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Abstract

The dynamical equation of the boundary vorticity has been obtained, which shows that the

viscosity at a solid wall is doubled as if the fluid became more viscous at the boundary. For

certain viscous flows the boundary vorticity can be determined via the dynamical equation

up to bounded errors for all time, without the need of knowing the details of the main stream

flows. We then validate the dynamical equation by carrying out stochastic direct numerical

simulations (i.e. the random vortex method for wall-bounded incompressible viscous flows)

by two different means of updating the boundary vorticity, one using mollifiers of the Biot–

Savart singular integral kernel, another using the dynamical equations.

Keywords Boundary vorticity · Dynamical equation · Incompressible fluid flow ·
Stochastic integral representation · Random vortex method

Mathematics Subject Classification 76M35 · 76M23 · 60H30 · 65C05 · 68Q10

1 Introduction

When a viscous flow moves along a solid wall with large velocity, substantial molecular

force takes effect among fluid particles at the boundary, and therefore vorticity is created

instantly within a thin boundary layer, which in turn leads to substantial stress at the wall.

The stress at the wall is indeed proportional to the vorticity created near the boundary, called

the boundary vorticity for short. The boundary vorticity has been a pivotal topic in fluid
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dynamics, and we refer the interested readers to [4, 15], and [5] for overview. From the point

of view of engineering applications, it is very important to understand the distribution of the

stress over the boundary surface when a viscous fluid flows past a solid fluid boundary. It

is important to obtain quantitative information of the stress distribution across the boundary

at any instance for an unsteady viscous flow. Information about the boundary vorticity may

be gained by performing numerical computations. The finite difference method or other

numerical schemes may be used for solving numerically the fluid dynamics equations or the

boundary layer equations, which however require to calculate the outer layer flows as well.

It is therefore not cheap to carry out numerical experiments to acquire knowledge on the

distribution of the boundary vorticity in general.

In this paper we propose a different approach to the study of the boundary vorticity of

an incompressible viscous fluid flow past a solid wall, motivated by the recent work on the

random vortex method for wall-bounded flows (cf. [13, 14]) via ordinary McKean–Vlasov

type stochastic differential equations. In the random vortex methods for wall-bounded flows,

the boundary stress has to be updated through iterations, and can not be assigned a priori.

We instead in this work shall determine the dynamics of the boundary vorticity directly. The

dynamical evolution equations for boundary vorticity for incompressible viscous fluid flows

are obtained, which we believe is a new discovery.

It turns out that the boundary vorticity evolves according to a heat equation with inho-

mogeneous part being the third normal derivative of the velocity field at the boundary. The

dynamical equation of the boundary vorticity reveals several remarkable properties of incom-

pressible viscous fluid flows at the boundary which we wish to report in this paper. It is

remarkable that the diffusivity constant in this equation equals the viscosity doubled which,

to the best of our knowledge, has not been observed yet. The dynamical equation also demon-

strates that the boundary vorticity evolves mainly linearly, in contrast to the high non-linearity

of the Navier–Stokes equations. For some fluid flows, for which the inhomogeneous part in

the boundary vorticity equation vanishes, the boundary stress can be determined for all time

with a bounded error, a fact which comes up a little bit surprising. We believe the results of

this paper can be useful in applications such as engineering or numerical simulations of fluid

flows as they can provide boundary conditions for the vorticity equations.

The paper is organised as the following. In Sect. 2, we write a formulation of the vorticity

transport equation as a non-homogeneous boundary problem dependent on the boundary

vorticity. The dynamical equation satisfied by the boundary vorticity is derived in Sect. 3. We

write the stochastic representations of the vorticity and the velocity in terms of the Taylor

diffusion in Sect. 4. Using these representations, we derive and implement a numerical scheme

in Sect. 5 where the results of the conducted experiments are reported.

2 The Fluid Dynamics Equations for Flows Past aWall

For a viscous fluid flow past a solid wall, it is clear that the geometry of the solid wall

which constrains the fluid flow has a significant impact on the dynamics of the boundary

vortices. As a matter of fact, the dynamics of the vortex motion at the solid wall becomes

significantly complicated if the solid wall possesses non-trivial geometry (i.e., with non-

constant curvature), and therefore the study for flows past curved surfaces will be published

in a future work. In this article, we shall deal with viscous fluid flows past a flat plate, i.e. for

the case the fluid boundary has trivial geometry.
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Therefore we shall consider an incompressible fluid flow constrained in the upper half

space D = R
d
+ (where d = 2 or 3 in this work), the solid plate is modelled by the boundary

∂ D where xd = 0. Let u = (u1, . . . , ud) be the velocity and P the pressure of the fluid flow

in question. Then u(x, t) is a time dependent vector field in D. The motion of the fluid is

determined by the Navier–Stokes equations

∂u

∂t
+ (u · ')u − ν�u + ' P − F = 0 in D, (2.1)

' · u = 0 in D, (2.2)

together with the non-slip condition that u(x, t) = 0 for x ( ∂ D, where F = (F1, . . . , Fd)

is the external force applied to the fluid. The initial velocity of the flow is denoted by u0(x).

The pressure is a scalar dynamic variable which is however determined by the velocity (up

to a function depending only on t). Indeed, by taking the divergence of both sides of the first

Eq. (2.1), i.e. applying ∂
∂xi

to this equation and summing up i = 1, . . . , d , one obtains

�P = −
d

∑

j,i=1

∂u j

∂xi

∂ui

∂x j

+ ' · F in D, (2.3)

where we have used the divergence-free condition (2.2). The boundary value of P remains

to be determined. Since u obeys the no-slip condition, reading the first Eq. (2.1) along the

boundary ∂ D one obtains

' P|∂ D = ν �u|∂ D + F |∂ D . (2.4)

Instead of working out the boundary condition for P , we now consider the vorticity

ω = ' ∧ u whose components ω j = ε jki ∂
∂xk

ui when d = 3 and ω = ∂
∂x1

u2 − ∂
∂x2

u1 when

d = 2, which is in fact (up to a sign) the exterior derivative of u. Hence by applying the

linear differential operator ε jki ∂
∂xk

to both sides of (2.1), we shall obtain that

∂

∂t
ω + (u · ')ω − ν�ω − (ω · ')u − G = 0 in D, (2.5)

where G = ' ∧ F with components G j = ε jki ∂
∂xk

F i if d = 3; if d = 2, then G =
∂

∂x1
F2 − ∂

∂x2
F1 and (ω · ')u = 0 identically.

In order to utilise the vorticity transport Eq. (2.5), we need to identify the boundary values

of ω, i.e. the boundary vorticity. Since u obeys the non-slip condition, so that the normal part

of ω at the boundary ω⊥ = '� ∧ u‖ = 0, where u‖ denotes the tangential part of u at the

boundary, and '� is the gradient operator on the boundary. For identifying the tangential

part of ω, we notice that − ∂
∂x3

is the outwards unit normal derivative at ∂ D. Hence

ω1
∣

∣

∂ D
= ∂u3

∂x2
− ∂u2

∂x3

∣

∣

∣

∣

∂ D

= − ∂u2

∂x3

∣

∣

∣

∣

∂ D

= −2 S23|∂ D (2.6)

and

ω2
∣

∣

∂ D
= ∂u1

∂x3
− ∂u3

∂x1

∣

∣

∣

∣

∂ D

= ∂u1

∂x3

∣

∣

∣

∣

∂ D

= 2 S13|∂ D , (2.7)

where

Si j = 1

2

(

∂ui

∂x j

+ ∂u j

∂xi

)
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is the symmetric tensor field of rate-of-strain. Observe that the normal part of the symmetric

tensor field S = (Si j ), denoted by S⊥ is given by

S⊥ = (S13, S23, S33)|∂ D .

However, ' · u = 0, and S11 = S22 = 0 on ∂ D, hence S33 = 0 too. Therefore S⊥ can be

identified with

S⊥ = (S13, S23, 0)|∂ D

at the boundary. Therefore the boundary vorticity ω|∂ D , denoted by θ , is identified with twice

the stress at the boundary

θ = 2(−S23, S13, 0)|∂ D . (2.8)

Therefore the vorticity ω is evolved according to the following non-homogeneous boundary

problem:
{

∂ω
∂t

+ (u · ')ω − ν�ω − (ω · ')u − G = 0 in D,

ω|∂ D − θ = 0 on ∂ D.
(2.9)

Note that the boundary vorticity θ is a tensor field on ∂ D.

Remark 2.1 The boundary vorticity θ can not be determined a priori, which causes a major

problem for numerically computing solutions to the boundary value problem of the Navier–

Stokes equations via the random vortex method (for a sample of works devoted to the problem

of the boundary vorticity values, see [1, 3, 6–8, 10–12, 16]). While some authors supply

instead the vorticity equations (2.5) with the Neumann boundary condition, which is in

general not correct.

3 Dynamics of the Boundary Vorticity

In this section we shall derive the dynamical equation of the boundary vorticity θ which is the

trace ω|∂ D of the vorticity ω at the boundary. To this end we assume that the velocity u(x, t)

is at least C3 up to the boundary ∂ D. Since u satisfies the non-slip condition, by reading the

vorticity Eq. (2.5) along ∂ D we therefore obtain

∂θ

∂t
− ν �ω|∂ D − (θ · ')u|∂ D − ψ = 0 in ∂ D, (3.1)

where ψ = G|∂ D , the boundary value of G. Using the non-slip condition again, we deduce

that θ3 = 0 and

(θ · ')u|∂ D = θ1 ∂u

∂x1

∣

∣

∣

∣

∂ D

+ θ2 ∂u

∂x2

∣

∣

∣

∣

∂ D

= 0. (3.2)

We therefore have a very important consequence.

Theorem 3.1 At the boundary, two non-linear terms appearing in the vorticity transport

equation, the non-linear convection and the non-linear vorticity stretching, both vanish, so

neither of them participates directly in the generation of the vorticity at the wall.
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We are now in a position to state our main result of the paper.

Theorem 3.2 Let D = R
3
+. Then θ3 = 0, and θ1 and θ2 evolve according to the following

dynamics:

§

¨

©

∂θ1

∂t
− 2ν��θ1 + ν ∂

∂x1

(

'� · θ
)

− ν ∂3

∂η3 u2
∣

∣

∣

∂ D
− ψ1 = 0

∂θ2

∂t
− 2ν��θ2 + ν ∂

∂x2

(

'� · θ
)

+ ν ∂3

∂η3 u1
∣

∣

∣

∂ D
− ψ2 = 0

(3.3)

in ∂ D = R
2. That is

∂θ

∂t
− 2ν��θ + ν'�

(

'� · θ
)

+ ν

∂3

∂η3
u‖

∣

∣

∣

∣

∂ D

− ψ = 0. (3.4)

Here η is the normal to ∂ D pointing outward and ∂
∂η

is the corresponding normal derivative,

�� and '� denote the Laplacian and gradient operator on R
2 respectively. Here 
 is the

Hodge star operator of ∂ D, and u‖ is the tangential extension, in this case, u‖ = (u1, u2).

Before we give the derivation of the boundary vorticity dynamics, we would like to make

several comments.

Remark 3.3 The dynamical equations (3.3) imply that the kinematic viscosity constant at the

boundary is exactly doubled, as if the fluid became more ‘viscous’ than the fluid in the main

stream. This phenomenon is actually true for any viscous wall-bounded flow constrained by

a curved solid wall.

Remark 3.4 The motion Eq. (3.4) for the boundary vorticity also indicates clearly how the

external flow (i.e., the flow away from the boundary) participates in the generation of the

vorticity at the boundary. More precisely, the boundary vorticity is generated with the help

of the initial boundary vorticity and the external boundary force ψ , together with an ‘exter-

nal’ force −ν
 ∂3

∂η3 u‖
∣

∣

∣

∂ D
from the main stream flow exerted on the "self-dynamics" of the

boundary vorticity, which is determined by the linear heat operator

∂θ

∂t
− 2ν��θ + ν'�

(

'� · θ
)

.

Remark 3.5 For a typical wall-bounded viscous fluid flow, in particular for turbulent boundary

layer flows, the boundary vorticity (θ1, θ2) (which equals the normal stress at the boundary)

is significant in comparison with the typical scale of the flow. While the ‘external’ force

inherited from the outer layer flow, which adjusts the self-dynamics of the boundary vorticity,

is proportional to the kinematic viscosity ν. Since the dynamical equation

∂θ̃

∂t
− 2ν�� θ̃ + ν'�

(

'� · θ̃
)

− ψ = 0

subject to the same initial boundary vorticity θ̃ = θ at t = 0, is linear, hence if ∂3

∂η3 u‖
∣

∣

∣

∂ D
is

bounded and the kinematic viscosity ν is small, then the boundary vorticity θ(x, t) is more

or less self-organised, and the outer layer flow inserts insignificant impact on the generation

of the boundary vorticity.
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Proof of Theorem 3.2 The proof is completely elementary. We begin with Eq. (3.1) and we

need to compute the trace of �ω at the boundary. While it is clear that

�ωi
∣

∣

∣

∂ D
=

(

∂2

∂x2
1

+ ∂2

∂x2
2

)

ωi + ∂2

∂x2
3

ωi

∣

∣

∣

∣

∣

∂ D

= ��θ i + ∂2

∂x2
3

ωi

∣

∣

∣

∣

∣

∂ D

where the last term has to be computed. While

∂

∂x3
ω1 = ∂

∂x3

(

∂u3

∂x2
− ∂u2

∂x3

)

= ∂

∂x3

∂u3

∂x2
− ∂

∂x3

∂

∂x3
u2

= − ∂

∂x2

(

∂u1

∂x1
+ ∂u2

∂x2

)

− ∂

∂x3

∂

∂x3
u2

and therefore

∂2

∂x2
3

ω1 = ∂2

∂x2
3

(

∂

∂x2
u3 − ∂

∂x3
u2

)

= ∂2

∂x2∂x3

∂

∂x3
u3 − ∂2

∂x2
3

∂

∂x3
u2

= − ∂2

∂x2∂x3

∂

∂x1
u1 − ∂2

∂x2∂x3

∂

∂x2
u2 − ∂2

∂x2
3

∂

∂x3
u2

= ∂2

∂x2
2

ω1 + ∂2

∂x2
1

ω1 − ∂2

∂x2
1

ω1 − ∂2

∂x2∂x1
ω2 − ∂2

∂x2
3

∂

∂x3
u2

= ��θ1 − ∂

∂x1
('� · θ) − ∂2

∂x2
3

∂

∂x3
u2

It follows that

∂2

∂x2
3

ω1

∣

∣

∣

∣

∣

∂ D

= − ∂3

∂x3
3

u2 + ��θ1 − ∂

∂x1
('� · θ) .

Similarly

∂2

∂x2
3

ω2 = ∂2

∂x2
3

(

∂

∂x3
u1 − ∂

∂x1
u3

)

= − ∂2

∂x1∂x3

∂

∂x3
u3 + ∂2

∂x2
3

∂

∂x3
u1

= ∂2

∂x1∂x3

∂

∂x1
u1 + ∂2

∂x1∂x3

∂

∂x2
u2 + ∂2

∂x2
3

∂

∂x3
u1

= ∂2

∂x2
1

ω2 + ∂2

∂x2
2

ω2 − ∂2

∂x2
2

ω2 − ∂2

∂x2∂x1
ω1 + ∂2

∂x2
3

∂

∂x3
u1

= ��θ2 − ∂

∂x2
('� · θ) + ∂2

∂x2
3

∂

∂x3
u1

where the second equality follows from the divergence-free condition: ' · u = 0. Hence

∂

∂x3
ω1

∣

∣

∣

∣

∂ D

= − ∂

∂x3

∂

∂x3
u2

∣

∣

∣

∣

∂ D

(3.5)
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and

∂

∂x3
ω2

∣

∣

∣

∣

∂ D

= ∂

∂x3

∂

∂x3
u1

∣

∣

∣

∣

∂ D

. (3.6)

so that

∂2

∂x2
3

ω2

∣

∣

∣

∣

∣

∂ D

= ∂3

∂x3
3

u1 + ��θ1 − ∂

∂x2
('� · θ) .

Similarly

∂

∂x3
ω3 = ∂

∂x3

(

∂u2

∂x1
− ∂u1

∂x2

)

= ∂

∂x3

∂u2

∂x1
− ∂

∂x3

∂

∂x2
u1

= ∂

∂x1

∂u2

∂x3
− ∂

∂x2

∂u1

∂x3

= −
(

∂

∂x1
ω1 + ∂

∂x2
ω2

)

− ∂

∂x2

∂u3

∂x1
+ ∂

∂x1

∂u3

∂x2

and

∂2

∂x2
3

ω3 = − ∂

∂x3

(

∂

∂x1
ω1 + ∂

∂x2
ω2

)

so that

∂

∂x3
ω3

∣

∣

∣

∣

∂ D

= −'� · θ = −∂θ1

∂x1
− ∂θ2

∂x2
. (3.7)

Putting these equations together we obtain (3.3). ��

For convenience let us write down the evolution for two dimensional flows for reference

below.

Theorem 3.6 If d = 2 (so that both ω = ∂
∂x1

u2 − ∂
∂x2

u1 and its trace θ at the boundary are

scalar functions), then the boundary vorticity θ evolves according to the following dynamical

equation

∂θ

∂t
− 2ν��θ − ν

(

∂

∂η

)3

u‖ − ψ = 0 (3.8)

where u‖ = u1 is the tangent component of the velocity field u.

Proof In this case we prefer to use coordinates x = (x1, x2). For 2D flow, the vorticity

transport equation becomes

∂ω

∂t
+ (u · ')ω − ν�ω = G in D (3.9)

where ω = ∂u2

∂x1
− ∂u1

∂x2
, so that

�ω = ∂2

∂x2
1

ω + ∂2

∂x2
2

(

∂u2

∂x1
− ∂u1

∂x2

)

= 2
∂2

∂x2
1

ω − ∂3

∂x3
1

u2 − ∂3

∂x3
2

u1
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so that

�ω|∂ D = 2��θ +
(

∂

∂η

)3

u1

and the conclusion follows immediately. ��

4 Functional Integral Representations

In the next two sections we demonstrate the use of the dynamical equations in the stochastic

direct numerical simulations of the viscous flows within thin layers next to the fluid boundary.

We shall develop random vortex schemes for calculating numerically solutions to the

boundary problem (2.1, 2.2) by using the dynamical equations of the boundary vorticity for

updating the boundary values of the vorticity in numerical schemes.

To exhibit our ideas clearly we deal with 2D flows only, i.e. d = 2 and D = {x : x2 > 0}.
Since the boundary vorticity θ is in general non-trivial, we introduce a family of perturbations

of ω defined by W ε = ω − σε for every ε > 0, given by

σε(x1, x2, t) = θ(x1, t)φ(x2/ε), (4.1)

where φ : [0,∞) → [0, 1] is a proper cut-off function such that φ(r) = 1 for r ( [0, 1/3)

and φ(r) = 0 for r ≥ 2/3. Indeed we will use the following cut-off function:

φ(r) =

§

⎪

¨

⎪

©

1 for r ( [0, 1/3),

1
2

+ 54
(

r − 1
2

)3 − 9
2

(

r − 1
2

)

for r ( [1/3, 2/3],
0 for r ≥ 2/3.

(4.2)

Hence −54 ≤ φ′′ ≤ 54, − 9
2

≤ φ′ ≤ 0 on [1/3, 2/3] and φ′ = 0 for r ≤ 1/3 or r ≥ 2/3. In

fact

φ′(r) =
{

162
(

r − 1
2

)2 − 9
2

for r ( [1/3, 2/3],
0 otherwise

(4.3)

and

φ′′(r) =
{

324
(

r − 1
2

)

for r ( [1/3, 2/3],
0 otherwise.

(4.4)

Then Wε is the solution to the following Dirichlet boundary problem of the parabolic

equation:

(

∂

∂t
+ u · ' − ν�

)

Wε − gε = 0 in D, and Wε|∂ D = 0, (4.5)

where

gε(x, t) = G(x, t) + ν

ε2
φ′′(x2/ε)θ(x1, t) − 1

ε
φ′(x2/ε)u

2(x, t)θ(x1, t)

+ φ(x2/ε)

(

ν
∂2θ

∂x2
1

(x1, t) − ∂θ

∂t
(x1, t)

)

− φ(x2/ε)u
1(x, t)

∂θ

∂x1
(x1, t) (4.6)
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for any x = (x1, x2), x2 > 0. The initial data for W ε is given by

W ε
0 (x) = ω0(x1, x2) − ω0(x1, 0)φ(x2/ε) for x ( D. (4.7)

We shall need the stochastic integral representation in terms of the Taylor diffusion with

velocity u(x, t). To this end, the vector field u(x, t) is extended to a vector field on R
2 by

reflection about the line x2 = 0 so that

u1(x, t) = u1(x, t), u2(x, t) = −u2(x, t)

for x = (x1, x2) with x2 > 0, here x �→ x is the reflection about the line that x2 = 0, that is,

x = (x1,−x2) for x = (x1, x2) ( R
2. This extension retains the divergence-free property,

though, in distribution. That is, ' · u(·, t) = 0 on R
2 in the sense of distribution.

For each ξ ( R
2, define (X

ξ
t )t≥0 as the unique (weak) solution of the following Itô’s

stochastic differential equation

dX
ξ
t = u(X

ξ
t , t)dt +

√
2νdBt , X

ξ
0 = ξ, (4.8)

where B = (Bt ) is a two dimensional Brownian motion on some probability space. Let

p(s, ξ ; t, y) be the transition probability density function of the diffusion (X
ξ
t )t≥0, i.e.

p(s, x; t, y)dy = P

[

X
ξ
t ( dy

∣

∣

∣
X ξ

s = x
]

for t > s ≥ 0 and x, y ( R
2 (which is independent of ξ ). Let pD(s, x; t, y) be the transition

(sub-)probability density function of the diffusion X ξ killed on leaving the region D, where

t > s ≥ 0, x, y ( D. Then

pD(s, x; t, y)dy = P

[

1{ζ(X ξ )>t}, X
ξ
t ( dy

∣

∣

∣
X ξ

s = x
]

for any t > s ≥ 0, and

pD(s, x; t, y) = p(s, x; t, y) − p(s, x; t, ȳ) (4.9)

for t > s ≥ 0 and x, y ( D, where ζ(ψ) = inf {t : ψ(t) /( D}. Note that, since u(x, t) =
u(x̄, t) for x ( R

2 and t ≥ 0, p(s, x; t, y) = p(s, x̄; t, ȳ).

Theorem 4.1 For every ε > 0, it holds that

Wε(y, t) =
∫

D

P

[

ζ(X ξ ) > t
∣

∣ X
ξ
t = y

]

Wε(ξ, 0)p(0, ξ ; t, y)dξ

+
∫ t

0

∫

D

E

[

1{s>γt (X ξ )}gε(X ξ
s , s)

∣

∣

∣
X

ξ
t = y

]

p(0, ξ ; t, y)dξds (4.10)

for every t > 0 and y ( D, where γt (ψ) = sup {s ( (0, t) : ψ(s) /( D} for every continuous

path ψ .

For a proof of this representation, we refer to [9, 13]. We emphasise that the previous

representation (4.10) is different from the solution representation in terms of the fundamental

solution in that only the Taylor diffusion starting at a fixed time 0 is required, which therefore

reduces the computational cost substantially when numerical schemes are implemented based

on such integral representations.

We next establish a representation for u(x, t) by applying the Biot–Savart law. To this end,

we apply the following convention. For 2D vectors, the following notation, which is consistent

with the canonical identifications with 3D vectors, will be adopted. If a = (a1, a2) and

b = (b1, b2), then a∧b = a1b2−a2b1 (a scalar), and if c is a scalar, then a∧c = (a2c,−a1c).
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Theorem 4.2 The following stochastic integral representation for the velocity holds:

u(x, t) =
∫

D

K (y, x) ∧ σε(y, t)dy

+
∫

D

E

[

1D(X
ξ
t )K (X

ξ
t , x) − 1D(X

ξ̄
t )K (X

ξ̄
t , x)

]

∧ Wε(ξ, 0)dξ

+
∫ t

0

∫

D

E

[

1{s>γt (X ξ )}K (X
ξ
t , x) ∧ gε(X ξ

s , s)

∣

∣

∣

]

dξds (4.11)

for every x ( D, and u(x, t) = u(x, t) for x2 < 0, and u(x, t) = 0 if x2 = 0.

Proof Recall that the Biot–Savart singular integral kernel for D (which is the gradient of the

green function for D) is given by

K (y, x) = 1

2π

(

y − x

|y − x |2 − y − x

|y − x |2
)

(4.12)

for y �= x or x . Since ' · u = 0, ' ∧ u = ω and u is subject to the Dirichlet boundary

condition that u(x, t) = 0 for x ( ∂ D, hence, according to Green formula we obtain that

u(x, t) =
∫

D

K (y, x) ∧ ω(y, t)dy. (4.13)

While by definition, for every ε > 0, ω = σε + Wε , the representation follows by utilising

the representation (4.10) and the Fubini theorem. ��

5 Numerical Experiments

In this section, we provide some numerical simulations for the representations discussed

above, focusing on the two-dimensional case. Recall that in [2] a representation similar to

(4.11) was obtained:

u(x, t) =
∫

D

K ⊥(x, ξ)σε(ξ, t)dξ +
∫

D

E

[

K ⊥(x, X
ξ
t )1{t<ζ(X ξ ◦τt )}

]

ω0(ξ)dξ

−
∫

D

E

[

K ⊥(x, X
ξ
t )1{t<ζ(X ξ ◦τt )}

]

σε(ξ, t)dξ

+
∫ t

0

∫

D

E

[

1{t−s<ζ(X ξ ◦τt )}K ⊥(x, X
ξ
t )G(X ξ

s , s)
]

dξds

+
∫ t

0

∫

D

E

[

1{t−s<ζ(X ξ ◦τt )}K ⊥(x, X
ξ
t )ρε(X ξ

s , s)
]

dξds, (5.1)

where ρε = gε − G and

K ⊥ = (K 2,−K 1) (5.2)

in our notation. In the following we ease the notation by omitting the superscript in the

kernel and the wedge product coming from the Biot–Savart law (4.13), which is essentially

equivalent to redefining the kernel as in (5.2).

The only term in the definition of ρε(x, t), dependent on ε, that does not vanish in the

limit is

ν

ε2
φ′′(x2/ε)θ(x1, t). (5.3)
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Therefore, one can approximate the representation for the velocity u by the following

ui (x, t) ≈
∫

D

E

[

1{t<ζ(X ξ ◦τt )}K i (x, X
ξ
t )

]

ω0(ξ)dξ

+
∫ t

0

∫

D

E

[

1{t−s<ζ(X ξ ◦τt )}K i (x, X
ξ
t )G(X ξ

s , s)
]

dξds

+ ν

ε2

∫ t

0

∫

D

E

[

1{t−s<ζ(X ξ ◦τt )}K i (x, X
ξ
t )θ(X ξ

s , s)φ′′(X ξ
s /ε)

]

dξds, (5.4)

for some small ε. That is, we omit the terms that do not contribute to the limit and (5.3) is

approximated by taking sufficiently small ε. Notice that as the support of φ′′ is the interval

[1/3, 2/3], the last integration can be taken over a thin layer close to the boundary. Notice

also that in the last integration we used θ(x, s), φ′′(x/ε) to denote θ(x1, s), φ′′(x2/ε) slightly

abusing notation.

We use the idea described above to the representation (4.11), i.e. we approximate the

velocity similarly as

u(x, t) ≈
∫

D

E

[

1D(X
ξ
t )K (X

ξ
t , x) − 1D(X

ξ̄
t )K (X

ξ̄
t , x)

]

ω0(ξ)dξ

+
∫ t

0

∫

D

E

[

1{s>γt (X ξ )}K (X
ξ
t , x)G(X ξ

s , s)
]

dξds

+ ν

ε2

∫ t

0

∫

D

E

[

1{s>γt (X ξ )}K (X
ξ
t , x)θ(X ξ

s , s)φ′′(X ξ
s /ε)

]

dξds, (5.5)

for every x ( D, and u(x, t) = u(x, t) for x2 < 0, and u(x, t) = 0 if x2 = 0.

For the half-plane domain D, we introduce lattice points as follows. Notice that as in (5.5)

the first integral contains processes with reflected initial positions ξ̄ , we have to add reflected

lattice points for the below discretisation.

1. The thin boundary layer lattice Db is given by

x
i1i2

b = (i1h1, i2h2), for − N1 ≤ i1 ≤ N1 and − N2 ≤ i2 ≤ N2, (5.6)

where h1, h2 are mesh sizes and N1, N2 are numbers of points.

2. The outer layer lattice Do is defined as

x i1i2
o = (i1h0, i2h0), for − N0 ≤ i1 ≤ N0 and − N2 ≤ i2 ≤ N2, (5.7)

where h0 is mesh size and N0 is the number of points.

The discretised random vortex system is described as follows. We initialise the processes

X
i1,i2

b;t0 = x
i1i2

b and X
i1,i2

o;t0 = x
i1i2
o and update them for k ≥ 0 according to

X
i1,i2
tk+1

= X
i1,i2
tk

+ hû(X
i1,i2
tk

, tk) +
√

2ν(Btk+1
− Btk ), (5.8)
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where tk = kh for k ≥ 0 and some fixed time mesh h. To ease the notation, we drop the

subscripts o and b. The processes are coupled with the drift û which is given by

û(x, tk+1) =
∑

(i1,i2)(D
i2>0

Ai1,i2ωi1,i2E

[

1D(X
i1,i2
tk

)K (X
i1,i2
tk

, x) − 1D(X
i1,−i2
tk

)K (X
i1,−i2
tk

, x)
]

+
∑

(i1,i2)(D
i2>0

k
∑

l=0

Ai1,i2 hGi1,i2;tl E
[

1{

tl>γtk
(X i1,i2 )

}K (X
i1,i2
tk

, x)G(X
i1,i2
tl

, tl)
]

+ ν

ε2

∑

(i1,i2)(Db
i2>0

k
∑

l=0

h1h2hE

[

1{

tl>γtk
(X i1,i2 )

}K (X
i1,i2
tk

, x)θ(X
i1,i2
tl

, tl)φ
′′(X

i1,i2
tl

/ε)
]

,

(5.9)

for x ( D, and û(x, t) = û(x, t) for x2 < 0, and û(x, t) = 0 if x2 = 0. In what follows, we

unify summations over (i1, i2) ( Do and (i1, i2) ( Db writing summation over (i1, i2) ( D

with

Ai1,i2 = h1h2 or h2
0,

ωi1,i2 = ω(x
i1i2

b , 0) or ω(x i1i2
o , 0),

Gi1,i2;tl = G(x
i1i2

b , tl) or G(x i1i2
o , tl), (5.10)

for boundary and outer layers.

We conduct experiments using the following numerical scheme. To deal with expectations

in the representation (5.9), we drop them and run Brownian motions independent at each site

(i1, i2) in (5.8). Therefore, we update the diffusions X
i1,i2
tk

, starting at x i1i2 when k = 0,

according to

X
i1,i2
tk+1

= X
i1,i2
tk

+ hû(X
i1,i2
tk

, tk) +
√

2ν(B
i1,i2
tk+1

− B
i1,i2
tk

), (5.11)

for k ≥ 0, where Bi1,i2 are independent Brownian motions. The drift is given as

û(x, tk+1) =
∑

(i1,i2)(D
i2>0

Ai1,i2ωi1,i2

(

1D(X
i1,i2
tk

)K (X
i1,i2
tk

, x) − 1D(X
i1,−i2
tk

)K (X
i1,−i2
tk

, x)
)

+
∑

(i1,i2)(D
i2>0

Ai1,i2 hK (X
i1,i2
tk

, x)

k
∑

l=0

1{

tl>γtk
(X i1,i2 )

}Gi1,i2;tl

+ ν

ε2

∑

(i1,i2)(Db
i2>0

h1h2hK (X
i1,i2
tk

, x)

k
∑

l=0

1{

tl>γtk
(X i1,i2 )

}θ(X
i1,i2
tl

, tl)φ
′′(X

i1,i2
tl

/ε),

(5.12)

for x ( D and û(x, t) = û(x, t) for x2 < 0, and û(x, t) = 0 if x2 = 0, with Ai1,i2 , ωi1,i2 ,

Gi1,i2;tl given in (5.10). Notice that also in practice instead of the kernel K , we compute a

regularised version denoted by Kδ , e.g., Kδ(y, x) = K (y, x)
(

1 − exp
(

−|y − x |2/δ
))

.

The above representation (5.12) for the velocity depends on the boundary vorticity θ . In

[2], the derivative of (5.12) with respect to x was used to compute θ which is possible if the
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kernel K is replaced with a mollified version of the kernel denoted Kδ . Here we shall use a

different approach—recall from Theorem 3.6 that the boundary vorticity θ(x1, t) solves the

equation

∂

∂t
θ − 2ν

∂2

∂x2
1

θ = ψ − ν
∂3u1

∂x3
2

∣

∣

∣

∣

∣

x2=0

,

where, as above, ψ = G|x2=0. Assuming that the third order derivative term ν ∂3u1

∂x3
2

∣

∣

∣

∣

x2=0

is

negligibly small, we have that θ solves the inhomogeneous heat equation

∂

∂t
θ − 2ν

∂2

∂x2
1

θ = ψ,

so that the solution can be written as

θ(x1, t) =
∫ +∞

−∞
θ(y1, 0)h(x1, t, y1)dy1 +

∫ t

0

∫ +∞

−∞
ψ(y1, s)h(x1, s, y1)dy1ds,(5.13)

with the heat kernel h given as

h(x1, t, y1) = 1

(8νπ t)1/2
exp

(

−|x1 − y1|2
8νt

)

for x1, y1 ( R. (5.14)

Notice that the integrals in the above formula can be written in terms of the expectations

with respect to the normal random variables. Indeed, one writes

∫ +∞

−∞
θ(y1, 0)h(x1, t, y1)dy1 = E [θ(X , 0)] , where X ∼ N (x1, 4νt),

and
∫ t

0

∫ +∞

−∞
ψ(y1, s)h(x1, s, y1)dy1ds =

∫ t

0

E
[

ψ(Y s, s)
]

ds, where Y s ∼ N (x1, 4νs).

This representation allows for the Monte–Carlo approximation of the solution (5.13) which

gives

θ(x1, tk+1) ≈ 1

N

N
∑

i=1

θ(X i , 0) + h

N

N
∑

i=1

k
∑

j=0

ψ(Y
t j

i , t j ), (5.15)

with X i and Y
t j

i drawn independently from N (x1, 4νt) and N (x1, 4νt j ), respectively.

Notice that the expressions for the boundary vorticity (5.15) and the velocity (5.12) contain

time-dependent summations. As in [2], we store the results of these summations for each

index i and (i1, i2) respectively, which allows us to update the sum by computing one term per

index at each time step. However, since we have indicators with the last boundary crossing

times γtk (X i1,i2) in (5.12), we also keep track of the crossings for each (i1, i2). We set the

corresponding sum to zero at each step when the crossing happens, and after doing so, we

continue updating the sum as before.

Experiment 1. In this experiment, we assume that the initial velocity is of the form

u(x1, x2, 0) = (−U01{x2>0}, 0), i.e. a constant horizontal field formally satisfying the no-

slip condition. This means that the vorticity is initialised as ω0(x1, x2) = U01{x2=0}, and

the motion is affected by the external force G = G01{x2=0}, which is concentrated at the

boundary as well.
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Fig. 1 The outer layer flow at different times t

Fig. 2 The boundary layer flow at different times t

For this simulation, we consider the half-plane domain within the limits of the box −H ≤
x1 ≤ H , 0 ≤ x2 ≤ H with H = 6 for the size of the domain. We also choose H0 = 0.1

for the boundary layer thickness. The lattice points are given by (5.6) and (5.7) with N0 =
30, N1 = 30, N2 = 45. Therefore, the mesh sizes are given by h0 = H

N0
= 0.4, h1 = H

N1
=

0.2, h2 = H0
N2

≈ 0.0022. The parameter ε in (5.12) is taken to be 0.02.

We conduct this experiment with the velocity and force constants U0 = 0.01, G0 = −1.0,

and the viscosity ν = 0.1. The simulation is conducted with time steps t = 0.01 with the

scheme described above, i.e. with boundary vorticity given by (5.15), the results are presented
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Fig. 3 The outer layer flow at different times t

Fig. 4 The boundary layer flow at different times t

in Figs. 1 and 2. In these and below plots, the streamlines are coloured by the magnitude of the

velocity, and the background colour represents the vorticity value. We also use the scheme

from [2], i.e. computing the vorticity as the derivative of (5.12), and provide the results in

Figs. 3 and 4. The boundary vorticity θ and the third derivative term ν ∂3u1

∂x3
2

∣

∣

∣

∣

x2=0

are plotted

in 5 as functions of x1 and t .

Comparing these simulations, we conclude that the scheme with the boundary vorticity θ

approximated from the dynamical equation gives results similar to those when it is computed

explicitly as the derivative of the velocity field. The boundary vorticity seems to affect mostly
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Fig. 5 The boundary vorticity θ and the ν ∂3u1

∂x3
2

as functions of position at boundary x1 and time t

Fig. 6 The outer layer flow at different times t
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Fig. 7 The boundary layer flow at different times t

the boundary flow (as it is present in the summation over the boundary lattice), though we

also observe that the produced flows exhibit similar behaviour close to the boundary.

Experiment 2. We initialise the vorticity asω0(x1, x2) = −U0

(

3 − x1
H

)

(1 − x2) 1{0≤x2≤1},
which yields non-trivial boundary vorticity θ(x1, 0) = −U0

(

3 − x1
H

)

. The external force G

is taken to be identically zero. We use the same lattice points and parameters as above, but

choose time steps t = 0.03. The simulation is conducted with the vorticity computed as in

(5.15), the results of this simulation are given in Figs. 6 and 7.
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