

The American Mathematical Monthly

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/uamm20

A Simple Construction of Fat Cantor Sets

Jian-Guo Liu & Robert L. Pego

To cite this article: Jian-Guo Liu & Robert L. Pego (2024) A Simple Construction of Fat Cantor Sets, The American Mathematical Monthly, 131:6, 525-525, DOI: 10.1080/00029890.2024.2322909

To link to this article: https://doi.org/10.1080/00029890.2024.2322909

	Published online: 22 Mar 2024.
	Submit your article to this journal 🗷
<u>lılıl</u>	Article views: 247
Q ¹	View related articles 🗷
CrossMark	View Crossmark data 🗗

A Simple Construction of Fat Cantor Sets

Let $\mathcal{C} \subset [0, 1]$ be the standard Cantor set, and let $c: [0, 1] \to [0, 1]$ be the standard Cantor function—continuous, increasing, and constant on each of the countably many components of the open set $\mathcal{C}^c = [0, 1] \setminus \mathcal{C}$. Applying c expands c, a set of measure zero, to c(c) = [0, 1], the unit interval.

For any $t \in (0, 1)$, the function $c_t : [0, 1] \rightarrow [0, 1]$ defined by

$$c_t(x) = (1 - t)x + tc(x),$$

is continuous, strictly increasing, and bijective. By consequence, the set $c_t(\mathcal{C})$, like \mathcal{C} , is closed and nowhere dense. For any component interval I of \mathcal{C}^c , its image $c_t(I)$ is an open interval with length $\lambda(c_t(I)) = (1-t)\lambda(I)$, where λ is Lebesgue measure. It follows the image $c_t(\mathcal{C}^c)$ has measure 1-t, hence $c_t(\mathcal{C}) = c_t(\mathcal{C}^c)^c$ is a fat Cantor set with measure $t \in (0, 1)$.

This construction is motivated by the theory of optimal transport [1]. The maps c_t push forward λ to a family of measures ν_t which provide *displacement interpolants* between λ and the pure point measure $\nu = \sum_I \lambda(I) \delta_{c(I)}$, where the sum is over the countably many components of \mathcal{C}^c .

ORCID

Jian-Guo Liu https://orcid.org/0000-0002-9911-4045
Robert L. Pego https://orcid.org/0000-0001-8502-2820

REFERENCES

[1] Villani C. Topics in optimal transportation. Providence (RI): American Mathematical Society; 2003. (Graduate studies in mathematics; vol. 58).

—Submitted by Jian-Guo Liu (Duke University) and Robert L. Pego (Carnegie Mellon University)

doi.org/10.1080/00029890.2024.2322909 MSC: Primary 26A30, Secondary 28A80

June–July 2024] 525