treatment and response, CausalEGM can extract the latent covariate
features that affect both treatment and response. By conditioning on these features, one
can mitigate the confounding effect of the high dimensional covariate on the estimation
of the causal relation between treatment and response. In a series of experiments, the
proposed method is shown to achieve superior performance over existing methods
in both binary and continuous treatment settings. The improvement is substantial
when the sample size is large and the covariate is of high dimension. Finally, we
established excess risk bounds and consistency results for our method, and discuss how
our approach is related to and improves upon other dimension reduction approaches
in causal inference.
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Given data in an observational study, a central problem in causal inference is to estimate
the effect of one variable (e.g., treatment) on another variable (e.g., outcome) in the
presence of a covariate vector that represents all other variables observed in the study
(1-3). Under the well-known “unconfoundedness” condition (4, 5), which assumes that
there are no hidden confounding variables beyond the observed covariate vector, valid
estimates of the desired effect of treatment on outcome can be obtained by alternative
approaches, including matching, weighting, stratification, and regression-based methods
(6). Covariate adjustment plays an important role in these methods (7, 8). A common
goal in covariate adjustment is to obtain the average dose-response function, which
often involves the estimation of the expectation of the outcome conditional on the
treatment and the covariate. When the covariate is of high dimension, as is often the
case in modern applications (9-11), covariate adjustment becomes difficult because of
the “curse of dimensionality” (12).

Various types of dimension reduction approaches have been proposed to alleviate
this difficulty. For example, a popular approach is to do adjustment or matching based
on the propensity score (4, 13, 14), which is a one-dimensional feature (i.e., a scalar
function) of the covariates that captures how the covariates affect the treatment. Of
course, the propensity score function must first be learned from the observed data on
the treatment and the covariates, which is usually done by logistic regression or other
advanced machine learning methods (15). Another type of dimension reduction method
is “sufficient dimension reduction” (16, 17) (SDR), which assumes that the treatment
assignment is conditionally independent of potential outcomes given the low-dimensional
projection of the covariates (18, 19). However, SDR-based causal inference approaches
consider only linear dimension reduction which limits the applicability. Furthermore,
the dimension reduction is performed separately for each treatment value, which makes
it difficult to extend the method to the case when the range of the treatment variable is
of high cardinality or is continuous.

The present work develops a covariate adjustment method based on an encoding
generative modeling (EGM) approach, called CausalEGM, which simultaneously learns
to i) embed the high-dimensional covariates into a low-dimensional latent space where
the distribution of the embeddings (latent covariate features) is prespecified. ii) build
generative models for treatment given latent features and for outcome given treatment
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and latent features. The key idea of this method is to partition
the latent feature vector into different independent components
that play different roles in the above two generative models. This
partitioning then allows us to identify a minimal latent covariate
feature subvector that affects both treatment and outcome. After
presenting the model, we will explain how this can be viewed
as an approach to constructing good latent covariate features for
covariate adjustment. We will also discuss the difference between
our method and alternative dimension reduction methods. In
particular, the results of our study show that, by adding the
generator function to reconstruct the covariate, our approach
achieves better performance than approaches that only focus
on extracting low-dimensional covariate features to use in the
prediction of treatment and outcome.

In implementing our method, we use multilayer neural
networks to represent the encoder and generator functions in
the model, which allows us to leverage advances in generative
Al in the learning of our model. There has been increasing
attention on the use of machine learning in causal inference
(20-22). However, most of these methods either learn a predictor
of the outcome conditional on the joint state of treatment and
covariate or build separate outcome prediction models for each
fixed value of the treatment. As such, they are different in
nature from the dimension reduction approach which tries to
learn a low-dimensional covariate feature to replace the original
covariate in the adjustment. We present numerical experiments
to demonstrate that our dimension reduction approach will lead
to better estimates of the causal effect. Finally, we study the
theoretical properties of our approach and establish excess risk
bounds and consistency results for our estimates.

Methods

Problem Setup. We are interested in the causal effect of a variable
X on another variable ¥ in an observational study based on 7.7.d.
observations of {(X;, Y3, V;)|i = 1, ..., n}. X is usually called the
treatment (or exposure) variable, and Y is called the response
(or outcome) variable. V' € R? represents the covariates in a
p-dimensional space. Y is real-valued in the & outcome space
and X € &2, where the support 2 is either a finite set or a
bounded interval in R.

To investigate causal effects, we aim to determine how the
potential outcome will respond to the change of treatment, which
is given by the function Y(:) : 2~ — R. We are particularly
interested in estimating the population average defined as

p(x) = E[Y(x)], [1]

which is known as the average dose—response function (ADREF).
Note that we only observe the potential outcome indexed by
the treatment variable. The random variable ¥ (x) is not directly
observable, and its expectation i(x) is generally not identifiable
from the joint distribution of the observed (X, ¥, V). Additional
assumptions are needed for the identification of p(x).

We first assume X and Y are related by the following two
unknown equations:

{X =ho(Z, Ur), 2]

Y =/(X 2, ),

where U = (U, U,) represents the set of all other unobserved
variables that may affect X and Y, which include disturbances.
Ze = (V) and Z, = £,(V) are two low-dimensional feature
sets of V' and #.(-), #,(-) are the corresponding transformation

20of 9 https://doi.org/10.1073/pnas.2322376121

functions. We denote Zy = Z, N Z, as the intersection of
the two feature sets. We will assume a modified version of the
“unconfoundedness” condition.

Assumption 1. (Unconfoundedness) Conditional on the low-
dimensional feature set Zy, the potential outcomes Y (x) is inde-
pendent of treatment variable X,

X 1 Y(x)|Z. (3]

Since Y (x) is a function of Z, and Uy, the above assumption is
also equivalent to X 1L {Z), U1}|Zy. Note that under the con-
ventional unconfoundedness assumption, one must condition
on the high-dimensional covariates V. Under our Assumption 1,
it is sufficient to condition on a low-dimensional feature set of
the covariates. Once Zj is given, there should be no unobserved
confounding variables that drive correlated changes between the
treatment and the outcome variables.

Under Assumption 1, it is shown that the ADRF is identifiable
through the following equation (S Appendix, section A),

,u(x) = /E[Y|X =X Zo = zo]pZO(zo)dzo. [4]

The equation 4 shows that we can replace the original covariate
V by a low-dimensional covariate feature Z5(V'), the causal
inference problem is transformed into the problem of learning
a low-dimensional representation of V' from the observational
data. To learn this transformation function, we propose a EGM
framework, that allows simultaneous learning of an encoder for
the high-dimensional V' and a generative model for (X, ¥, V).
By imposing a suitable constraint on the generative model, one
can ensure that certain subsets of the features computed by the
encoder can be used as the low-dimensional feature 7 in the
above condition. In the next subsection, we will illustrate how to
use the neural networks to learn the low-dimensional features 2
and estimate the p(x) in Eq. 4.

EGM. Our model is described in Fig. 1. To handle the high
dimension of V, we embed V into a low-dimensional latent space
using an encoder function Z = E(V) and a generator/decoder
function V' = G(Z) to map Z back to the original space. Note
that dimension reduction with controllable latent features has
been successfully applied in our previous works, including density
estimation (23) and clustering (24).

In a standard autoencoder, G and E functions are learned
by minimizing the reconstruction error between G(£(V)) and
V over the observed sample of V. Here, E(V) represents the
low-dimensional latent features. However, it is important to
consider the complex dependencies of covariates on treatment
and outcome and the generation process of treatment and
outcome. The proposed EGM framework simultaneously enables
a dependency-aware dimension reduction and modeling the gen-
eration process of treatment and outcome. It is natural to suppose
there are independent covariate feature sets A, B, and C with
different roles. A is involved in the generation of both outcome
and treatment, B is involved only in outcome generation, and
C is involved only in the treatment generation. We can usually
find invertible transformations of each to a separate standard
multivariate normal vector, denoted as Zy, 21, and Z, when V'
has a continuous distribution. We also demonstrated that EGM
framework can handle the discrete covariates distribution well. In
fact, any one-to-one transformation of A, B, and C can be used for
covariates and the form of the generator functions of treatment
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Fig. 1. The overview of CausalEGM model. Variables are in rectangles.
Functions are in circles, with incoming arrows indicating inputs to the function
and outgoing arrows indicating outputs of the function. Each function
is modeled by a neural network. CausalEGM takes triplets of (X,Y,V) as
input. £ and G networks form a bidirectional transformation between the
high-dimensional covariates space and a low-dimensional latent space. D,
network is used to constrain the distribution of latent features. F and H are
used for generating/reconstructing the outcome and treatment variables,
respectively. As G, F, and H networks take latent variables as input(s) with a
desired distribution, they are also known as generators.

and outcome will change depending on which transformation
functions are used. However, all of them will lead to the same
covariate adjustment because the conditional expectation of the
outcome will remain the same.

To achieve the above goal, we impose a “distribution-
matching” objective in addition to the reconstruction error.
Specifically, we desire that the distribution of Z = E(V)
should match a prespecified distribution, which is set to be
a standard normal distribution. By the encoding process, the
high-dimensional covariates with unknown distribution will
be mapped to a low-dimensional latent space with a desired
distribution. More importantly, we partition the latent feature
vector into different subvectors that play different roles in the
generative models for treatment and outcome. This partitioning
enables us to identify a minimal covariate feature (e.g., Zp) that
affects both treatment and outcome. In addition to Zy, Z1, and
Z,, we find that adding a flexible Z3 that affects neither treatment
nor outcome is useful to improve the learning of the confounding
features and the generative models for treatment and outcome.
We use deep neural networks to represent the functions £(-) and
G(-). We utilized generative adversarial networks (GANs) (25)
for distribution match where an adversarial loss (i.e., maximizing
the discrimination power between the generated and observed
data) is introduced.

Note that the learning of £(-) and G(+) should not be based
on V alone. Rather, they must be coupled with the learning of
generative models for X and Y, which are the variables of interest
in causal inference. To do this, we assume that the Z = E(V) can
be partitioned into different subvectors that have different roles
in the generators for X and Y. Specifically, Z = (2y, Z1, 25, Z3),
Y = F(X, 2y, 721) + €1 and X = H(Zy, Z2) + €. For clarity,
the additive independent noises €] and €; are omitted in Fig. 1.
Conceptually, Zj represents the latent covariate features that
affect both treatment and outcome (e.g., confounding features),
Z) represents the latent features that affect only the outcome,
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Z, represents the latent features that affect only the treatment,
and Z3 represents the remaining latent features that are also
important for the representation of V. By partitioning the latent
features Z into four different components, the encoder function
decouples the complex dependencies of covariants on treatment
and outcome variables in the low-dimensional latent space.

The training details are given in the next subsection for how
to jointly learn (F, H, E, G) in an end-to-end fashion given the
observational data. Assuming that the four functions (%, A, E, G)
are learned, the latent features Z then can be easily extracted
through the encoder function £(-). To estimate the average dose—
response function y(x), the simplest way is to fit a nonparametric
regression to estimate the conditional expectation in Eq. 2 and
then calculate the empirical expectation given the observational
data. In practice, we can also use

N 1 ¢ i i
'u(x):;ZF(XZX,Z():Z(S),lezg)); [5]

i=1

to estimate the ADRF where 7 is the sample size. In binary

treatment settings, the counterfactual (CF) outcome for the it
unit is estimated as

W)= Fx=1-20,2 =20 7 =), 6l

Model Training. The CausalEGM model consists of a bidi-
rectional transformation module (£, G) and two additional
networks (F, H) for reconstructing/generating outcome and
treatment, respectively (Fig. 1). The bidirectional module is a
combination of an autoencoder and a GAN model. In addition
to the reconstruction error between G(E(V)) and V in the
covariates space commonly required by the autoencoder, the
encoder network £ aims to transform the covariates into latent
features, whose distribution matches the standard multivariate
normal distribution. A discriminator D, network tries to distin-
guish data sampled from the multivariate normal distribution
(positives) from data generated by the £ network (negatives)
where (£, D,) forms a GAN model. Similarly, it is optional
to minimize reconstruction error between E(G(Z)) and Z in
the latent space and introduce another discriminator D, in the
covariate space to form a GAN model (G, D,) to match the
empirical distribution of the covariates V' and the reconstructed
data by G. We use the Wasserstein GAN with gradient penalty
(26) as the default architecture to improve the generation power
and training stability.

Thus, the loss functions of the adversarial training for
distribution matching in latent space are represented as

Lg=—E,,)[Ds-1(E(2))],
Lp, =— Esz(z) [Dy—1(2)] + EUNZA)(U) [De—1(E()]  [7]
+ AEZN?(Z)[(VD&—I(Z) - 1>2]’

where p(z) and p(-) denote the standard normal distribution
and the empirical distribution, respectively. To make the output
of discriminator D, differentiable, we use D,_1(-) to denote
the output before binarization, which is achieved by a sigmoid
function. p(z) denotes the uniform sampling from the straight
lines between the two points sampled from the standard normal
distribution p(z) and the empirical distribution of latent features
p(2). The network E and D, are competing with each other
during the adversarial training until reaching a Nash equilibrium.
A is the gradient penalty coefficient, which is set to 10 in all
experiments.
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In addition to adversarial training for distribution match, the
reconstruction losses for (X, ¥, V) are denoted as

L, =E

rec xNﬁ(x),ZO“‘i)fg(V)’Zzwj)fz(w [(

x — F(z0,22))%],

Loree = Y020~ Py ()51~ Py (1) [(y — H(20, 21, x))*), I8
L., =E,)llle — GE@®))II3].

rec

where IA’%(V) (k=0,1,2,3) is the empirical distribution of the
k" component of the encoder (V) and ||-||3 denotes the squared

/2-norm. The total loss for CausaEGM can be summarized
into two parts Lryee = L+ L, + Lo + Ly, and Lp,,
which correspond to the major four networks (F, H, E, G) and
the auxiliary discriminator network D,, respectively. To train
the CausalEGM model in an end-to-end fashion, we iteratively
update the parameters (weights) in one of (F, H, E, G) or D,
given the value of the other. Each iteration contains the following
two steps. In the first step, a minibatch of data is randomly
sampled and the parameters of discriminator D, are updated by
minimizing £(D,) while fixing the parameters in (F, H, E, G).
In the second step, a minibatch of data is randomly sampled and
the parameters of (F, H, E, G) are updated by minimizing £ rreG
while fixing the parameters in D,.

Model Architecture. For all numerical examples below, we
use fully connected layers for all networks. Specifically, the
(E H, E, G) networks contain five fully connected layers, and
each layer has 64 hidden nodes. The D, network contains
three fully connected layers with 64, 32, and 8 hidden nodes,
respectively. The leaky-ReLu activation function is deployed as a
nonlinear transformation in each hidden layer. We use Sigmoid
as the activation function in the last layer of H network when the
treatment is binary. For continuous treatments, we do not use
any nonlinear activation function in the last layer of H network.
Batch normalization (27) is applied in discriminator networks.
Adam optimizer (28) with initial learning rate as 2 x 10~ %is used.
The model parameters were updated in a minibatch manner with
batch size 32. The default number of training iterations is 30,000.

Theoretical Analysis

GAN background. Let P and Q be two probability measures and
2/ be a class of measurable subsets of the space % . Then define
d(P, Q; ) = sup 4y |P(A) — Q(A)|. Note that the function
d(-) defines a pseudodistance function between two probability
measures. For example, if we let Z be the Borel sets, (P, Q; B)
would become the variation distance between P and Q. Suppose
P and Q have densities p and g, we then have d(P, Q; #) =
3l =gl

Lec oy ={A € & :3ID € Dyst.Vu € A, D(u) = 1},
where D : % — {0, 1} indicates a discriminator (classifier)
and Py is the set of discriminators constructed by deep neural
networks with complexity parameter M (M can represent the
number of layers, numbers of hidden nodes, etc). In general, M
increases when sample size 7 goes large. If Qg is the probability
measure induced by the generative model G(Z), the adversarial
training is then equivalent to minimizing the pseudodistance
between the induced distribution and the empirical distribution

inf sup |Qg(A) — P(A)| = inf d(Qq, P; ), [9]
Aed)y G
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where P(u) is the empirical distribution given by % Yy bu(u),
where {#;|i = 1, ..., n} is the observed data and &, is the Dirac
measure.

Empirical Risk Minimization. The empirical risk terms are repre-
sented as

Ly =E,[(Y = f(X eo(V), e1(V)))],
Ly =E,[(X — h(eo(V), e2(V)))?]

Ly = sup |P(A4;Z2°) — P(A4;e
AEJJM

Li =E,[|lV = gle(V))II3),

)2,
(VDI = d(Pyyy, Pros i),

[10]
where E,, denotes the empirical expectation based on the observed
darta with sample size 7. P is the probability measures of Z° ~
N(0,I) and ]A)e(y) is the empirical distribution of (V). The
empirical risk is denoted as Renp (f, 4, €, g) = L1 + Ly + L3 + Ly.

The corresponding true risk is RO (£ b, e, g) = RY + R + R) +
Rg, where

R =Eo[(Y — (X, Zo, 1)),
R =Eo[(X — h(Z0, Z2))°),
R =d(P,(y), Pro; ),

R =Eo[l1V — g(e(V))I3]-

(11]

where [Eq stands for the population expectation with respect to the
underlying distribution of the random variables and P,(y) is the
probability measure induced by (V). We denote % and Py as
the function classes of the neural network generator/encoder and
discriminator with complexity M, respectively. By minimizing
empirical risk (MER), we obtain the empirical solution as

]A’M,n, ZM,n) M EMn = argmin Re,,(f b, e g). [12]
fhegeFm

Rademacher Complexity. We use Rademacher complexity to
measure the richness of a function class w.r.z. a probability
distribution. The empirical Rademacher complexity term is

defined as
1 n
Rn(F) i=Eo[sup = Y 0:F (X)), [13]
FeF " i=1

where o; is i.i.d. drawn from the Rademacher distribution with

1
P(G,’ = 1) = P(Gi = —1) = z
Excess Risk. We can now define the excess risk within the
function class % as

R (B vt erim 231n) —  inf - RO(Fheg).  [14]

fhegeFuy

We then characterize the convergence rate of the excess risk in
terms of the Rademacher complexity of the function classes from
the empirical risk terms.

Theorem 1. (Bound of Excess Risk) Under our problem setup
with bounded input domain, Fpr and Dy are the classes of
neural network encoder/generator and discriminator with complexity
M used in our model, respectively. We also add the composition
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Sfunctions of encoder and generator, such as g o e, to Fpy. Let L
be the A-Lipschitz squared loss function used in the empirical risk
terms. Assume that Fyy and Dpy are uniformly equi-continuous
and b-uniformly bounded, respectively. #,,(-) denotes the empirical
Rademacher complexity. For any 6 > 0, we have

R (frt hagwersw @ran) —  inf  R(fheg)
fhege Ty [15]

<(8+4p)Zu(Ly o Far) + 4%,(Dr) + 6

_ 82
with probability at least 1 — 4e 3 G+0)?,

where the operator o denotes the function composition and p
is the number of covariates. The detailed proof is given in (S/
Appendix, section B). Theorem 1 gives a high probability bound
of the excess risk, which involves the calculation of Rademacher
complexity. The Rademacher complexity can be further upper
bounded in terms of the complexity of the class, such as covering
number or Vapnik—Chervonenkis dimension. See refs. 29 and 30
for details from the viewpoint of the empirical process. Bounding
the Rademacher complexity of deep neural networks has also
been widely explored. For example, Truong (31) provided an
order O(1/4/n) for bounding the Rademacher complexity of
feedforward neural network with finite depth and width (see its
theorem 5). Li et al. (32) further showed that given a A-Lipschitz
continuous loss function L, then %,(L; o Fys) has the order
of O(Av/DWr//n), where O(-) represents the rate by ignoring
logarithmic factors and D, W, and r represent the depth, width,
and rank of weight matrices in the neural network, respectively
(see its theorem 1). Since generators, encoder, and discriminator
in CausalEGM are all fully connected neural networks, the excess
risk from the left-hand side of Eq. 15 converges to zero almost
surely as long as the Rademacher complexity terms are in the

order of o(1).

Consistency. Under an assumption on the encoder—decoder
networks related to dimension reduction, we can show the
consistency of our empirical solution in formula 12.

Assumption 2. There exists e3, g, and 6 > 0 s.t.

(e, &, é), ) e [16]

For any function e and g, we have

Eo[||V—2((ef. ¢} 3. 2) (V))113] < Eo[lIV—g((e) (V))||%]§§j

The left-hand side of the inequality in Eq. 17 denotes the
reconstruction error with the “distribution match” constraint
while the first term on the right-hand side of the inequality
in Eq. 17 denotes the reconstruction error in a dimension
reduction framework without any constrain. The constant delta
is the “price” for adding the distribution match constraint in
the latent space. This assumption is expected to hold with
a small delta when the distribution of V satisfies a certain
“dimension reduction” property. We provide a concrete example
in SI Appendix, section C to demonstrate the rationale of this
assumption.

Based on the above assumption, we can derive the consistency
theorem as follows.

Theorem 2. (Consistency) Under the same setting as Theorem 1,
suppose Upr Far and Uy Dpp are uniformly equi-continuous and
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b-uniformly bounded, respectively. Let (f*, b*, €%, g*) be any limit
point of MER solution (f, b, e, g)n when n — oo. If Assumption
1,2 hold and the Rademacher complexity terms in Theorem 1 go to
zero as the sample size n and the model complexity M increase, we
have

Eol((f° = f*)(X. Zo, 21))*] + Eol((K° — #*)(Zo, 22))?]
+ d(Pyo, Pe*(y);(!ZfM) < 26.
(18]

Theorem 2 suggests that if V' can be encoded effectively s.t.
the Assumption 2 is satisfied with 6 =~ 0, we would have
approximately

D
FrafO n ~ b0 (V) = 2. [19]

This holds for any limit points of {(]}, he 2)n}. The detailed
proof is given in (S Appendix, section D).

Results

We performed a series of experiments to evaluate the perfor-
mance of CausalEGM against state-of-the-art methods under
different settings. In the continuous treatment setting, we test
the performance of CausalEGM in learning the average dose—
response function (ADRF). In the binary treatment setting, we
aim to verify the ability of CausalEGM to estimate both the
average treatment effect (ATE) and the individual treatment
estimation (ITE).

Datasets. For the continuous treatment setting, four different
datasets from previous publications (14, 33, 34) were used,
including three simulated datasets and one semisynthetic dataset.
The semisynthetic dataset was collected from 71,345 twins where
the weight is the continuous treatment variable and we simulate
the risk of death (outcome) under a model in which higher weight
leads to a lower death rate in general.

For the binary treatment setting, we used the datasets from the
2018 Atlantic Causal Inference Conference (ACIC) competition.
This dataset utilizes the linked births and infant deaths database
(LBIDD) based on real-world medical measurements. The
LBIDD data are semisynthetic, where 117 measured covariates
are given, and the treatment and outcome are simulated based on
different data-generating processes. We selected nine datasets by
using the most complicated generation process (e.g., the highest
degree of generation function) with sample sizes ranging from
1,000 to 50,000. The details of all datasets used in this paper
were provided at (S Appendix, section E).

Model Evaluation. In the continuous treatment setting, we aim
to evaluate whether the estimated dose—response function p(x)
can well approximate the true dose—response function. Two
commonly used metrics, including RMSE and mean absolute
percentage error (MAPE) are used where

RMSE = | =3 (o) — o))
=1 [20]
L H() = Alx)
MML%ZFTETﬂ

i=1

In the binary treatment setting, we use absolute error of average
treatment effect (€47%) and mean squared error of precision in
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estimation of heterogeneous effect (epgrr) for evaluating the
performance where

eare =1 3 (B(1) = Bi(0) — -
i=1

1 A A
epere == Y _(Vi(1) = ¥(0) — (Vi(1) — ¥:(0)))*.
" i=1
A 21]
Note that ¥;(-) denotes the predicted/imputed value of potential
outcome.

Baselines. For the continuous treatment setting, three different
baselines, including ordinary least squares regression (OLS),
regression prediction estimator (REG) (35, 36), and double
debiased machine learning estimators (34) were used. For the
binary treatment setting, we compared CausalEGM to neural
network-based methods [CFR (37), Dragonnet (38), CEVAE
(39) and GANITE (40)], tree-based methods CausalForest (41),
and sufficient dimension reduction based method SDRcausal
(42). A detailed introduction of these competing methods was
provided in 87 Appendix, section F.

Continuous Treatment Experiments. We first evaluate the per-
formance of the CausalEGM model in the continuous setting
where the treatment x € 2 and 2 is a bounded interval
in R. We set the sample size and number of covariates to be
20,000 and 200 in the simulated datasets, respectively. The
latent dimensions (dimension of z; where i = 0, 1, 2, 3) of the
four datasets are set to be (1, 1, 1, 7), (2,2, 2,4), (5,5, 5, 5), and
(1,1,1,7), respectively. It is shown that CausalEGM demon-
strates superior results over the existing methods, including two
linear regression-based methods OLS and REG, and a kernel-
based machine learning approach with two different machine

learning algorithms (lasso and neural network). We first evaluate
whether the dose-response function can be well estimated by
different competing methods (Fig. 2). It is observed that OLS
and Reg result in relatively large estimation errors. The dose—
response curves estimated by the DML methods have spikes and
fluctuations. In contrast, the curves estimated by Causal EGM are
smooth and the estimation errors are small.

In terms of the quantitative measurements, CausalEGM
achieves the lowest RMSE and MAPE in all three simulated
datasets compared to baseline methods (Table 1). We also note
that DML method performs much better than linear regression-
based methods (OLS and REG) in Hiranos and Imbens and
Twins datasets while performing less well in the other two.
CausalEGM reduces the RMSE, MAPE by 24.2% to 63.4%,
6.9% to 55.2% compared to the best baseline method across
different datasets, respectively. The results of both simulated
data and real data illustrate that CausalEGM offers significant
improvement for estimating the causal effect in continuous
settings.

Binary Treatment Experiments. In the binary treatment settings
where the treatment x € {0, 1}, we aim to evaluate whether
CausalEGM could estimate an accurate treatment effect. The
latent dimensions were set to be (3,6, 3, 6). CausalEGM was
benchmarked against a number of state-of-the-art methods on
the ACIC 2018 benchmark datasets, which provide various
simulation settings and sample sizes. We chose three datasets from
each of three different sample sizes (1, 10, and 50 K) with the most
complicated generation process (e.g., the generation functions
are of the highest order/degree). CausalEGM is compared to six
baseline methods on each of these datasets. As shown in Table
2, CausalEGM achieves the smallest €47F in six out of nine
datasets. CausalEGM performs especially well in datasets with
large sample sizes (e.g., 50 K). For example, the €477 is reduced
by 16.7% to 98.7% in the three largest datasets compared to the
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Fig. 2. The performance of CausalEGM and baseline methods (OLS, Reg, DML with Lasso or neural network) under continuous treatment settings across three
benchmark datasets. (A) Hiranos and Imbens dataset. (B) Sun et al. dataset. (C) Colangelo and Lee dataset. The red curves are the ground truth while the blue

curves are the estimated average dose-response with 95% Cl based on 10 independent simulations.
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Table 1. Result on continuous treatment setting

Dataset Method RMSE MAPE
Imbens et al. OoLS 0.680+0.0 0.367 +£0.0
REG 0.5254+0.0 0.214+0.0
DML(lasso) 0.090+0.0 0.037 £0.0
DML(nn) 0.133+0.022 0.052 +£0.011
CausalEGM 0.041 +0.014 0.019 4 0.006
Sun et al. oLS 0.140 £ 0.0 0.041+£0.0
REG 0.117+£0.0 0.039+0.0
DML(lasso) 0.1634+0.0 0.050+0.0
DML(nn) 0.0970 £0.0190 0.0346 4+ 0.006
CausalEGM 0.0738 £0.0399 0.0345 +0.0170
Lee et al. oLS 1.3+£0.0 1.24+0.0
REG 1.54+0.0 0.565+0.0
DML(lasso) 0.487 +0.0 0.168 £ 0.0
DML(nn) 1.3+ 0.581 0.494 4+ 0.181
CausalEGM 0.125 4 0.040 0.119 4+ 0.080
Twins OLS 0.109+0.0 0.260+0.0
REG 11+0.0 64 +0.0
DML(lasso) 0.075+0.0 0.165+0.0
DML(nn) 0.059 £+ 0.002 0.158 £ 0.006
CausalEGM  0.0339 + 0.020 0.090 & 0.053

Each method was run for 10 times and the SD was also shown. The best performance is
marked in bold.

second-best method. For another metric, CausalEGM achieves
the smallest epgyg in five out of nine datasets and the second-
best performance in the remaining four datasets. To sum up, our
model shows superior performance in estimating both average
treatment effect and individual treatment effect and is especially
powerful when the sample size is large.

Next, we evaluate whether the EGM framework can learn
a better low-dimensional representation compared to sufficient
dimension reduction (SDR). Note that all SDR-based methods
for causal inference use the linear SDR which is restrictive and
may not be able to capture the nonlinear relationship in complex
datasets. We made a comprehensive comparison of CausalEGM
with SDRcausal under experimental settings either satisfying or
violating the SDR assumption. Note that SDRcausal implements

several different variants from the original paper (42) and we
always choose the best result to report. CausalEGM shows great
improvement over SDRcausal in both settings, especially in
the nonlinear dataset where a linear SDR failed to work (57
Appendix, section G).

Impact of Discrete Covariates. CausalEGM has demonstrated
superior empirical performance with discrete covariates, such as
the ACIC 2018 where all 117 covariates are discrete. One natural
question to ask is whether we can always construct standard
normal variables in the latent space when some of the covariates
are discrete.

From the theoretical perspective, under the condition that
there are enough covariates that are independent of both treat-
ment and response, we can construct an approximated standard
normal distribution even when the confounders are discrete
variables. For example, suppose covariants V7, V2yesVy are id.d.

binary variables with probability % on +1 and —1. Assume V] is
the true confounder that affects both treatment X and outcome
Y while other covariates are not involved in the generative models

P g
for X and Y. Then the statistic W = V) % will satisfy the

following two conditions. 1) W ~ N (0, 1) approximately when
p is large. 2) W contains all the information in the confounder
as V] can be recovered by taking the sign of W. We added this
example in 87 Appendix, section H.

From the empirical perspective, we conducted the following
experiment to show that the proposed CausalEGM framework
can learn to construct such a statistic approximately. In this
experiment, 1) V1, V3,...,V) are i.i.d. binary variables distributed
as above. 2) V1, V3, and V3 are used for generating treatment
variable and V. 3) V4, V5 are used for generating outcome
variable. Thus V; is the true confounder and Vg, provides
independent randomness that is not needed in the generative
modeling of treatment and outcome. We set p = 15 and the
dimension of the latent confounding variable Zy to be 1 (see
details in ST Appendix, section H). Our numerical results in this
setting showed that Zj learned by CausalEGM still follows a
standard normal distribution approximately while also preserving
most of the information in Vi (Fig. 3). We conclude that

Table 2. The performance of CausalEGM and comparison methods in ACIC 2018 dataset with various sample sizes

Metric  Dataset TARNET CFRNET CEVAE GANITE Dragonnet CausalForest CausalEGM
eate Datasets-1k 0.022+0.015 0.018+0.015 0.035+0.021 0.27+£0.08 0.010+0.004 0.021+£0.001  0.0097 £+ 0.0075
0.038+£0.029 0.041 +0.027 0.12+0.10 2.0+0.3 0.012 + 0.007 0.017 +£0.003 0.032 +£0.020
0.10£0.06 0.095 +0.079 0.38 £0.27 20+1.4 0.16 £0.10 0.23+£0.02 0.26 £0.07
Datasets-10k  6.4+3.5 12+7 204 + 58 27+£1.2 124+ 11 25+11 13+06
0.056 +£0.001  0.056 & 0.001 0.070 4+ 0.031 1.2+£0.2 0.0097+0.069 0.005740.0004 0.0043 + 0.0025
0.034+0.023 0.060 £ 0.002 0.018+0.011 0.12+0.09 0.078£0.057 0.013+0.003 0.039+0.016
Datasets-50k 0.038 +0.021  0.085+0.105 0.59+£0.31 1.4+£05 0.89+£0.53 0.024 +0.003 0.020 +0.013
0.044+0.003 0.045+0.004 0.66 +£0.59 23+0.2 0.027 +£0.028 0.010+0.001  0.0098 + 0.0089
0.30£0.01 0.30+£0.01 0.64 £0.45 19+£03 0.16 £0.08 0.12+£0.01 0.0016 = 0.0010
epeye  Datasets-1k  0.11 £0.02 0.00069 + 0.00075 0.012+0.005 0.14+0.04 0.038+£0.003 0.00080 + 0.00005 0.0069 £ 0.0016
0.35+0.03 0.29+£0.04 0.27 £0.04 4344124 0.34+0.01 0.27 £0.01 0.25+0.01
0.31+0.14 0.28 £0.23 7.6+53 12+6 1.7+04 0.075 + 0.006 0.20+0.03
Datasets-10k 433 4+ 106 662 + 288 46200+ 15500 78.7+26.8 22200+4130 483.72+31.68 72+26
0.024+£0.005 0.022 +0.006 0.091+0.019 2.08+0.45 0.042+0.003 0.015+0.001 0.014 + 0.001
0.012+0.005 0.0040+0.0028 0.0034+0.0013 0.14+0.08 0.036+0.015 0.0016 +0.0008 0.0028 4-0.0013
Datasets-50k 0.88 +0.04 0.90 £0.08 1.1+£0.5 34+1.4 1.84+0.83 0.65+0.01 0.55+0.01
0.031+0.006 0.030+0.011 0.84+0.76 5.454+0.65 0.039+0.007 0.020 + 0.002 0.022 £+ 0.001
0.22+£0.07 0.27 £0.05 0.67 £0.61 3.8+1.1 0.14+£0.06 0.022+0.001  0.0054 + 0.0013

Each method was run 10 times and the SD are shown. The best performance is marked in bold.
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Fig. 3. Latent confounding variable given discrete covariates. (A) Distribution of latent confounding variable (Zp), latent confounding variable selected by

positive sign of V4 (Za'1 ) and latent confounding variable selected by negative sign of V4 (251 ). (B) The receiver operating characteristic (ROC) curve when using
Z to predict the sign of V4. (C) The precision-recall (PR) curve when using Z; to predict the sign of V4.

as long as the high-dimensional covariates assumption holds,
the randomness from a sufficient number of nonconfounding
covariates can be used for constructing the latent normal variables
needed for the conditioning. We also explored the alternative
strategy of adding random noise to discrete covariates to directly
transform the discrete distribution to a continuous distribution
in 87 Appendix, section H.

Ablation Study. Since CausalEGM consists of different modules.
Itis important to investigate the contribution of each component.
First, we test the performance gain brought by the EGM frame-
work. To do this, we removed the G network for reconstructing V/
and the discriminator network D, for “distribution match” and
denoted the model as “CausalEGMx.” Taking the continuous
treatment setting for an example, we note that the performance
of CausalEGM without the EGM framework has a noticeable
decline in all datasets. The RMSE, MAPE increased by 32.6%
to 164.9%, and 14.55% to 377.0%, respectively (Table 3).
Such experimental results imply that the adversarial training and
the reconstruction error are essential for learning a good low-
dimensional representation of the high-dimensional covariates.
Next, we investigate whether the adversarial training for the
covariates and the reconstruction for the latent features are
necessary. In our model design, adversarial training in latent space

Table 3. Ablation study on evaluating the contribution
of EGM framework

Dataset Method RMSE MAPE

Imbens et al CausalEGMx 0.0936 4+ 0.0579 0.0434 4 0.0293
CausalEGM 0.0706 & 0.0445 0.0352 + 0.0210

is necessary to guarantee the independence of latent variables.
The reconstruction of V is also required to ensure the latent
features contain all the information possessed by the original
covariates. So we designed experiments to quantitatively evaluate
the contribution of the adversarial training in covariate space
and the reconstruction in latent space. The experiments show
that the reconstruction of latent features could benefit the
model training and achieve slightly better performance while
the adversarial training in covariate space is not that helpful
(81 Appendix, section ).

Robustness and Scalability. We conduct comprehensive experi-
ments to examine the robustness and scalability of Causal EGM
(81 Appendix, section J). Specifically, we first verify whether
CausalEGM is sensitive to the choice of latent feature dimensions,
which includes the total dimension of latent space and the
dimension of common latent confounders Zy. The experimental
results show that CausalEGM is quite robust to the choice of
latent feature dimensions. For the scalability test, we demonstrate
that CausalEGM is capable of handling datasets with a large
number of covariates (e.g., >50K) and a large sample size (e.g.,
>5M) while many competing methods fail.

Discussion

In this paper, we developed a causal inference model named
CausalEMG, which applies a dependency-aware dimension re-
duction to the high-dimensional covariates and extracts the latent
confounding features that are used for covariate adjustment. The
proposed EGM framework is shown to be effective in unraveling
the dependencies of covariates on treatment and outcome and

Sun et al CausalEGMx 0.106 + 0.0473 0.0438 4+ 0.0224 constructing the generative models for covariates, treatment,
CausalEGM 0.0436 + 0.0085 0.0180 + 0.0038 and outcome. A wide range of experiments demonstrate the
Lee et al CausalEGMx  1.28+£0.129  0.488 +£0.0950 superiority of our approach compared to existing methods. To
CausalEGM 0.886+0.232 0.426+0.124 sum up, CausalEGM is a flexible, scalable, and powerful approach
Twins CausalEGM« 0.0641 £0.0252  2.38 +6.64 for estimating the causal effect of a variable (e.g., treatment) on

CausalEGM 0.0242 +0.0132 0.499 + 1.39

CausalEGMx represents CausalEGM approach without distribution match in latent space.
Each method was run for 10 times and the SD are shown.
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another (e.g., outcome), which provides a new perspective to
analyze modern observational data in various domains with a
large number of covariates and a large sample size.
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Several extensions and refinements of the Causal EGM model
are left open. First, H(-) function can be further used and
adapted to learn the propensity score in both binary and
continuous treatment settings. It may benefit the development
of new methods where an accurate propensity score model
is required. Second, it is worth investigating the interpretable
mechanism of latent features. For example, Z, naturally serves
as a “latent instrumental variable” where it will only affect the
outcome through the treatment variable. How to utilize the
latent structure under the EGM framework to help identify
(in)valid instruments is an open problem. Third, because of the
extreme nonlinearity and complexity of neural network models,
mathematically derived statistical properties such as valid CI and
convergence rate are almost always missing for deep learning
methods. It is helpful to use conformal prediction approaches
(43—45) to further study the uncertainty of the estimate.

Materials and Methods

Al the simulated datasets were generated through the generation pro-
cesses provided by the original papers. Twins dataset was downloaded
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