
What do LLMs need to Synthesize Correct Router
Configurations?

Rajdeep Mondal
UCLA

USA

mondalrajdeep14@ucla.edu

Alan Tang
UCLA

USA

atang42@cs.ucla.edu

Ryan Beckett
Microsoft Research

USA

Ryan.Beckett@Microsoft.com

Todd Millstein
UCLA

USA

todd@cs.ucla.edu

George Varghese
UCLA

USA

varghese@cs.ucla.edu

Abstract

We investigate whether Large Language Models (e.g., GPT-

4) can synthesize correct router configurations with reduced

manual effort. We find GPT-4 works very badly by itself,

producing promising draft configurations but with egregious

errors in topology, syntax, and semantics. Our strategy, that

we call Verified Prompt Programming, is to combine GPT-4

with verifiers, and use localized feedback from the verifier

to automatically correct errors. Verification requires a spec-

ification and actionable localized feedback to be effective.

We show results for two use cases: translating from Cisco to

Juniper configurations on a single router, and implementing

a no-transit policy on multiple routers. While human input

is still required, if we define the leverage as the number of

automated prompts to the number of human prompts, our

experiments show a leverage of 10X for Juniper translation,

and 6X for implementing the no-transit policy, ending with

verified configurations.

CCS Concepts

• Software and its engineering → Application specific de-

velopment environments.

Keywords

CoSynth, network verification and synthesis, large language

models (LLMs)

ACM Reference Format:

Rajdeep Mondal, Alan Tang, Ryan Beckett, Todd Millstein, and George

Varghese. 2023. What do LLMs need to Synthesize Correct Router

Configurations?. In The 22nd ACM Workshop on Hot Topics in

Networks (HotNets ’23), November 28–29, 2023, Cambridge, MA,

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for third-party

components of this work must be honored. For all other uses, contact the

owner/author(s).

HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/3626111.3628194

USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3626111.3628194

1 Introduction

While GPT-4 and other large language models (LLMs) have

shown great success in some domains (e.g., writing poems,

passing the LSAT) they have been shown to have issues in

other domains (e.g,. math, word puzzles) [3]. Language mod-

els have had some success in helping users write sequen-

tial programs in systems like AlphaCode [10], CoPilot [7],

Codex [4] and Jigsaw [8]. They have also been explored as

promising assistants for software testing and debugging [13].

Our work investigates code generation by LLMs for a dif-

ferent domain. We examine GPT-4’s ability to write router

configuration files, traditionally written by humans, that help

tune routes and forwarding decisions and are critical for net-

work operation. Our early experiments show that GPT-4 by

itself is an “idiot-savant", capable of brilliance but also mak-

ing simple errors that an operator would be fired for making.

Critics have derided LLMs as mere “stochastic parrots” [2],

because they produce text (say of a program) syntactically by

predicting the next word based on a statistical model derived

by training on a vast corpus of text from the Internet. Our

broader goal beyond synthesizing configs is to see whether

LLMs can be fused with other programs (via APIs) to resem-

ble a “stochastic owl” that understands program semantics.

A plausible way to introduce semantics is to pair a LLM

with an automatic verifier such as a SAT solver or a model

checker. But verification is not a panacea. First, a verifier

cannot prove correctness without a specification. In practice,

specifications are incomplete, so not all solutions are in fact

acceptable to the user. Second, for the verifier to automatically

(with minimal human aid) interact with the LLM, the verifier

must provide actionable feedback. We found it was easier for

the LLM to correct itself using feedback from modular verifi-

cation of components of a network (individual routers [11] or

even route maps within a router [12]), rather than the network

as a whole.

Figure 1 shows the traditional method of pair programming

(PP), embodied in systems like GitHub CoPilot [7], where a



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Figure 1: Pair Programming using human correction

human and an AI work together to author a program. In pair

programming, the AI and the human form a tuple (ý,Ą ) and

the human Ą manually checks for correctness of the output of

the AI ý and then manually issues correction prompts to ý as

shown in the figure. Such manual initial prompting and subse-

quent manual correction is often called prompt engineering.

Figure 2 shows our alternate vision. In what we call Veri-

fied Prompt Programming (VPP), the AI, the human, and a

verification suite (Ē ) form a triple (ý,Ą,Ē ). The verification

suite checks for correctness and automatically issues localized

corrections. Ē may abandon automatic correction after some

number of trials, and the human must still correct manually.

However, our hypothesis is that human effort is reduced as

the output grows “closer” to a correct program.

Notice that there is a fast inner loop between Ē and ý,

where verifier results are automatically fed back to GPT-4.

Since verifier feedback is often cryptic, we use simple code

that we call a humanizer that converts the feedback to natural

language prompts that are given to GPT-4. When Ē either

determines the final configuration is correct or a time bound

elapses,Ē sends the output back to the user as part of the slow

manual loop. We examine a “reduced work hypothesis": that

the work in the manual loop in Figure 2 is significantly less

than then the manual work in Figure 1

To quantify reduced human effort we introduce a simple

measure that may be useful in other VPP contexts. Define

leverage as the ratio Ĉ of the number of automated prompts in

Figure 2 to the number of human prompts. Leverage measures

the effect of the verifier suite, the potential improvement in

going from (ý,Ą ) to (ý,Ē ,Ą ), keeping the language model

ý and the human Ą the same. Note that the leverage can differ

across multiple iterations of the same experiment, due to the

stochastic nature of the LLM output.

The reader may think the real leverage is the improvement

from Ą to (ý,Ą ), or from Ą to (ý,Ē ,Ą ). But this depends

on the capability of the human Ą and is hard to make uniform

or repeatable. Given how error-prone (ý,Ą ) is for configu-

rations, we find it more natural to measure the improvement

caused by VPP. Our definition also assumes every automatic

correction in Figure 2 would otherwise be done by a human

in Figure 1.

Figure 2: Verified prompt programming

The reduced work hypothesis is that the leverage Ĉ > 1 is

high. Even if the leverage is low (say 1), since it is crucial that

router configurations be correct, combining with a verifier

seems critical. We were happy to find that in both use cases

we did end with verified configurations via GPT-4: this was

not obvious at the outset.

This vision and hypothesis extends beyond synthesizing

configs to more general programs. Prompt programming (as

opposed to prompt engineering) also reflects the use of APIs

and automatically generated feedback prompts that may be

more generally useful. However, network configs are a simple

enough domain to experiment with. Further, there exist config

verifiers (e.g., Campion [12] and Lightyear [11]) that provide

actionable localized feedback.

For the rest of this paper, we examine the reduced man-

ual work hypothesis and measure leverage for two use cases:

translating a config on a single router from Cisco to Juniper

syntax, and implementing a simple policy (“no transit") on

a network of 6 routers. We conducted these experiments dur-

ing February-March 2023. Section 2 describes the system

organization of a potential system we call COSYNTH. Sec-

tion 3 describes experiments with Cisco to Juniper translation,

while Section 4 describes implementing no-transit on multi-

ple routers. Section 5 compares our ideas to previous work

and Section 6 describes lessons learned.

2 System Organization

Figure 3 is a refinement of the more general Verified Pair Pro-

gramming (VPP) vision of Figure 2 that we call COSYNTH.

We emphasize we have not built COSYNTH. While we use

GPT-4 we have not been able to access the APIs, and so man-

ually simulated the API calls with prompts to ChatGPT. Our

goal is not to demonstrate a working system but instead to

explore GPT-4’s ability to author configurations, as in the

“Sparks of AGI" paper [3].

The verification suite shown in Figure 3 consists minimally

of two verifiers, a syntax verifier (we used Batfish [6]) and a

semantics verifier (we used different ones depending on the

use case). For our second use case, we used a third verifier, a

topology verifier (that we wrote in Python) as we found that

GPT-4 sometimes missed announcing routes to neighbors.

The user provides a precise natural language description of

the context (topology, routers, interfaces) and the desired task

(e.g. the Cisco config and a request to translate it to Juniper).



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

GPT-4 output is fed first to Batfish to check for syntax errors.

COSYNTH sends GPT-4 feedback about erroneous lines, “hu-

manized" in natural language (see Table 1 for examples). The

boxes labelled H in Figure 3 correspond to the humanizer in

Figure 2, which acts as an error parser and natural language

translator.

Figure 3: Verified prompt programming for Configs

If all syntax errors are corrected (if too many syntax correc-

tion attempts occur, COSYNTH punts to the user), the output

is passed to the semantics verifier. For our first use case, we

use Campion [12] as a verifier. For our second use case we use

Batfish’s symbolic route map analysis as the verifier, asking it

to verify local policies that together ensure the desired global

policy, as in Lightyear [11]. Once again, the semantic verifier

feedback is passed back, suitably humanized, to GPT-4. We

found that GPT-4 would sometimes correct a semantic error

while introducing a new syntax error, in which case we had

to return to the syntax verifier. When the semantic verifier

attests to a correct config or too many correction attempts

transpire, COSYNTH returns to the human.

When COSYNTH works with multiple routers, we used

another module called a “Modularizer" (Figure 3). For net-

work configs, the idea is that we start with a precise machine

readable (we use JSON) description of the “modules" which

in our case is the topology and the connections. The Mod-

ularizer outputs a sequence of Natural Language Prompts

that describes the topology to GPT-4 (e.g.,. Router Ď1 is con-

nected to Router Ď2 via interface ą1 at Ď1 and ą2 at Ď2). The

Composer puts back the pieces (in our case in a folder for

Batfish).

The modularizer follows the prompt engineering paradigm

"Give the Model Time to Think" [5], which suggests break-

ing a complex prompt into simpler sub-prompts. Exploiting

modularity is a way to do so for program synthesis. A second

technique we find useful is what is called single shot prompt-

ing [5]. We start each chat with a set of initial instruction

prompts (IIP) (Figure 3) loaded from a database for avoiding

common mistakes. The IIP database can be built and added

by experts over time. The I/O examples in Jigsaw [8] are an

IIP, but our IIP contains instructions rather than examples.

3 Cisco to Juniper Translation

We translate a Cisco configuration into an equivalent Juniper

one using Verified Prompt Programming. Batfish [6] is used

to identify syntax errors. Campion [12] is used to detect and

localize semantic differences that are used to refine the result.

We show examples of the issues encountered, and discuss

success and limitations of the approach.

3.1 Method

First, we provide the Cisco configuration, and the prompt:

"Translate the configuration into an equivalent Juniper config-

uration." GPT-4 will produce a translation into Junos format

that typically contains several errors and differences. We then

try to rectify these errors iteratively, using "humanized" feed-

back from the verifiers. We re-verify the entire configuration

on each iteration. For our experiment we focus exclusively

on behavior related to routing and forwarding, ignoring po-

tentially important features such as NTP servers.

To design the humanizer, which is a Python script, we

distinguish four classes of configuration errors:

Syntax errors: Batfish produces parse warnings identify-

ing relevant lines that do not use valid Juniper syntax.

Structural mismatch/conflict: This is when a component,

connection, or named policy is present in the original configu-

ration but not in the translation (or is present in the translation

but not the original). For example, if the original configura-

tion defined a BGP neighbor but there is no corresponding

neighbor in the translation, there would be a mismatch in

the routing connections. Campion is able to detect this, and

identify the missing or extra items.

Attribute differences: This is when a numerical attribute

has a different value between the two configurations. An ex-

ample is OSPF link cost difference between two correspond-

ing interfaces. Campion detects these and prints the attributes

for corresponding components.

Policy behavior differences: This is when a route map or

access control list has a semantic difference. Route maps are

used to filter incoming or outgoing route advertisements, so a

difference would mean that that there are some route adver-

tisements that are allowed by one router but not allowed by the

other. Campion is able to detect these and output the relevant

policy names, prefixes, and lines for these differences.

The distinction among errors helps for two reasons. First,

syntax errors and structural mismatches have to be handled

earlier since they can mask attribute differences and policy

behavior differences. Second, different types of errors require

different humanized prompts, while errors of the same type

can reuse similar prompts. Each type of error can be summa-

rized with a formulaic prompt with some fields inserted based

on the error reported by Batfish or Campion.

Table 1 shows the formulas and examples of generated

prompts. Batfish parse errors and warnings can be reused as

prompts for syntax errors. Prompts for structural mismatches

and attribute differences are easily generated from the relevant

components and attributes. Policy behavior differences are



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Type Generated Prompt

Syntax

error

There is a syntax error:

‘policy-options prefix-list our-networks 1.2.3.0/24-32’

Structural

mismatch

In the original configuration,

there is an import route map for bgp neighbor 2.3.4.5,

but in the translation,

there is no corresponding route map

Attribute

difference

In the original configuration,

the OSPF link for Loopback0 has cost set to 1,

but in the translation, the corresponding

link to lo0.0 has cost set to 0

Policy

behavior

difference

In the original configuration, for the prefix 1.2.3.0/25,

the BGP export policy to_provider for BGP neighbor

2.3.4.5 performs the following action: ACCEPT.

But, in the translation,

the corresponding BGP export policy to_provider

performs the following action: REJECT

Table 1: Sample rectification prompts for translation gen-

erated using formulas (non-italicized text), and fields gen-

erated from Batfish and Campion (italicized text).

more difficult since it is not always clear how to describe the

affected input space that is treated differently. We opt for the

approach of giving a single concrete example.

3.2 Experience and Results

Error Type Fixed

Missing BGP local-as attribute Syntax error Yes

Invalid syntax for prefix lists Syntax error Yes

Missing/extra BGP route policy Structure conflict Yes

Different OSPF link cost Attribute error Yes

Different OSPF passive interface Attribute error Yes

Setting wrong BGP MED value Policy error Yes

Different prefix lengths match in BGP Policy error No

Different redistribution into BGP Policy error No

Table 2: Translation errors found and whether GPT-4 was

able to fix them with generated prompts.

We tried translating a Cisco configuration from the Batfish

examples [6] into Juniper format. This configuration was

short enough to fit within GPT-4 text input limits, but used

non-trivial features including BGP, OSPF, prefix lists, and

route maps. Progress is not monotonic: GPT-4 can fix one

error but introduce new errors that were not previously there.

Sometimes it even reintroduces errors that were previously

fixed! However, we were ultimately able to succeed in the

translation task, with a mix of automated and manual prompts.

Leverage: In one such test run, the entire cycle of prompts

was 2 human prompts and 20 automated prompts, for a lever-

age of 10X. Some of the 20 automatic prompt correction

cycles included minor cycles for syntax correction not just at

the start but also after correcting semantic errors. To be clear,

we “simulated” each API call by feeding our automatically

generated prompts manually to GPT-4.

Table 2 shows errors in the translation at some point and

whether GPT-4 was able to fix them using an automatically

generated prompt. In more detail:

Missing BGP local-as attribute: The translated BGP

neighbor declarations did not include a local AS attribute.

We label this a syntax error since it produces a parse warning.

Missing/extra BGP routing policy: An import or export

policy is used for a BGP neighbor in only one configuration.

Different OSPF link attributes: OSPF links have a num-

ber of attributes, and the translation sometimes contains dif-

ferences in link cost or passive interface settings.

Setting wrong BGP MED value: The translation of one

BGP routing policy did not update the BGP MED value. This

was caused by an error in translating one of the route map

clauses from the original Cisco configuration.

Different Redistribution behavior into BGP: Cisco and

Juniper formats handle route redistribution into BGP differ-

ently. Juniper typically does this using the same routing poli-

cies that control importing and exporting BGP routes while

Cisco configurations set a separate route map for route re-

distribution. In our case, Campion detected that the Juniper

configuration was redistributing some routes that the Cisco

configuration did not. This could be fixed by adding a "from

bgp" condition to a number of locations in the policy. Unlike

the previously described errors, GPT-4 was unable to fix this

when given the automatically generated prompt. Instead it

usually does nothing when asked to fix the error. However, it

was able to fix the problem when asked more directly to add

"from bgp" conditions to routing policies.

BGP prefix list issues: Another subtle issue occurred when

translating prefix lists. The original Cisco configuration con-

tains the following prefix list:

ip prefix-list our-networks seq 5 permit 1.2.3.0/24 ge 24

The noteworthy part is the "ge 24" which says to match pre-

fixes with length 24 or greater. There is no equivalent of this

syntax in Juniper, but for our use case, there are at least two

methods of getting similar behavior in Juniper with different

syntax. When GPT-4 is asked to translate the configuration, it

usually just omits the "ge 24" part, so the space of prefixes

matched will differ in the translation. When asked to fix this

problem, it sometimes generates configurations with incorrect

syntax. For example, it can output the following:

prefix-list our-networks { 1.2.3.0/24-32; }

which is not valid Juniper syntax.

4 Global Policies via Local Synthesis

Next, we used GPT-4 to generate router configs for a given

network topology based on local policies for each router,

inspired by Lightyear [11], which does control plane verifi-

cation by verifying local invariants. We limited our scope to

BGP.

For semantic correctness, we use two new modules. The

first is a "topology" verifier which checks whether the config

of a particular router follows the defined topology. It checks



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

whether GPT-4 sets up all interfaces, declares BGP neighbors

and announces networks correctly. Second, we run Batfish to

check local policies defined in the prompts; the outputs are

used to refine the result.

4.1 Method

We begin by specifying the task to GPT in an initial prompt

using a couple of sentences. The intention is to influence the

LLM to start ‘thinking’ in a certain fashion. Our goal is to

make the network follow the no-transit policy, under which

no two ISP’s should be able to reach other. However, all ISPs

should be able to reach the CUSTOMER and vice versa.

Figure 4: Star network topology used for local synthesis.

It is difficult to write a natural language description of the

topology, a task prone to human error. We wrote an automated

script that generates text given the topology as input. In our

experiments, we limited our scope to star networks where one

router would be attached to a CUSTOMER IP, while the other

routers are connected to different ISPs (Figure 4). All the

ISP routers are directly connected to the first router. The "net-

work generator" therefore only needs the number of routers

as input. It has two outputs: 1) a textual description and 2) a

JSON dictionary for the entire network topology. The textual

description is used as a prompt, while the JSON dictionary is

used later to check whether the generated configs match the

topology.

Local versus Global Policy Prompts? We tried specifying

to GPT-4 the global no-transit policy at once. GPT-4 gener-

ated two innovative strategies: filtering routes using AS path

regular expressions, and denying ISP prefixes from being

advertised to other routers from the customer router. Unfortu-

nately, we found after correcting topology and syntax errors,

when we provided feedback in terms of a counterexample

packet (as would be provided by a “global" network verifier

like Minesweeper), GPT-4 was confused and kept oscillating

between incorrect strategies. We found that specifying local

policies as in Lightyear [11] gave us better results because it

allowed us to localize verification errors to specific routers

and specific route maps within those routers.

We asked GPT-4 to generate configs for each router using

a new prompt each time, specifying the local policy for each

router. Specifically, the policy is that Ď1 should add a specific

community at the ingress to each ISP and then drop routes

based on those communities at the egress to each ISP. The

generated errors fell into three categories:

Syntax errors: GPT-4 generates a configuration with in-

valid Cisco syntax. Batfish produces parse warnings identify-

ing these errors.

Topology errors: GPT-4 incorrectly declares or misses

some BGP neighbors or forgets to announce certain networks.

For this, we use an automated "topology verifier", whose main

purpose is to systematically parse all the ethernet interface,

BGP neighbor and network declarations within the config

and match them against the network architecture listed in the

JSON dictionary. It then points out all the missing declarations

and topological inconsistencies.

Semantic errors / Policy errors: GPT-4 produces configs

that do not follow the intended local policy. We use Batfish

"Search Route Policies" for verification in this step. In case

there is a semantic error, Batfish produces an example where

the local policy is not followed. This example is then fed to

GPT-4 in a fresh prompt.

Classifying into separate categories allowed us to use dif-

ferent tools to address each one. Table 3 lists examples of

the rectifying prompts. Once all the errors are rectified, we

simulate the entire BGP communication using Batfish as a

final step, in order to ensure that the global policy is satisfied,

though the proof technique of Lightyear [11] could instead

be used to ensure that the local policies imply the global one.

4.2 Experience and Results

Since some GPT-4 errors were more common, we supplied it

an IIP (the Inital Instruction Prompt) as follows:

CLI prompts: GPT-4 would often generate commands to en-

ter on the Cisco command line interface, which is undesirable.

Thus we specifically asked it to generate the .cfg files.

Wrong keywords: While generating the configs, it would

often use certain keywords such as ‘exit’, ‘end’, ‘configure

terminal’, ‘ip routing’, ‘write’, ‘hostname’ and ‘conf t’. It

had a tendency to place some of them in the wrong locations.

Hence, we directed it not to use these keywords.

Match Community: GPT-4 sometimes tries to match di-

rectly on a community value, which is incorrect. Instead, a

community list must be declared that contains the community

value, and the route-map should match on the community

list. Thus we included another IIP telling GPT-4 to define and

match on community lists.

Adding Communities: When asked to add communities to

a route using a route-map, GPT-4 generates syntax similar to:

route-map ADD_COMMUNITY permit 10

set community 100:1

The above route-map erroneously replaces all existing com-

munities in the route with the community 100:1. So we added

an initial prompt saying that it should always use the "addi-

tive" keyword when adding a community to the route.

These initial prompts along with the syntax rectification

scheme of Table 3 are able to eliminate common syntax errors



HotNets ’23, November 28–29, 2023, Cambridge, MA, USA Mondal, et al.

Type Examples

Syntax

error

‘ip community-list standard

COMM_LIST_R2_OUT permit .+’ is wrong syntax.

Topology

error

1. Interface eth0/1 ip address does not match with

given config. Expected 2.0.0.1, found 2.0.0.2

2. Local AS number does not match.

Expected 1, found 3

3. Neighbor with IP address 1.0.0.1 and

AS 1 not declared

4. Incorrect network declaration. 7.0.0.0/24 is

not directly connected to R1

Semantic

error

The route-map DROP_COMMUNITY permits

routes that have the community 100:1. However,

they should be denied.

Table 3: Sample rectification prompts for local synthesis.

Batfish or the topology verifier provides the italicized text.

produced by GPT-4. Despite this, we found two egregious

cases where human intervention is needed:

Placing neighbor commands in the wrong location: In a

config file for BGP, all neighbor commands, which attach a

route-map to an interface, must be placed under the "router

bgp" block. Sometimes GPT-4 defines a route-map and then

associates it with an interface outside the "router bgp" block.

Batfish catches this syntax error, but the output is not infor-

mative enough for GPT-4 to be able to fix the issue.

AND/OR Semantics in match statements: For no-transit,

we asked GPT-4 to generate a config for Ď1 that would add

a specific community to every route incoming from Ď2, and

similarly for the other neighbors of Ď1 (Figure 4). We also

asked it to filter routes containing any such community on

the egress of the interfaces connecting Ď1 to Ď2 − Ď6. GPT-4

added the correct communities at the ingress, but at the egress

it incorrectly used AND semantics to filter routes, as in the

following route-map for the Ď1 − Ď2 interface:

r o u t e −map FILTER_COMM_OUT_R2 deny 10

match community 3

match community 4

match community 5

match community 6

r o u t e −map FILTER_COMM_OUT_R2 p e r m i t 20

Community list 3 is associated with routes incoming from

R3, community list 4 with those coming from R4, and so

on. We desire routes incoming from Ď3 − Ď6 to be filtered

out at the egress to Ď2. The above config will only filter

out routes that have all four communities. When we asked

Batfish whether the above route-map filters all routes that

match the community list 3, it produced a counterexample,

but this feedback to GPT-4 failed to rectify the issue. Instead,

a human prompt was needed to ask GPT-4 to declare each

match statement in a separate route-map stanza.

Leverage: In one such run, the entire cycle took 2 human

prompts and 12 automated prompts, for a leverage of 6X.

5 Previous Work

AlphaCode [10], CoPilot [7], Codex [4] and Jigsaw [8] and

numerous other recent systems use large language models

for program synthesis. While they concentrate on sequential

programs, the deeper difference is that they do not pair the

synthesizer with verifiers. Instead, AlphaCode, Codex, and

Jigsaw ask users to provide test cases and uses them to test

(but not verify) the synthesized program.

Alphacode [10] does not use a general purpose LLM but

instead leverages a curated data set of working programs.

Codex [4] uses repeated sampling instead of correction to

help generate programs that meet the test cases. Jigsaw [8]

does automatic syntax correction via AST-to-AST transforma-

tions. CoPilot [7] can suggest invariants but does not attempt

an axiomatic proof. These earlier systems do not address two

fundamental questions that we do: how to use a specifica-

tion, and how to provide localized feedback. However, their

techniques are complementary to ours, and can be used to po-

tentially improve leverage in Verified Prompt Programming.

The use of ChatGPT with the Kani Rust verifier [9] comes

closest to our vision. They finesse the specification question

(as we do for Cisco to Juniper) by focusing on program trans-

formations for which the source program is the specification.

They also do not use modularity or local specifications. More

fundamentally the Kani [9] use case does not do prompt pro-

gramming: the user always manually switches between the

verifier and the LLM, precluding possible leverage.

6 Conclusions

Our experiments are very preliminary but suggest:

1. Ramanujam Effect: As with the brilliant mathematician

Ramanujam, some of whose conjectures were incorrect and

needed Hardy’s help [1] for proofs, GPT-4 by itself is not

ready for use without a verifier, making elementary errors

that can bring networks down.

2. Verified Prompt Programming: Using a verifier and au-

tomated corrections via a humanizer, GPT-4 can synthesize

reasonable but not completely correct configurations for sim-

ple use cases, but the leverage in reduced human effort can be

high. Modular verification seems crucial to provide the LLM

with actionable feedback.

3. Local versus Global Specifications: Modular synthesis

is the dual to modular verification. The search space for the

LLM is large, which increases the chance that it will not be

able to correctly complete a synthesis task based on a global

specification. Instead the user needs to decide and describe

the "roles" each node plays in satisfying the global spec and

provide this information to the LLM.

Much further testing in more complex use cases is needed.

Can GPT-4 add a new policy incrementally without interfer-

ing with existing verified policy? While our paper is set in the

context of network configuration, the vision, definitions (e.g.,

leverage) and lessons (e.g., the need for actionable local feed-

back, modularity, humanizers and IIPs) seem more generally

useful to synthesize other programs.



What do LLMs need to Synthesize Correct Router Configurations? HotNets ’23, November 28–29, 2023, Cambridge, MA, USA

References

[1] B. Bollobas. The man who taught infinity: how G.H. Hardy tamed

Srinivasa Ramanujan’s genius. https://theconversation.com/the-man-

who-taught-infinity-how-gh-hardy\-tamed-srinivasa-ramanujans-

genius-57585, 2023.

[2] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. On

the dangers of stochastic parrots: Can language models be too big? In

Proceedings of the 2021 ACM Conference on Fairness, Accountability,

and Transparency, FAccT ’21, page 610–623, New York, NY, USA,

2021. Association for Computing Machinery.

[3] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Ka-

mar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi, M. T.

Ribeiro, and Y. Zhang. Sparks of artificial general intelligence: Early

experiments with GPT-4, 2023.

[4] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Ka-

plan, H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,

G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,

S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,

C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,

E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,

J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,

A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,

M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. Mc-

Grew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Eval-

uating large language models trained on code, 2021.

[5] DeepLearning.AI. ChatGPT Prompt Engineering for Devel-

opers. https://learn.deeplearning.ai/chatgpt-prompt-eng/lesson/1/

introduction, 2023.

[6] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan,

R. Mahajan, and T. Millstein. A general approach to network con-

figuration analysis. NSDI’15, page 469–483, USA, 2015. USENIX

Association.

[7] github. Github CoPilot: Your AI Pair Programmer. https://github.com/

features/copilot, 2023.

[8] N. Jain, S. Vaidyanath, A. Iyer, N. Natarajan, S. Parthasarathy, S. Raja-

mani, and R. Sharma. Jigsaw: Large language models meet program

synthesis. In Proceedings of the 44th International Conference on Soft-

ware Engineering, ICSE ’22, page 1219–1231, New York, NY, USA,

2022. Association for Computing Machinery.

[9] Kani Rust Verifier Blog. Writing Code with ChatGPT? Improve it with

Kani. https://model-checking.github.io/kani-verifier-blog/2023/05/01/

writing-code-with-chatgpt-improve-it-with-kani.html, 2023.

[10] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,

T. Eccles, J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy,

C. de Masson d’Autume, I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl,

S. Gowal, A. Cherepanov, J. Molloy, D. J. Mankowitz, E. S. Robson,

P. Kohli, N. de Freitas, K. Kavukcuoglu, and O. Vinyals. Competition-

level code generation with AlphaCode. Science, 378(6624):1092–1097,

dec 2022.

[11] A. Tang, , R. Beckett, K. Jayaraman, T. Millstein, and G. Varghese.

Lightyear: Using modularity to scale BGP control plane verification.

SIGCOMM ’23, to appear. Association for Computing Machinery,

2023.

[12] A. Tang, S. K. R. Kakarla, R. Beckett, E. Zhai, M. Brown, T. Millstein,

and G. Varghese. Campion: Debugging router configuration differences.

SIGCOMM ’21, page 748–761, New York, NY, US, 2021. Association

for Computing Machinery.

[13] J. Wang, Y. Huang, C. Chen, Z. Liu, S. Wang, and Q. Wang. Software

testing with large language model: Survey, landscape, and vision, 2023.


	Abstract
	1 Introduction
	2 System Organization
	3 Cisco to Juniper Translation
	3.1 Method
	3.2 Experience and Results

	4 Global Policies via Local Synthesis
	4.1 Method
	4.2 Experience and Results

	5 Previous Work
	6 Conclusions
	References

