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ABSTRACT

Current network control plane veri�cation tools cannot scale to

large networks because of the complexity of jointly reasoning about

the behaviors of all network nodes. We present amodular approach

to control plane veri�cation, where end-to-end network properties

are veri�ed via a set of purely local checks on individual nodes

and edges. The approach targets veri�cation of reachability prop-

erties for BGP con�gurations, and provides guarantees in the face

of arbitrary external route announcements and, for some proper-

ties, arbitrary node/link failures. We have proven the approach

correct and implemented it in a tool Lightyear. Experimentally

we show Lightyear scales dramatically better than prior control

plane veri�ers. Further, Lightyear has been used for six months

to verify properties of a major cloud provider network containing

hundreds of routers and tens of thousands of edges, �nding and

�xing bugs in the process. To our knowledge no prior control-plane

veri�cation tool has been shown to scale to that size and complexity.

Our modular approach also makes it easy to localize con�guration

errors and enables incremental re-veri�cation.

CCS CONCEPTS

• Networks → Network reliability;

KEYWORDS

Network Veri�cation, BGP, Modular Reasoning

ACM Reference Format:

Alan Tang, Ryan Beckett, Steven Benaloh, Karthick Jayaraman, Tejas Patil,

Todd Millstein, and George Varghese. 2023. Lightyear: Using Modularity

to Scale BGP Control Plane Veri�cation. In ACM SIGCOMM 2023 Conference

(ACM SIGCOMM ’23), September 10, 2023, New York, NY, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3603269.3604842

1 INTRODUCTION

Routing in networks today is controlled using low-level con�gura-

tion on individual routers, which often leads to errors, potentially
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causing a network outage. Many earlier techniques try to rem-

edy this by verifying con�gurations against speci�ed end-to-end

network behavior. For instance, Minesweeper [4] models network

behavior using SMT constraints, ARC [10] and Tiramisu [1] use

graphs, and Plankton [22] uses explicit-state model checking.

These techniques provide strong guarantees, frequently reason-

ing about network behavior over all possible external announce-

ments and/or link failures. However, a key open problem is to scale

these techniques to large networks.While these approaches attempt

to scale through various means, they are not e�cient enough to

be used today on large real-world networks such as the wide-area

networks of hyperscalers.

This lack of scalability is fundamentally caused by a shared limi-

tation of earlier approaches: they model and reason about network

behavior monolithically. They analyze the network con�guration

and routing processes as a whole, exhaustively exploring all possi-

ble control-plane behaviors induced by the complex interactions

among all con�guration directives and protocols. As the size of

the network grows, the number of possible network states grows

exponentially, limiting their ability to scale. By contrast, veri�ca-

tion has scaled to large systems in other domains, like software or

hardware, throughmodular checking. In this style, subsystems (e.g.,

a software function or hardware module) are veri�ed independently

to meet local speci�cations (e.g., a precondition/postcondition pair)

that together imply a desired global property [11, 14, 21]. Prior

work has used modularity to scale data-plane analysis [12], but

modularizing control-plane veri�cation is more challenging due to

complex routing protocols and policies.

This paper presents a modular approach to network control

plane veri�cation. Like prior veri�ers, Lightyear takes as input a

network’s con�guration and a global property to verify. To ensure

the property, Lightyear additionally requires the user to provide

local constraints that should hold on individual routers and edges.

Lightyear then automatically produces a set of local checks on

individual nodes and edges that (1) verify the user’s local constraints

and (2) ensure that these constraints imply the given end-to-end

property.

We focus on BGP since it is ubiquitous and in many networks is

the most complex process that impacts the data plane’s forward-

ing behavior. Our approach targets two common classes of BGP

reachability properties. First, safety properties on individual routers

intuitively ensure that “bad” routes never reach a particular node.

This includes common properties like �ltering bogons, preventing

transit between peers, and ensuring isolation. Second, we target
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liveness properties, which intuitively ensure that a “good” route

will eventually be accepted or forwarded at a particular location.

This includes many control-plane reachability queries, for example

that a route received from one neighbor will be sent to another.

Modularizing control-plane veri�cation is challenging. Control

plane behavior depends on the interaction of complex con�gura-

tions with BGP, a distributed message-passing protocol. A classical

way to reason modularly about protocols is through invariants

indexed by time [2], and/or employ temporal logic [17]. This re-

quires signi�cant e�ort and expertise. Instead, we demonstrate that

in practice a wide range of desired properties can be modularly

veri�ed without making time explicit. Reasoning modularly about

liveness properties is particularly challenging; it requires that the

modular checks together imply an end-to-end path through the

network. We describe a natural approach to ensure this using two

kinds of constraints: path constraints that ensure the feasibility of a

"good" path, and no-interference invariants that ensure good paths

cannot be prevented.

We have formalized our approach to modular control plane veri-

�cation, proved its correctness, and built a tool called Lightyear

based on it. Lightyear’s approach o�ers several advantages over

the prior work, as summarized in Table 1:

Scalability: Lightyear performs a linear number of checks

in the network size (number of nodes and edges). Further, each

check depends only on the complexity of an individual node’s

con�guration. Prior approaches that reason about the joint behavior

of all nodes’ policies scale at least quadratically, if not exponentially.

Lightyear’s local checks are also trivially parallelizable and enable

incremental re-checking when con�gurations change.

Strong Guarantees: If all of Lightyear’s local checks are satis-

�ed, then the speci�ed network property is guaranteed to hold for

all possible external route announcements from neighbors. Further,

for safety properties our guarantees hold even in the presence of

arbitrary node or link failures, though this is not true in general

for liveness properties. As shown in the �rst two rows of the table,

of the prior work only Minesweeper [4] supports reasoning about

both external route announcements and failures.

Localization: While prior approaches identify incorrect be-

havior, the resulting counterexample is global, making it di�cult

to determine which router and policy is erroneous. By contrast, a

local-check violation in Lightyear directly indicates the erroneous

router and policy.

Lightyear’s main tradeo� is that users must specify local con-

straints. However, for networks designed in a modular and struc-

tured fashion, only a few simple constraints are required for any

desired end-to-end property. For example, network nodes are com-

monly partitioned into roles, such as border or core, each with its

own responsibilities; nodes in the same role will typically have the

same local constraints.

In addition, the scalability and localization properties of our

tool make it easy for users to hypothesize an initial set of local

constraints and then re�ne them iteratively based on feedback. We

used this approach to produce the local constraints in our real-

world experiments (see below), having brief discussions with the

network operators based on Lightyear’s feedback in order to either

determine that an identi�ed issue was a real con�guration error or

to update our local invariants appropriately.

ISP1

ISP2

R1

R2

R3

Customer

X

✓

Network

Figure 1: Example network with safety and liveness properties

(shown intuitively by the purple arrows). Routes from ISP1 should

not be sent to ISP2 (safety). Routes from Customer should reach ISP2

(liveness).

We used Lightyear to verify multiple properties for BGP in a

large cloud provider’s wide-area network, which has hundreds of

routers and tens of thousands of BGP peerings. To our knowledge

no prior veri�cation tool that reasons about all possible external

route announcements has been demonstrated at this scale. We also

ran tests on synthetic networks to show howwell Lightyear scales.

In summary, we make the following contributions:

(1) Modularity: A novel solution to scaling control plane veri-

�cation by checking individual routers locally.

(2) Formalization: A formal model of BGP routing that we use

to prove correctness of the modular approach.

(3) System: A tool Lightyear built using our approach, which

has been running in a hyperscaler for six months.

(4) Evaluation:Ademonstration of Lightyear’s ability to scale

to very large networks experimentally.

This work does not raise any ethical issues.

2 APPROACH OVERVIEW

In this section we show how Lightyear works with the example in

Figure 1. In the example network, each edge represents a connection

between BGP speakers. The network contains three BGP routers:

R1, R2, and R3. R1 and R2 each have an ISP as an external neighbor.

R3 is connected to an external neighbor that is a customer. The

network satis�es two properties. First, it satis�es the standard no-

transit property that routes originating from ISP1 should not be

advertised to ISP2, and second, it satis�es the property that routes

from Customer, with appropriate pre�xes, should eventually be

sent to ISP2. The former is a safety property, holding when a certain

event never occurs, and the latter is a liveness property, holding

when a event must eventually occur. Both are network-wide policies

in that they depend on the interaction of multiple routers to achieve

the correct result.

Existing control-plane veri�ers [1, 4, 10, 22, 24] would verify

these properties by creating a representation of the possible data

planes that can result from the entire network’s con�guration and

then searching this representation for counterexamples. This joint

representation of all network node behaviors has inherent scalabil-

ity limitations.

However, we observe that network con�gurations are highly

structured and modular by design. Each router contains route maps
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Tool Feature Minesweeper [4] BagPipe [24]
Plankton [22] ARC [10]

Lightyear
Tiramisu [1] Hoyan [26]

Analyzes all peer BGP routes   # #  

Analyzes failures  #   G#

Checks safety and liveness properties  G#    

Veri�cation is fully automatic     G#

Near linear scaling with network size # # # #  

Localizes bugs in con�gurations # # # #  

Table 1: Comparison of prior veri�cation tools with Lightyear.

(also called route policies and route �lters), which de�ne an import

and export policy on each BGP peering session, determining which

routes are rejected, which are accepted, and how accepted routes

are transformed. Each route map plays a particular role in the assur-

ance of desired global properties. For example, in the network from

Figure 1 the no-transit property can be ensured using a common

approach based on communities: (1) R1’s import policy marks re-

ceived routes from ISP1 with a BGP community (a simple 32-bit tag)

with value 100:1 (2) R2’s export policy �lters routes tagged with

100:1 when advertising to ISP2, and (3) no other import or export

policy strips community 100:1 from routes that it advertises.

Note that each of the above behaviors is node-local and pertains

to an individual BGP route map. Unlike Lightyear, prior control

plane veri�cation tools are not aware of this modular structure

and so cannot leverage it. Alternatively, one could envision making

a tool that simply performs a set of user-speci�ed local checks

like the ones above. However, in that case there is no guarantee

that together they imply the desired end-to-end property. Even in

this simple example, the fact that it is necessary to check the third

condition above is subtle and easily missed.

Figure 2 shows the architecture of Lightyear. Like prior control-

plane veri�ers, it takes as input the network con�guration and an

end-to-end property to verify. However, Lightyear requires the

user to provide additional local constraints that capture the modular

structure of the con�gurations. From these inputs Lightyear gen-

erates a set of local checks on individual nodes in the network and

uses a constraint solver to verify each one. If all of these local checks

succeed, then the end-to-end property is guaranteed to hold, for

all possible external route announcements from neighbors and, for

safety properties, for all possible link and node failures in the net-

work. Otherwise, Lightyear provides concrete counterexamples

for each failed local check.

In the rest of this section, we show how Lightyear modularly

veri�es the two properties for the network in Figure 1.

2.1 Safety Properties

End-to-end Property: For safety properties, the end-to-end prop-

erty of interest is speci�ed as a pair of a particular location in the

network and a predicate on all routes reaching that location. Many

network policies fall into this class of properties, for example bogon

�ltering; ensuring that a network only advertises routes to its own

destinations; and forms of isolation between nodes or groups of

nodes. Such properties can also express complex constraints among

BGP attributes, for example that pre�xes in a speci�c range always

have a particular local preference or MED value.

As shown in the �rst line of Table 2, the no-transit property

speci�es that no route transmitted over the edge from R2 to ISP2

should originate at ISP1. To enable the expression of rich properties,

Lightyear allows users to de�ne ghost attributes that conceptually

update message headers with additional �elds. This is a common

technique in software veri�cation, where additional variables are

introduced that do not a�ect the computation but allow for easier

property speci�cation [9]. In the table, FromISP1(Ĩ ) is a boolean

ghost variable that is de�ned by the user to be false in all originated

routes, set to true by the import �lter on R1 from ISP1, and left

unchanged by all other �lters.

Network Invariants: Users must also specify invariants that

are true for routes at locations within the network. While in prin-

ciple the user could specify a di�erent invariant for each network

location, many locations play the same role in the network and have

the same behavior with respect to the desired end-to-end property.

In our example, there are only three network invariants, shown in

Table 2, which correspond exactly to the three node-local behav-

iors described earlier that ensure the no-transit property. First, no

assumption is made about the routes coming from ISP1 to R1, so

the associated predicate is True. Second, routes coming from R2 to

ISP2 should not come from ISP1. Note that this invariant is identical

to the end-to-end property, which is common but need not be the

case. Third, all other locations in the network should satisfy the

key correctness invariant: routes from ISP1 must be tagged with

the community 100:1.

For many safety properties, like in the example above, invariants

follow a straightforward three-part structure. First, very little is

assumed about routes coming from outside the network (so the

associated local invariant is True or similarly nonrestrictive). Sec-

ond, the desired global property should hold at the corresponding

location in the network (the edge from R2 to ISP2 in the above

example). Third, there is a key invariant that holds in the rest of

the network, which intuitively describes how the network ensures

the global property. In our example above, the invariant speci�es

the fact that the network uses the community 100:1 to keep track

of the routes that came from ISP1. In general this invariant restricts

the routes that can �ow through the network to be of a limited

kind, for example a speci�c set of pre�xes or containing speci�c

attribute values such as the MED, local preference or communities.

Notably, this three-part decomposition is analogous to the modular

veri�cation of software [11], which typically involves a precondi-

tion that is assumed to hold initially, a postcondition to be proven,

and one or more inductive invariants that hold throughout each

execution and are su�cient to imply the postcondition.
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All Checks
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Some Checks
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Figure 2: The architecture of Lightyear.

Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 ¬FromISP1(Ĩ ) No routes sent to ISP2 come from ISP1

ISP1 → R1 True ISP1 can send our network any route

R2 → ISP2 ¬FromISP1(Ĩ ) No routes sent to ISP2 come from ISP1Network Invariants
Nodes and other

edges in network

FromISP1(Ĩ )

⇒ 100:1 ∈ Comm(Ĩ )
Routes from ISP1 are tagged with community 100:1

ISP1 → R1 (True ' Ĩ ′ = Import(ISP1 → R1, Ĩ ))

⇒ (FromISP1(Ĩ ′) ⇒ 100:1 ∈ Comm(Ĩ ′))

R2 → ISP2 ((FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Export(R2 → ISP2, Ĩ ))

⇒ ¬FromISP1(Ĩ ′)

Other Edge ā ((FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Export(ā, Ĩ ))

⇒ (FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ ))

Generated Checks

((FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Import(ā, Ĩ ))

⇒ (FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ ))

Table 2: Using Lightyear to prove the no-transit property from Figure 1. The user-provided global property and local invariants

are show in blue. Lightyear-generated local veri�cation checks are shown in yellow.

Type Location(s) Logical Formula Description

End-to-end Property R2 → ISP2 HasCustPrefix(Ĩ ) Customer pre�xes are advertised to ISP2

Assumption Customer → R3 HasCustPrefix(Ĩ ) Assume customer routes are advertised to R3

R3, R2, HasCustPrefix(Ĩ ) Routes from customer are accepted/forwarded

R3 → R2 '¬ 100:1 ∈ Comm(Ĩ ) and not tagged with community 100:1Path Constraints

R2 → ISP2 HasCustPrefix(Ĩ ) Routes are forwarded to ISP2

Customer → R3 (HasCustPrefix(Ĩ ) ' Ĩ ′ = Import(Customer → R3, Ĩ ))

⇒ (HasCustPrefix(Ĩ ′) ' ¬100:1 ∈ Comm(Ĩ ′))

((HasCustPrefix(Ĩ ) ' ¬100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Export(R3 → R2, Ĩ ))

⇒ (HasCustPrefix(Ĩ ′) ' ¬100:1 ∈ Comm(Ĩ ′))
R3 → R2

((HasCustPrefix(Ĩ ) ' ¬100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Import(R3 → R2, Ĩ ))

⇒ (HasCustPrefix(Ĩ ′) ' ¬100:1 ∈ Comm(Ĩ ′))

Propagation Checks

R2 → ISP2 ((HasCustPrefix(Ĩ ) ' ¬100:1 ∈ Comm(Ĩ )) ' Ĩ ′ = Export(R2 → ISP2, Ĩ ))

⇒ HasCustPrefix(Ĩ ′)

No-interference Checks R3, R2 HasCustPrefix(Ĩ ) Routes accepted at R3 and R2 with a customer

(Safety Properties) ⇒ ¬100:1 ∈ Comm(Ĩ ) pre�x must not have community 100:1

Table 3: Using Lightyear to prove the liveness property from Figure 1. The user-provided global property, and path constraints

are show in blue. The propagation checks are shown in yellow for the path is Customer→ R3→ R2→ ISP2. The no-interference

checks are safety properties proven using their own invariants (not shown).
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Importantly, these local invariants are far from complete speci�-

cations of the network’s routing behavior. Rather, local invariants

need only describe the constraints on routes that are necessary

to ensure the particular global property of interest. For example,

suppose that our example network uses a route’s local preference

value to choose among multiple routes to a destination. Since the

local preference values don’t pertain to our no-transit property, this

behavior need not be speci�ed.

Generated Checks: Given the invariants provided from the

user, Lightyear automatically generates local checks to validate

the given network invariants. Importantly, each local check per-

tains to a single BGP �lter on a single network router, applied to

messages from a speci�c neighbor. Together these checks imple-

ment a form of assume-guarantee reasoning [14, 21]: each location’s

network invariant is proven under the assumption that the network

invariants of its directly connected locations hold. As we prove

later, together these checks imply that all local invariants in the

network are respected.

Table 2 shows the local checks that Lightyear automatically

generates for our running example. The �rst check ensures that the

import �lter at R1 on the edge from ISP1 to R1 establishes the key

invariant FromISP1(Ĩ ) ⇒ 100:1 ∈ Comm(Ĩ ). Since that �lter tags

all routes with community 100:1, the check is easily provable by a

constraint solver. The second check ensures that the key invariant

is su�cient to ensure that routes from ISP1 are not exported on

the edge from R2 to ISP2. Since the export �lter at R2 on that edge

drops all routes that are tagged with 100:1, the check passes. The

third set of checks ensure that the key invariant is preserved by all

other import and export �lters in the network. Since these �lters

never strip community 100:1 from a route, the checks pass.1 Lastly

(not shown in the table), Lightyear must check that the invariant

on the edge from R2 to ISP2 implies the end-to-end property. This

check is trivial since the two properties are identical.

Output: If the con�guration contains errors, Lightyear returns

a counterexample for each local check that did not pass. In our

example, suppose that R1’s import �lter accidentally does not add

the community 100:1 for some routes received from ISP1. In that

case, the �rst generated check in Table 2 would fail, producing a

counterexample consisting of a concrete route that is accepted by

R1 but does not get the community 100:1 added to it. This coun-

terexample directly indicates the route policy that is responsible

for the error and concretely illustrates the speci�c local property

that was violated. Counterexamples from Lightyear are also be

helpful in re�ning local invariants that are not precisely known in

the beginning. For example, a user might write a local invariant for

some network location but forget to account for a speci�c corner

case. In that case Lightyear will identify an “error" due to a failed

local check, and the associated counterexample informs the user

how to re�ne that local invariant to more closely match the network

location’s behavior.

2.2 Liveness Properties

End-to-end Property: For liveness properties, the end-to-end

property of interest is also a pair of a particular location in the

1There are also some analogous checks for originated routes, but they are omitted
here for simplicity.

network and predicate. However, here the predicate indicates that

a route satisfying the property will eventually reach that location.

The property in Table 3 shows that a route with a customer pre�x

will eventually be sent from R2 to ISP2. If the routes of interest

come from a neighbor, as in this case, then the property will only be

provable under the assumption that the neighbor advertises such a

route. Users can optionally specify such an assumption, as shown

in the table.

Path and Constraints: As with safety properties, users need to

provide a set of local constraints on individual network locations,

but they take a di�erent form for liveness properties. Users must

provide a path through the network that the desired route can

take to reach the destination from the source, along with local

constraints for each edge and node along the path. The path does

not need to be unique. Intuitively, each local constraint indicates

the properties of the "good" routes that will reach that particular

location, and together they constitute a witness that a "good" route

will eventually reach its intended destination. As shown in Table 3,

our example has two path constraints: at locations R3, R2, and R3

→ Ď2 there will eventually be a route with the customer pre�x that

does not have the community 100:1, and at R2→ ISP2 there will

eventually be a route with the customer pre�x. It is important that

routes from Customer do not have the community 100:1, or else

they will be dropped at R2, due to the way that the earlier no-transit

property is ensured. As described earlier, the local and concrete

feedback from Lightyear can be used iteratively to identify these

conditions.

Propagation Checks: In order to prove the liveness property

two types of checks need to be performed. First, there are local

checks that together imply that a route will in fact traverse the given

path, in the absence of interference from other possible paths. These

checks are analogous to the generated checks for safety properties

shown earlier. Notably, in order for the �rst propagation check in

Table 3 to be satis�ed, the import policy at R3 must not accept any

routes tagged with community 100:1. One way to ensure this is

for the policy to strip communities from all accepted routes. The

other two checks are straightforward.

No-interference Checks: Finally, liveness properties require

an additional set of checks. Since BGP only selects the best route

available from all of a router’s neighbors, it is not enough to show

that �lters do not reject "good" routes along our path. It is also

necessary to show that other routes in the network can never

interfere, at any node along the path. To do this, we also check

that any route with the same pre�x as a "good" route that can be

accepted by a node on the path is also "good" — it also satis�es the

corresponding path constraint. For our example, at R3 and R2, routes

with a customer pre�x are checked to never have the community

100:1. This constraint ensures that if routes for customer pre�xes

arrive along other paths and are preferred to those arriving on our

path, those routes will still satisfy the desired property (i.e., they

will be sent from R2 to ISP2). Note that this means that our approach

does not require that the speci�ed path be unique in the network,

so we can verify liveness properties even in some scenarios where

there is routing redundancy. The no-interference constraint is itself

a safety property, and so in general it must be proven using the

machinery shown in the previous subsection, with its own set of

local invariants (not shown in the table).
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Output: As in the previous example, Lightyear returns a con-

crete counterexample for each failed propagation check and no-

interference check. For example, if R3’s import policy does not

properly strip the community 100:1 from accepted routes, then

Lightyear will produce a concrete example illustrating this fact,

allowing the user to easily understand and localize the error.

In summary, Lightyear’s approach to control-plane veri�cation

leverages the modular structure that is already present in the net-

work con�gurations. By requiring the user to make this structure

explicit through a set of local invariants at each location, Lightyear

soundly reduces checking an end-to-end network property to a set

of checks that each pertain to a single BGP import or export �lter.

We formalize our approach and prove its correctness in Sections 4

and 5.

This approach has numerous bene�ts over the prior, monolithic

approaches. First, our approach is highly scalable, since the number

of checks is linear in the number of edges in the BGP network

graph. Second, Lightyear’s modular checks provide a very strong

guarantee. For both safety and liveness properties, the approach

handles all possible external route announcements from neighbors.

For safety properties, it additionally provides resilience to arbitrary

failures "for free," since it proves that "bad" routes are not received

without making any assumptions about the paths that they might

traverse. Third, the modular approach naturally supports incre-

mental veri�cation when a node is updated: only the local checks

pertaining to that node must be re-checked. Finally, modularity has

large bene�ts for error localization and understanding: the failure

of a local check directly pinpoints the erroneous import or export

�lter and the local invariant that it fails to satisfy.

3 FORMAL MODEL OF BGP

In this section we de�ne a model of BGP in terms of traces and

axioms on traces. This model is used in the next two sections to

make Lightyear’s approach precise and to prove its correctness.

3.1 BGP Topologies and Policies

Wemodel a network’s BGP con�guration as consisting of two parts:

a topology and a policy. A BGP network topology is a tuple of the

form (Routers, Externals, Edges), where:

(1) Routers is the set of routers for which the user provides

con�gurations.

(2) Externals is the set of external routers. That is, there is no

provided con�guration, but each such router is an eBGP or

iBGP peer with at least one router in Routers.

(3) Edges is the set of directed edges corresponding to BGP

peering sessions.

The network topology forms a graph with Routers ∪ Externals

as the set of nodes and Edges as the set of edges. We will use the

notation ý → þ to refer the directional edge (ý, þ) in the topology.

A BGP route (or route advertisement) is modeled as a tuple
(Pre�x, ASPath, NextHop, LocalPref, MED, Comm)

where:

(1) NextHop, LocalPref, and MED are integer values

(2) Pre�x is a pair consisting of an IP address and a length, both

of which are integer values

(3) ASPath and Comm are lists of integer values representing

the BGP path and the community tags, respectively.

Let Routes denote the set of all routes. We will use Comm(Ĩ ) to

refer to the Comm �eld of the route Ĩ , Pre�x(Ĩ ) to refer the pre�x

of Ĩ , and so on. Real BGP messages contain a few other attributes

as well, which could be incorporated into this model. Routes can

also be extended with additional “ghost” attributes, such as the

FromISP1 attribute from Section 2. This is described in Section 4.4.

We model the BGP network policy as consisting of three func-

tions, which can be derived from the BGP and route-map con�gu-

rations of each router:

(1) Import : Edges × Routes → Routes ∪ {Reject}

(2) Export : Edges × Routes → Routes ∪ {Reject}

(3) Originate : Edges → P(Routes)

The �rst two correspond to the import and export route maps

which are de�ned in the router con�gurations. The third models the

router’s ability to advertise static routes or routes from other proto-

cols into BGP. For an edge ý → þ and a route Ĩ , Import(ý → þ, Ĩ )

either returns the route produced when applying the import �l-

ter at þ to the route Ĩ sent from ý or returns Reject if the im-

port �lter rejects the route. Export(ý → þ, Ĩ ) either returns the

route produced when applying the export �lter at ý to the route

Ĩ sent to þ or returns Reject if the export �lter rejects the route.

Originate(ý → þ) returns the set of routes that are originated at

ý and sent to þ.

3.2 BGP Traces

We model the semantics of BGP as a set of allowed traces. Our

semantics is a variant of that from the Bagpipe tool [24].

A trace is a sequence of events. There are three types of events

that we consider: recv, slct, and frwd. For Ĩ ∈ Routes, Ď and Ċ ∈

Routers, and Ċ → Ď and Ď → Ċ ∈ Edges:

(1) recv(Ċ → Ď, Ĩ ) occurs when Ď receives route Ĩ from neigh-

bor Ċ

(2) slct(Ď, Ĩ ) occurs when Ď selects Ĩ as the best route for a

destination and installs it

(3) frwd(Ď → Ċ, Ĩ ) occurs when Ď forwards route Ĩ to the

neighbor Ċ

We denote the set of all traces as Traces.

A valid trace is one that could occur for a given topology and

policy, according to the BGP semantics. We formalize the notion

of trace validity as a set Valid ¦ Traces of traces that satisfy

speci�c properties. We consider a trace to be valid, and hence part

of the set Valid, if it satis�es a set of safety axioms, and a set

of liveness axioms. These axioms are stated in Appendix A. The

safety axioms are used to prove the correctness of safety checks

and state necessary conditions for an event to be in the trace. For

example, if a slct event is in the trace, then there must be a recv

event earlier and Importmust have transformed the received route

into the selected route. The liveness axioms are used to prove the

correctness of liveness checks and state su�cient conditions to

show that an event occurs later in the trace. For example, if a slct

event occurs, then the result of Export applied to the selected route

will be used in a fwrd event.

In our model, external neighbors can send di�erent announce-

ments in di�erent traces, and events at di�erent locations can occur

in any order.
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4 SAFETY VERIFICATION IN LIGHTYEAR

In this section, we describe Lightyear’s approach for modularly

verifying safety properties and prove its correctness.

4.1 Inputs for Safety Checks

Lightyear requires three inputs from the user in order to check

safety properties. The �rst input, the network con�gurations, is

standard. As described previously, the con�gurations are used to

build the BGP topology as well as the policy functions.

The second input is the network safety property, which requires

that all route announcements that can reach a particular location

satisfy certain constraints. Formally, a network safety property is a

pair (ℓ, Č) where:
(ℓ, Č) ∈ (Routers ∪ Edges) × P(Routes)

Here ℓ is a location, either a router or an edge, and Č is a set of

routes matching a particular constraint. In practice, users directly

specify a logical constraint on route attributes that represents Č .

Each safety property (ℓ, Č) corresponds to a property of all pos-

sible valid traces, as de�ned in the previous section — all routes

that can reach location ℓ must satisfy Č . Formally, a network sat-

is�es a property (ℓ, Č) if for all Đ ∈ Valid, Ĩ ∈ Routes, Ď, Ċ ∈

Routers, Ď → Ċ ∈ Edges:

• if ℓ = Ď and slct(Ď, Ĩ ) ∈ Đ , then Ĩ ∈ Č

• if ℓ = Ď → Ċ and frwd(Ď → Ċ, Ĩ ) ∈ Đ ( recv(Ď → Ċ, Ĩ ) ∈

Đ , then Ĩ ∈ Č

For example, the combination of the location (Ď1 → Ď2) and con-

straint 1:1 ∈ Comm(Ĩ ) together specify the property that if the

event frwd(Ď1 → Ď2, Ĩ ) or the event recv(Ď1 → Ď2, Ĩ ) are in a

valid trace, then Ĩ should always have the community 1:1.

Finally, Lightyear’s third input is a set of network invariants,

one per location in the given network. Formally, the network in-

variants are modeled as a set of pairs denoted ą :
ą ¦ (Routers ∪ Edges) × P(Routes)

Each element of the set has the form (ℓ, Č), where ℓ is a location

and Č is a set of routes, as in the network property de�ned above.

The semantics of each pair is a property of traces, analogous to the

semantics of network properties shown above.

We require that there exist exactly one pair in ą per location in

the given network, and we use the notation ąℓ to denote the set Č of

routes associated with location ℓ in ą . We also require that ąĎ→Ċ =

Routes for each edge Ď → Ċ where Ď ∈ Externals. In other

words, we make no assumption about routes coming from external

neighbors but rather assume that any route may be advertised.

4.2 Local Checks

Given the network con�guration, network property (ℓ, Č), and net-

work invariants ą , Lightyear generates the following local checks

for each edge ý → þ in the network topology, which validate each

location’s network invariant using assume-guarantee reasoning:

(1) Import: For all Ĩ, Ĩ ′ ∈ Routes, if Ĩ = Import(ý → þ, Ĩ ′)

and Ĩ ′ ∈ ąý→þ , then Ĩ = Reject ( Ĩ ∈ ąþ .

(2) Export: For all Ĩ, Ĩ ′ ∈ Routes, if Ĩ = Export(ý → þ, Ĩ ′)

and Ĩ ′ ∈ ąý , then Ĩ = Reject ( Ĩ ∈ ąý→þ .

(3) Originate: For all Ĩ ∈ Routes, if Ĩ ∈ Originate(ý → þ),

then Ĩ ∈ ąý→þ .

For example, the �rst check veri�es that the import route map at

þ on the edge ý → þ satis�es ąþ , assuming that ý → þ satis�es

its local invariant. If the router þ is external then the import check

is not performed, and similarly if the router ý is external then the

export and originate checks are not performed. In our implemen-

tation of Lightyear, the local checks are performed by modeling

import and export �lters using SMT constraints and invoking an

SMT solver to validate each check or provide a counterexample.

Finally, Lightyear checks that the network invariants ą imply

the network property (ℓ, Č). This is done simply by requiring that

ąℓ ¦ Č , i.e. that the network invariant for ℓ implies the network

property Č . Again this check is performed with an SMT solver.

4.3 Correctness

We have proven the correctness of our approach to modular safety

veri�cation.

Theorem: Given a BGP topology and policy, a network property

(ℓ, Č), and network invariants ą , let ÿ be the set of Import, Export,

and Originate checks that Lightyear generates. If all checks in

ÿ pass and ąℓ ¦ Č , then for all Đ ∈ Valid, Ĩ ∈ Routes, Ď, Ċ ∈

Routers:

• if ℓ = Ď and slct(Ď, Ĩ ) ∈ Đ , then Ĩ ∈ Č

• if ℓ = Ď → Ċ and frwd(Ď → Ċ, Ĩ ) ∈ Đ ( recv(Ď → Ċ, Ĩ ) ∈

Đ , then Ĩ ∈ Č

Proof: See Appendix B.

4.4 Ghost Attributes

To increase Lightyear’s expressiveness, users can de�ne ghost

attributes, which conceptually extend each route with additional

�elds. For example, the FromISP1(Ĩ ) ghost attribute from Section 2

is used to indicate whether Ĩ originated from ISP1. A ghost attribute

is de�ned by specifying the set of values that the attribute can

take, along with updates to the Import, Export, and Originate

functions that make up the given network’s policy (Section 3.1).

In the case of FromISP1(Ĩ ) from Figure 1, it can be de�ned as a

boolean attribute with the following behavior:

• the import �lter on ISP1 → R1 sets FromISP1 to true

• the import �lters on ISP2 → R2 and Customer → R3 set

FromISP1 to false

• other �lters leave FromISP1 unchanged

• all originated routes have FromISP1 set to false

Other natural network properties can be expressed using ghost

attributes. For example, a WaypointR attribute that is true only for

routes processed by a particular router Ď can be de�ned by specify-

ing that �lters on Ď set WaypointR to true, origination as well as im-

port �lters from external neighbors at other routers set WaypointR

to false, and all other �lters in the network leave WaypointR un-

changed.

Ghost attributes do not a�ect the description of Lightyear or

proof of its correctness above, as they do not depend on the speci�c

set of attributes that are in a route.

4.5 Fault Tolerance for Safety Properties

A signi�cant bene�t of Lightyear’s approach to control-plane

veri�cation of safety properties is that it supports reasoning about

failures “for free.” That is, if all of Lightyear’s checks pass, then

the given network property is guaranteed to hold not only in the

failure-free case but also in the presence of arbitrary node and link

failures.
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Lightyear soundly reasons about failures because of our over-

approximate notion of trace validity (Section 3.2 and Appendix A).

Speci�cally, any trace that is feasible according to the given BGP

topology and passes the import and export �lters along the cor-

responding path is considered valid. Hence, every trace that can

occur under any failure scenario is already considered valid. By our

correctness theorem, all of these traces satisfy the property (ℓ, Č).

5 LIVENESS VERIFICATION IN LIGHTYEAR

We now describe how Lightyear checks liveness properties modu-

larly. Proving liveness properties modularly is more di�cult than

proving safety properties, since it requires showing both that "good"

routes are allowed and that interfering routes are not.

5.1 Inputs for Liveness Checks

The inputs for a liveness check consist of the following:

(1) The network con�gurations

(2) A liveness property (ℓ, Č) ∈ {Routers∪Edges}×P(Routes)

(3) A path (ℓ1, . . . , ℓĤ = ℓ) where ℓğ ∈ {Routers ∪ Edges}

(4) A constraint ÿ1 . . .ÿĤ for each location in the path, where

ÿğ ∈ P(Routes)

The property (ℓ, Č) represents a liveness property of all valid traces,

namely that there will eventually be a route at ℓ that satis�es Č .

Formally, this means for all Đ ∈ Valid, either:

• ℓ ∈ Routers and there exists Ĩ ′ such that slct(ℓ, Ĩ ′) ∈ Đ

and Č (Ĩ ′) holds, or

• ℓ ∈ Edges and there exists Ĩ ′ such that frwd(ℓ, Ĩ ′) ∈ Đ and

Č (Ĩ ′) holds

The path (ℓ1, ℓ2, . . . , ℓĤ−1, ℓĤ = ℓ) is a sequence of routers and

edges that we expect the route to travel across. We require that it

represents an actual topological path in the network: if ℓğ = Ď ∈

Routers then for some Ċ , ℓğ+1 = Ď → Ċ , and if ℓğ = Ď → Ċ ,

then ℓğ+1 = Ċ . For example, ISP1 → R1, R1, R1 → R3, R3, R3 →

Customer is a path in the network from Figure 1. The last location

ℓĤ must be the location ℓ of the end-to-end property that we are

verifying.

The constraints ÿ1 . . .ÿĤ are properties that represent the set of

"good" routes that reach each ℓğ along the path. They play a role

analogous to the local invariants ąℓğ for proving safety properties,

described earlier. The property ÿ1 for the �rst location in the path

is simply assumed to hold; in practice it is usually an edge coming

from an external router, in which case it is not possible to prove.

Rather, the best we can do is prove that if that router sends a "good"

route, then it will eventually reach its intended destination in the

network.

5.2 Local Checks

The checks for liveness can be broken up into two parts: checks

that prove propagation along the given path, and checks that prove

there is no interference from outside routes.

Propagation along a path: These checks are analogous to the

local checks performed for safety veri�cation, but they are only

checked along the given path. Together they ensure that the import

and export �lters along the path (ℓ1, . . . , ℓĤ) do not drop "good"

routes. Speci�cally, for all valid traces Đ and ğ < Ĥ:

If ℓğ = Ď ∈ Routers, then:
ÿğ (Ĩ ) ' Ĩ ′ = Export(Ď → Ċ, Ĩ )

=⇒ Ĩ ′ ≠ Reject 'ÿğ+1 (Ĩ
′)

and if ℓğ = Ď → Ċ ∈ Edges, then:
ÿğ (Ĩ ) ' Ĩ ′ = Import(Ċ → Ď, Ĩ )

=⇒ Ĩ ′ ≠ Reject 'ÿğ+1 (Ĩ
′)

No interference: Next, we need to verify that it is not possible

for a router along the path to select a "bad" route with the same

pre�x as a "good" route. Let Prefix(ÿğ ) refer the set of pre�xes

with at least one route in ÿğ :
{Ħ | Ħ = Prefix(Ĩ ) ' Ĩ ∈ ÿğ }

Then at each router ℓğ along the path we must prove the following

safety property:
(ℓğ , Prefix(Ĩ ) ∈ Prefix(ÿğ ) =⇒ ÿğ (Ĩ ))

These properties can be proven using our existing approach for

proving safety properties (Section 4), given appropriate local in-

variants.

Implying the network property: The above checks ensure

that all of the local ÿğ constraints in fact hold. Finally, Lightyear

generates a local check thatÿĤ ¦ Č , similar to the analogous check

for safety properties, to ensure that the local constraints imply the

desired end-to-end liveness property.

5.3 Correctness

We have proven the correctness of our approach to modular safety

veri�cation.

Theorem: Given the following:

• The network con�gurations

• A liveness property (ℓ, Č)

• A path ď = (ℓ1, ℓ2, . . . , ℓĤ−1, ℓĤ = ℓ)

• A constraint for each location ÿ1 . . .ÿĤ
For all valid traces Đ , if all of the following are true:

(1) all checks (propagation, no interference) pass

(2) there exists Ĩ such that recv(ℓ1, Ĩ ) ∈ Đ 'ÿ1 (Ĩ )

(3) ÿĤ ¦ Č

(4) there are no link failures along the path

then there exists Ĩ ′ such that either:

• ℓ ∈ Routers and there exists Ĩ ′ such that slct(ℓ, Ĩ ′) ∈ Đ

and Č (Ĩ ′) holds, or

• ℓ ∈ Edges and there exists Ĩ ′ such that frwd(ℓ, Ĩ ′) ∈ Đ and

Č (Ĩ ′) holds

Proof: See Appendix C.

Notably, the correctness only depends on there being no link failures

along the given path, so the property holds even if there are failures

elsewhere.

6 EVALUATION

6.1 Cloud WAN

We used Lightyear to modularly verify properties of the wide-area

network (WAN) of a major cloud provider, containing hundreds

of routers and tens of thousands of peering sessions. In doing so,

we show that: (1) important behavioral properties in real-world

networks can be expressed in Lightyear; (2) these properties can

be proven through a combination of modular checks; (3) this ap-

proach scales, allowing properties to be veri�ed quickly; and (4) if

a local check does not succeed, it produces actionable information,
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Type Locations (Ģ) Logical Formula (ąĢ ) Description

End-to-end

Property

Any R in

network

ĂĨĥģČěěĨ (Ĩ ) =⇒

Prefix(Ĩ ) ∉ Bogons
Bogon pre�xes from peers should not be accepted

Ď ∈ Routers
ĂĨĥģČěěĨ (Ĩ ) =⇒

Prefix(Ĩ ) ∉ Bogons
Bogon pre�xes from peers should not be accepted at routers

Network

Invariants

Internal edges

R1 → R2

ĂĨĥģČěěĨ (Ĩ ) =⇒

Prefix(Ĩ ) ∉ Bogons
Bogon pre�xes from peers should not be sent along edges

Other ĐĨīě Edges to and from external peers are unconstrained

(a) End-to-end property and network invariants needed to verify that the network does not accept bogons from external peers.

Type Locations (Ģ) Logical Formula (ąĢ ) Description

End-to-end

Property
Ď ∉ Region

ĂĨĥģĎěĝğĥĤ(Ĩ ) =⇒

Prefix(Ĩ ) ∉ ReusedIPs

Routers outside a region should not accept

routes with reused addresses from that region

Ď ∈ Region

ĂĨĥģĎěĝğĥĤ(Ĩ ) '

Prefix(Ĩ ) ∈ ReusedIPs =⇒

RegionalComms ∩ Comm(Ĩ ) = {ÿ}

Routes with reused addresses are tagged with a com-

munity for that region and no other region

Network

Invariants
Ď ∉ Region

ĂĨĥģĎěĝğĥĤ(Ĩ ) =⇒

Prefix(Ĩ ) ∉ ReusedIPs

Routers outside a region should not accept

routes with reused addresses from that region

R1 → R2 ąĎ1 Edges have same invariant as sending router

E → R Comm(Ĩ ) = ∅ Routes from external peers have no communities

(b) End-to-end property and network invariants needed to verify that reused addresses are not accepted by any router outside the region.

Type Locations (Ģ) Logical Formula (ąĢ ) Description

End-to-end

Property
Ď2 ∈ Region

ĂĨĥģĎěĝğĥĤ(Ĩ ) '

Prefix(Ĩ ) ∈ ReusedIPs

Ď2 inside a region eventually accepts a route

with reused addresses from that region

Assumption
Edge from data

center Ā → Ď1

ĂĨĥģĎěĝğĥĤ(Ĩ ) '

Prefix(Ĩ ) ∈ ReusedIPs

Assume there is a route from the data center to

Ď1 with a reused pre�x

Path

Constraints
Ď1, Ď2, Ď1 → Ď2

ĂĨĥģĎěĝğĥĤ(Ĩ ) '

Prefix(Ĩ ) ∈ ReusedIPs '

RegionalComms ∩ Comm(Ĩ ) = {ÿ}

Ď1 and Ď2 eventually select a route with reused

pre�xes and the regional community

(c) End-to-end property and path constraints needed to verify that reused addresses are eventually selected by each WAN router in that region.

We assume that the route �ows from the data center along the path Ā → Ď1 → Ď2.

Table 4: End-to-end properties and network invariants for three use cases in the WAN.

indicating a bug in either a speci�c route map or a speci�c local

invariant. To our knowledge no prior tool that veri�es properties

of all possible external announcements from neighbors has been

demonstrated to scale to such a size.

We used Lightyear to verify two classes of properties that the

wide-area network must satisfy. In all cases we determined the

intended network behavior by inspecting the con�gurations and

talking with the network operators, and the local constraints were

written based on that intent. This process was typically iterative.

That is, we would write an initial property speci�cation and its set

of local invariants based on our current understanding of how the

network operates. If Lightyear reported violations of local checks,

we would inspect the counterexamples and discuss with opera-

tors, either determining that the bugs are real errors or identifying

special cases that led to re�ned local invariants and (sometimes)

re�ned end-to-end property speci�cations.

Implementation: We implemented Lightyear as a tool in C#.

The tool parses and extracts the BGP policy along with import

and export route maps from each con�guration, while supporting

common attributes of BGP routes such as communities, AS path,

MED, local preference, along with common route map features, like

matching on and setting attributes. The tool allows users to provide

local invariants written as a C# function using the Zen constraint

solving library [28], and to specify the routers and policies of in-

terest. The Zen library translates the functions into SMT formulas

that are solved by Z3 [7]. For each local check that fails, the tool

returns a counterexample consisting of a speci�c route map and a

concrete input route that leads to a violation.

Internet Peering Policies:We used Lightyear to verify that

11 di�erent kinds of "bad" routes are never accepted from peers.

Each of these properties can be expressed as a safety property on

each node Ď in the network of the following form:

(Ď, {Ĩ |ĂĨĥģČěěĨ (Ĩ ) =⇒ č (Ĩ )})

with di�erent properties č (Ĩ ). These include properties like not

accepting bogons or routes with invalid AS paths. An example of

the invariants for the no-bogons property is shown in Table 4a. The

network has a set of Internet edge routers, that peer with Internet

service providers, other cloud providers, and customers, and so

act as gateways between the cloud provider and the Internet. The

wide-area network ensures that "bad" routes are not admitted by

�ltering them at all of the Internet edge routers.

As mentioned earlier, running Lightyear to check these prop-

erties is an iterative process, which involves re�ning the local con-

straints based on operator feedback. In the end, through this process
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Lightyear identi�ed 11 actual con�guration errors. These included

cases where a route map denied more tra�c than intended, and

inconsistencies between the �lters of edge routers that are intended

to have similar behavior. For example, in one case, among the hun-

dreds of similarly de�ned peering sessions, it was discovered that a

handful had ad-hoc policies that �ltered AS paths di�erently. All

of the �ndings were latent bugs that did not have an immediate

impact, but could become impactful in the presence of failures or

changes in the external announcements received from neighbors.

Further, because Lightyear is sound the operators can be sure that

these are the only violations of the desired end-to-end properties.

As of this writing, all identi�ed errors are prioritized for �xing by

network engineers.

Veri�cation with Lightyear is highly scalable. The maximum

time that it took Lightyear to sequentially run all of the local

checks for any single property was 15 minutes, across all devices in

the network. As another data point, an automation that sequentially

ran the local checks for four of the properties across all of the

hundreds of edge routers took a total of 16 minutes. Given that

each of these checks can be run independently on each device

con�guration, it would also be easy to parallelize these checks

in the future in order to scale horizontally for a large number of

devices.

While using Lightyear to verify these 11 properties, we also

learned best practices for writing properties. Initially, we combined

multiple properties into a single property for Lightyear to check.

However, we found that writing multiple simpler properties, with

associated simpler local constraints, was not only easier to write

and debug but also was usually faster to run, since the constraints

are simpler for the underlying SMT solver to process.

Proper IP Reuse: In the second use case, Lightyear veri�ed

proper usage of reused IPs within the network. The cloud network is

partitioned into dozens of regions, and some private IPv4 addresses

are reused in di�erent regions. There is a safety property that tra�c

sent to these private addresses must stay within the region, and also

a liveness property that routes to reused addresses are advertised

to other WAN routers in the same region. We veri�ed both of these

properties for all regions in the network.

The safety property to verify is as follows, for each router Ď that

is not part of the region of interest:
(Ď, {Ĩ | ĂĨĥģĎěĝğĥĤ(Ĩ ) =⇒ Prefix(Ĩ ) ∉ ReusedIPs})

Here ĂĨĥģĎěĝğĥĤ(Ĩ ) is a ghost variable that is set to true only

on routes coming from external routers in the particular region,

and ReusedIPs is the set of pre�xes that are reused. The liveness

property requires that in each region, a route with a reused pre�x

from the data center routers can reach all other routers in that

region, possibly going through one intermediate router. That is,

for every pair of WAN routers Ď1 and Ď2 in the same region, if Ď1
is connected to a data center router Ā , then routes with a reused

pre�x can travel Ā → Ď1 → Ď2.

The WAN enforces these properties by tagging routes for reused

IP addresses with a region-speci�c community ÿ when they are

received from data centers. Routers in the same region then accept

routes tagged with that community, while routers in other regions

reject them. The local constraints we used to verify the safety

and liveness properties are shown in Table 4b and 4c respectively.

One subtlety is that routes to reused IP addresses in the region

of interest must not only have the community ÿ , but they also

must not be tagged with any other region’s community. Otherwise,

these routes could be accidentally accepted by other regions. The

local constraints validate this property, and the WAN enforces it by

deleting all communities on routes coming from the data centers,

before adding the community ÿ .

The communities used in each region were documented in a

metadata �le, whichmade it easy for us to write the local constraints

for each region. In one case, Lightyear found a violation where a

router used a community that was not present in the metadata �le.

The operators acknowledged that this was a bug that could cause

some tra�c to be redirected. Lightyear was able to verify all other

local checks, for both the safety and the liveness properties.

6.2 Scaling Experiments

To illustrate the scaling bene�ts of modular checking, we compared

Lightyear with Minesweeper [4] on synthetic test cases. For a fair

comparison, we created an implementation of Lightyear that is

built on top of the same parser and constraint generation system as

Minesweeper. This is a di�erent implementation from the one used

on the cloud network. We use a BGP full mesh where each router

is connected to one external neighbor through eBGP and all other

routers through iBGP. This leads to a total of Ċ 2 edges in a network

of size Ċ . The network’s con�guration is relatively simple, with

each eBGP connection using only pre�x and community �lters.

We checked a no-transit safety property, similar to the example in

Figure 1.

Figure 3 provides details on these results by comparing the

number of SMT variables and constraints generated by each tool,

as well as the amount of time used to solve the SMT constraints

compared to the total computation time. As the network size in-

creases, Minesweeper requires several orders of magnitude more

SMT variables and constraints than the maximum number required

by Lightyear for any local check (compare Figures 3a and 3b). As

a result, SMT solving time dominates the run time of Minesweeper

and is the limiting factor on its ability to scale, while for Lightyear

the solving time is a relatively small portion of the total time (com-

pare Figures 3c and 3d). Minesweeper does not terminate within

two hours when run on a network of size 40, while Lightyear

veri�es a network of size 100 in 5.5 minutes.

7 RELATEDWORK

Control Plane Veri�cation: State-of-the-art approaches to net-

work control-plane veri�cation were summarized in Table 1. Unlike

Lightyear, these approaches are all monolithic — they require

joint analysis of the con�gurations of all nodes — which dramat-

ically limits scalability. Compared to Lightyear, Minesweeper’s

worst case complexity is exponential in the network size. Other

improvements not only reduce generality but are at least quadratic

in the network size even when using specialized algorithms. Most

approaches make tradeo�s in expressiveness, for example giving

up the ability to reason about all possible BGP announcements

from neighbors [1, 10, 22, 27]. In contrast, Lightyear’s modular

approach only requires reasoning about individual BGP route maps

in isolation and so is highly scalable. Lightyear also provides guar-

antees across all possible external announcements and, for safety

properties, arbitrary failures.
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(b) The maximum number of variables and constraints

in any single local check generated by Lightyear.
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(c) Time used by Minesweeper to verify a property of

synthetic networks. Runtime for networks with 40

routers or more exceeds two hours, not including time

to parse con�gurations.
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(d) Time used by Lightyear to verify a property in

synthetic networks, not including time to parse con-

�gurations.

Figure 3: Comparing Lightyear and Minesweeper on synthetic networks of various sizes.

rcc [8] validates important properties of BGP con�gurations,

largely through local checks on individual con�guration. However,

rcc is limited to speci�c "best practice" policies, and there is no

guarantee that the local checks together ensure the desired end-to-

end properties.

Closest to our work are recent techniques for modular control-

plane veri�cation, Kirigami [23] and Timepiece [2], which also use

assume-guarantee reasoning for the control plane via local invari-

ants. However, each approach makes a di�erent set of tradeo�s

than Lightyear. Kirigami’s local invariants require the exact routes

that will arrive on a particular edge. Because these invariants are

fully concrete, Kirigami cannot reason about arbitrary route an-

nouncements from neighbors or give guarantees in the presence of

failures.

Timepiece allows for expressive local invariants and properties,

using an explicit notion of time. In Timepiece, routing protocols

have discrete, synchronized time steps, and in each step, each router

computes the best route among those it receives. This model allows

Timepiece to specify and check temporal-logic properties but re-

quires users to provide complex local invariants for each node that

are explicitly indexed by time. In our model routes can be sent and

arrive in arbitrary orders, and we demonstrate how to specify and

check common safety and liveness properties without explicit time.

Another line of work has improved scalability of control-plane

veri�cation through forms of abstraction [5, 6]: the full network is

analyzed monolithically, but irrelevant or redundant con�guration

information is abstracted away to simplify the analysis. Our work

is orthogonal to this line of work; the two approaches could be

combined.

Data Plane Veri�cation: Other tools check properties of for-

warding state, rather than network con�gurations [3, 13, 15, 16, 18,

19, 25]. These approaches generally require joint reasoning about

the entire network. A recent exception is RCDC [12], which mod-

ularly veri�es global reachability contracts in a data center via

local checks. However, RCDC is speci�c to one data center design

and does not provide a general framework for decomposing global

property checks into local checks. Another approach [20] exploits

abstraction, such as symmetries, to scale data-plane veri�cation.

Modular Veri�cation: Assume-guarantee reasoning [14, 21]

enables modular veri�cation in other domains. A global property

is modularized by providing each system component with local

invariants that it must satisfy, assuming other components satisfy

their invariants. Lightyear applies this methodology to networks

to generate the local checks that each BGP policy must satisfy.

Veri�cation often requires identifying inductive invariants, prop-

erties that hold over some unbounded space of system states, such

as the iterations of a loop [11]. Such invariants arise naturally in

networks and enable many locations to use the same local invariant.

Typically, a small set of nodes establishes an inductive invariant

(e.g., by attaching a community), and this invariant holds through

the network as long as other nodes “do no harm” (e.g., never remove

communities).
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8 CONCLUSION

Exploiting symmetries in network veri�cation [20] is natural be-

cause of hardware design patterns such as fat trees. Similarly, ex-

ploiting modularity in control plane veri�cation is natural because

of design patterns in the way con�gurations are written and main-

tained in well engineered networks. We have con�rmed this hy-

pothesis in six months of deployment at a major cloud vendor.

Further, Lightyear �nesses the need to reason about time to prove

safety and liveness, o�ering a sweet spot between expressiveness

and complexity that has worked well for many desired properties

in our network.

In Lightyear, users must provide local network constraints.

While in our experience it has been easy to determine these con-

straints, we believe it is possible to instead learn local invariants

automatically from con�gurations in the future, for example when

properties are enforced via communities.
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A BGP TRACE AXIOMS

The safety axioms consist of the following properties, for all 1 f

ġ f Ĥ:

(1) If ýġ = recv(Ċ → Ď, Ĩ ), then either:

(a) Ċ ∈ Externals, or

(b) there exists Ġ < ġ such that ý Ġ = frwd(Ċ → Ď, Ĩ )

(2) Ifýġ = slct(Ď, Ĩ ), then there exists Ġ < ġ , Ĩ ′ ∈ Routes, and

Ċ ∈ Routers∪Externals such thatý Ġ = recv(Ċ → Ď, Ĩ ′)

and Ĩ = Import(Ċ → Ď, Ĩ ′)

(3) If ýġ = frwd(Ď → Ċ, Ĩ ), then either:

(a) Ĩ ∈ Originate(Ď → Ċ ), or
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(b) there exists Ġ < ġ and Ĩ ′ ∈ Routes such that ý Ġ =

slct(Ď, Ĩ ′) and Ĩ = Export(Ď → Ċ, Ĩ ′)

The liveness axioms depend on the BGP route preference relation,

which selects routes to the same pre�x by comparing their local

preference, AS paths, and other attributes. We say that Ĩ1 > Ĩ2 if Ĩ1
is preferred over Ĩ2. The liveness axioms consist of the following

properties, for all 1 f ġ f Ĥ:

(1) If all of the following are true:

• ýġ = slct(Ď, Ĩ ) ∈ Đ

• Ĩ ′ = Export(Ď → Ċ, Ĩ ) with Ĩ ′ ≠ Reject

then there exists Ġ > ġ such that ý Ġ = frwd(Ď → Ċ, Ĩ ′)

(2) If Ĩ ∈ Originate(Ď → Ċ ) then there exists Ġ > ġ such that

ý Ġ = frwd(Ď → Ċ, Ĩ )

(3) If ýġ = frwd(Ď → Ċ, Ĩ ) and there is no link failure along

Ď → Ċ , then there exists Ġ > ġ such that ý Ġ = recv(Ċ →

Ď, Ĩ )

(4) If all of the following are true:

• ýġ = recv(Ċ → Ď, Ĩ )

• Ĩ ′ = Import(Ċ → Ď, Ĩ ) with Ĩ ′ ≠ Reject

• For all neighbors Ċ ′
≠ Ċ and routes Ĩ ′′:

if Prefix(Ĩ ) = Prefix(Ĩ ′′) and recv(Ċ ′ → Ď, Ĩ ′′) ∈ Đ ,

then Ĩ ′ > Import(Ċ → Ď, Ĩ ′′)

then there exists Ġ > ġ such that ý Ġ = slct(Ď, Ĩ ′) ∈ Đ .

B CORRECTNESS PROOF FOR SAFETY

In this section we prove that Lightyear’s modular approach to

control-plane veri�cation is correct.

First we state and prove the key lemma, which says that the local

checks are su�cient to ensure that the network invariants ą hold,

for all valid traces.

Lemma: Given a BGP topology and policy as well as network

invariants ą , letÿ be the set of Import, Export, and Originate checks

that Lightyear generates. If all checks in ÿ pass, then for all Đ ∈

Valid, Ĩ ∈ Routes, Ď, Ċ ∈ Routers:

• if slct(Ď, Ĩ ) ∈ Đ , then Ĩ ∈ ąĎ
• if frwd(Ď → Ċ, Ĩ ) ∈ Đ ( recv(Ď → Ċ, Ĩ ) ∈ Đ , then Ĩ ∈

ąĎ→Ċ

Proof: The proof is by induction on the length of the (partial) trace

Đ .

Base case: For a partial trace of length 0, there are no events, so

the statement is vacuously true.

Inductive case: Suppose Đ = ý1, ý2, . . . , ýġ+1. We assume by in-

duction that the statement is true for ý1, ý2, . . . , ýġ . We do a case

analysis on the event ýġ+1:

Case ýġ+1 = recv(Ċ → Ď, Ĩ ), so we have to show that Ĩ ∈ ąĊ→Ď .

By the trace validity axioms, either:

(1) Ċ ∈ Externals. In this case we know that ąĊ→Ď = Routes,

so Ĩ ∈ ąĊ→Ď .

(2) There exists Ġ < ġ + 1 such that ý Ġ = frwd(Ċ → Ď, Ĩ ). Then

by the inductive hypothesis we have that Ĩ ∈ ąĊ→Ď .

Case ýġ+1 = slct(Ď, Ĩ ), so we have to show that Ĩ ∈ ąĎ . From the

trace validity axioms, we know that there exists Ġ < ġ + 1, Ĩ ′ ∈

Routes, andĊ ∈ Routers∪Externals such thatý Ġ = recv(Ċ →

Ď, Ĩ ′) and Ĩ = Import(Ċ → Ď, Ĩ ′). From the inductive hypothesis,

we know that Ĩ ′ ∈ ąĊ→Ď . Therefore by the Import check in ÿ for

Ċ → Ď, we can conclude that Ĩ ∈ ąĎ .

Case ýġ+1 = frwd(Ď → Ċ, Ĩ ), so we have to show that Ĩ ∈ ąĎ . By

the trace validity axioms, either:

(1) Ĩ ∈ Originate(Ď → Ċ ). Then from the Originate check in

ÿ for Ď → Ċ we have that Ĩ ∈ ąĎ→Ċ .

(2) There exists Ġ < ġ + 1 and Ĩ ′ ∈ Routes such that ý Ġ =

slct(Ď, Ĩ ′) and Ĩ = Export(Ď → Ċ, Ĩ ′). From the inductive

hypothesis, we have that Ĩ ′ ∈ ąĎ . Then from the Export

check in ÿ for Ď → Ċ , we can conclude that Ĩ ∈ ąĎ→Ċ .

Now we prove the correctness theorem for Lightyear, which

says that Lightyear’s checks are su�cient to ensure that the given

network property holds, for all valid traces.

Theorem: Given a BGP topology and policy, a network property

(ℓ, Č), and network invariants ą , let ÿ be the set of Import, Export,

and Originate checks that Lightyear generates. If all checks in

ÿ pass and ąℓ ¦ Č , then for all Đ ∈ Valid, Ĩ ∈ Routes, Ď, Ċ ∈

Routers:

• if ℓ = Ď and slct(Ď, Ĩ ) ∈ Đ , then Ĩ ∈ Č

• if ℓ = Ď → Ċ and frwd(Ď → Ċ, Ĩ ) ∈ Đ ( recv(Ď → Ċ, Ĩ ) ∈

Đ , then Ĩ ∈ Č

Proof: There are two cases:

(1) ℓ = Ď and slct(Ď, Ĩ ) ∈ Đ . From the earlier lemma we have

that Ĩ ∈ ąℓ , and since ąℓ ¦ Č it follows that Ĩ ∈ Č .

(2) ℓ = Ď → Ċ and frwd(Ď → Ċ, Ĩ ) ∈ Đ (recv(Ď → Ċ, Ĩ ) ∈ Đ .

Again from the earlier lemma we have that Ĩ ∈ ąℓ , and since

ąℓ ¦ Č it follows that Ĩ ∈ Č .

Note that our reasoning does not depend on BGP converging as

traces can be in�nite.

C CORRECTNESS PROOF FOR LIVENESS

In this section, we prove the correctness of the modular checks for

liveness properties.

Theorem: Given the following:

• The network con�gurations

• A liveness property (ℓ, Č)

• A path ď = (ℓ1, ℓ2, . . . , ℓĤ−1, ℓĤ = ℓ)

• A constraint for each location ÿ1 . . .ÿĤ
For all valid traces Đ , if all of the following are true:

(1) all checks (propagation, no interference) pass

(2) there exists Ĩ such that recv(ℓ1, Ĩ ) ∈ Đ 'ÿ1 (Ĩ )

(3) for all Ĩ , ÿĤ (Ĩ ) =⇒ Č (Ĩ )

(4) there are no link failures along the path

then there exists Ĩ ′ such that either:

• ℓ ∈ Routers and there exists Ĩ ′ such that slct(ℓ, Ĩ ′) ∈ Đ

and Č (Ĩ ′) holds, or

• ℓ ∈ Edges and there exists Ĩ ′ such that frwd(ℓ, Ĩ ′) ∈ Đ and

Č (Ĩ ′) holds

Proof: Consider a valid trace Đ . By the assumption, there exists Ĩ1
such that recv(ℓ1, Ĩ1) ∈ Đ and ÿ1 (Ĩ1)

There must exists at least one router Ď = ℓĠ and a route Ĩ Ġ such

that slct(Ď, Ĩ Ġ ) is in the trace and Prefix(Ĩ Ġ ) = Prefix(Ĩ1). If

there are no routers outside the path that have their routes ac-

cepted then Ĩ2 = Import(ℓ1, Ĩ1) is the most prefered route at ℓ2, so

slct(ℓ2, Ĩ2) will be in the trace. If there are routers outside the path

that have their routes accepted, then by the no interference check,

it must be that the router accepted at ℓĠ will satisfy ÿ Ġ (Ĩ Ġ ).
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Consider the last router that accepts a route from a neighbor

outside the path. We will use induction to show that all locations ℓğ
between it and the end will have a route satisfying ÿğ :

Base case: Take the last router Ď = ℓĠ , where there exists Ĩ Ġ ,ÿ Ġ

such that slct(ℓĠ , Ĩ Ġ ) ∈ Đ and ÿ1 (Ĩ Ġ ). We have shown above that

there must be one.

Inductive step: If ℓğ = Ď ∈ Routers, then we know that the event

slct(ℓğ , Ĩğ ) ∈ Đ andÿğ (Ĩğ ) from the inductive hypothesis. We want

to show that there exists Ĩğ+1 such that frwd(ℓğ+1, Ĩğ+1) ∈ Đ and

ÿğ+1 (Ĩğ+1). This is true because:

• let Ĩ ′ = Export(ℓğ+1, Ĩğ )

• slct(ℓğ , Ĩğ ) ∈ Đ and ÿğ (Ĩğ ) (from the inductive hypothesis)

• Ĩ ′ ≠ Reject and ÿğ+1 (Ĩğ+1) (from the propagation check)

• frwd(ℓğ+1, Ĩğ+1) ∈ Đ (from the liveness axiom)

If Ģğ = Ċ → Ď ∈ Edges, then we know that frwd(ℓğ , Ĩğ ) ∈ Đ

and ÿğ (Ĩğ ), and we want to show that there exists Ĩğ+1 such that

slct(ℓğ+1, Ĩğ+1) ∈ Đ and ÿğ+1 (Ĩğ+1). This holds because:

• let Ĩğ+1 = Import(ℓğ , Ĩğ )

• recv(ℓğ , Ĩğ ) ∈ Đ (from liveness axiom given no link failures)

• Ĩğ+1 ≠ Reject and ÿğ+1 (Ĩğ+1) (from the propagation check)

• We know that R and any router after R in the path did not

accept any routes from any neighbors not in the path, so

Ċ → Ď, so we know slct(ℓğ+1, Ĩğ+1) ∈ Đ and ÿğ+1 (Ĩ
′)

From this, we know that at ℓĤ , there exists a route ĨĤ such that

ÿĤ (ĨĤ) and either frwd(ℓĤ, ĨĤ) ∈ Đ or slct(ℓĤ, ĨĤ) ∈ Đ .ÿĤ (ĨĤ) =⇒

Č (ĨĤ), which is what we wanted to prove. Again, note that our rea-

soning does not depend on BGP converging as traces can be in�nite.
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