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Liquid crystal elastomer films that morph into cones are strikingly capable lifters. Thus motivated, we
combine theory, numerics, and experiments to reexamine the load-bearing capacity of conical shells. We
show that a cone squashed between frictionless surfaces buckles at a smaller load, even in scaling, than the
classical Seide-Koiter result. Such buckling begins in a region of greatly amplified azimuthal compression
generated in an outer boundary layer with oscillatory bend. Experimentally and numerically, buckling then
grows subcritically over the full cone. We derive a new thin-limit formula for the critical load, ∝ t5=2, and
validate it numerically. We also investigate deep postbuckling, finding further instabilities producing
intricate states with multiple Pogorelov-type curved ridges arranged in concentric circles or Archimedean
spirals. Finally, we investigate the forces exerted by such states, which limit lifting performance in active
cones.
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Liquid crystal elastomers (LCEs) are muscular actuating
solids that contract uniaxially along their director on
heating [1,2]. Flat LCE sheets containing concentric circle
directors (þ1 defects) correspondingly morph into conical
shells [3,4] that can spectacularly lift thousands of times
their own weight [5] [Fig. 1(a)]. Continuing the trend of
soft materials reinvigorating shell mechanics [6–13], we
investigate the buckling load of a conical shell as a
fundamental limit on lifting performance.
In thin sheets, the prohibitive energetic cost of stretch (∝ t)

relative to bend (∝ t3) strongly favors almost-isometric
deformations.Accordingly, anLCE cone’s strength is usually
attributed to the tip’s singular Gauss curvature [3], which, via
the Theorema Egregium [25,26], guarantees it cannot be
flattened isometrically, naively suggesting that buckling
requires a stretch-scale load, f" ∝ t. However, if bend were
cost-free, the cone could buckle under zero load via tip
inversion, which is isometric but requires a perfectly sharp
ridge. Finite-threshold buckling therefore occurs via a short-
wavelength mode where stretch and bend compete. Indeed,
the classical result [15] predicts wavelengths ∝

ffiffi
t

p
and

accordingly a stretch-bend load scaling f" ∝ t2, similar to
compressed cylinders [27] and pressurized spheres [28,29].
Here, we combine theory, numerics, and experiments to

investigate the buckling and postbuckling of conical LCE
shells. We find compressed cones deform predominantly in

an outer boundary layer, which instigates buckling at much
smaller loads than predicted classically. Shells are usually
frustratingly weaker than their theoretical idealizations,
but this is normally attributed to acute imperfection
sensitivity [27,30]. Some previous works have also high-
lighted boundary conditions [13,31–41], but clarity on the
key physics has not emerged. Cones provide a clear-cut,
analytically tractable example where the boundary layer’s
influence is profound, even yielding a new thin-limit
scaling: f" ∝ t5=2.
We begin our investigation by using surface alignment

to fabricate 30 μm thick LCE sheets with circular director
patterns (following [16], Supplemental Material [14],
Sec. S8A-B), which morph into cones with semiangle
≈60° on heating to 145 °C. Actuated cones were then
squashed under a glass slide of controlled weight, and
their deformations tracked with an optical profilometer
(Supplemental Material [14], Sec. S9B). Corresponding
numerics were conducted using MORPHOSHELL [42] to
minimize a nonlinear shell energy for a cone squashed
between frictionless slides. Both experimental and
numerical cones buckle subcritically, popping into a
noselike shape at a load far below that classically expected
[Fig. 1(c)].
To investigate further, we consider a conical shell with

semiangle α and radius R, and denote arc length along
generators by s and perpendicular distance to the cone axis
by r. Compressing the shell by Δh under a vertical force f
induces a membrane strain ε and a bending strain
β ¼ κ − κ̄, κ and κ̄ being the deformed and undeformed
curvature tensors. The deformed state will then minimize
the standard energy E ¼

R
WdA − fΔh. For small strains

(but large rotations) the appropriate energy density is [21]
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Wðε; βÞ ¼ Y
2ð1 − ν2Þ

QðεÞ þD
2
QðβÞ; ð1Þ

where Y ¼ Et and D ¼ Et3=½12ð1 − ν2Þ' are the stretching
and bending moduli for Young’s modulus E and Poisson
ratio ν, while QðτÞ≡ νtrðτÞ2 þ ð1 − νÞtrðτ · τÞ.
To probe the stability of an axisymmetric prebuckled

base state, ε0, κ0, we consider small additional displace-
ments, u tangentially and w normally. Splitting the asso-
ciated changes δε and δβ by order in displacement,
retaining only terms important for short-wavelength per-
turbations gives [21]

δε ¼ 1

2
ð∇uþ ∇uTÞ þ κ0w

δε1

þ 1

2
ð∇w ⊗ ∇wÞ

δε2

;

δβ ¼ −HessianðwÞ ¼ δβ1: ð2Þ

The κ0w strain is characteristic of shells, while the sole
nonlinearity, δε2, allows inhomogeneous w to relieve
tangential compression: the basic mechanism of compres-
sive buckling. Since the base state is an equilibrium, the
leading energy change is quadratic in displacements:

δE ¼
Z

fWðδε1; δβ1Þ þ tr½Nðε0Þ · δε2'gdA; ð3Þ

where NðεÞ ¼ ∂Wðε; βÞ=∂ε is the membrane stress.
In general, (3) involves covariant derivatives and inte-

gration over the entire curved shell. However, following
Ref. [43], the anticipated short wavelength allows us to just
consider a patch small compared to r but large compared to
wavelength. In this patch we may neglect all covariant
considerations and use Cartesian coordinates ðx; yÞ, aligning
x with s. Minimizing δE variationally over displacements

yields the expected tangential and normal force-balance
equations, linear in displacements:

∇ · Nðδε1Þ ¼ 0; ð4Þ

D∇4wþ trðκ0 ·Nðδε1ÞÞ−∇ · ðNðε0Þ ·∇wÞ ¼ 0: ð5Þ

We satisfy (4) with a scalar Airy stress function ψ such that
Nðδε1Þ ¼ ðI∇2 − HessianÞψ ≡ Λψ . Geometric compatibil-
ity of the strain then requires [43]

∇4ψ − Y trðΛðκ0wÞÞ ¼ 0: ð6Þ

Traditionally one considers a membrane base state, with
κ0 ¼ cosðαÞ=r ŷ ⊗ ŷ matching the undeformed cone, and
Nðε0Þ ¼ −f=ð2πr cosαÞx̂ ⊗ x̂ following from vertical
force balance. Both vary slowly over the cone, and so
are effectively constant over the patch. We then search
for oscillatory buckling solutions, substituting ðw;ψÞ ¼
ða; bÞ exp½iðkxxþ kyyÞ' into (5) and (6). As expected, the
exponentials cancel, leaving algebraic equations that we
solve for the ratio a=b and buckling force f. Interestingly,
force only depends on wave vector via ðk2xþk2yÞ2=k2x≡k2∘
and, minimizing over k∘, we find buckling commences at
the classical Seide f" ¼ 4π

ffiffiffiffiffiffiffi
YD

p
cos2α ∝ t2 [15], with

k4∘ ¼ Y=ðDr2Þcos2α, corresponding to a “Koiter circle” of
wave vectors with wavelengths ∝

ffiffiffiffi
rt

p
, as is familiar from

cylinders [27]. The threshold is radius independent, so
buckling occurs over the entire cone simultaneously.
When squashing between slides we instead observe

buckling at ∼20% of Seide’s value [Fig. 1(c)]. Moreover,
the dominant prebuckling deformations are localized within
a boundary layer of width l ∼

ffiffiffiffiffi
Rt

p
that is qualitatively

different from the bulk’s membrane state. Informatively, if
the membrane state is artificially imposed at the boundaries,
MORPHOSHELL reproduces Seide’s threshold. We thus focus
on this axisymmetric boundary layer, described by the local
angle ϑðsÞ [Fig. 2(a)] and the radial and vertical displace-
ments ΔrðsÞ;ΔzðsÞ, and with effectively constant r ≈ R.
Subtly, the rim’s radial freedom allows near-complete
s-stress relaxation, Nss ∼ lNϕϕ=R, consistent with stress
equilibrium Nϕϕ ¼ RN0

ss. Consequently, s strain is a pure
Poisson effect of hoop strain, εss ¼ −νΔr=R, and the
dominant balance between stretch and bend in (1) is simply

W ≈
1

2
YðΔr=RÞ2 þ 1

2
Dϑ02: ð7Þ

Comparing these terms confirms the characteristic boundary-
layer length scale, l≡ ðR2D=YÞ1=4 ∼

ffiffiffiffiffi
Rt

p
. These terms and

length scale also emerge from a conventional linear-elasticity
treatment, but (7) also encompasses large rotations. Scaling
all lengths by l (s ≡ s=l,ΔrðsÞ≡ lΔr ðsÞ, etc.) then leads to
the dimensionless boundary-layer energy:

FIG. 1. (a) A 2 × 2 array of heat-activated LCE cones support-
ing a load 1100× their own weight [5]. (b) Compressing a
conical shell between frictionless slides. (c) Controlled-force
compression of experimental (upper images) and numerical
(lower images, force-compression plot) LCE cones (α ≈ 60°,
R ¼ 200 t, ν ¼ 1=2), both exhibiting subcritical buckling. Using
numerical and experimental (Supplemental Material [14],
Sec. S9A) modulus values, both buckling thresholds are
∼20% of the classical Seide threshold ∼3 mN.
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E
πl

ffiffiffiffiffiffiffi
YD

p ¼
Z "

Δr 2 þ θ02 −
f

π
ffiffiffiffiffiffiffi
YD

p Δz 0
#
ds: ð8Þ

The small-strain relations Δr 0 ¼ sin θ − sin α and Δz 0 ¼
cos α − cos θ allow us towriteE in terms of a single variable,
Δr . Minimization via standard variational calculus then
yields a nonlinear shape equation and boundary conditions
(Supplemental Material [14], Sec. S1). Solving numerically
usingSciPy’s solve_bvp [22] reveals a universal scaling form
Δr ðsÞ for the boundary layer in all thin cones of given
semiangle and dimensionless load f=

ffiffiffiffiffiffiffi
YD

p
. The resultant

shapes naturally include an outward flare, but oscillate into
the cone, creating a band of inward displacement and large
compressive hoop stress Nϕϕ ¼ YΔr=r, which ultimately
precipitates buckling. The smaller Nss follows from vertical
force balance, and both shape and stresses agree well with
full MORPHOSHELL simulations at realistic LCE thicknesses
[Fig. 2(a)].
Equation (8) clarifies that geometrically large rotations in

the boundary layer require f ∼
ffiffiffiffiffiffiffi
YD

p
∝ t2, the Seide

buckling scale. In sufficiently thick simulated cones
(R ∼ 10 t), a pronounced flared shape indeed forms under
such loads before violent buckling eventually occurs via tip
inversion (though accurate tip mechanics are beyond shell
theory, so in practice other f ∼

ffiffiffiffiffiffiffi
YD

p
instabilities might

occur instead, e.g., Seide buckling or “sleeve-rolling”
boundary inversion).
However, instability in thinner cones (Fig. 1) is different,

occurring at much smaller loads, and breaking azimuthal
symmetry with a mode number m that increases with R=t
[Fig. 2(b)], suggesting a competing instability with a
higher thickness scaling. We thus use the incremental
energy (3) to investigate the linear stability of the

boundary-layer base state to azimuthally varying perturba-
tions w ¼ lwðsÞ cos ðmϕÞ, and similarly for u. Initially, we
retain the full geometric nonlinearity of the boundary layer,
requiring (3) to be understood covariantly on the base-state
surface. Variational minimization then yields straightfor-
ward but cumbersome analogs of (4) and (5), and associated
boundary conditions at the rim (Supplemental Material [14],
Sec. S2), which we again solve using solve_bvp. We indeed
uncover an instability with wðsÞ localized to the rim and
maximal in the compressive region, but with a surprisingly
long decay into the cone over ∼100 l [Fig. 2(c)]. The
resulting f" values (minimized over m) agree well with
MORPHOSHELL for realistic thicknesses, and present a clear
thin asymptote to f" ∝ t2

ffiffiffiffiffiffiffiffi
t=R

p
[Fig. 2(d)] with a corre-

spondingly increasing azimuthal mode number and con-
vergent (scaled) mode shape.
These numerical investigations clarify that, in the thin

limit, Δr , Δz, and Δθ≡ θ − α are all asymptotically small
at buckling, suggesting a much simpler geometrically
linear treatment of the base state will suffice. Linearizing
the small-strain relations and substituting Δr for θ
in (7), we see that the small-amplitude boundary layer is
better characterized by an α-dependent length scale
l≡ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sec α

p
. Using this modified length for non-

dimensionalization gives W ∝ 4Δr 2 þ Δr 002, and hence,
minimizing, the linear Euler-Lagrange equation
Δr 0000 þ 4Δr ¼ 0, as for a plate on a foundation. The
solutions are Δr ∝ eηs for η4 ¼ −4, whose oscillations
produce the regions of hoop compression. Imposing the
natural boundary conditions Δr 00 ¼ 0, π

ffiffiffiffiffiffiffi
YD

p
Δr 000 ¼

−f sin α and discarding the growing solutions gives the
thin-limit base state

FIG. 2. (a) Stress profiles shortly before buckling for the cone in Fig. 1, with (beige) MORPHOSHELL and (dashed) boundary-layer (8)
results agreeing well. The region of large compressive azimuthal stress near the boundary drives boundary-layer buckling at
f" ∝ t2

ffiffiffiffiffiffiffiffi
t=R

p
, but is absent from the membrane base state (dotted). (b) Transitory MORPHOSHELL topographies just after boundary

buckling, labelled by t=R, colored by elevation, with smaller thicknesses yielding larger azimuthal mode numbers. (c) Buckling mode
shapeswðsÞ from numerical linear stability analyses (dashed, α ¼ 60°) using our boundary-layer base state, converging to our thin-limit
theory (solid) as t=R decreases by factors of 10. (d) Buckling force against t=R for ν ¼ 1=2 and various α, with numerics converging to
our thin-limit result (12).
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Δr ¼ fes cosðsÞ sinðαÞ=ð2π
ffiffiffiffiffiffiffi
YD

p
Þ: ð9Þ

Reassuringly, this base state can be verified as the thin
limit of a lengthy but routine linear elastic treatment
(Supplemental Material [14], Sec. S3).
A further simplification arises because the base-state

displacements are small, and localized within ∼l of the
rim. We may thus consider a patch at the rim, small
compared to r but large compared to l, and address
stability with an Airy stress and the Cartesian equations (5)
and (6). In the ðx; yÞ basis, the base state has κ0 ¼
diagð−Δθ0=l; cos α=RÞ and Nðε0Þ ¼ diagð0; YlΔr=RÞ to
leading order which, unlike the classical case, vary over a
scale l and hence are inhomogeneous even within the
patch. We find the equations take their simplest dimension-
less form if we scale the force as f ≡ 2πDf=ðl tan αÞ, and
the fields as

ðw;ψÞ ¼ ðlwðsÞ; Yl3=R cosðαÞψðsÞÞ cosðky=lÞ; ð10Þ

with s ¼ x=l. This scaling retains many features of Seide
buckling, including the scale of the wave vector, the natural
stress scale, the relative sizes of w and ψ , and the
correspondingly small in-plane displacement u∼ ðl=RÞw.
Remarkably, substituting into (5) and (6) gives equations
that are not only dimensionless, but lack explicit depend-
ence on α and ν:

w 0000−2k2w 00þk4w þ4ψ00 ¼ 2f k2esð2ψ sin s−w cos sÞ;
ψ0000−2k2ψ00þk4ψ−w 00 ¼−f k2wes sin s: ð11Þ

Since the patch extends to the rim, we also require
boundary conditions: To leading order, given the antici-
pated scalings, w ¼ 0 (zero vertical displacement) and
w 00 ¼ ψ ¼ ψ0 ¼ 0 [natural conditions from varying (3)].
We again solve (11) with solve_bvp, sweeping through k to
find the mode that becomes unstable at the smallest f . The
resultant mode shapes reproduce the thin limit of our
previous approach [Fig. 2(c)], with first instability at
f " ¼ 62.7…, k" ¼ 0.252… (Supplemental Material [14],
Fig. S4). Restoring dimensions yields the thin-limit buck-
ling threshold

f" ¼ ð278.4…ÞðYD3=R2Þ1=4
ffiffiffiffiffiffiffiffiffiffi
cos α

p
cot α ∝ t5=2; ð12Þ

agreeing with Fig. 2(d), with azimuthal mode number
m" ¼ ð0.178…ÞðR2Y=DÞ1=4

ffiffiffiffiffiffiffiffiffiffi
cos α

p
∝

ffiffiffiffiffiffiffiffi
R=t

p
. Thus, larger

cones are in fact weaker for a given t; conversely, smaller
cones are stronger, though this is ultimately limited by the
alternative f" ∝ t2 modes noted earlier.
Figure 2(d) reveals that f" asymptotes remarkably

slowly, perhaps due to the surprisingly long-ranged
mode shape: a reminder to be cautious when exploiting
“thinness” in shells. Although our experiments and

MORPHOSHELL simulations (R ≈ 100t) are preasymptotic,
they nevertheless exhibit the same mechanical character: a
region of compressive azimuthal boundary-layer stress
initiates azimuthal buckling long before bulk instability.
The cone’s load-bearing capacity then drops drastically,
and large postbuckling deformations immediately propa-
gate deep into the bulk. The near collapse of curves for
different α in Fig. 2(d) furthermore shows that, surprisingly,
the α dependence of our asymptotic result pertains even far
from the asymptote.
A compelling feature of soft solids is that buckling need

not precipitate failure, allowing creative use of the resultant
morphing [44–51]. In this spirit, we now squash cones far
beyond their initial instability, using displacement control
to explore full hysteretic cycles (Fig. 3). We consider cones
formed by concentric-circle directors on both disks and
squares, since both are used as LCE actuators [5,52].
Numerically, MORPHOSHELL finds multiple successive
instabilities, producing striking shapes: disk-type cones
yield increasing numbers of concentric circular ridges
[Figs. 3(a) and 3(b)], evoking the exact isometries of a
cone, with multiple sharp inversions, although blunted in
the spirit of Pogorelov [53–55]. In squashing, subsequent
ridges form via violent rim inversions, while in unsquash-
ing they are annihilated centrally by tip inversion
(Supplemental Material [14], Movies M1–3). Simulated
square-type cones tend to instead exhibit spiral ridges, which
(un)wind continuously in (un)squashing (Supplemental
Material [14], Fig. S5, Movies M4–6). Experimentally,
square-type samples were fabricated with a slightly different

FIG. 3. (a) Vertical force against height ratio (initial/squashed)
for an LCE cone compressed quasistatically in MORPHOSHELL

(α ¼ 60°, R¼ 100 t), with (un)squashing in (teal) purple. (b) En-
larged view of the small-compression region, where the unsquash-
ing single-ridge force agrees well with our theory (dotted).
(c) Height-colored experimental topographies of a square-type
LCE cone, with two successive compressions of the same sample
(left, middle) exhibiting both concentric-circle and spiral ridges,
and (right) a spiral ridge in a similar simulated cone.
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chemistry [16,23,24], and displacement control was imple-
mented by using a digital caliper to control and measure the
height of a slide (Supplemental Material [14], Sec. S8C and
9B). These cones switched between concentric-circle and
spiral forms across successive load cycles [Fig. 3(c)],
suggesting a delicate balance: a topic for future work.
Unsquashing concentric ridges culminates in a single

circular ridge moving toward the tip [Fig. 3(b)], yielding
the cone’s weakest states. The form and strength of such a
low-force ridge can be understood by formulating an
axisymmetric shape equation, as used to describe the
boundary layer. Indeed, a sharp circular ridge would be
an isometry, with zero stretch but divergent bend, leading
instead to transversely blunted ridges, where stretch and
bend compete [55]. The dominant energies are exactly
those in (8), with blunting over the same scale l, except
with ridge radius ρ replacingR. The right-hand side of (8) is
dimensionless so, substituting l, the energy of a ridge must
be E ¼ 2gðαÞðYD3ρ2Þ1=4, where gðαÞ is a dimensionless
geometric factor. Recognizing that the height of a ridge is
h ¼ ðR − ρÞ cot α, virtual work shows that the ridge exerts
a force f ¼ −∂E=∂h ¼ gðαÞ tanðαÞðYD3=ρ2Þ1=4 ∼ t2

ffiffiffiffiffiffiffi
t=ρ

p
.

Interestingly, this force decreases with ρ, opposite to the
spherical case [53].
We calculate gðαÞ for a ridge held between two distant

circular clamps by again minimizing (8) numerically,
confirming that ridges in steeper cones cost more energy
(Supplemental Material [14], Fig. S6). The resultant force
agrees well with MORPHOSHELL [Fig. 3(b)]. Interestingly
this thickness scaling matches our asymptotic f", sug-
gesting that, in scaling terms, boundary-layer buckling
weakens the cone to the greatest possible extent. At
sufficiently large radius a Pogorelov ridge in a sphere
buckles into a polygon, under compressive azimuthal stress
generated by the blunting deformations [7,54,56,57]: a
cousin of boundary buckling. Cone ridges can also exhibit
polygonality [Fig. 1(c)], but the presence of multiple ridges
appears stabilizing, hence the circular ridges we observe at
the deepest compressions.
A motivating question for LCE cones is what load they

can lift, rather than merely support. Actuation starts with
mild, weak cones, which will buckle into concentrically
ridged states, and must unbuckle to lift. We therefore
simulate a cone that activates from flat under a slide of fixed
weight (initially supported by a small spacer so actuation
commences), and explore how far it lifts. During unsquash-
ing, ridges remain in contact with the slides, so the shell’s
cross section is zigzaglike [Fig. 4(a)]. Concentric ridges are
thus equispaced, and spirals approximately Archimedean
[Figs. 4(b) and 4(c)]. Since each ridge’s force decreases
with radius, the lowest-force state with N ridges has all
ridges at their largest possible radii. If the load exceeds this
state’s lifting force, the cone is stuck; otherwise it can lift all
the way to the next such state. We thus predict a staircase
of lifting heights as a function of weight. Assigning the

single-ridge energy to each concentric ridge, a second
virtual work argument (Supplemental Material [14],
Sec. S7) yields a prediction for this staircase, in good
agreement with MORPHOSHELL for small N [Fig. 4(d)].
We conclude that only loads ∝ t5=2 can be lifted by LCE

cones to large heights. This force is frustratingly close in
scaling to the weak∝ t3 forces offered by pure benders, and
matches the scaling of boundary buckling. However, the
unusual quantized height-load relationship allows for
realization of discrete actuation strokes, which may be
highly desirable in robust soft mechanisms or soft compu-
tation. At larger weights we observe increasing deviations
from our staircase, with each ridge bearing load ∼

ffiffiffiffiffiffiffi
YD

p
.

This is unsurprising given the zigzag model must fail
when ridge spacing and blunting become commensurate,
but is good news for lifters: deeply ridged states can exert
large forces, with potential for powerful small-stroke soft
actuators.
Overall, our study reveals that, for frictionless boundary

conditions, boundary-layer buckling limits the strength of
cones, leading to a load-bearing capacity ∝ t5=2. This
represents a significant knockdown from the classical
result, without imperfections, and may contribute broadly
to the practical weakness of shells. Active lifting to large
heights via ridged states exhibits the same scaling. Future
investigations will focus on using boundary conditions,
geometry, and material parameters to optimize lifting
performance and extract something closer to the full ∝ t
energy budget of an actuating sheet.

FIG. 4. (a) Profile sketch of a concentric-ridged lifter. (b) MOR-

PHOSHELL confirms that concentric ridges are roughly equispaced
while (c) spiral ridges are Archimedean. (d) Final height of a
concentric-ridged lifter (α ≈ 60°, R≈ 100 t) against weight lifted
from a many-ridged state. Our simple theory (line) agrees well
with MORPHOSHELL (markers) for small weights, but significantly
underestimates lifting performance at large weights.
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