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ABSTRACT: El Niño–Southern Oscillation (ENSO) is the leading mode of climate interannual variability, with large
socioeconomical and environmental impacts, potentially increasing with climate change. Improving its understanding may
shed further light on its predictability. Here we revisit the two main conceptual models for explaining ENSO cyclic nature,
namely, the recharge oscillator (RO) and the advective–reflective delayed oscillator (DO). Some previous studies have ar-
gued that these two models capture similar physical processes. Yet, we show here that they actually capture two distinct roles
of ocean wave dynamics in ENSO’s temperature tendency equation, using observations, reanalyses, and Climate Model Inter-
comparison Project (CMIP) models. The slow recharge/discharge process mostly influences central-eastern Pacific by favoring
warmer equatorial undercurrent and equatorial upwelling, while the 6-month delayed advective–reflective feedback process
dominates in the western-central Pacific. We thus propose a hybrid recharge delayed oscillator (RDO) that combines these two
distinct processes into one conceptual model, more realistic than the RO or DO alone. The RDO eigenvalues (frequency and
growth rate) are highly sensitive to the relative strengths of the recharge/discharge and delayed negative feedbacks, which have
distinct dependencies to mean state. Combining these two feedbacks explains most of ENSO frequency diversity among models.
Thanks to the two different spatial patterns involved, the RDO can even capture ENSO spatiotemporal diversity and complex-
ity. We also develop a fully nonlinear and seasonal RDO, even more robust and realistic, investigating each nonlinear term. The
great RDO sensitivity may explain the observed and simulated richness in ENSO’s characteristics and predictability.

SIGNIFICANCE STATEMENT: El Niño and La Niña events, and the related Southern Oscillation, cause the largest
year-to-year variations of Earth’s climate. Yet the theories behind them are still debated, with two main conceptual
models being the recharge oscillator and the delayed oscillator. Our purpose here is to address this debate by develop-
ing a more realistic theory, a hybrid recharge delayed oscillator. We show how simple yet realistic it is, with equivalent
contributions from the slow recharge process and from the faster delayed feedback. It even captures the observed
El Niño and La Niña diversity in space and in frequency. Future studies could use the simple theoretical framework
provided here to investigate El Niño–Southern Oscillation (ENSO) in observations, theories, climate models diagnos-
tics and forecasts, and global warming projections.
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1. Introduction

El Niño–Southern Oscillation (ENSO) is the leading mode
of climate interannual variability, with large socioeconomical
and environmental impacts, and with its extremes possibly in-
creasing with global warming (e.g. Cai et al. 2021). The basic
ENSO amplification dynamics has been fairly well understood

(e.g. Neelin et al. 1998; Wang and Picaut 2004; Clarke 2008
reviews). Yet there are still debates on the main mechanisms
at play for ENSO phase reversal and its related quasi-cyclic
nature, on ENSO theories/conceptual models (e.g. Graham
et al. 2015; Santoso et al. 2017; Timmermann et al. 2018; Jin
et al. 2020), and on how to implement ENSO diversity in
these conceptual models (Fang and Mu 2018; Geng et al.
2020; Chen et al. 2022; Thual and Dewitte 2023). ENSO diver-
sity, a continuum from extreme eastern Pacific (EP) El Niño
events to western-central Pacific (CP) El Niño Modoki (e.g.
Trenberth and Stepaniak 2001; Ashok et al. 2007; Takahashi
et al. 2011; Capotondi et al. 2015, 2020), and even encompass-
ing La Niña events (Monselesan et al. 2023, submitted to
J. Climate), is crucial to understand/forecast ENSO global im-
pacts (e.g. Johnson and Kosaka 2016), e.g. on tropical cyclones
activity in the Pacific, notably over vast French Polynesia
(Vincent et al. 2011; B. Pagli et al., unpublished manuscript).
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ENSO events usually initiate in boreal spring, develop in
summer and autumn and then decay in the next spring (e.g.
Bunge and Clarke 2009; Fang and Zheng 2021). They develop
because of the Bjerknes positive feedback. Positive sea surface
temperature (SST) anomalies in the central-eastern equatorial
Pacific (TE) enhance deep atmospheric convection in the central
Pacific, resulting in westerly wind stress anomalies in the western-
central Pacific (tx; Clarke 1994). These in turn force equatorial
downwelling Kelvin waves with eastward surface currents that
advect the warm pool eastern edge eastward (e.g. Picaut et al.
1996; Vialard et al. 2001) and thermocline depth (h) positive
anomalies towards the central-eastern equatorial Pacific,
thereby reinforcing the initial SST anomalies. This positive
feedback mechanism is offset by several negative instanta-
neous and delayed feedbacks. The delayed negative feed-
backs result from oceanic dynamics: 1) a slow negative
feedback related to the wind-driven slower equatorial basin
adjustment to El Niño westerlies that acts to create a dis-
charge (and a recharge in the La Niña easterlies case) of
warm water volume (WWV)/oceanic heat content (OHC,
proportional to h; e.g. Jin 1997a,b; Meinen and McPhaden
2000; Clarke 2010; Zhu et al. 2017; Izumo et al. 2019; Izumo
and Colin 2022) of the southwestern and equatorial Pacific
(Fig. 1b), 2) a rapid ;6-month delayed advective–reflective
feedback through equatorial oceanic wave reflections (e.g.
Boulanger and Menkes 2001; Boulanger et al. 2004; cf.
Fig. 1a and section 3).

Two main groups of theories have emerged to explain the
quasi-cyclic nature of ENSO, based on the aforementioned
negative oceanic feedbacks: 1) the recharge oscillator (RO;
e.g. Wyrtki 1985; Jin 1997a,b; Meinen and McPhaden 2000;
Clarke et al. 2007; Clarke 2010; Thual et al. 2013), 2) the de-
layed oscillator (Suarez and Schopf 1988; Battisti and Hirst
1989) and its improved version emphasizing the crucial role of
Indo-Pacific warm pool eastern edge, the advective–reflective
delayed oscillator (DO; Picaut et al. 1997). An in-depth de-
scription of the RO and DO is given in section 3. Other con-
ceptual models, e.g. the unified oscillator (Wang 2001), have
been shown to be less realistic (Graham et al. 2015).

Some studies question the RO and suggest that the DO is
more realistic (e.g. Linz et al. 2014; Graham et al. 2015). Yet,
the recharge/discharge process is also part of ENSO cycle,
both in observations and models. One reason for this “RO vs
DO” debate is that RO and DO have been seen as two different
formal ways to represent the same wave adjustment process fa-
voring an ENSO phase reversal (e.g. Jin 1997a,b; Jin and
An 1999). But actually, they mainly involve different physical
processes with different timescales (Fig. 1). For the RO, it is the
slow (;1–2 years) equatorial basin adjustment (e.g. Izumo et al.
2019, their Fig. S4) influencing central-eastern Pacific SST
through the thermocline feedback (e.g. Wyrtki 1985; Jin 1997a,b),
and through oceanic heat transport changes (Izumo 2005; Balles-
ter et al. 2015, 2016). For the DO, it is the faster (;6-month)
equatorial wave reflection influencing central Pacific SST through
the zonal advective feedback (Vialard et al. 2001). So, is it really
fair to consider the RO and DO as a single mechanism while
they capture distinct physical processes and have different
impacts on the TE tendency equation?

Here we show, by analyzing observations/reanalyses (section 4b)
and 79 CoupledModel Intercomparison Project (CMIP) models
(section 4c), that we should keep both the recharge and
advective–reflective delayed feedbacks as two distinct crucial
processes in the ENSO temperature tendency equation, without
considering them as formally identical. By keeping both of them,
we obtain a more physically based and more realistic ENSO con-
ceptual model, a hybrid recharge delayed oscillator (RDO; sche-
matics in Fig. 1; derivation of its equations in section 4a). We
then analyze the behavior of this RDO. Section 4d explores the
eigenvalues dependency to parameters, within the observations
and CMIP parameter space. Section 4e first investigates the
RDO response to stochastic forcing and related spectral re-
sponse. It then shows how ENSO characteristics (amplitude and
spectrum) in the RDO framework are highly sensitive to the rel-
ative strengths of the recharge and delayed negative feedback.
Section 4f shows that the RDO can, even its simplest form, cap-
ture some ENSO spatiotemporal diversity, if we take into
account the spatial dependency of these feedbacks. Section 5
then improves the simplest RDO framework, by adding
1) the seasonal cycles of RDO parameters (section 5a) and
2) asymmetries/nonlinearities, e.g., quadratic terms and a
multiplicative noise (section 5b). Section 5 confirms the ro-
bustness of the RDO framework, with the nonlinear sea-
sonal RDO version being even more realistic than the
linear RDO version. Finally, section 6 summarizes the re-
sults and discusses mechanisms, possible improvements of
the RDO, implications, and perspectives.

2. Data and methods

See Text S1 in the online supplemental material for a detailed
description of the typical statistical methods we use, plus addi-
tional details on data, indices, and validation/sensitivity tests. Note
that for the nonlinear seasonal version of the RDO (section 5),
the scripts for obtaining the RDO parameters through multivar-
iate linear regression fits and for running the RDO forced by
red noise were developed in Python language within the
framework of the RO community model under develop-
ment as a follow-up of the RO review by J. Vialard et al.
(unpublished manuscript).

a. Data

For SST observations we use the following monthly datasets:
Optimum Interpolation SST OISSTv2 based on in situ observa-
tions and satellite measurements for the recent period (Novem-
ber 1981–March 2022; Reynolds et al. 2002; hereafter “obs1”);
HadiSSTv1.1 SST (1870–March 2022; Rayner et al. 2003) when
using longer-time-scale reanalyses. We also use GPCP monthly
precipitation (Adler et al. 2003) for developing the approxi-
mated formula of sensitivity of precipitation to relative SST.

We use SLA as a proxy for thermocline depth (e.g. 208C
isotherm depth, Z20) and oceanic heat content (OHC) anom-
alies (e.g. Rebert et al. 1985; Gasparin and Roemmich 2017;
Palanisamy et al. 2015; see Izumo and Colin 2022 for a detailed
comparison of SLA, Z20, and OHC for the recharge index).
SLA is advantageous because it has been measured since three
decades by satellites (Copernicus product; 1993–mid 2021;
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“obs1”), allowing a homogeneous spatiotemporal sampling.
We also use longer SLA datasets for comparison and to
increase the number of effective degrees of freedom: ECMWF
ORAS5 oceanic reanalysis extended version [1959–2018;
Zuo et al. 2019; hereafter “obs2”; we also use its subsur-
face potential temperature and currents (currents only
available from 1975)]; even longer SLA from a historical
oceanic reanalysis, SODA2.2.6 (1871–2008; Giese and Ray
2011; without subsurface assimilation to avoid spurious
trends; hereafter ‘hist’), required to estimate the nonlinear
seasonal version of the RDO, for which the number of pa-
rameters to fit strongly increases (section 5). We subtract
from the SLA its 608S–608N global average at each time step
to remove sea level rise global trend due to global warming,
and we also remove any additional regional trend through a
linear regression.

A total of 32 CMIP5 and 47 CMIP6 (CMIP phases 5 and 6;
Table S1) models are analyzed here. They are the ones for
which we have SST and SLA available, for the historical runs
(usually 1861–2005 for CMIP5 and 1850–2015 for CMIP6).
This amounts to more than 10 000 years of model data to test
the validity of our hypotheses.

b. ENSO indices

For the ENSO index, TE, we use the usual Niño-3.4 region
(58N–58S, 1708–1208W), where the main ENSO SST variability
is located in observations. We define TE as Niño-3.4 relative
SST (RSST, i.e. SST minus its 208N–208S tropical mean; Vecchi
and Soden 2007), as recommended by Izumo et al. (2020) and
van Oldenborgh et al. (2021) because atmospheric tropical deep
convection interannual anomalies are rather related to RSST
than to SST, notably under external forcing, i.e. anthropogenic
(see also Johnson and Xie 2010; Johnson and Kosaka 2016;
Williams and Patricola 2018; Okumura 2019) or volcanic forcing
(Khodri et al. 2017; Izumo et al. 2018). The deep convection
threshold SST . ;278–288C (e.g. Gadgil et al. 1984) translates
into RSST . ;18C, a threshold that remains valid with global
warming (e.g. Johnson and Xie 2010). See Text S3 of Izumo
and Colin (2022) for an extensive discussion justifying the rele-
vance of RSST for ENSO and RO equations. Note that using
SST instead of RSST gives quasi-similar results. But it is safer to
use RSST because of external forcing. TE is normalized by its
standard deviation (STD).

For the recharge index (see details and sensitivity tests in
Text S1), there has been a debate on which recharge index best

FIG. 1. Schematics of the recharge delayed oscillator (RDO) principle, combining (top left) the advective–reflective delayed oscillator
(DO; green; representing mainly the zonal feedback; Picaut et al. 1997) and (bottom left) the recharge oscillator (RO; red; representing the
slow recharge process; Jin 1997a,b). (top left) Equatorial zonal current response (in the upper-oceanic layer, color shading and red and
blue arrows) to a westerly pulse in early October in the western-central Pacific (brown arrows), with equatorial waves (black arrows for
downwelling waves, dashed arrows for upwelling waves) and their reflections indicated schematically [in particular the downwelling Kelvin
wave Kd with positive zonal current reflecting at the eastern boundary as a downwelling Rossby wave Rd with opposite negative current;
see Izumo et al. (2016) for details on a similar idealized pulse experiment starting in January]. (bottom left) Slow recharge of hind (SLA
independent of the fast zonal tilt mode) forced by La Niña easterly anomalies (i.e. the 2F2TE term obtained by multivariate regression in
obs1; vice versa for a discharge during El Niño). TC and UC denote central equatorial Pacific SST and zonal current, respectively; TE de-
notes central-eastern Pacific SST; h is the objectively optimized recharge index developed in Izumo and Colin (2022) [(bottom left) here
adapted from Fig. 2h of their study], i.e. SLA (or Z20) averaged over the equatorial and southwest Pacific [black boxes in the bottom left],
namely, hind_eq1sw (hind_eq1sw’ heq1sw; note that the RDO robustness does not depend much of the recharge index choice; cf. section 2).
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measures the slow recharge/discharge process: which averaging
region [e.g. western Pacific (1208E–1558W) or whole equatorial
band (1208E–808W) hw or heq in 58N–58S] and which variable
[SLA, Z20 (i.e. warm water volumeWWV) or OHC] should we
use (e.g. Meinen and McPhaden 2000; Planton et al. 2018;
Izumo et al. 2019)? Izumo and Colin (2022) have thus devel-
oped a physically unambiguous and objectively optimized index
of the ENSO slow recharge mode, out of phase with TE (i.e. un-
correlated to TE at lag 0 and “independent” of the fast adjust-
ment zonal tilt mode, by regressing out from h its component
linearly related to TE approximately considered to be this fast
tilt mode). Here we thus use their optimal improved index
hind_eq1sw: the SLA averaged over the equatorial plus southwestern
Pacific [eq 1 sw box: equatorial box (58N–58S, 1208E–808W) 1

southwest box (58–158S, 1208E–1708W)], from which TE vari-
ability has been regressed out, to build a recharge index statis-
tically independent from TE. In other words, hind_eq1sw 5

heq1sw 2 KTE ’ heq1sw (as regression coefficient K is small
thanks to the addition of the southwest Pacific region to the
equatorial band for the recharge index, e.g. 0.30 for obs2, if all
indices are normalized, i.e., shared variance between heq1sw

and TE only of 9%). Its advantage is that it is “orthogonal” to
TE, so it is a pure additional degree of freedom capturing the
slow recharge, without being polluted by the fast tilt mode.
Also, its approximation heq1sw is simple and easy to compute.

Anyway, we would like to emphasize that the RDO robust-
ness does not depend a lot on the recharge index choice. The
RDO implementation would still be useful and robust if one
were using usual indices (e.g. heq or hw) with the b, F1, and F2

terms still highly significant (cf. section 4). Furthermore, both b

and the final correlation skill of dTE/dt tendency equation, (6),
will be mathematically exactly the same whether or not we re-
move the dependent component of h index, as TE is also one of
the other variables of the multivariate regression. Therefore, if
the users have a preference, they can also use the typical heq or
hw indices for the implementation of RDO. Only the overall skill
of the RDO equations to represent observed temperature and
recharge tendencies will be weaker than if hind_eq1sw or heq1sw is
used. For the sake of simplicity and clarity of the equations, the
optimal recharge index hind_eq1sw will be hereafter noted as “h”.

3. The two main simple ENSO conceptual models: the

RO and the DO

a. The recharge oscillator

The recharge oscillator (RO) theory (Jin 1997a,b) focuses on
the slow oceanic negative feedback on SST associated with
wind-driven equatorial OHC variations (Meinen andMcPhaden
2000), as aforementioned. It brings long oceanic memory across
ENSO phases. During La Niña, easterlies favor a slow recharge
of OHC (i.e., a deepening of the thermocline depth h) in the
equatorial and southwestern Pacific (Fig. 1b). The El Niño event
will in turn lead to a discharge favoring a reversal to La Niña
conditions, and so on.

The RO equations (Jin et al. 2020; Izumo and Colin 2022) are

dTE/dt 5 RROTE 1 F1_ROh, (1)

dh/dt 5 –F2TE 2 «h, (2)

where RRO is the net effect of Bjerknes positive feedback
and instantaneous negative feedbacks, F1_RO the recharge/
discharge influence on TE, F2 the slow recharge/discharge
forced by La Niña/El Niño, and « a Newtonian damping on h.
The subscript RO is added to avoid ambiguity when necessary.

Using the improved optimal recharge index “h” 5 hind_eq1sw,
independent of TE (cf. section 2), « is negligible in observa-
tions and in all CMIP models (Fig. 4b; see section 4b). There-
fore, we neglect it at first for the simplest RDO framework
(linear and without seasonal cycle). This RO system of two
differential equations has the form of a harmonic oscillator
(Jin 1997a).

b. The delayed oscillator (DO)

The zonal advective–reflective delayed oscillator (DO) is based
on the relatively rapid equatorial wave reflections causing a 4- to
8-month delayed negative feedback dominated by the zonal ad-
vective term (Picaut et al. 1997; Vialard et al. 2001) in the central
Pacific where the coupling with atmospheric deep convection is
the largest. For example, El Niño westerlies force an equatorial
downwelling Kelvin wave Kd,forced (i.e. equatorial zonal current
anomaly U′ . 0 and eastward displacement of the warm pool
eastern edge) reflecting at the eastern boundary into a downwel-
ling Rossby wave Rd,reflection (i.e. U′ , 0) bringing back the edge
westward half a year later (Fig. 1a) (there is also a Rup,forced

forced to the west of the westerly anomaly, propagating westward
and reflecting at the western boundary as an eastwardKup,reflection

wave; e.g. Boulanger and Menkes 2001). This strong zonal advec-
tive delayed feedback favoring ENSO phase reversal is well
observed, simulated, and understood. Formally, it relates zonal
current interannual anomalies to the evolution of zonal wind stress
anomalies tx over the preceding months. The equatorial Pacific
Ocean dynamics being quasi-linear (at intraseasonal to interannual
timescales), the response to any wind stress anomaly tx(t) with a
typical ENSO wind pattern is the convolution of this tx(t) to the
linear oceanic impulse response. Thus, the anomalies can be ap-
proximated as a “causal” filter of t

x
: t

x,Am(t2 t1)2 ct
x,Bm(t2 t2),

where t1 is ;0–2 months, the difference t2 2 t1 is ;4–6 months,
where the subscript (e.g., Am) stands for a A-month running
mean and c varies depending on t ′x anomaly location, and of the
variable (U, SLA, or SST; cf. Izumo et al. 2016). For UC anoma-
lies, they are approximately proportional to the zonal wind stress
anomalies 1–2 months earlier minus a fraction of the wind stress
anomalies 7–8 months earlier. The first term represents the fast
oceanic response, while the second one represents the delayed
negative feedback associated with wave reflection at both bound-
aries. A realistic approximation ofUC is

UC(t) ’ A[tx(t) 2 b0tx(t 2 h)], (3)

where tx is equatorial zonal wind stress, A is a constant, and b0

is e.g. ;2/3 for UC at 08N, 1708W [based on Table 1 of Izumo
et al. (2016) combined with the approximation tx,2m ’ tx,1m valid
for periods longer than intraseasonal]. We consider the delay h

to be approximately 6 months for the sake of simplicity, as it is
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rather well constrained by equatorial wave propagation times in
a fixed basin geometry, with the main mode (first baroclinic
mode) celerity well known in the equatorial Pacific. This formula
is an excellent approximation of the response of the quasi-linear
continuously stratified equatorial Pacific Ocean (with a realistic
coastline) to a wind stress forcing with an ENSO-like spatial pat-
tern. It is more realistic than previous approximations of UC

used in previous RO-based conceptual models.
We can combine (3) with some typical assumptions to derive

a DO equation for TC, where TC is the SST anomaly in the cen-
tral equatorial Pacific. We suppose: 1) tx ’ mCTC (mC being a
coupling parameter), 2) the zonal SST gradient in the central
Pacific to be its climatological value (i.e. independent of the
anomaly TC) at first order (dTC/dx ’ dTC_clim/dx ’ 2C, with
C . 0; hence the zonal advection term is CUC; relaxing this as-
sumption leads to nonlinear terms such as in section 5), and
3) that atmospheric fluxes can be approximated as a weak New-
tonian damping (term 2rdampTC), weaker than the Bjerknes
feedback related to the first term in the above equation for UC.
Thus, we have, using (3):

dTC/dt ’2UC(t)dTC/dx(t) 2 rdampTC(t)

’ ACmC[TC(t) 2 b0TC(t 2 h)] 2 rdampTC(t): (4)

We obtain the usual DO equation:

dT
C
/dt 5 RDOTC

(t) 2 bDOTC
(t 2 h), (5)

where RDO 5 ACmC 2 rdamp and bDO 5 Ab0CmC are positive
constants. From here onward, we skip the notation (t) when
the variable is taken at time t without delay.

4. Building the RDO model by merging the RO and

DO models

a. Combining RO and DO equations

The RO captures the long-term recharge of h influencing
the SST in the central-eastern Pacific. The DO captures
the faster delayed advective–reflective negative feedback
influencing the SST in the western-central Pacific. Know-
ing the importance of central Pacific SST for convection
and thus zonal wind, and that the negative feedbacks in-
volved in the DO and RO are physically different, it thus
seems relevant to keep these different feedbacks as two
distinct processes combined in a hybrid recharge delayed
oscillator (RDO), whose set of equations is

dTE/dt 5 RTE 1 F1h 2 bTE(t 2 h), (6)

dh/dt 5 –F2TE 2 «h: (7)

Equation (6) merges (1) and (5); (7) is the same as Eq. (2).
Here central-eastern Pacific TE and central Pacific TC are
merged into one variable representing a single region, the
central-eastern Pacific, hereafter TE (Niño-3.4 RSST; cf. section 2),
for the sake of simplicity. Even though we replace TC by TE,
we still consider h to be about 6 months, because physically

the zonal advection delayed feedback operates more on tem-
perature “weighted” by atmospheric convection sensitivity
(cf. below), i.e. more in the central Pacific than in the eastern
Pacific (while the recharge thermocline feedback influences
more the central-eastern Pacific; cf. the following section).

This RDO simple set of equations sounds conceptually
compelling. Notably it does not require the low-frequency ap-
proximation (used in Fedorov 2010; Clarke 2010) to be valid,
as the RDO takes into account the two main “fast” wave pro-
cesses, the fast mode adjustment, and the zonal-advective de-
layed negative feedback.

b. Confirming the RDO through observations/reanalyses

We now want to verify empirically that this RDO set of
equations is justified and statistically grounded, in observa-
tions as well as in the 79 CMIP models.

First, we verify that separating the zonal-advective de-
layed feedback and the recharge process through Eq. (6)
makes sense. That is, 1F1h and 2bTE(t 2 h) represent two
distinct physical processes. We do a multivariate linear re-
gression for an equation similar to Eq. (6), but for the ten-
dency of temperature T(x, y, t) anywhere in the tropical
Pacific:

­T(x, y, t)/­t 5 R(x, y)TE 1 F1(x, y)h 2 b(x, y)TE(t 2 h):

(8)

The regression quantifies the contributions of 2b(x, y)TE(t 2 h)
and F1(x, y)h terms to T(x, y, t) tendency at each grid point. Fig-
ures 2a and 2b compare their spatial patterns in the tropical Pa-
cific, which are indeed quite different (orthogonal). We see that
the 2bTE(t 2 h) contribution is stronger in the western-
central Pacific, especially near the warm pool eastern edge,
where the zonal advection term dominates. It confirms that
2bTE(t2 h) represents the zonal advective–reflective delayed
negative feedback. Conversely, the recharge term F1h is larger
in the eastern Pacific as expected, as the thermocline feedback
term is stronger there (i.e. the recharge/discharge process is more
important for EP than for CP El Niño events; e.g. Hasegawa et al.
2006; Kug et al. 2009, 2010; McPhaden 2012; Capotondi 2013;
Ren and Jin 2013). Fig. 3a compares more quantitatively their
values along the equator. The contribution of 2bTE(t 2 h) is
larger than that of F1h in the western-central Pacific (around the
Niño-4 region), while the contribution of F1h is the largest
in the central eastern region (from ;1508W, the western
boundary of the Niño-3 region), for both obs1 and obs2
datasets (that are consistent, with differences not signifi-
cant at the 90% level, cf. Fig. S1; while b and F1 differences
are statistically significant). Note that R(x, y, t) is, as b,
larger in the ;Niño-4 region (Fig. S1d; likely because of
the largest positive Bjerknes feedback there). R is however
only about one-third of b there. The correlation skill of
Eq. (8a) is high east of the dateline, being at its largest around
the Niño-3.4 region (Fig. S1d), where b and F1 roles add up.
This also confirms that focusing on the Niño-3.4 region is a
good approximation.

Considering only RSST tendency (Figs. 2a,b), we could
think that the recharge term dominates the delayed term.
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Yet, in terms of feedback to deep convection/precipitation/
wind stress, the deep convection (the primary contributor to
precipitation in the tropics) sensitivity to RSST anomalies
is larger in the western Pacific warm pool region, where cli-
matological RSST is larger, than in the central-eastern
cold tongue region [e.g., the He et al. (2018) study had esti-
mated a formula for the precipitation sensitivity to SST,
P(SST)]. To illustrate this, we can use a simple exponential
formula we have developed as an approximation of the

precipitation sensitivity to local RSST, P(RSST) (appendix
Fig. A1):

P(RSST) 5 2e0:56RSST, (9)

where RSST is the total RSST field (including both climatology
and anomaly, i.e. RSSTclim 1 RSST′). The constant 0.56 is taken
from the term representing the effect of RSST on deep convec-
tion in Tippett et al. (2011) cyclogenesis index (efficient at

FIG. 2. Distinct physical processes represented by 2bTE(t 2 h) and F1h terms in RDO, and related ENSO spatio-
temporal diversity captured by the RDO. (a),(b) contributions of, respectively, 2b(x, y)TE(t 2 h) and F1(x, y)h(t) to
­T(x, y, t)/­t in Eq. (8) [i.e. the regression coefficients b(x, y) and F1(x, y) for normalized TE and h; units:
8C month21 per STD of TE or h] for obs2. By reconstructing T(x, y, t) from these patterns, the RDO can simulate
part of ENSO spatial and spectral diversity (cf. section 4f). (c),(d) As in (a) and (b), but for the expected response of
deep convection/precipitation to RSST tendency shown in (a) and (b) (units: mm day21 month21), more sensitive to
RSST anomalies in the western Pacific warm pool than in the central-eastern cold tongue region [based on Eq. (9):
P(RSST) 5 2e0.56RSST]. (e)–(h) Oceanic mechanisms behind 2bTE(t 2 h) and F1h contributions to ­T(x, y, t)/­t.
(e),(f) As in (a) and (b), but for equatorial (28N–28S average) subsurface zonal current anomaly U′ (color; cm s21),
with climatological isotherms Tclim overlayed (black contours; 8C). (g),(h) As in (a) and (b), but for subsurface poten-
tial temperature anomaly T′ (color; 8C), with climatological zonal and vertical currents Uclim andWclim overlaid (black
vectors; cm s21).
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describing the cyclogenesis seasonal cycle at the global scale;
Menkes et al. 2012). The factor 2 (in mm day21) is a crude fit to
the scatterplot of Precipclim to RSSTclim in the equatorial Pacific
(this factor will anyway not influence the relative contributions to
dP(RSST)/dt of 2bTE(t 2 h) and F1h that are our focus here).
Figures 2c and 2d are similar to Figs. 2a and 2b, but for
dP(RSST)/dt. The contribution to convective precipitation ten-
dency of2bTE(t2 h) has actually, in the western-central Pacific,
an almost similar amplitude to the contribution of F1h. Note that
these estimated contributions to local precipitation will be then
amplified by the convergence feedback [conditional instability of

the second kind (CISK)], notably for strong El Niño events in the
central-eastern Pacific (Srinivas et al. 2022). To conclude, the
2bTE(t2 h) term can force large tendencies in precipitation and
related equatorial zonal wind stress, crucial for the ocean–atmo-
sphere coupling. Hence, adding the 2bTE(t 2 h) term to the
­T(x, y, t)/­t equation can make the conceptual model signifi-
cantly more realistic.

To understand the oceanic mechanisms behind 2b(x, y)
TE(t2 h) and F1(x, y)h(t) contributions to­T(x, y, t)/­t, remem-
ber that the temperature tendency of the oceanic mixed layer is
firstly due to heat advection (see its full decomposition in

FIG. 3. Equatorial contributions of delayed feedback 2bTE(t 2 h) (green) and of recharge
term F1h (red). (a) As in Figs. 2a and 2b for RSST tendency, but for the 58N–58S average. (b) As
in (a), but for upper-layer (0–100 m average) zonal current. (c) As in (a), but for subsurface po-
tential temperature (50–150 m average).
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Fig. S2), with surface fluxes acting to damp interannual SST
anomalies. To understand heat advection anomalies, the lower
panels of Fig. 2 show equatorial subsurface zonal current anom-
aly U′, with climatological isotherms Tclim overlaid, as well
as subsurface potential temperature anomaly T′, with cli-
matological currents Uclim and Wclim overlaid.

The 2bTE(t 2 h) contribution is firstly through a large posi-
tive U′ anomaly in the upper layer. U′ is maximal near the date-
line [up to 6 cm s21 per STD of TE(t 2 h); Fig. 2e], consistent
with the timing of the westward propagation of the equatorial
upwelling Rossby wave forced by easterly anomalies 6 months
earlier (in the case of a prior La Niña with negative TE and east-
erlies; Fig. 1a was shown for the opposite westerly case). This
eastward current anomaly U′ advects the negative climatological
zonal temperature gradient­Tclim/­x, i.e.2U′­Tclim/­x (Fig. S3c),
favoring a warming of the oceanic mixed layer in the central
Pacific [of up to 0.15 K month21, i.e. about 1 K in half a year,
per STD of TE(t 2 h); Fig. S2c]. The T′ anomalies related to
2bTE(t 2 h) are conversely weak near the surface [about 0.2 K
per STD of TE(t 2 h); Fig. 2g] and have a secondary role
(Fig. S3a) in the heat zonal advection of the mixed layer (and at
the subsurface, they are much weaker than those related to F1h;
see also Fig. 3c). This analysis confirms that2bTE(t2 h) contri-
bution is firstly through zonal advection in the central Pacific, i.e.
2bTE(t 2 h) represents the zonal advective–reflective delayed
negative feedback.

The recharge influence1F1h represents a different physical
process. The F1h influence is through warmer EUC and
upwelling because of the warm subsurface anomaly in the
central-eastern Pacific due to the recharge and related deeper
thermocline. The h recharge favors a large subsurface warm
anomaly in the heart of the Equatorial Undercurrent (EUC
shallower in the east, like the thermocline, from ;150 m at
1808 to ;100 m at 1308W). This warm T′

EUC anomaly, partly
due to the deeper thermocline (cf. Izumo 2003, 2005), will be
advected by the climatological EUC, that is, a positive term
2Uclim­T

′/­x (Fig. S3b). It is also within the climatological
equatorial upwelling, that is, 2Wclim­T

′/­z (Fig. S3f). I.e. the
EUC will bring warmer waters to the central-eastern Pacific,
where they will be upwelled to the mixed layer by the climato-
logical upwelling, favoring an overall warming tendency of
the mixed layer of the central-eastern equatorial Pacific
(Fig. S2b). Note that there are secondary roles of 1) an in-
crease of the deepest part of the EUC in the east (because of
increased zonal gradient of thermocline since the recharge
is more in the western-central than in the eastern Pacific),
that is, 2U′­Tclim/­x (Fig. S3d), and 2) an upwelling re-
duction in the extreme east, east of ;1008W, that is,
2W′­Tclim/­z (Fig. S3h).

To better understand the origin of this warm subsurface
anomaly, we have to remember that the EUC is part of a
large-scale 3D circulation. It is fed by the north and south me-
ridional pycnocline convergences, at their largest in the west-
ern Pacific. They are the lower branches of the shallow
subtropical/tropical cells (STCs/TCs; McCreary and Yu 1992;
McCreary and Lu 1994; Zeller et al. 2019, 2021). The south
convergence is climatologically 2 times larger than the north

one (because of the potential vorticity barrier in the north)
and is the first origin of EUC waters (Blanke and Raynaud
1997; Stellema et al. 2022). Hence, the h recharge associated
to deeper thermocline in the equatorial and southwest Pacific
favors warmer transport-weighted temperatures of the merid-
ional pycnocline convergences, notably the dominant south
convergence related to southwest Pacific recharge, thereby
feeding the EUC with warmer waters (Izumo 2003, 2005;
Ballester et al. 2015, 2016). Note by the way that the north–
south asymmetry in the convergence further justifies the use of
the asymmetric recharge index heq1sw.

Figures 3b and 3c summarize the distinct dominant oceanic
processes for the delayed feedback (green line) and recharge
term (red). The delayed feedback dominates for U′ in the
west and central Pacific upper layer (i.e. for zonal advection
2U′­Tclim/­x). The recharge term dominates for the subsur-
face temperature anomaly T′ advected by the mean 3D circu-
lation (i.e. by the climatological EUC through 2Uclim­T

′/­x)
and by climatological upwelling through2Wclim­T

′/­z in most
of the equatorial Pacific.

Overall, these analyses confirm from observations/reanalysis
that this RDO is physically grounded, the two terms
2bTE(t 2 h) and F1h being both important and represent-
ing distinct physical processes. It is hence more physical to
distinguish these two terms, Eq. (6) being one reasonable
way to conceptualize them. Furthermore, we will show
later that the different spatial patterns of b and F1 seen in
Figs. 2a and 2b allow the RDO to capture partly the ENSO
spatiotemporal diversity in equatorial Pacific T(x, y, t). But for
now, we will firstly analyze the RDO in its simplest form, fo-
cusing on spatially averaged Niño-3.4 RSST, namely, TE(t).

A second way of confirming the relevance of the RDO
[Eq. (6)] is to compute the coefficients R, F1, and b obtained
from the multivariate linear regression of dTE/dt onto TE(t),
h(t), and TE(t 2 h) for observations (and in the following sec-
tion for CMIP models), now focusing on the tendency of spa-
tially averaged TE, as shown in the very left of Fig. 4a for
observations. The most striking result is that F1 and b are
both highly significantly positive in obs1 and obs2 (at the 95%
level). Therefore, both need to be taken into account, and
cannot be neglected in Eq. (6). Consistently, observed h and
TE(t 2 h) have more than half (;60%) of unshared variance,
in agreement with the fact that they firstly represent different
physical processes.

c. Confirming the RDO through the CMIP multimodel

database; mean state influence

Accordingly, the RDO equation is also relevant for most
CMIP models, with F1 and b being both significantly positive in
almost all the CMIP models (Fig. 4). In the following, we write
variable X 5 X1[X2]{X3} with X1 for values obtained with
“obs1” (OISST and satellite SLA), X2 for “obs2” (HadISST
and ORAS5 SLA) and X3 for the multimodel mean (MMM)
of CMIP5 and CMIP6 historical runs. CMIP MMM values
lie within observational uncertainties: (F1, b) 5 (0.14 6 0.03,
0.066 0.04) [0.116 0.02, 0.096 0.02] month21 for observations
and {0.11 6 0.02, 0.07 6 0.02} for CMIP (similar values for
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CMIP5 and CMIP6 MMM). Note that the relative strengths of
F1 and b can also depend on the period used (consistent with
the fact that the dominant ENSO flavor may have changed with
time). For example, longer obs2 can be compared to obs1
on their 26-yr-long overlapping period, 1993–2018. It gives
(F1, b) 5 [0.13 6 0.02, 0.06 6 0.02] month21, almost similar
to obs1, with F1 larger than b. While obs2 on the 26-yr ear-
lier period 1959–84 gives (F1, b) 5 [0.09 6 0.02, 0.10 6 0.02]
month21, with conversely F1 weaker than b [possibly because of
higher-frequency ENSO during that period; cf. section 4; such
decadal changes could partly explain the changes in observed
WWV/TE lag relationship shown by McPhaden (2012) and con-
firmed by Crespo et al. (2022)]. The R coefficient is weaker,
R 5 0.026 0.03 [0.036 0.02]{0.02 6 0.02} month21, but is still
significantly positive at the 90% level in the majority of
CMIP models in this new RDO framework, contrary to
RRO that is not significantly different from zero in the pure
RO framework. The correlation skill of the RDO dTE/dt
equation, (6), is highly significant (rTE

5 0:71[0:68]{0:64} also
confirming the RDO relevance. The Steiger’s test (on the
difference between these two dependent correlations from a
single sample; note that the correlations are overlapping,
sharing one variable in common) allows us to compute the
significance of the improvement of the skill (and of its
square, i.e. explained variance) in obs1 (obs2): from RO to
RDO, this significance is 84% (97%) [explained variance

increases from 48% to 51% (41% to 46%)], and from DO
to RDO, it is 99% (99%) [explained variance increases
from 34% to 51% (35% to 46%)]. For CMIP MMM, the im-
provement is even more significant statistically, given the
much longer time series: the explained variance increases by
;10% from RO to RDO (from 34% to 38%) and by ;20%
from DO to RDO (from 29% to 38%). Note that, in the
most realistic version of the RDO, the nonlinear seasonal
RDO developed later, the improvement is even much larger
(section 5).

Interestingly, there is a large CMIP intermodel diversity in
the relative strengths of the coefficients F1 and b, larger than
for R (Fig. 4a). The models (sorted by the amplitude of b in
Fig. 4) that have a large F1 tend to have a weak b, and vice
versa (intermodel correlation 5 20.69). Note that R is posi-
tively correlated with b (0.59) and negatively correlated with
F1 (20.75). This large diversity of the parameters is likely re-
lated to the diversity of spectral, spatial and amplitude (re-
lated to growth rate) characteristics of ENSO and of Pacific
mean state (cf. below) among CMIP models.

Figure 4b similarly shows the coefficients F2 and « for the
regression of dh/dt onto TE(t) and h(t). F2 is highly significant
in all observations and models, F2 5 0.17 6 0.03[0.16 6 0.02]
{0.15 6 0.02} month21 and more consistent in amplitude
among CMIP than F1 and b, with a weaker intermodel diver-
sity (;630% of MMM value) positively correlated with F1

Coe�cients for dTE/dt equation: R, F1 and β

Coe�cients for dhind/dt equation: F2 and ε
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FIG. 4. Significance of the RDO coefficients in observations and CMIP. (a) Coefficients R

(black), F1 (red), and b (green) of the regression of dTE/dt onto normalized TE(t), h(t), and
TE(t2h) [cf. Eq. (6)] for the 79 CMIP models sorted by b (numbers 1 to 79 on x axis). (b) Coef-
ficients F2 (red) and « (black) of the regression of dh/dt onto TE(t) and h(t) [cf. Eq. (2)]. Three
thick error bars from the left to right respectively show obs1, obs2, and the multimodel mean
(MMM). TE and h are normalized so that regression coefficients (units: month21) can be com-
pared, whatever the model’s ENSO amplitude. The 90% confidence intervals are shown as
dashes, and for observations and MMM as markers.
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(intermodel correlation 5 0.79). As in observations, « is negli-
gible in all CMIP models [confirming Izumo and Colin’s
(2022) result for CMIP models: using an independent index
such as “h” 5 hind_eq1sw rather than other recharge indices pol-
luted by the tilt mode component leads to a negligible «; note
that we expect oceanic dissipation to be weak, e.g. Fedorov
2010]. The correlation skill of the regression is again highly sig-
nificant: rh 5 0.67[0.67]{0.57}.

CMIP MMM is qualitatively similar to observations, but each
model has its own biases. One may hence question how sensi-
tive these results are to ENSO realism in CMIP models. So we
have evaluated ENSO in each CMIP model by its ENSO ampli-
tude [STD(TE)] and spectral shape [namely the ratio between
the spectral density in the 1–3-yr band and that in the 3–15-yr
band, i.e. STD (1/3–1/1 yr21 band-pass filtered Niño-3.4 RSST)
divided by STD (1/15–1/3 yr21 band-pass filtered Niño3.4
RSST), close to Bellenger et al. (2014) metrics; more de-
tailed evaluations of CMIP ENSO can be found in earlier
references; e.g. Bellenger et al. 2014]. We have found some
models that are quite far from observations for these two
metrics, especially in CMIP5. We then selected the most
realistic CMIP models and have redone Fig. 4 for them

(Fig. S4). Consistently, the models with the lowest b values (on
the left) are rejected, as well as most models with the largest b
values. But anyway, the MMM of the RDO parameters are al-
most similar (to the MMM of all models without selection) for
this set of selected models (as well as for CMIP5 and CMIP6
separately). These verifications confirm that the results here are
robust, b becoming even more statistically significant when se-
lecting the most realistic models.

The next step is to understand what causes the intermodel
diversity in RDO parameters. Knowing that b and F1 repre-
sent distinct physical processes, we expect their strengths to
have distinct dependances to the mean state of the climate
model. They should depend notably on the SST zonal gradi-
ent, the position of the warm pool eastern edge, the mean
thermocline depth, themselves possibly related to the typical
cold tongue bias, or to the western Pacific precipitation bias
(e.g. Bayr et al. 2018, 2019) with double ITCZ (intertropical
convergence zone) bias and related SPCZ (South Pacific con-
vergence zone) bias. We can explore this in e.g. CMIP5 mod-
els. Figure 5 shows the intermodel regressions of model mean
state (in terms of SST, SLA, precipitation, and wind stress)
onto b and F1 separately. Note that the patterns related to b

Mean Mean state influence on F1
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FIG. 5. Mean-state influence on (left) b and (right) F1 in CMIP5 models. Intermodel regressions, onto b and F1

separately, of model mean state, in terms of (top) SST (units: K), (middle) SLA (with SLA global mean removed;
units: cm), and (bottom) precipitation (units: mm day21; wind stress overlaid in gray, and in black when significant at
the 90% level, vectors direction adjusted to panels aspect ratio; units: N m22; 90% significant level overlaid as black
contours; two-tailed Student’s t test). Amplitudes per intermodel STD of b or F1.
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and F1 might seem opposite to each other at first glance, but
they are actually quite different, not simply opposite in sign. b
is as expected larger if the cold tongue is stronger in a model
(Fig. 5a), i.e. if the negative mean zonal SST gradient in the
western-central equatorial Pacific is stronger (Bayr et al.
2018). The stronger cold tongue there is itself related to larger
equatorial easterlies related to larger precipitation over the
Maritime Continent and weaker precipitation in the central
Pacific with a horseshoe pattern (Fig. 5e). F1 strength is more
correlated to SLA/thermocline depth mean state (Fig. 5d). A
possible explanation is the following: the shallower the mean
thermocline is in the southwestern and equatorial Pacific [and
also at the southern edge of the north ITCZ, where the North
Equatorial Counter Current (NECC) is located], the shal-
lower the STCs lower branches are, the more their transport-
weighted temperatures can be affected by thermocline depth
anomalies related to a recharged or discharged state. The
SLA/thermocline depth mean state changes in Fig. 5d are in-
terestingly related not only to equatorial zonal wind stress
and equatorial cold tongue, but also to meridionally asymmet-
ric off-equatorial wind stress and related curl (with notably
Ekman pumping in the SPCZ forcing off-equatorial Rossby
waves propagating westward in the southwest Pacific) associ-
ated with mean precipitation (and SST) asymmetric changes
(Fig. 5f). To sum up, the strength of the delayed feedback and

the effectiveness of the recharge/discharge process vary as a
result of the CMIP mean state diversity.

For simplicity, we choose the default values F1 5 0.12,
b 5 0.08, R 5 0.02, F2 5 0.16, and « 5 0 month21, as a simple
example to represent their typical values. With these default pa-
rameters, the delayed term contribution is two thirds of the re-
charge term contribution in the temperature tendency equation.

d. RDO eigenvalues and their dependency to parameters

The solutions of the RDO system of differential equations
are a vector space, actually of infinite dimension because of the
delayed term (see details later on and see also Jin 1997a). To
understand the RDO behavior and dependency to parameters,
we obtain the eigenvalues by considering complex solutions of
the form est, with s 5 sr 1 isi, its real part sr being the expo-
nential growth or damping rate, and its imaginary part si being
the angular frequency. The set of Eqs. (6) and (7) (with « here
neglected for the sake of simplicity; including it is straightfor-
ward but makes the below equations heavier; not shown) leads
to the following eigenvalues characteristic equation:

s2
–Rs 1 bse2sh 1 F1F2 5 0: (10)

This equation in the complex space is equivalent to two real
equations:

s2
r 2 s2

i 2 Rsr 1 be2(srh)[sr cos(sih) 1 si sin(sih)] 1 F1F2 5 0 [real part of (10)],
2srsi 2 Rsi 1 be2(srh)[si cos(sih) 2 sr sin(sih)] 5 0 [imaginary part of (10)]:

The solutions can be found numerically as the intersections of
the solutions of each of these last two equations in the (sr, si)
space (Fig. S5). The pure DO has an infinity of solutions, while
the pure RO has only one. Therefore, the RDO eigenvalues in
Eq. (10) have an infinity of solutions and the model has an in-
finity of eigenmodes. Around the default values of the parame-
ters, the first mode is a weakly-damped low-frequency mode
(close to observed ENSO main period, and with characteristics
relatively close to the RO single mode), with a ;3-yr period
and a;0.02 month21 damping rate (i.e.;1/4 yr21). The second
mode is a highly-damped higher-frequency mode (;5-month
period and;0.45 month21 damping rate). This second mode can
add some high-frequency behavior, making the RDO more ap-
pealing than the pure RO which only has one eigenmode close to
the first RDO mode. Higher eigenmodes are even more damped
and of higher frequency.

The eigenvalues in Eq. (10) depend on parameters R, b and
on the product F1F2, i.e. on the Wyrtki angular frequency
W 5 (F1F2)

1/2, on which the eigenfrequency depends in the
RO framework (cf. Lu et al. 2018; Jin et al. 2020). Figures S6d–f
show the dependency of RDO eigenfrequency f 5 si/(2p) to
W, b, and R separately. Ranges of W, b, and R are chosen by
considering the observations uncertainties and the intermodel
diversity in CMIP data shown in Fig. 4a. For these ranges, the
dependency of RDO eigenfrequency to W and b is larger than
for the range of R seen in observations and CMIP. Thus, we

just focus on the dependency to W and b (Fig. 6b). BothW and
b will increase the eigenfrequency similarly. The isofrequency
lines can be crudely approximated as diagonal lines with a nega-
tive slope close to 21. Actually, if the isofrequency lines were
exactly diagonal lines with a negative slope equal to 21 (cf.
slope of the overlaid diagonal line) and monotonically increasing
with W and b in that Fig. 6b, that would mean that f would be
proportional to the sum W 1 b; i.e., f ; f0 1 S(W 1 b), where
f0 and S would be approximately constant within the CMIP
parameter range (with approximately f0 ; 0.008 month21 and
S ; 0.09). The intermodel diversity in RDO eigenfrequency (or
also qualitatively in ENSO spectral shape) should hence be ap-
proximately proportional to the sum W 1 b. Indeed, the ENSO
spectral shape in CMIP models is roughly linearly related to
W 1 b, as evidenced by Fig. 6c, with a high intermodel correla-
tion of 0.75 between W 1 b and ENSO spectral shape among
models. The correlation drops to only 0.43 or 0.30 when only W

or b alone is used instead of their sum W 1 b (note: correlation
with W alone here less good than in Lu et al. (2018) because
here W is evaluated from the multi-regression fit for the RDO;
in their study the pure RO is considered, so that their recharge
term F1_RO will then mix statistically F1 and b contributions).
The sum W 1 b thus explains well the diversity of ENSO fre-
quency among CMIP models. It represents the combined effects
of the recharge and delayed feedback processes on ENSO fre-
quency diversity in CMIP models.
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The eigen growth rate sr has a complex dependence to W

and b (Fig. 6a; sr dependence toW, b and R separately shown
in Figs. S6a–c). Around CMIP MMM, an increase in W in-
creases sr, i.e. decreases the damping, while an increase in b

increases the damping. Around W and b default values, sr in-
creases quasi-linearly with R (Fig. S6c), i.e. with the Bjerknes
feedback: sr ’ 0.6 (R 2 0.04) (for the RO, we would have
sr 5 (RRO 2 «)/2 ’ 0.5 RRO; Jin et al. 2020). The diversity
of these parameters may relate to the diversity in ENSO fre-
quency and ENSO amplitude among models. Interestingly,
obs1 as well as about half of CMIP models are near criticality
(i.e. almost undamped). If the combination of the three pa-
rameters leads to a sufficiently large sr so as to become posi-
tive, it would lead to an instability. Could this explain some
ENSO nonlinearities? Or some tipping point effects? Further
work would be needed to test this.

e. RDO response to stochastic forcing

Now we analyze the RDO response to stochastic forcing. Sto-
chastic forcing is required, as the RDO is damped for the default
parameters. To better understand the conceptual model behav-
ior, we have forced the RDO by adding two realistic red noises,
one, mT, in the right-hand side (rhs) of TE [Eq. (6)] and one,
mh, in the rhs of h [Eq. (7)]. The STDs of these red noises
(sT’ sh ’ 0.18 month21) are inferred from the two observed
residuals of the linear regression fits of Eqs. (6) and (7). These
noises are chosen to be independent, as the two observed re-
siduals are only weakly correlated [shared variance , 10%;
see also Takahashi et al. (2019) sensitivity tests on this kind of
noise choice]. Figure 7a first shows an example of the TE syn-
thetical time series obtained for default parameter values. The
system has oscillations, with a frequency modulation, and with
low- and high-variance decades (similar results over the full
1000-yr period; not shown). The RDO spectral response con-
sistently has a broad peak between ;4 and ;2-yr periods,
maximal at ;3-yr (black curve in Fig. 7c), roughly consistent
with observed ENSO. Figure 7b shows the typical evolution of

the different terms of the dTE/dt equation during an ENSO
event (i.e. lag regression onto TE) for the default synthetic
time series shown in Fig. 7a. h (red curve) leads TE (light blue)
by ;10 months, i.e. about a quarter of the ENSO period,
as expected because a recharge in h favors a positive TE

[Eq. (6)], as for usual RO. The delayed feedback effect has a
different timing. It is the first to favor the phase reversal, fol-
lowed by the recharge process. In the RDO, the negative noise
forcing at lag;220 months can already force indirectly the fol-
lowing El Niño onset, notably through the delayed feedback
6 months later. And a positive noise (from about210 months be-
fore ENSO peak) can of course also force an El Niño directly.

While most contributions are qualitatively similar in obs1 and
obs2 (shown in Fig. S7 for comparison) and are within observa-
tions confidence intervals, there are also interesting differences.
Observed asymmetries are, by construction, not captured by the
simplest RDO framework with only linear terms (cf. sections 5
and 6), e.g.: 1) nonlinearities and external forcing included in
the residual in Eqs. (6) and (7) are possibly large during ENSO
development and mature phase, and damp the reversal to
ENSO opposite phase (with the observed second peak of the re-
sidual at ;10-month lag not seen for the synthetic time series);
2) the advective–reflective delayed negative feedback seems to
play a larger and more systematic role for ENSO events termi-
nation and for La Niña onset than for El Niño onset (Fig. S7
composites). In summary, within its linear limits, the linear non-
seasonal RDO framework qualitatively matches observations
and could help us to better understand the interplay between
the recharge and advective–reflective delayed feedbacks in
shaping the real-world ENSO.

To illustrate how sensitive the RDO spectral response is to
the strength of the advective–reflective delayed negative feed-
back b, Fig. 7c shows the RDO spectral response for a smaller
(0.05) or larger (0.13) b (its default value being 0.08 month21).
In the small b case, the response is of lower frequency (period
; 3.3 years) and less damped, with a sharper peak (closer to
RO harmonic oscillator behavior). In the large b case, the

FIG. 6. Dependency of RDO eigenvalues to parameters. (a) RDO eigen growth rate (color shading; units: month21) as a function of
both b and Wyrtki angular frequencyW5 (F1F2)

1/2 (W being the eigen angular frequency of the pure RO). (b) As in (a), but for eigenfre-
quency (blue diagonal line showing W 5 2b 1 constant). (c) ENSO spectral shape metric (higher values when ENSO frequency in-
creases, cf. section 2) as a function of the sumW 1 b for each CMIP5 (blue) and CMIP6 (purple) model (with their MMM in squares). In
(a) and (b), circles show obs1 (red) and obs2 (green).
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response is of higher frequency (period ; 2.5 years) and highly
damped, with a broader spectral range (closer to DO behavior).
This broader spectral response can be explained because the
DO has a much broader spectral response, thanks to its infinite
number of eigenmodes, than the RO, which has only one
eigenfrequency. That is, the delayed negative feedback
brings spectral diversity to the RDO spectrum. To sum up,
ENSO spectrum and amplitude are very sensitive to b, i.e.
to the advective–reflective delayed negative feedback
strength (itself related to the climatological SST zonal
gradient).

f. ENSO spatio-temporal diversity in the

RDO framework

The RDO model, even in its simplest form, can also ex-
plain part of ENSO spatial diversity. To illustrate this, we
can exploit the multivariate linear regression based on
Eq. (8) for the tendency of temperature T(x, y, t) anywhere
in the tropical Pacific. As seen earlier (Figs. 2a,b), the
b(x, y) contribution reminds us of the central Pacific (CP)
El Niño spatial pattern, and the F1(x, y) contribution re-
minds us of the eastern Pacific (EP) El Niño pattern.

Hence, when the RDO is forced by noise, we will have dif-
ferent spatial patterns of T(x, y, t), closer to CP or EP spa-
tial pattern depending on the relative contributions of b

and F1 terms (that notably depend on the frequency of sto-
chastic forcing). The spatial and temporal properties of
ENSO are thus strongly dependent on which of the re-
charge F1 or delayed b effect is locally dominant. Indeed,
we can reconstruct “offline” T(x, y, t) at any location by in-
tegrating temporally Eq. (8) [i.e. the linear combination of
TE(t), h(t) and TE(t 2 h)], after having obtained synthetic
time series of TE and h from the RDO forced by noise (e.g.
time series shown in Fig. 7a). As an example, we have re-
constructed T(x, y, t) from the 1000-yr-long synthetic time
series of TE and h, using the averages of obs1 and obs2 for
the regression coefficients R(x, y), F1(x, y), and b(x, y)
[reconstructed T(x, y, t) is high-pass filtered, like long
obs2, to remove multidecadal variability that can arise
from the time integration, so as to focus on interannual
timescales]. We can then compare for instance recon-
structed Niño-4 (CP) and Niño3 (EP) SST variabilities. Niño-4
is of significantly higher frequency than Niño-3, with an
almost-doubled spectral shape metrics: 2.7 for Niño-4, 1.5 for

FIG. 7. RDO response to stochastic forcing. (a) Synthetical time series of TE for the linear RDO forced by realistic
red noises [added to the rhs of Eqs. (6) and (7); STD(TE) 5 0.7 for 1000 years]. (b) The different terms of the dTE/dt
equation, (6), lag-regressed onto TE, showing their various contributions (units: month21 per STD of TE) during the
evolution of an ENSO event: dTE/dt (black), F1h (red),2bTE(t 2 h) (green), RTE (cyan; which also indicates ENSO
phase), and red noise forcing sT (dark blue). The x axis shows the lag, with negative lags before ENSO peak and posi-
tive lags after ENSO peak. (c) RDO spectral response (i.e., frequency response to white noise: power spectrum of TE

for a 1000-yr long white noise forcing) for b default value (0.08 month21; black), a larger b (0.13 month21; green; i.e.;
closer to pure DO with a quasibiennial QB mode) and a smaller b (0.05 month21; red; i.e., close to pure RO with a
quasiquadrennial QQ mode; for the small b case, the much larger power spectrum is divided by 3 for visualization).
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Niño-3. This is because Niño-3 is dominated by F1h, and h is
essentially the integral of TE, and thus of lower frequency
than TE. While Niño-4 is dominated by 2bTE(t 2 h), which
has the same spectrum as TE. The RDO can thus, even in
its simplest form, simulate some ENSO spatiotemporal
diversity. The RDO captures the fact that part of the
CP variability is more biennial (QB) because the delayed
feedback is dominant there, and that the EP variability
is more quadrennial (QQ; e.g. Wang and Ren 2017) be-
cause the slower recharge feedback is dominant there.
Note that additionally, there is in observations a decadal
component of CP ENSO (Behera and Yamagata 2010;
Sullivan et al. 2016; Capotondi et al. 2020) that could be
implemented in the RDO framework, e.g. through a decadal
modulation of the mean state (e.g. Zhang et al. 2019) modulat-
ing RDO parameters (possibly through STCs; Zeller et al.
2019, 2021).

5. Nonlinear seasonal RDO

The simplest RDO framework, linear and nonseasonal, can
be obviously improved by adding: 1) the seasonal cycles of
RDO parameters and 2) asymmetries/nonlinearities (e.g. qua-
dratic terms and a multiplicative noise). We have added them
separately, and then all together in the most comprehensive
RDO version, the nonlinear seasonal RDO. We have also
tested the influence of each nonlinear parameter on the phase
diagram trajectories (supplemental material). The take-home
message is that, with seasonal cycle, nonlinearities and multi-
plicative noise added, the RDO is even more realistic, and still
has robust and highly significant F1 and b coefficients (i.e. the
nonlinear seasonal RDO is more realistic than the nonlinear
seasonal RO or DO).

a. Seasonality of RDO parameters

Knowing the ENSO observed seasonal phase-locking, the
first improvement to do to the RDO is to allow all its parame-
ters to vary seasonally. The simplest seasonality we can add
for parameters is, for instance for b parameter, of the form
b 5 b0 1 bseas sin(vt 2 l) 5 b0 1 bS sin(vt) 1 bC cos(vt).
The b 5 b0 1 bseas sin(vt 2 l) format looks mathematically
“nicer” by having amplitude bseas and phase l separately
rather than b 5 b0 1 bS sin(vt) 1 bC cos(vt). Yet the latter
form is more convenient, notably to compute intervals of con-
fidence and when we want to compare different observations
and/or models, as the phase l is modulo(2p) and we for in-
stance cannot compute a multimodel mean (MMM) of l di-
rectly from the l of each model (it would only be possible by
first computing the bS and bC MMM, to then convert them
into bseas and l values). And bS and bC are straightforward to
interpret: here t 5 0 on 1 January, so that sin(vt) is maximum
on 1 April and minimum on 1 October, and cos(vt) is maxi-
mum on 1 January and minimum on 1 July. As the number of
parameters to fit is now multiplied by 3 (i.e., equal to 9 for the
TE tendency equation and equal to 6 for the h one), we essen-
tially focus on the results based on our longest reanalysis
data, ‘hist’, and on CMIP historical runs, for which the num-
ber of effective degrees of freedom is sufficiently large (obs2

still shown in Fig. S8; note however the larger uncertainty
bars when estimating RDO seasonally varying parameters
with obs2; obs1 is not shown, being obviously too short). In a
nutshell, the correlation skills rT and rh of dTE/dt and dh/dt
equations strongly increase by including the seasonal cycle
[cf. Figs. S8b,c]. And the RDO still has a robust and highly
significant b coefficient for the delayed feedback (with b0

even 2 times larger than F1,0 in hist; Fig. S8c).
Let us now describe each parameter’s seasonal cycle

(Figs. 8a–c shown here for the nonlinear version of the sea-
sonal RDO, which has a similar seasonality to its linear
version; cf. comparison of each parameter’s seasonal coef-
ficients in Fig. S8). We here focus on hist-based parame-
ters, as this should be our most realistic estimates, keeping
in mind the limits of historical oceanic reanalyses, the ac-
tual “truth” being possibly between hist, shorter obs2, and
CMIP estimates. To interpret the coefficients seasonality,
keep in mind that their actual contribution to TE and h

tendencies will be the product of the coefficient and of its
associated term. For example, the F2TE actual contribution
to dh/dt will be larger in boreal winter than F2 alone, when
TE interannual STD peaks. Let us start with R. R has a
strong seasonal cycle, with 2RS ; R0 . 0. R is the
largest around September and the lowest in March, favor-
ing a peak of ENSO around December, as expected from
previous studies (e.g. Jin et al. 2020). F1 has a rela-
tively weak seasonal cycle, being slightly larger around
January–March and weaker around July–September, likely
because the climatological equatorial upwelling in the
central-eastern Pacific (1708–1208W) is the strongest in
January–March and the weakest in July–September. b0 is
highly significant (even above 99% level). It is larger than
F1,0 in hist (but not in obs2 and CMIP). b has a large sea-
sonal cycle, dominated by bS, i.e. is maximal in spring, pos-
sibly because of the seasonal cycle in the product CmC

between the coupling parameter mC and the climatological
zonal SST gradient C (cf. section 3b), and/or because of In-
dian Ocean dipole (IOD, an equivalent of El Niño for the
Indian Ocean, e.g., Saji et al. 1999) delayed influence
(Izumo et al. 2010) likely partly included in the delayed
term. The difference between F1 and b seasonal cycles fur-
ther confirms that F1 and b terms represent distinct physi-
cal processes.

For dh/dt [Eq. (7)], which is the same for the RO and
RDO, previous studies (e.g. Chen and Jin 2020) of the RO
had usually considered F2 to be seasonally constant, sup-
posing that its seasonal cycle was negligible. Actually, F2

has a large significant and robust seasonality in all our esti-
mates (Figs. 8a–c and Fig. S8). This is the first study to our
knowledge that shows this F2 seasonality for the RO/RDO
recharge equation. F2 represents the efficiency of the re-
charge for a given TE anomaly (e.g. of 1 STD). F2,S is as
large as the constant component F2,0 in hist. F2 is maxi-
mum in early spring (February–April) and negligible in early
autumn (August–October), with of course differences among
observations and CMIP estimates. «0 is weakly positive, ;0.02
month21, with some seasonal cycle, maximum in hist («S , 0)
in fall and negligible in spring. Taking into account all these
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seasonal cycles lead to a more realistic RDO behavior with
seasonal phase-locking and richer combination tones (e.g.
Stuecker et al. 2013), especially when including nonlinearities,
i.e. the full nonlinear seasonal RDO version described
hereafter.

b. Adding nonlinearity: The nonlinear seasonal RDO

Above we had neglected asymmetries/nonlinearities for the
sake of simplicity. The next step is to include such terms. We can
add to the dTE/dt [Eq. (6)] the quadratic and cubic terms
1bTT

2
E 2 cT3

E 1 dTEh. They notably represent the nonlinear re-
sponse of convection (and of related wind stress) to TE (e.g. Choi
et al. 2013; Takahashi et al. 2019; Jin et al. 2020; An et al. 2020a;
Dommenget and Al Ansari 2023; Srinivas et al. 2022;
G. Srinivas et al. 2024, unpublished manuscript). We can
also add a multiplicative noise [e.g. Jin et al. 2007; Graham
et al. 2015, their Eq. (23)]. We can add to the dh/dt

[Eq. (7)] a quadratic term 2b
H
T2
E. That is, the discharge during

an El Niño of amplitude TE_0 is larger than the recharge during a
La Niña of similar amplitude 2TE_0, notably because equatorial
zonal wind stress anomalies are of larger amplitude and fetch
(G. Srinivas et al. 2024, unpublished manuscript) and are farther
to the east [e.g. Izumo et al. 2019; note that we could add even fur-
ther complexity, e.g. a nonlinearity of the delayed term, as in
DiNezio and Deser (2014), and a state dependency of F2

as in Iwakiri and Watanabe (2022) to even better simulate
long-lasting La Niña]. Thus, the nonlinear seasonal RDO
equations are

dTE/dt 5 RTE 1 F1h 2 bTE(t 2 h) 1 bTT
2
E 2 cT3

E 1 dTEh

1 mT(1 1 BTE), (11)

dh/dt 5 –F2TE 2 «h 2 bhT
2
E 1 mh, (12)

FIG. 8. The nonlinear seasonal RDO. (a) Bar plot showing each parameter of Eqs. (11) and (12), estimated by a
multivariate fit (with B and sT estimated as in An et al. 2020b). To represent the actual contribution of the nonlinear
terms for strong ENSO events, their parameters are multiplied by 2 for quadratic terms and by 4 for the cubic term
for a fair comparison with linear parameters such as R, F1, and b (as for a strong 2STD event, we will have, e.g.,
F1TE 5 2F1, bTT

2
E 5 23 2bT , cT

3
E 5 23 4c). The correlation skills rT and rh are given above the bar plots. For hist

(black), the red line shows the 95% interval of confidence. For CMIP MMM (green), it represents the 61 intermodel
STD (among all CMIP). (b) Seasonal cycles of the main RDO parameters estimated from the fit on hist. (c) As in
(b), but for CMIP MMM. (d) A 100-yr-long time series of hist-based nonlinear seasonal RDO (STD given for the av-
erage of fifty 100-yr-long timeseries). (e) As in (d), but for CMIP-based RDO.
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where mT and mh are red noises with standard deviations sT

and sh respectively, and with a 5-day decorrelation time (cf.
section 2); B represents the strength of the multiplicative
noise (i.e. larger noise during El Niño than during La Niña).
Here we have tried to keep the notations as much as possible
consistent with the (soon-to-be open-source) Community RO
model under development presently, in which we participate
[S.-K. Kim et al. 2024, unpublished manuscript; related to the
review of Vialard et al. (2024, unpublished manuscript); see
also the notations in the review of An et al. (2020a)].

Now we have 12 parameters to fit for Eq. (11) (as we as-
sume no seasonality of the nonlinear terms, and as B and sT

are separately estimated from the residual distribution), and
7 parameters for Eq. (12), shown in Fig. 8a and Fig. S8. The
first result is that the RDO is still robust and better than the
RO, when including nonlinearity and multiplicative noise in
addition to seasonality. The term b0 is large and significant
(even at the 99% level in hist and CMIP). Including this de-
layed effect to the RO clearly increases the skill and explained
variance of dTE/dt equation (in hist: correlation skill rT 5 0.60
to 0.67, i.e. a relative increase of explained variance by 25%,

r2T increasing from 36% to 45%; in CMIP: rT 5 0.67 to 0.72,
i.e. increase of explained variance by 16%, r2T increasing from
45% to 52%). The results for CMIP and hist are qualitatively
consistent, but quantitatively different. The largest differences
are for F1 and b relative contributions, b being larger than F1

in hist (vice versa for CMIP), as aforementioned. The nonli-
nearities d and bh are stronger in hist. Figures 8d and 8e show
the generated synthetic time series of TE, for hist and CMIP-
MMM parameters respectively. They are quite different too.
The synthetic time series for hist look more realistic (asymme-
try, irregularity). Most CMIP models have a bias in ENSO
nonlinearity/asymmetry (Hayashi et al. 2020); thus, that their
RDO also fails to reproduce asymmetry is expected. The
larger irregularity of hist-based RDO could be partly ex-
plained by the larger b/F1 ratio in hist than in CMIP. Figure 9b
shows the trajectories in the (TE, h) phase space of the hist-
based nonlinear seasonal RDO. They are qualitatively similar
to hist ones (Fig. 9a), with similar asymmetries, namely larger
extreme El Niño events with larger and faster discharges than
extreme La Niña [see, e.g., Iwakiri and Watanabe (2022) for
processes driving long-lasting La Niña].

FIG. 9. (a) Phase diagram (TE, h) of hist observations/reanalysis. The trajectories are shown as thin gray curves, and
their probability density function (PDF, scaled by its maximum) as color shading. (b) Phase diagram (TE_synthetic, h_synthetic)
of fifty 100-yr-long synthetical time series obtained by forcing hist-based nonlinear seasonal RDO by red noises. (c) As in
(b), but for the hist-based simplest linear RDO without seasonality (and without multiplicative noise, i.e., B5 0). (d) As in
(c), but adding seasonality. (e) As in (c), but adding nonlinearities (including multiplicative noise). Note that when the distri-
bution is shifted with extreme El Niño and discharge being stronger, the PDF maximum, i.e., the most likely points, is
shifted toward slightly negative TE and positive h anomalies (mean removed).
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To highlight visually the role of each nonlinear term in the
nonlinear seasonal RDO (for the set of parameters obtained
from hist), Fig. S9 shows RDO phase diagram when each
of them is artificially removed. E.g. the absence of b

h
T2
E in

Fig. S9b leads to less extreme discharge (there is still some
asymmetry in the recharge/discharge due to the nonlinear
terms in the dTE/dt equation, but weaker than with bh in-
cluded). That is, Fig. S9b shows that the b

h
T2
E role makes the

discharge more extreme during strong El Niño. Multiplicative
noise associated to B sustains strong El Niño (i.e. the lower-right
quarter of the phase diagram; Fig. S9d). The role of b

T
T2
E should

be to increase El Niño and reduce La Niña. However, in the hist
case shown here where bT is weak, this effect is hard to see in
Fig. S9e (it would be more seen in CMIP-based RDO case).
The cubic term 2cT3

E reduces very extreme TE events (for
both El Niño and La Niña events; Fig. S9f). The dTEh fa-
vors larger “La Niña1discharged state” events in the
lower-left quadrant and diminishes them in the upper-
right quadrant, “tilting” the phase diagram. Note that this
detailed analysis of the role of each nonlinear term re-
mains qualitatively valid for the RO framework.

6. Conclusions

a. Summary

We have developed a hybrid recharge delayed oscillator, the
RDO, more realistic than the stand-alone RO or DO (sche-
matics in Fig. 1). This RDO can help us to improve our theoreti-
cal understanding of ENSO and of its irregularity, diversity, and
complexity. We have shown that the ENSO temperature ten-
dency dTE/dt results essentially from the combination of two
distinct negative feedback mechanisms with distinct spatial dis-
tributions, in addition to the Bjerknes positive feedback:

1) the slow long-term recharge during La Niña (discharge
during El Niño) with a time scale of ;1–2 years. This
slow recharge process takes place over the equatorial and
southwestern Pacific independently of the fast tilt mode,
i.e., “h” 5 hind_eq1sw. This long-term recharge firstly affects
the oceanic mixed layer temperature tendency in the central-
eastern equatorial Pacific by favoring advection of warmer
subsurface waters by the climatological STCs/TCs and EUC
towards the equatorial upwelling, i.e., 2Uclim­T

′/­x and
2Wclim­T

′/­z.
2) the advective–reflective delayed negative feedback of
;6 months. This delayed feedback firstly affects the oceanic
mixed layer temperature tendency in the western-central
equatorial Pacific by anomalous upper layer zonal current
advecting the climatological temperature zonal gradient
through wave processes, i.e., 2U′­Tclim/­x.

These two distinct processes are both essential for equatorial
Pacific SST variability and so for the coupled system. Hence,
rather than stating that the recharge oscillator (RO) and delayed
oscillator (DO) are two different formal ways of representing
the same physical process as done usually in previous studies, the
present results based on observations and 79 CMIP models
show that these two different physical processes with different

timescales should be distinguished in the equations. They can be
formally incorporated in the RDO. This hybrid oscillator has
qualitatively realistic spectral characteristics (with a wider spectral
peak than the RO) and lead-lag relationships. The inclusion of
the delayed term 2bTE(t 2 h) [with h 5 6 months] favors a
more irregular, and possibly chaotic, behavior when forced by
stochastic forcing. RDO eigenvalues are highly sensitive to both
theWyrtki angular frequencyW5 (F1F2)

1/2 and the b parameter
(representing respectively the strengths of the RO and DO com-
ponents), themselves sensitive to the mean state (and thus to
CMIP model biases). We have notably shown that the main
RDO eigenfrequency is approximately linearly related to the
sum W 1 b. That is, ENSO frequency increases not only if W is
larger, but also if the advective–reflective delayed feedback is
larger. Furthermore, by taking into account that the advective–
reflective delayed feedback (respectively recharge feedback) is
larger in the western-central Pacific (respectively eastern equato-
rial Pacific), each feedback having its own time scale, we can re-
construct equatorial SST at any longitude within the RDO
framework, and simulate some ENSO spatiotemporal diversity.

Finally, we have shown that the simple RDO framework is ro-
bust and more realistic than the RO framework, and could be sig-
nificantly improved by adding: 1) the seasonal cycles of RDO
parameters, 2) asymmetries/nonlinearities, e.g. quadratic/cubic
terms and a multiplicative noise. These nonlinearities added to
seasonality further increase the system’s complexity and possibly
make it more irregular and chaotic, and thus increase potentially
ENSO spatiotemporal diversity. We have also investigated the in-
fluence of each nonlinear term on the (TE, h) phase space trajec-
tories, an investigation that is also useful for the RO framework.

b. Discussion on possible improvements of the RDO

This latest and more refined nonlinear seasonal RDO ver-
sion could still be further improved by adding 1) influences
external to the tropical Pacific and 2) a third box in the model
to explicitly allow for more spatial diversity of ENSO events.

External influences to add are notably the two-way interac-
tion of the IOD with ENSO (e.g. Izumo et al. 2010, 2014; Luo
et al. 2010; Jourdain et al. 2016), the mean tropical Indian and
Atlantic Oceans warming/cooling, which act as negative feed-
backs to ENSO (e.g. Dommenget and Yu 2017), and the
north and south tropical Pacific (e.g. Alexander et al. 2010).
For example, the IOD can also force the advective–reflective
delayed feedback: a negative IOD forces easterly anomalies
in the western Pacific, thereby favoring positive zonal current
anomalies ;6 months later in the western-central equatorial
Pacific. Hence a perspective would be to add a third variable in
the system, the IOD as a forcing external to the tropical Pacific
coupled to ENSO [mathematically like in Kug and Kang (2006)
and Frauen and Dommenget (2012), but for the IOD rather
than for the Indian Ocean basinwide SST].

Here our original aim was not to capture the various ENSO
flavors, i.e. the ENSO diversity continuum from extreme EP
El Niño to CP El Niño Modoki events, that have partly distinct
global teleconnections. For the sake of simplicity, we have focused
on ENSO events defined with the usual Niño-3.4 region. Still,
the RDO framework has allowed us to reconstruct ENSO

I Z UMO E T A L . 27811 MAY 2024

Brought to you by University of Hawaii at Manoa, Library | Unauthenticated | Downloaded 08/05/24 08:01 PM UTC



spatiotemporal diversity, at least partly, even without adding non-
linear terms (Figs. 2a,b). While in the RO framework, nonlinear-
ities are needed to capture ENSO diversity (Thual and Dewitte
2023). Adding seasonality and nonlinearities to the RDO
(section 5) can increase simulated ENSO diversity/complexity
even more. The next step is to implement our RDO approach
in a three-box conceptual model (i.e. west, central, and east
Pacific boxes), such as in Fang and Mu (2018), Geng et al. (2020),
and Chen et al. (2022) but with a physically based formalization
of the equations inspired by the above RDO approach.

c. Implications and perspectives

The RO still remains useful, being the simplest ENSO con-
ceptual model. We still appreciate its use. But it implicitly
mixes two physically different processes, the zonal advective
and thermocline feedbacks. The RDO does not. It is more
physical and captures the spatial and frequential diversity of
ENSO, while still remaining simple enough.

The RDO set of equations may formally look partly like a
simplification of the unified oscillator of Wang (2001), which
was shown by Graham et al. (2015) to be less realistic than the
simple DO. However, here the RDO set of equations is for
(TE, hind_eq1sw) orthogonal space instead of (TE, heq) non-
orthogonal space. And the various terms of the RDO equa-
tions represent clear distinct physical mechanisms, conversely
to the unified oscillator as pointed out by Graham et al. (2015).

For ENSO operational forecast diagnostics, Izumo and
Colin (2022) have shown that the pair of coordinates
(TE, hind_eq1sw) is more relevant to describe the RO sys-
tem trajectory than the usual pairs (TE, heq) or (TE, hw).
Here the RDO realism furthermore suggests that an addi-
tional useful term to take into account to operationally
diagnose the system state is TE(t 2 h) as an indicator of
the advective–reflective delayed negative feedback effect,
e.g. when diagnosing the present oceanic state or for op-
erational forecasts. The RDO framework should also be
useful to study ENSO predictability with information the-
ory (Fang and Chen 2023).

Background interdecadal changes in the sum W 1 b may fa-
vor the quasi-quadrennial (QQ) or quasi-biennial (QB) ENSO
regimes (e.g. Jin et al. 2020) and might have a role in ENSO
“regime shifts” and ENSO diversity. The QQ regime is more as-
sociated with large EP El Niño events, for which the thermo-
cline feedback (W) plays a central role. While the QB regime is
more associated with moderate CP El Niño events more driven
by the zonal advection feedback (b). The RDO framework (pos-
sibly adding a third box as suggested above) could help us in un-
derstanding the differences between the decades with weak and
strong ENSO variances and with differences in ENSO fre-
quency and flavors, possibly related to decadal mean state
changes influencing b and W relative strengths (Chen et al.
2022; Chen and Fang 2023), as well as the ENSO response
to climate change (e.g. Cai et al. 2021; Shin et al. 2022).

There are several pathways to better understand theoretically
the RDO model. How combining the RO and DO influences
the chaotic behavior of the delayed differential equation system
(e.g. Tziperman et al. 1995; Keane et al. 2016), as for the case of

two coupled oscillators interacting with noise. A mathematical
approach with series as in Power (2011) for the DO could be de-
veloped for the RDO. For the nonlinear seasonal RDO, an ap-
proach based on a Fokker–Planck equation could help (An
et al. 2020b). Then we could use an intermediate approach simi-
lar to Yu et al. (2016), who combined the RO to a slab ocean
coupled to an AGCM to capture ENSO dynamics and diversity.
But we could modify their intermediate model by 1) using an in-
dependent recharge index such as hind_eq1sw, 2) adding the de-
layed negative feedback with its shorter timescale.

The RDO could help us to reconcile ENSO theories. It
would be very interesting to redo detailed analyses testing
each ENSO oscillator, such as Graham et al. (2015) approach,
and/or Linz et al. (2014) approach based on transfer functions,
in light of the present results, and see whether theories, climate
models, and observations would better agree if one keeps RO
and DO processes distinguished through the hybrid RDO
framework developed here. To conclude, using this simple
RDO framework could help us to improve ENSO theories, cli-
mate model diagnostics, and forecasts.
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APPENDIX

A Simple Exponential Formula for the Precipitation

Sensitivity to Relative Sea Surface Temperature

Figure A1 illustrates the validation of the approximated
exponential formula for the precipitation sensitivity to local
RSST that we have developed in section 4b:

P(RSST) ’ 2e0:56RSST [Eq: (9)]:
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