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Abstract

The dynamical equation of the boundary vorticity has been obtained, which shows that the
viscosity at a solid wall is doubled as if the fluid became more viscous at the boundary. For
certain viscous flows the boundary vorticity can be determined via the dynamical equation
up to bounded errors for all time, without the need of knowing the details of the main stream
flows. We then validate the dynamical equation by carrying out stochastic direct numerical
simulations (i.e. the random vortex method for wall-bounded incompressible viscous flows)
by two different means of updating the boundary vorticity, one using mollifiers of the Biot—
Savart singular integral kernel, another using the dynamical equations.

Keywords Boundary vorticity - Dynamical equation - Incompressible fluid flow -
Stochastic integral representation - Random vortex method

Mathematics Subject Classification 76M35 - 76M23 - 60H30 - 65C05 - 68Q10

1 Introduction

When a viscous flow moves along a solid wall with large velocity, substantial molecular
force takes effect among fluid particles at the boundary, and therefore vorticity is created
instantly within a thin boundary layer, which in turn leads to substantial stress at the wall.
The stress at the wall is indeed proportional to the vorticity created near the boundary, called
the boundary vorticity for short. The boundary vorticity has been a pivotal topic in fluid
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dynamics, and we refer the interested readers to [4, 15], and [5] for overview. From the point
of view of engineering applications, it is very important to understand the distribution of the
stress over the boundary surface when a viscous fluid flows past a solid fluid boundary. It
is important to obtain quantitative information of the stress distribution across the boundary
at any instance for an unsteady viscous flow. Information about the boundary vorticity may
be gained by performing numerical computations. The finite difference method or other
numerical schemes may be used for solving numerically the fluid dynamics equations or the
boundary layer equations, which however require to calculate the outer layer flows as well.
It is therefore not cheap to carry out numerical experiments to acquire knowledge on the
distribution of the boundary vorticity in general.

In this paper we propose a different approach to the study of the boundary vorticity of
an incompressible viscous fluid flow past a solid wall, motivated by the recent work on the
random vortex method for wall-bounded flows (cf. [13, 14]) via ordinary McKean—Vlasov
type stochastic differential equations. In the random vortex methods for wall-bounded flows,
the boundary stress has to be updated through iterations, and can not be assigned a priori.
We instead in this work shall determine the dynamics of the boundary vorticity directly. The
dynamical evolution equations for boundary vorticity for incompressible viscous fluid flows
are obtained, which we believe is a new discovery.

It turns out that the boundary vorticity evolves according to a heat equation with inho-
mogeneous part being the third normal derivative of the velocity field at the boundary. The
dynamical equation of the boundary vorticity reveals several remarkable properties of incom-
pressible viscous fluid flows at the boundary which we wish to report in this paper. It is
remarkable that the diffusivity constant in this equation equals the viscosity doubled which,
to the best of our knowledge, has not been observed yet. The dynamical equation also demon-
strates that the boundary vorticity evolves mainly linearly, in contrast to the high non-linearity
of the Navier—Stokes equations. For some fluid flows, for which the inhomogeneous part in
the boundary vorticity equation vanishes, the boundary stress can be determined for all time
with a bounded error, a fact which comes up a little bit surprising. We believe the results of
this paper can be useful in applications such as engineering or numerical simulations of fluid
flows as they can provide boundary conditions for the vorticity equations.

The paper is organised as the following. In Sect. 2, we write a formulation of the vorticity
transport equation as a non-homogeneous boundary problem dependent on the boundary
vorticity. The dynamical equation satisfied by the boundary vorticity is derived in Sect. 3. We
write the stochastic representations of the vorticity and the velocity in terms of the Taylor
diffusion in Sect. 4. Using these representations, we derive and implement a numerical scheme
in Sect. 5 where the results of the conducted experiments are reported.

2 The Fluid Dynamics Equations for Flows Past a Wall

For a viscous fluid flow past a solid wall, it is clear that the geometry of the solid wall
which constrains the fluid flow has a significant impact on the dynamics of the boundary
vortices. As a matter of fact, the dynamics of the vortex motion at the solid wall becomes
significantly complicated if the solid wall possesses non-trivial geometry (i.e., with non-
constant curvature), and therefore the study for flows past curved surfaces will be published
in a future work. In this article, we shall deal with viscous fluid flows past a flat plate, i.e. for
the case the fluid boundary has trivial geometry.
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Therefore we shall consider an incompressible fluid flow constrained in the upper half
space D = Ri (where d = 2 or 3 in this work), the solid plate is modelled by the boundary
9D where x; = 0. Letu = (u!, ..., u?) be the velocity and P the pressure of the fluid flow
in question. Then u(x, ¢) is a time dependent vector field in D. The motion of the fluid is
determined by the Navier—Stokes equations

d

a—I;+(u-V)u—vAu+VP—F:0 in D, @.1)

V.-u=0 1inD, (2.2)
together with the non-slip condition that u(x, ) = 0 for x € 3D, where F = (FL, ..., F9

is the external force applied to the fluid. The initial velocity of the flow is denoted by uq(x).
The pressure is a scalar dynamic variable which is however determined by the velocity (up
to a function depending only on ¢). Indeed, by taking the divergence of both sides of the first

Eq. (2.1), i.e. applying 3% to this equation and summing upi = 1, ..., d, one obtains
oul dul
AP =— V-F inD, 23
j12=:l 3)6,' ax./' + ( )

where we have used the divergence-free condition (2.2). The boundary value of P remains
to be determined. Since u obeys the no-slip condition, reading the first Eq. (2.1) along the
boundary d D one obtains

VP|3D:1)AM|3D+F|3D. (24)

Instead of working out the boundary condition for P, we now consider the vorticity

= V A u whose components »/ = ejki%ui whend =3 and w = %zﬂ - %ul when
d = 2, which is in fact (up to a sign) the exterior derivative of u. Hence by applying the

linear differential operator glki % to both sides of (2.1), we shall obtain that

d

5w+(u-V)w—vAw—(w~V)u—G:O inD, 2.5)
where G = V A F with components G/ = s-’kiai)%Fi ifd = 3;ifd = 2, then G =
aaTlF2 — aaTzFl and (o - V)u = 0 identically.

In order to utilise the vorticity transport Eq. (2.5), we need to identify the boundary values
of w, i.e. the boundary vorticity. Since u obeys the non-slip condition, so that the normal part
of w at the boundary @™ = VI A ul = 0, where ul denotes the tangential part of u at the
boundary, and VT is the gradient operator on the boundary. For identifying the tangential
part of w, we notice that — % is the outwards unit normal derivative at d D. Hence

u’ du? u?
1
= — — — =— — =-28 2.6
w oD axz 8X3 . 8)(3 . 23|3D ( )
and
dul u’ du!
2
_ &9 _ =2 Silap, 2.7
o0 = 555 " Imy e 139D 2.7
where

S“_l 8ui+8uj
Yo \ax T dxg
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is the symmetric tensor field of rate-of-strain. Observe that the normal part of the symmetric
tensor field S = (S;;), denoted by S+ is given by

St = (813, $23, S33) s> -

However, V- u = 0, and S;; = S = 0 on 3D, hence S33 = 0 too. Therefore S+ can be
identified with

St = (S13, 523. 0)lap

at the boundary. Therefore the boundary vorticity w|,p, denoted by 6, is identified with twice
the stress at the boundary

0 = 2(—523, 513, 0)yp - (2.8)

Therefore the vorticity w is evolved according to the following non-homogeneous boundary
problem:

%+(M‘V)w—vAw—(w~V)u—G=0 in D,

2.9)
a)laD—QZO onaD.

Note that the boundary vorticity 6 is a tensor field on 9 D.

Remark 2.1 The boundary vorticity 6 can not be determined a priori, which causes a major
problem for numerically computing solutions to the boundary value problem of the Navier—
Stokes equations via the random vortex method (for a sample of works devoted to the problem
of the boundary vorticity values, see [1, 3, 6-8, 10-12, 16]). While some authors supply
instead the vorticity equations (2.5) with the Neumann boundary condition, which is in
general not correct.

3 Dynamics of the Boundary Vorticity

In this section we shall derive the dynamical equation of the boundary vorticity 6 which is the
trace w|,p of the vorticity w at the boundary. To this end we assume that the velocity u(x, t)
is at least C> up to the boundary  D. Since u satisfies the non-slip condition, by reading the
vorticity Eq. (2.5) along d D we therefore obtain

a0 .

E_VAC‘)L’)D_ ©@-Vulgp—¢¥ =0 inaD, 3.1
where ¥ = G|, p, the boundary value of G. Using the non-slip condition again, we deduce
that 63 = 0 and
294

d
© - Vyulyp = 6"

=0. 32
o1 (3.2)

oD

aD 0x7

We therefore have a very important consequence.

Theorem 3.1 Ar the boundary, two non-linear terms appearing in the vorticity transport
equation, the non-linear convection and the non-linear vorticity stretching, both vanish, so
neither of them participates directly in the generation of the vorticity at the wall.
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We are now in a position to state our main result of the paper.

Theorem 3.2 Let D = ]Ri_. Then 63 = 0, and 0" and 62 evolve according to the following
dynamics:

apl 3

0391 2vAro! va?q (VE-0)—v 88713 u2‘3D vi=0 (3.3)
802 2 3 r @ 1 2 _ '
W—zUAFQ +U37x2(v 9)+VWu ‘BD_W =0

in D = R2. That is

3

aﬁ—szreJrqu(vF-e)er A ] R——" (3.4)
ot an? ' '

oD

Here y is the normal to 0 D pointing outward and 3% is the corresponding normal derivative,

Ar and V' denote the Laplacian and gradient operator on R? respectively. Here * is the
Hodge star operator of 0D, and ull is the tangential extension, in this case, ul = (ul, uz).

Before we give the derivation of the boundary vorticity dynamics, we would like to make
several comments.

Remark 3.3 The dynamical equations (3.3) imply that the kinematic viscosity constant at the
boundary is exactly doubled, as if the fluid became more ‘viscous’ than the fluid in the main
stream. This phenomenon is actually true for any viscous wall-bounded flow constrained by
a curved solid wall.

Remark 3.4 The motion Eq. (3.4) for the boundary vorticity also indicates clearly how the
external flow (i.e., the flow away from the boundary) participates in the generation of the
vorticity at the boundary. More precisely, the boundary vorticity is generated with the help
of the initial boundary vorticity and the external boundary force v, together with an ‘exter-

3 . ST
nal’ force —v« aa?u” from the main stream flow exerted on the "self-dynamics" of the

boundary vorticity, which is determined by the linear heat operator

% —2vAr0 + vV (VE . 0).

Remark 3.5 For atypical wall-bounded viscous fluid flow, in particular for turbulent boundary
layer flows, the boundary vorticity (01, 62) (which equals the normal stress at the boundary)
is significant in comparison with the typical scale of the flow. While the ‘external’ force
inherited from the outer layer flow, which adjusts the self-dynamics of the boundary vorticity,
is proportional to the kinematic viscosity v. Since the dynamical equation

a0 - Flor =
o —2Ard + vV (V -9>—¢:o

. L Lo - PR .
subject to the same initial boundary vorticity € = 6 at t = 0, is linear, hence if ;—)7314” . is
bounded and the kinematic viscosity v is small, then the boundary vorticity 6 (x, ¢) is more
or less self-organised, and the outer layer flow inserts insignificant impact on the generation

of the boundary vorticity.

@ Springer



42 Page60f18 Journal of Scientific Computing (2024) 99:42

Proof of Theorem 3.2 The proof is completely elementary. We begin with Eq. (3.1) and we
need to compute the trace of Aw at the boundary. While it is clear that

, 92 92 S92
Aa)” = ) + ) o' + 72C()l
aD oxy  0x; 0x3
where the last term has to be computed. While

d 4 3 [oud du? d P 3 9 ,
RPN R s 99
0x3 0x3

d (ou'  du? 3 5
= —— —_— + —_— —_ — U
dxy \ 0x dxo dx3 0x3
and therefore

92 92 /9 9
—Zw1 =5 <—u3 - —u2>
x3 dx3 \0x2 0x3

¥ a8 5 ¥ a ,
— U — ——1u
0x20x3 0X3 8x32 0x3
R ? a , a3 ,
- ——Uu
8x32 0x3

R R 32, 9 a .,

. 9% .
= A[‘@l + 720)l
0x3

aD aD

dx2 0x3 - 0x3 0Xx) 0x3 3x3u

—u ——u
dx20x3 0X] 0x20x3 0X)

=—0w +—0 — —w — 0w — —=—u
8x§ 8x12 8x12 0x20x1 axg 0x3
9 32 9
=Ar0' — — (Vr - 0) — — —u?
r x| Vr-6) 8x§ 8x3u
It follows that

3?2 3, .0

——Sw =——5u"+Arf — —(Vr-0).

0x3 oD 0x3 dx1

Similarly

3, P [Ld , B 4
8x2w - ax? 37)631/[ - 3TC1M
3 3
? 9 45 7
—Uu u
0x10x3 0x3 8x§ 0x3
? 8 ? 8, 9?3

u —Uu — U
0x10x3 09X 0x10x3 0x2 3x32 0x3
a2 o, o, ¥, N

=0+ S0 - —w — 0+ ——u
8x12 axg 8x§ 0x20x1 Bxg 0x3
2 32 1
= Arf* — — (V +
r ; (Vr -0) 9x2 93

where the second equality follows from the divergence-free condition: V - u = 0. Hence
0 A

—w =— ——1u 3.5)
0x3 aD 0x3 0x3  |3p
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and
ad a 0
— o = ——ul . (3.6)
0x3 aD 0x3 0x3  |3p
so that
7, R .0
— =_—u +Arf — —(Vr-0).
axy |, x3 0x2
Similarly
d 5 9 (o du d w9 3
—_—n = — —_—— — = - — U
0x3 dx3 \ 0xq 0x2 0x3 dxq 0x3 0x2
0 ot 9 ou!
T 9x1 9x3 Oxp Ox3
0 0 0 88u3+88u3
=—|l—0v+—o)-———+ ——
0x1 0x7 0xp dx1 0x1 0x3
and
32 d (9 d
—2(03 =—— (—w1 + —w2>
0x3 dx3 \ 0xq 0x2
so that
d 30l 362
— o} =Vl =—" - (3.7
0x3 aD dx1 dxo
Putting these equations together we obtain (3.3). O

For convenience let us write down the evolution for two dimensional flows for reference
below.

Theorem 3.6 Ifd = 2 (so that both w = %uz — %ul and its trace 0 at the boundary are
scalar functions), then the boundary vorticity 0 evolves according to the following dynamical

equation

36 3\’
— —wArf—v|—) ul -y =0 3.8
oy ZVAr V<8ﬂ> u' =y (3.3)

where ul = ul is the tangent component of the velocity field u.

Proof In this case we prefer to use coordinates x = (xj, x2). For 2D flow, the vorticity
transport equation becomes

9
B—C:—i—(u-V)w—vAa)=G in D (3.9)
where w = % — %, so that

A 92 N 92 <au2 8u1)
w=—0+—F\|\———
Bxlz Bx% 0x] 0x2

02 8 . ¥
8x3u 3x3u
1 2
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so that
5\3
1
Aa)|3D = 2A]"9 + <7> u
an

and the conclusion follows immediately. O

4 Functional Integral Representations

In the next two sections we demonstrate the use of the dynamical equations in the stochastic
direct numerical simulations of the viscous flows within thin layers next to the fluid boundary.

We shall develop random vortex schemes for calculating numerically solutions to the
boundary problem (2.1, 2.2) by using the dynamical equations of the boundary vorticity for
updating the boundary values of the vorticity in numerical schemes.

To exhibit our ideas clearly we deal with 2D flows only,i.e.d =2 and D = {x : xp > 0}.
Since the boundary vorticity 6 is in general non-trivial, we introduce a family of perturbations
of w defined by W¢ = w — o, for every ¢ > 0, given by

o (x1, x2,1) = 0(x1, 1)@ (x2/¢), 4.1

where ¢ : [0, 00) — [0, 1] is a proper cut-off function such that ¢ (r) = 1 for r € [0, 1/3)
and ¢ (r) = 0 for r > 2/3. Indeed we will use the following cut-off function:

1 for r € [0, 1/3),
p) =11 454 =1 = 2(r =1y forref1/3,2/3], 4.2)
0 forr > 2/3.
Hence —54 < ¢ < 54, —% <¢' <0on([l1/3,2/3]land ¢’ =O0forr < 1/30rr >2/3.In
fact
BN AC )
80) = 162(r —3)" — 5 ﬁnr~eI1/3,2/3L 43)
0 otherwise
and
24(r— 1) f 1/3,2
8 (r) = 324 (r 2) orr e.[ /3.2/3], @.4)
0 otherwise.

Then W, is the solution to the following Dirichlet boundary problem of the parabolic
equation:

Bl
(5+u-V—uA>W£—g5:0 inD, and Wg|yp =0, 4.5)

where

1
ge(x, 1) =G(x,1) + 81245”()62/8)9()61,0 - g¢’(X2/8)u2(x, N0(x1, 1)

2

820 20 L 00
+o(/e) (v (1, 0) — — (1, 0) | —d(a/e)u (x, 1) —((x1,1)  (4.6)
dxy ot 0x1
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for any x = (x1, x2), xo > 0. The initial data for W¥¢ is given by
W(‘f(x) = wo(x1, x2) — wo(x1,0)p(x2/e) forx € D. 4.7

We shall need the stochastic integral representation in terms of the Taylor diffusion with
velocity u(x, t). To this end, the vector field u(x, ) is extended to a vector field on R2 by
reflection about the line x, = 0 so that

W, ) =u'@@, ), ux,t)=—u’®, 1)

for x = (x1, x2) with xo > 0, here x +> X is the reflection about the line that x, = 0, that is,
X = (x1, —x) for x = (x1, x2) € RZ2. This extension retains the divergence-free property,
though, in distribution. Thatis, V - u(-, ) = 0 on R2 in the sense of distribution.

For each & € R2, define (X,g),zo as the unique (weak) solution of the following Itd’s
stochastic differential equation

dXF = w(X:, 0dt +v2vdB;, X§ =&, 4.8)

where B = (B;) is a two dimensional Brownian motion on some probability space. Let
p(s, &;t, y) be the transition probability density function of the diffusion (X f)tz(), i.e.

p(s,x;t,y)dy = IP’[X? € dy‘ Xf. = x]

forr > s > 0andx, y € R (which s independent of £). Let p” (s, x; 1, y) be the transition
(sub-)probability density function of the diffusion X¢ killed on leaving the region D, where
t>s>0,x,y € D.Then

PP, 1)y =P e xeyey, Xi € dy| X5 =]
forany r > s > 0, and

pP(s,x;t,y) = p(s,x:1,y) — p(s, x; 1, 5) 4.9)

fort > s > 0and x,y € D, where ¢(¥) = inf {r : ¥ (¢t) ¢ D}. Note that, since u(x, t) =
u(x, 1) forx e R2andr > 0, p(s, x; 1, y) = p(s, X: ¢, ¥).

Theorem 4.1 For every ¢ > 0, it holds that

Wetrt) = [ Pext®) = o xF = 5] W6, 090,51 e

t
+/0 /DIE[I{D%(Xg)}gg(Xf,s)‘X,g :y]p(o,g;t,y)dsds (4.10)

foreveryt > 0andy € D, where y; () = sup {s € (0,7) : ¥(s) ¢ D} for every continuous
path .

For a proof of this representation, we refer to [9, 13]. We emphasise that the previous
representation (4.10) is different from the solution representation in terms of the fundamental
solution in that only the Taylor diffusion starting at a fixed time O is required, which therefore
reduces the computational cost substantially when numerical schemes are implemented based
on such integral representations.

We next establish a representation for u (x, ¢) by applying the Biot—Savart law. To this end,
we apply the following convention. For 2D vectors, the following notation, which is consistent
with the canonical identifications with 3D vectors, will be adopted. If a = (ay, az) and
b = (b1, by),thenaAb = a1br —ayb (ascalar), and if c is a scalar, thena Ac = (azc, —ajc).
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Theorem 4.2 The following stochastic integral representation for the velocity holds:
u(x,t) = / K(y,x) Aoe(y, t)dy
D
+ [ B[1oGHK 0~ 1K 0] 4 Wt 0

/ / ooy} K (X7 ) A ge(XE s)‘]dsds (4.11)
foreveryx € D, andu(x,t) = u(x, t) for xo < 0, and u(x,t) = 0 if x = 0.

Proof Recall that the Biot—Savart singular integral kernel for D (which is the gradient of the
green function for D) is given by

1 y—x y—Xx
K(y,x)= — - 4.12
=0 (Iy—x|2 |y—f|2) @12

fory # xorx. Since V-u =0,V Au = w and u is subject to the Dirichlet boundary
condition that u(x, r) = 0 for x € 3D, hence, according to Green formula we obtain that

u(x,t) = / K(y,x) Aw(y, t)dy. (4.13)
D

While by definition, for every ¢ > 0, w = o, + W, the representation follows by utilising
the representation (4.10) and the Fubini theorem. O

5 Numerical Experiments

In this section, we provide some numerical simulations for the representations discussed
above, focusing on the two-dimensional case. Recall that in [2] a representation similar to
(4.11) was obtained:

Gty = [ K 06008 + [ B[R XD coqreansy (61
_/DIEI:KL()C,Xf)l{t<{(xgorl)}]Ug(s,t)dé
t
+/0 /DE[1{t,s<g(xgom}1<¢(x,xf)G(Xf.,s)]dsds

t
+ fo / E [1mcextony K0 XDpe O, ) dids, (5.1)
D
where p = g — G and
K+ = (K% -K" (5.2)

in our notation. In the following we ease the notation by omitting the superscript in the
kernel and the wedge product coming from the Biot—Savart law (4.13), which is essentially
equivalent to redefining the kernel as in (5.2).

The only term in the definition of p.(x, t), dependent on ¢, that does not vanish in the
limit is

8%¢”(xz/e)9(xl, ). 5.3)
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Therefore, one can approximate the representation for the velocity u by the following

ui(x,t)%/l)]E[l{,<§(Xgorl)}Ki(x,X,E)] wo(€)dE
t .
+/0 /DE[l{,,KC(XEOw}K’(x,xf)G(Xf,s)]dgds

v ! ; ,
+ /0 fD E [ 1pserixton K XDOXE, )97 (XE/0)] dsds, (5.4)

for some small ¢. That is, we omit the terms that do not contribute to the limit and (5.3) is
approximated by taking sufficiently small . Notice that as the support of ¢” is the interval
[1/3,2/3], the last integration can be taken over a thin layer close to the boundary. Notice
also that in the last integration we used 0 (x, s), ¢ (x/¢) to denote 8 (x1, s), ¢” (x2/¢) slightly
abusing notation.

We use the idea described above to the representation (4.11), i.e. we approximate the
velocity similarly as

u(x, 1) ~ /DE (1o (XK 0) = 1p (XD KX, 0] 0 (©)ds
t
+/0 /D]E[1{S>mxg)}1<(xf,x)G(Xf,s)]dsds

4 ! 4
+8—2/0 /DE[I{D),,(Xs)}K(Xf,x)G(Xf,s)d) (Xf/s)] déds, (5.5)

forevery x € D,and u(x,t) = u(x,t) forxy < 0,and u(x,t) =0if x; = 0.

For the half-plane domain D, we introduce lattice points as follows. Notice that as in (5.5)
the first integral contains processes with reflected initial positions &, we have to add reflected
lattice points for the below discretisation.

1. The thin boundary layer lattice D}, is given by
X' = (ithy, izhy), for — Ny <ij < Nyand — Na < iy < N, (5.6)

where i1, hy are mesh sizes and Ny, N are numbers of points.
2. The outer layer lattice D, is defined as

xi12 = (i1hg, izhg), for — Ny < i1 < Npand — Np < ip < Na, (5.7

where hg is mesh size and Ny is the number of points.

The discretised random vortex system is described as follows. We initialise the processes

XZI.’I? = xli,1 2 and X 2'. ’,:;2 — /"2 and update them for k > 0 according to
Xp2 = Xy hia(X) 2, 1) + V20(By,, — By, (5.8)
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where f; = kh for k > 0 and some fixed time mesh /. To ease the notation, we drop the
subscripts 0 and b. The processes are coupled with the drift & which is given by

A0 i) = ) Ao, [1D(X” DK (X2 x) = (X K (X, )]

(i1,i2)eD
i7>0

+ > ZAi,,ithil,,-z;,lE[1{ll>w iy KO GO t,)]

(i1,in)eD =0
ir>0

k
D Y E |1, ey KGR 002, 08" (X2 /e) ]
(i1,i2)eDp =0
i2>0

(5.9)

forx € D,and ti(x,1) = u(x, t) for xo < 0, and i1(x, t) = 0if x, = 0. In what follows, we
unify summations over (i1, i2) € D, and (i1, i) € D) writing summation over (i1, i2) € D
with
Ail,iz = h1h2 or h(%,
Wi, = 0(x)2,0) or o(x}12, 0),
Gii iy = G(x,’,”2 1) or G(x’”2 1), (5.10)
for boundary and outer layers.
We conduct experiments using the following numerical scheme. To deal with expectations

in the representation (5.9), we drop them and run Brownian motions independent at each site

(i1, i2) in (5.8). Therefore, we update the diffusions X’1 2 starting at x/1"> when k = 0,
according to

Xp = X7+ hi(X]R, ) + V20 (B — B, (5.11)

Tk+1 Tk+1

for k > 0, where B""2 are independent Brownian motions. The drift is given as

i) = Y Ao (KGR, 0 = TG KX, 1))

(i1,in)eD
ir>0
k
+ Z Aj, ,2hK(X” 2 x)Zl{z/>y,k(Xil"'2)}Gi1,i2;ll
(i1,in)eD =0
ir>0
k
S D MK Y s, i) 0K 08" (X e,
(1| ir)eDy =0
i7>0

(5.12)

forx € D and ii(x, 1) = it(x, ) for x, < 0, and ét(x,t) = 0if x, = 0, with A;, j,, w;, iy,
G, .ir:; given in (5.10). Notice that also in practice instead of the kernel K, we compute a
regularised version denoted by K, e.g., Ks(y, x) = K (y,x) (1 —exp (—|y — x[*/9)).
The above representation (5.12) for the velocity depends on the boundary vorticity 6. In
[2], the derivative of (5.12) with respect to x was used to compute 6 which is possible if the
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kernel K is replaced with a mollified version of the kernel denoted K. Here we shall use a
different approach—recall from Theorem 3.6 that the boundary vorticity 6 (x, ) solves the
equation
9 32 33 1
SO—woo=y—v |
t 0x] % {0

3u! .
1S
9,3

0x5

x2=0

where, as above, ¥ = G|,,—¢. Assuming that the third order derivative term v
negligibly small, we have that 6 solves the inhomogeneous heat equation

B 92

—0 —2v—=0 =,

ot v 3x12 4
so that the solution can be written as

t +00

+o00
9(x1,t)=/ 0(y1,0)h(X1,t,y1)dy1+/ Y (y1, $)h(xy, s, y1)dyids,(5.13)
0

—00 —00
with the heat kernel & given as

LR G b} 2
Svrn)12 P Sur

Notice that the integrals in the above formula can be written in terms of the expectations
with respect to the normal random variables. Indeed, one writes

h(xy,t,y1) = ) for x1, y1 € R. (5.14)

+00
/ O(y1, 0)h(x1, £, y1)dy1 = E[0(X,0)],  where X ~ N(x1, 4v1),

—00

and

t “+00 t
/ Y (1, $)h(x1, s, ydyids = / E[y(Y*, s)]ds, where Y* ~ N(xy,4vs).
0 J—oo 0
This representation allows for the Monte—Carlo approximation of the solution (5.13) which
gives

N Nk
1 h .
O(xr, 1) ~ N E 0(Xi,0) + N E E v 1), (5.15)
i=1

i=1 j=0

with X; and Yitj drawn independently from N (x;, 4vt) and N (x1, 4vt;), respectively.

Notice that the expressions for the boundary vorticity (5.15) and the velocity (5.12) contain
time-dependent summations. As in [2], we store the results of these summations for each
index i and (i1, i2) respectively, which allows us to update the sum by computing one term per
index at each time step. However, since we have indicators with the last boundary crossing
times y,, (X'1*2) in (5.12), we also keep track of the crossings for each (i1, i2). We set the
corresponding sum to zero at each step when the crossing happens, and after doing so, we
continue updating the sum as before.

Experiment 1. In this experiment, we assume that the initial velocity is of the form
u(xi, x2,0) = (—=Upl{x,>01, 0), i.e. a constant horizontal field formally satisfying the no-
slip condition. This means that the vorticity is initialised as wo(x1, x2) = Upl{x,=0}, and
the motion is affected by the external force G = Gly,—0}, Which is concentrated at the
boundary as well.
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Fig.1 The outer layer flow at different times ¢
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Fig.2 The boundary layer flow at different times ¢

For this simulation, we consider the half-plane domain within the limits of the box —H <
x1 < H,0 < x» < H with H = 6 for the size of the domain. We also choose Hy = 0.1
for the boundary layer thickness. The lattice points are given by (5.6) and (5.7) with Ny =
30, N1 = 30, N, = 45. Therefore, the mesh sizes are given by hg = Nﬂo =04,h = Nil =
0.2,hy = % ~ 0.0022. The parameter ¢ in (5.12) is taken to be 0.02.

We conduct this experiment with the velocity and force constants Uy = 0.01, Go = —1.0,
and the viscosity v = 0.1. The simulation is conducted with time steps + = 0.01 with the
scheme described above, i.e. with boundary vorticity given by (5.15), the results are presented
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Fig.3 The outer layer flow at different times #
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Fig.4 The boundary layer flow at different times #

in Figs. 1 and 2. In these and below plots, the streamlines are coloured by the magnitude of the
velocity, and the background colour represents the vorticity value. We also use the scheme
from [2], i.e. computing the vorticity as the derivative of (5.12), and provide the results in
. .. . . . 3.1
Figs.3 and 4. The boundary vorticity 6 and the third derivative term v %—;; are plotted
2 lx=0

in 5 as functions of x; and ¢.

Comparing these simulations, we conclude that the scheme with the boundary vorticity 6
approximated from the dynamical equation gives results similar to those when it is computed

explicitly as the derivative of the velocity field. The boundary vorticity seems to affect mostly
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(a) Boundary vorticity 6 (xj,7)
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Fig.5 The boundary vorticity 6 and the v
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Fig.6 The outer layer flow at different times ¢
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(b) Third order derivative term v %‘;— (x1,1)
> 4

as functions of position at boundary x1 and time ¢
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Fig.7 The boundary layer flow at different times ¢

the boundary flow (as it is present in the summation over the boundary lattice), though we
also observe that the produced flows exhibit similar behaviour close to the boundary.
Experiment 2. We initialise the vorticity as wg (x1, x2) = —Up ( — %) (1 —x2) Ljo<xy<1)s
which yields non-trivial boundary vorticity 6 (x1,0) = —Ug (3 — 3 ). The external force G
is taken to be identically zero. We use the same lattice points and parameters as above, but
choose time steps t = 0.03. The simulation is conducted with the vorticity computed as in
(5.15), the results of this simulation are given in Figs.6 and 7.
Acknowledgements The authors would like to thank Oxford Suzhou Centre for Advanced Research for
providing the excellent computing facility. JGL is partially supported by NSF under award DMS-2106988.
VC and ZQ are is supported (fully and partially, respectively) by the EPSRC Centre for Doctoral Training in
Mathematics of Random Systems: Analysis, Modelling and Simulation (EP/S023925/1).

Data Availibility The data that support the findings of this study are available from the corresponding author
upon reasonable request.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References
1. Anderson, C., Greengard, C.: On vortex methods. SIAM J. Numer. Anal. 22(3), 413-440 (1985)
2. Cherepanov, V., Qian, Z.: Monte—Carlo method for incompressible fluid flows past obstacles.

arXiv:2304.09152 (2023)

Chorin, A.J.: Numerical study of slightly viscous flow. J. Fluid Mech. 57, 785-796 (1973)

Chorin, A.J.: Vorticity and Turbulence. Springer, Berlin (1994)

Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, Berlin (1993)

Cottet, G.-H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press,

Cambridge (2000)

7. Goodman, J.: Convergence of the random vortex method. Commun. Pure Appl. Math. 40(2), 189-220
(1987)

8. Leonard, A.: 1980 Vortex methods for flow simulation. J. Comput. Phys. 289-335

9. Li, J., Qian, Z., Xu, M.: Twin Brownian particle method for the study of Oberbeck—Boussinesq fluid
flows. arXiv:2303.17260 (2023)

kW

@ Springer


http://arxiv.org/abs/2304.09152
http://arxiv.org/abs/2303.17260

42

Page 18 of 18 Journal of Scientific Computing (2024) 99:42

15.
16.

Liu, J.-G., Weinan, E.: Simple finite element method in vorticity formulation for incompressible flow.
Math. Comput. 69, 1385-1407 (2001)

. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge

(2002)

Marchioro, C., Pulvirenti, M.: Vortex Methods in Two-dimensional Fluid Dynamics. Springer, Berlin
(1984)

Qian, Z.: Stochastic formulation of incompressible fluid flows in wall-bounded regions. arXiv:2206.05198
(2022)

Qian, Z., Qiu, Y., Zhao, L., Wu, J.: Monte-Carlo simulations for wall-bounded fluid flows via random
vortex method. (2022) arXiv:2208.13233

Schlichting, H., Gersten, K.: Boundary-Layer Theory, 9th edn. Springer, Berlin (2017)

Weinan, E., Liu, J.G.: Vorticity boundary condition and related issues for finite difference schemes. J.
Comput. Phys. 124, 368-382 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable

law.

@ Springer


http://arxiv.org/abs/2206.05198
http://arxiv.org/abs/2208.13233

	On the Dynamics of the Boundary Vorticity for Incompressible Viscous Flows
	Abstract
	1 Introduction
	2 The Fluid Dynamics Equations for Flows Past a Wall
	3 Dynamics of the Boundary Vorticity
	4 Functional Integral Representations
	5 Numerical Experiments
	Acknowledgements
	References


