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Graphical Abstract 

 

 

 

Highlights 

• DLS was used as a novel route to evaluate the solubility parameter of polymers. 

• DLS results exhibit good agreement with viscometry and group contribution methods. 

• Group contribution parameters were updated using accurate polymer van der Waals 

volumes. 

• Experiments provide more accurate estimates of microporous polymers solubility 

parameters than group contribution. 

• Machine learning models suggest no changes to group contribution are needed. 
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Abstract 

Estimation and correlation of the Hildebrand solubility parameter (𝛿) of polymers and 

small molecules is a common practice in membrane material science and is accomplished by 

experimental and numerical routes. In this paper, we revisit, update, and compare both routes to 

enhance the accuracy in the determination of 𝛿. Best practices for the experimental determination 

of polymer solubility parameters are provided, and the viability of Dynamic Light Scattering 

(DLS) was demonstrated as an alternative to conventional time- and material-consuming 

techniques, such as Ubbelohde viscometry and swelling measurements. Glassy and rubbery 

polymers, including high fractional free volume (FFV) microporous polymers such as PIM-1 and 

poly(1-trimethylsilyl-1-propyne) (PTMSP), are among the samples included in this study with 

great relevance to membrane science. In an attempt to enhance the accuracy of numerical estimate 

of polymer solubility parameters via the group contribution method, we provide updated group 

contribution parameters, along with their uncertainty, according to the technique recently reported 

by Smith et al. These updated group contribution parameters result in a mean absolute relative 

error of 9.0% in predicting the solubility parameter on a test set of 40 polymers, which is on par 

with the average 10% error reported previously. We also show, using machine learning techniques, 

that augmenting the group contribution model with extra parameters or non-linear relationships 

does not improve its accuracy. Results of the updated group contribution technique and dynamic 

light scattering measurements were compared to experimental viscometry on four test polymers, 

and the difference between the three techniques is compared. 
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1. Introduction 

The Hildebrand solubility parameter, 𝛿, is used to predict and correlate miscibility among 

substances, including low molecular weight compounds and polymers [1–4], and is used in 

practical applications such as coatings [5,6], drug delivery [7,8], material formulation [9], and 

membrane separations [10–15]. A general rule-of-thumb is that the solubility parameter of a good 

solvent should depart by no more than ± 2 MPa0.5 from that of the polymer [16]. It is well known 

that the sorption of gases and liquids in polymers decreases linearly with the squared difference 

between the penetrant and polymer solubility parameters [12]. Due to this, liquid solvent flux 

through organic solvent nanofiltration (OSN) and organic solvent reverse osmosis (OSRO) 

membranes exhibits systematic correlations with the polymer and penetrant solubility parameters 

[10–13]. Burgal et al. found a strong correlation between the molecular-weight cutoff of 

nanofiltration membranes and the solubility parameter of solvents used in the post-fabrication 

treatment [14]. The solubility parameter was also used to rationalize negative retention behavior 

in OSN experiments [15]. These examples indicate that knowing the solubility parameters with 

sufficient accuracy is essential to develop structure-property correlations in membrane material 

science. 

The solubility parameter of a pure species i is defined as follows: 

𝛿 = √
𝐸𝑐𝑜ℎ

𝑉𝑚
   (Eq. 1) 

where 𝐸𝑐𝑜ℎ and 𝑉𝑚 are the cohesive energy and the molar volume of the pure species i, respectively. 

The 𝛿 values are normally provided at 298.15K. The solubility parameter of small molecules 

correlates directly with their enthalpy of vaporization and molar volume (cf. Eq. 2), both of which 

can be experimentally measured [17]:  

 𝛿 = √
∆𝐻𝑣𝑎𝑝−𝑅𝑇

𝑉𝑚
                                             (Eq. 2) 

where ∆𝐻𝑣𝑎𝑝 is the molar enthalpy of vaporization, 𝑅 is the ideal gas constant, and 𝑇 is the absolute 

temperature at which enthalpy is measured. Polymers, however, do not have a measurable enthalpy 

of vaporization, so indirect methods have been developed to estimate their solubility parameter. 
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The two conventional experimental and modeling approaches used to estimate the 

solubility parameter of polymers are solvent-polymer interaction experiments (e.g., viscometry 

[18], swelling measurements [19,20]) and extrapolation of small molecule data through group 

contribution methods [17], respectively. Experimental methods, while providing a direct measure 

of the solubility parameter, can be time consuming. In contrast, theoretical techniques offer a more 

efficient approach for predicting solubility parameters. In recent years, machine learning (ML) 

techniques have been used to predict material properties, which use large datasets to accurately 

predict glass transition temperature (Tg), solubility parameter, and density, just to mention a few 

[21]. 

In this study, we introduce the use of dynamic light scattering (DLS) as a new, rapid 

experimental route to measure the solubility parameter of polymers. Of equal importance, we 

updated the solubility parameter group contribution values to be consistent with recent 

improvements in van der Waals volume estimates [22] while providing, for the first time, the 

analytical error associated to each contribution. This study seeks to enhance the accuracy of 

solubility parameter measurements, enabling the formulation of more reliable structure-property 

correlations in membrane science. Thus, this paper will i) verify and compare experimental and 

theoretical approaches using both well-studied (polyvinylpyrrolidone) and newly synthesized 

(OD4K) polymers, and ii) extend the proposed approach to relevant polymers used in membrane 

science, including polymer of intrinsic microporosity (PIM-1) and poly(1-trimethylsilyl-1-

propyne) (PTMSP).  

2. Experimental Methods and Materials    

2.1 Intrinsic Viscosity and Dynamic Light Scattering Measurements 

Details about chemicals and polymers used in this study are provided in the Supporting 

Information (SI), Section 1-3. Intrinsic viscosity of four polymers, polyvinylpyrrolidone (PVP), 

OD4K, PTMSP, and PIM-1 (cf. SI, Section 3), was measured in a variety of solvents using 

Ubbelohde viscometers. Additionally, the hydrodynamic diameter (Dh) of PVP, OD4K, PTMSP, 

and PIM-1 in a variety of solvents was measured using dynamic light scattering. Both the intrinsic 

viscosity and hydrodynamic diameter for each polymer was plotted against the solvent solubility 

parameter, to elucidate any correlation. Experimental data was elaborated using the method 

outlined by Mangaraj [24] (cf. SI, Sections 4-5), to accurately determine the solubility parameter 
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value of each polymer. Details about intrinsic viscosity and hydrodynamic diameter measurements 

are provided in the SI, Sections 6 and 7, respectively. For the sake of brevity, PTMSP data are 

shown in the Supporting Information (cf. SI, Section 8) 

2.2 Group Contribution Method and Machine Learning 

 The group contribution technique defines the solubility parameter, 𝛿, as follows: 

𝛿 =
∑ 𝐹𝑖

𝑛
𝑖=1

𝑉𝑊
 (Eq. 3) 

where 𝐹𝑖 is the contribution of each functional group in the molecule to the total molar attractive 

force, the sum of which is normalized by the molecule’s van der Waals volume (𝑉𝑊). In this work, 

𝑉𝑊 is calculated using contributions from each functional group (𝑉𝑊,𝑖), along with the overlap 

volume (𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝑗) between neighboring functional groups, as described by Wu et al. (cf.  Eq. 4), 

to increase the accuracy of the volume predictions and, by extension, the group contribution values 

[22]. 

𝑉𝑊 = ∑ 𝑉𝑊,𝑖
𝑛
𝑖=1 − ∑ 𝑉𝑜𝑣𝑒𝑟𝑙𝑎𝑝,𝑗

𝑚
𝑗=1   (Eq. 4) 

This specific method is then used to compare viscometry and DLS techniques, while 

simultaneously providing updated molar attractive force contribution fittings. The updated group 

contribution fittings can be found in SI, Section 9, along with example calculations (cf. SI, Section 

10), as well as the optimization strategy and error estimation (cf. SI, Section 11). Details about the 

machine learning model are provided in the SI, Section 12. 

3. Results and Discussion 

3.1 DLS and Viscometry Comparisons 

Intrinsic viscosity, as well as swelling measurements, are commonly used to study polymer 

interactions with solvents and determine their molecular weight [17]. The solvent in which a 

polymer attains the largest intrinsic viscosity normally exhibits a solubility parameter closest to 

that of the polymer. As the solubility parameter of the solvent deviates from that of the polymer, 

interactions between the polymer and solvent become unfavorable, causing polymer chains to 

become more coiled and compact. This well-documented technique [18,20,25] was used to 

estimate the solubility parameter of our baseline polymer, PVP, whose properties have been 

reported previously [26]. PVP exhibited the highest intrinsic viscosity (i.e., 0.433 dL/g) in 
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acetonitrile (24.4 MPa0.5) (cf. Figure 1A). Fitting the information from Figure 1A to equation S3 

and constructing the corresponding Mangaraj plot (cf. Figure 1B), results in the fitted theoretical 

maximum intrinsic viscosity (𝜂𝑖𝑛𝑡,𝑚𝑎𝑥) value of 0.435 dL/g, which provides, for PVP, a solubility 

parameter of 24.1 ± 0.39 MPa0.5. Since a limited number of solvents was used for the experimental 

campaign, locating the position of the true maximum for the intrinsic viscosity as a function of the 

solvent solubility parameter may be somehow arbitrary and lead to significant errors. In contrast 

to just using the maximum from Figure 1A, the Mangaraj method (cf. SI sections 4 and 5) can 

suggest polymer solubility parameters intermediate to those of the solvents used, serving as a 

recommended method for a reliable data elaboration. 
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Figure 1: A) Intrinsic viscosity of PVP as a function of the solvent solubility parameter at 25°C 

(lines serve to guide the eye). B) Intrinsic viscosities are used to generate the Mangaraj plot, where 

𝜙 is plotted as a function of solvent solubility parameter for PVP. C) Intensity average diameter 

of PVP, obtained from DLS measurements, as a function of the solvent solubility parameter at 25 

°C (lines serve to guide the eye). D) Intensity average diameters are used to generate the Mangaraj 

plot, where 𝜙′ is plotted as a function of solvent solubility parameter for PVP. The linear best fit 

line for both plots in B {2.6x – 63.5, R2 = 0.97} and D {y = 7.6x – 183.9, R2 = 0.92} are shown. 

Uncertainty values were calculated through repeated measurements (A and C) and linear error 

propagation (B and D). 

 

The experimental route mentioned above, however, requires viscosity data in numerous 

solvents at various concentrations, and therefore it is time and material consuming, which may be 

problematic when working with non-commercial, expensive polymers. Dynamic light scattering 

may offer a quicker route while consuming less material. DLS can indirectly provide information 

about solubility parameters by measuring the size of polymers in different solvents. Analogous to 

viscometry techniques, the solvent in which a polymer attains the maximum hydrodynamic 

diameter (i.e., maximum swelling), has a solubility parameter closest to that of the polymer. To 

test the applicability of DLS in this scenario, the solubility parameter of PVP, as estimated from 

the intrinsic viscosity (~24.1 MPa0.5), was compared to that estimated using DLS (cf. Figure 1C). 

PVP experienced a maximum swelling (i.e., hydrodynamic size ~35.4 nm) in butanol (23.2 

MPa0.5), which aligns well with the values previously reported in the literature (i.e., 22.2 – 26.3 

MPa0.5) [27–29] estimated by various group contribution methods. The Mangaraj analysis (cf. 

Figure 1D) provides, for PVP, a solubility parameter equal to 24.1 ± 0.27 MPa0.5 (𝐷ℎ,max  = 36.9 

nm). The excellent agreement between the two approaches, depicted for the case of PVP, serves to 

validate the use of DLS for this purpose. 

The proposed approach was then used to estimate the intrinsic viscosity and hydrodynamic 

diameter for OD4K, a newly synthesized poly(amic acid) [23], as a test case. According to 

Ubbelohde viscosity measurements, this polymer experiences the greatest intrinsic viscosity 

(0.268 dL/g) in CHCl3 (19 MPa0.5) (cf. Figure 2A). The Mangaraj fitting (cf. Figure 2B) yields an 

𝜂𝑖𝑛𝑡,𝑚𝑎𝑥 value of 0.286 dL/g, with a corresponding solubility parameter of 18.6 ± 0.07 MPa0.5. 

This value was then compared to the DLS approach. OD4K experienced a maximum swelling (i.e., 

hydrodynamic diameter ~2.5 nm) in acetone (19.9 MPa0.5) (cf. Figure 2C). Using the Mangaraj 

fitting (cf. Figure 2D), 𝐷ℎ,𝑚𝑎𝑥 is estimated to be 2.52 nm, with a corresponding solubility 
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parameter of 19.9 ± 0.08 MPa0.5. As in the case of PVP, the solubility parameter of OD4K found 

using DLS and viscometry are in close agreement, specifically, within 8% of one another. 

 

Figure 2: A) Intrinsic viscosity of OD4K as a function of the solvent solubility parameter at 25°C 

(lines serve to guide the eye). B) Intrinsic viscosities are used to generate the Mangaraj plot, where 

𝜙 is plotted as a function of solvent solubility parameter for OD4K. C) Intensity average diameter 

of OD4K, measured via DLS, as a function of the solvent solubility parameter at 25°C (lines serve 

to guide the eye). D) Intensity average diameters are used to generate the Mangaraj plot, where 

𝜙′ is plotted as a function of solvent solubility parameter for OD4K. The linear best fit line for 

both plots B {y = 7.8x -145.2, R2 = 0.98} and plot D {y = 20.2x – 401.7, R2 = 0.94} are shown. 

Uncertainty values were calculated through repeated measurements (A and C) and linear error 

propagation (B and D). 
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PIM-1, a high Tg (> 430 °C [30]), high FFV (28.5 ± 0.5%, calculated using density from 

ref. [31])  microporous polymer, was included in this study (cf. Figure 3) to further assess the 

validity of the newly proposed methodology. Specifically, PIM-1 was selected for being a material 

of great interest in membrane science. PIM-1 exhibits the highest intrinsic viscosity (0.646 dL/g) 

in CHCl3 (19.0 MPa0.5) (cf. Figure 3A). Fitting the viscometry data to the Mangaraj plot (cf. Figure 

3B) provides a solubility parameter of 19.6 ± 0.09 MPa0.5 with a fitted maximum intrinsic viscosity 

of 0.772 dL/g. Likewise, the DLS data for PIM-1 (cf. Figure 3C) exhibits a trend identical to the 

intrinsic viscosity measurements, with the polymer attaining the largest hydrodynamic diameter 

(40.7 nm) in CHCl3. The Mangaraj fitting on the DLS data for PIM-1 (cf. Figure 3D) yields a 

solubility parameter of 19.5 ± 0.19 MPa0.5, with a fitted maximum hydrodynamic diameter of 42.3 

nm. Remarkably, also in the case of PIM-1 the agreement between viscometry and DLS data is 

excellent. 
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Figure 3: A) Intrinsic viscosity of PIM-1 as a function of the solvent solubility parameter at 25°C 

(lines serve to guide the eye). B) Intrinsic viscosities are used to generate the Mangaraj plot, where 

𝜙 is plotted as a function of solvent solubility parameter for PIM-1. C) Intensity average diameter 

of PIM-1, measured via DLS, as a function of the solvent solubility parameter at 25°C (lines serve 

to guide the eye). D) Intensity average diameters are used to generate the Mangaraj plot, where 

𝜙′ is plotted as a function of solvent solubility parameter for PIM-1. The linear best fit line for 

both plots B {y = 11.7x -229.8, R2 = 0.90} and plot D {y = 9.4x – 182.5, R2 = 0.86} are shown. 

Uncertainty values were calculated through repeated measurements (A and C) and linear error 

propagation (B and D). 

Intrinsic viscosities and hydrodynamic diameters for PIM-1 in tetrahydrofuran (THF) (19.4 

MPa0.5) tend to somehow negatively deviate from the generally observed trend (cf. Fig. 3B-D). 

These deviations are ascribed to the presence of trace water in the solvent, as it was observed that 

the measured hydrodynamic diameter for PIM-1 increases in size by 25.7% when using HPLC-

grade THF relative to the hydrodynamic diameter obtained when using non-HPLC grade THF. 

This deviation does not appear to affect the accuracy of the fitting, though. Indeed, the obtained 

solubility parameter value for PIM-1 (19.5 MPa0.5) agrees with previously reported experimental 

values (19.0 MPa0.5 [32], 19.5 MPa0.5 [33]). Also in the case of PTMSP, another high Tg [34], high 

FFV polymer [35] a very good agreement between viscometry and DLS data was observed. For 

the sake of brevity, PTMSP results are shown in the SI, section 8. Thus, the experimental 

techniques presented in this study can be successfully used to determine the solubility parameters 

of modern membrane materials exhibiting rigid, bulky, and contorted monomer structures, other 

than rubbery polymers and low free volume glassy polymers. 
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3.2 Revisiting the Group Contribution Method 

As stated earlier, the overarching goal of this study is to provide methods for fast, accurate, 

and reliable estimates of polymer solubility parameters. In the previous section, we proposed a 

new experimental method to accomplish this goal. Another important question is: can group 

contribution method validate DLS measurements as a technique to estimate the solubility 

parameter? In this section, we answer this question by first updating group contribution 

parameters and then comparing the predictions made by these new parameters to the experimental 

data shown in section 3.1. Finally, a neural network was used to test whether improvements may 

be made to the prediction of solubility parameters when given the same set of data as the group 

contribution model. The aim of implementing the neural network herein is to use it as a tool to 

probe if augmentations to the group contribution techniques could be made. If there is a better way 

to correlate the molar volume and functional group identity than group contribution, the neural 

network should per se have a significantly lower prediction error than the group contribution 

technique. This is due to the neural network containing more adjustable parameters than group 

contribution (which uses one parameter per functional group) and having capability to approximate 

complex non-linear relationships [36]. 

 

Figure 4: Parity plot of predicted vs. measured polymer  in units of MPa0.5. Red symbols are 

group contribution predictions, green symbols are neural network predictions, and yellow symbols 

are predictions from the Polymer Genome Project [21]. Polymer genome is the state-of-the-art 

machine learning tool, therefore it is reported separately. Purple symbols indicate group 

contribution predictions of PVP, OD4K, PTMSP, and PIM-1 versus the solubility parameter 

determined experimentally in this work. 
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Experimentally determined solubility parameters of 40 polymers (cf. SI, Section 13) were 

taken from a variety of literature sources and used to validate the group contribution and neural 

network performance  [17,37].  Using the updated group contribution parameters, a mean absolute 

relative error (MARE) of 9.0% was achieved on the polymer dataset (cf. Figure 4 and Table S4), 

which is in line with the error of previous group contribution estimates [17]. Thus, using the higher 

accuracy molar volume predictions provided by Wu et al. [22] did not result in improved solubility 

parameter predictions.  

Predicted and measured solubility parameter values from both group contribution and the 

neural network are compared in Figure 4. Both techniques gave similar predictions, and the MARE 

of the group contribution (9%) and neural network (10.3%) are nearly identical. Highly polar 

polymers, such as poly(cyanomethyl acrylate), PVA, and Nylon (6,6) tend to deviate from the 

parity line (16-18% error, cf. Figure 4), while predictions for nonpolar polymers, such as 

poly(methyl octyl siloxane), polyisobutylene, and PDMS (1% error), tend to be more accurate. 

This could be interpreted as error increasing with the magnitude of the solubility parameter itself, 

as polar molecules tend to have larger solubility parameters than nonpolar ones. Thus, the 

solubility parameter of polar polymers should possibly be determined experimentally to achieve 

adequate accuracy, for example via viscometry or DLS measurements.  

An important implication of this modeling effort is that the neural network and the group 

contribution solubility parameter predictions do not differ significantly (cf. Figure 4, Table S4). 

This finding suggests that group contribution performs optimally in the case of extrapolating a set 

of small molecule solubility parameters to polymers, and that augmentation to the group 

contribution technique (via new correlations between base functional groups) would not further 

improve its accuracy. Further discussion about the insights gained from the machine learning 

model can be found in SI, Section 14. Also, it should be noted that machine-learning models in 

materials science, such as the Polymer Genome Project [21], use information beyond just 

functional groups, such as topological polar surface area, van der Waals surface area, and other 

quantitative structure-property parameters. Consistently, Polymer Genome outperforms group 

contribution when making polymer solubility parameter predictions (MARE = 5.8%, cf. Figure 4 

and Table S4). Therefore, if future improvements to group contribution models are to come, they 

will likely require additional types of information such as the ones used in Polymer Genome. Thus, 
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it makes sense that the group contribution technique has not seen much improvement since its 

inception. Despite this shortcoming, the group contribution technique has remained a prevalent 

method for estimating polymer solubility parameters due to its acceptable performance and ease-

of-use.  

 3.3 Comparison of Experimental and Numerical Results 

Comparisons of viscometry, DLS, and group contribution in obtaining the solubility 

parameters of PVP, OD4K, PTMSP, and PIM-1 are shown in Table 1. For PVP, estimates from the 

three techniques are within error of each other. Of note, DLS and viscometry gave exactly equal 

values of PVP’s solubility parameter. The solubility parameter of OD4K estimated from all three 

techniques exhibit a larger spread, with a difference among estimates close to 10%. For PIM-1 and 

PTMSP, numerical estimates exhibit larger deviations from the experimentally measured values, 

with group contribution predicting 23.36 ± 0.68 MPa0.5 for PIM-1 (19.2% error) and 14.24 ± 0.55 

MPa0.5 for PTMSP (18.6% error). These deviations underpin the need for more experimentally 

determined solubility parameters of modern microporous membrane materials, such that more 

accurate predictive models can be constructed. A more detailed discussion regarding the origin of 

these deviations and the performance of the group contribution and machine learning models in 

predicting the solubility parameters of polyimides, another class of polymers relevant to membrane 

science, is provided in Section 8, SI.  

Table 1: Summary of PVP, OD4K, PIM-1, and PTMSP solubility parameters in units of MPa0.5. 

The solubility parameter for OD4K, PVP, PIM-1, and PTMSP was estimated using the Mangaraj 

analysis of experimental viscometry and DLS data. Solubility parameters estimated using the 

updated group contribution method (cf. Eq. 3) have also been included. 

polymer  viscometry method DLS method group contribution 

PVP 24.1 ± 0.39 24.1 ± 0.27 23.6 ± 0.29 

OD4K 18.6 ± 0.07 19.9 ± 0.08 19.7 ± 0.27 

PIM-1 19.6 ± 0.09 19.5 ± 0.19 23.36 ± 0.68 

PTMSP 17.8 ± 0.15 17.5 ± 0.14 14.24 ± 0.55 
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Interestingly, the maximum relative error in the solubility parameters determined using 

DLS and viscometry was 8.1%, which is close to the group contribution technique’s MARE of 

9.0%. Since the group contribution technique was trained on experimental data, it is not 

unreasonable to assign an expected error of approximately ± 10% for both experimental 

measurements and group contribution. This magnitude of error may at first appear to disagree with 

the error bars listed in Table 1, which show a relative error below 2%. However, this result no 

longer appears contradictory when considering that the error bars from both experimental 

measurements and group contribution better reflect the solubility parameter’s precision rather than 

its accuracy. That is, the error bars reflect the range of expected solubility parameters that would 

be estimated if viscometry or DLS experiments were to be repeated multiple times, not what the 

estimates are with respect to the true solubility parameter. These error bars do not reflect inherent 

errors such as instrumental bias, human error, and other systematic errors.  

4. Conclusions 

In this study, dynamic light scattering, viscometry experiments, and numerical polymer 

solubility parameter estimation techniques were compared, discussed, and updated. First, we 

presented viscometry measurements to ensure reliable assessment of the polymer solubility 

parameter. Then, DLS was validated as an alternative experimental technique for a rapid estimation 

of polymer solubility parameters relative to Ubbelohde viscometry and swelling measurements, 

while still maintaining adequate accuracy. Also, a data elaboration procedure, based on the 

Mangaraj’s method, was validated to achieve the best estimates from experimental measurements. 

For numerical estimates of the polymer solubility parameter, updated group contribution 

parameters featuring parameter uncertainties were provided, and group contribution was compared 

to machine learning techniques. Both approaches performed similarly when fit to the same data, 

suggesting that group contribution does not have room for augmentation unless additional 

molecular-level data are incorporated. DLS and the updated group contribution technique provided 

solubility parameter estimates of the test polymers (PVP, OD4K, PIM-1, and PTMSP) and were 

compared with viscometry, an established technique. Additionally, insights are provided 

explaining why some classes of polymers are predicted more readily via group contribution, which 

resides primarily in the presence of adequate training data. From a membrane science perspective, 

having accurate solubility parameter estimates should, in principle, improve the self-consistency 
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of transport and fabrication correlations both within individual studies and in meta-analyses made 

using large bodies of data from various researchers. 
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