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Abstract. We study the existence of weak solutions to the p-Navier-Stokes
equations with a symmetric p-Laplacian on bounded domains. We construct

a particular Schauder basis in W
1,p
0 (Ω) with divergence free constraint and

prove existence of weak solutions using the Galerkin approximation via this
basis. Meanwhile, in the proof, we establish a chain rule for the Lp integral
of the weak solutions, which fixes a gap in our previous work. The equality of
energy dissipation is also established for the weak solutions considered.

1. Introduction. The system of Navier-Stokes equations is one of the most in-
fluential mathematical models in physical science and engineering fields [19]. The
application of Navier-Stokes equations ranges from the design of a plane to weather
forecasting. One of the Millennium Problems proposed by the Clay Mathematics
Institute is about the global existence of smooth solutions to Navier-Stokes equa-
tions [1], which remains one of the most important open questions in the field of
partial differential equations [14].

There are tons of models that are variants of the classical Navier-Stokes equa-
tions, typically for some Non-Newtonian fluids [8]. As an example, to study the
shear thinning effect of the non-Newtonian flows, one could use the symmetric p-
Laplacian term instead of Laplacian, and one may check [21, 5] for more discussion.
In [13], the authors proposed the p-Euler equations as the Euler-Lagrange equations
from Arnold’s least action principle [2, 3], for which the action is represented by
the Benamou-Brenier characterization of the Wasserstein-p distance between two
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shapes with the incompressibility constraint. By adding p-Laplacian diffusion to
the equation, the so-called p-Navier-Stokes equations were proposed:

∂tvp + v · ∇vp = −∇Ã + ¿∆pv,

vp = |v|p−2v, ∇ · v = 0.
(1)

Here, the p-Laplacian is given by ∆pv = ∇ · (|∇v|p−2∇v), |∇v| =
»

∑

ij(∂ivj)
2.

Mathematically, the p-Navier-Stokes equations are analogues of the classical Navier-
Stokes equations and exhibit many similar properties. In particular, when p = 2,
such a system becomes the classical Navier-Stokes equations. The generalization to
general p, on the other hand, has some particular difficulty and fine structures. Due
to the lack of Hilbert structure in Lp space and the nonlinearity of all the terms in
the differential equations, the analysis of such a system of differential equations is
significantly more difficult than the classical problems.

In this paper, we are interested in the p-Navier-Stokes equations with the sym-
metric p-Laplacian arising in the models for shear thinning effect [21] on a bounded
domain Ω ¢ R

d with C∞ boundary ∂Ω. In particular, we consider the initial-
boundary value problem of the p-Navier-Stokes equations given by























∂tvp + v · ∇vp = −∇Ã + ¿ Lp(v), x ∈ Ω, t ∈ (0, T ) ,

vp = |v|p−2v, ∇ · v = 0, x ∈ Ω, t ∈ (0, T ) ,

v(x, 0) = v0(x), x ∈ Ω ,

v = 0, x ∈ ∂Ω .

(2)

Here, for the vector field v, the symmetric p-Laplacian Lp(v) is

Lp(v) = div(|D(v)|p−2D(v)), (3)

and

D(v) =
1

2
(∇v +∇vT ). (4)

We focus on the symmetric p-Laplacian because such a diffusion term appears in
physical models [21]. We remark however that the analysis for the usual p-Laplacian
diffusion ∆pv would be similar (and in fact easier). When 1 < p < 2, ∆p corresponds
to fast diffusion. When p > 2, it is the case corresponding to slow diffusion. One
can check this in standard textbooks or references on the p-Laplacian, for example
[20]. One would expect the symmetric p-Laplacian term to exhibit similar diffusion
effects.

The existence of weak solutions to the original p-Navier-Stokes equations (1)
proposed in [13] has been explored in [13] and [15] by totally different methods. In
[13], a regularized system was proposed for the approximation and for the existence
of weak solutions. Meanwhile, in [15], the authors used the discrete time scheme to
prove the existence of the weak solution. We remark that there are some minor gaps
in the proof in [13]. For example, the well-posedness of the regularized system was
taken for granted; second, the chain rule was not established rigorously as detailed
in Section 5.1.

In this article, we focus on the equations (2) with symmetric p-Laplacian on a
bounded domain and establish the existence of weak solutions rigorously using a
totally different method, the Galerkin approximation. The reasons are as follows.
First, the symmetric p-Laplacian is more frequently used for non-Newtonian fluids.
Second, the well-posedness of the Galerkin system can be established rigorously.
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Moreover, we also aim to fill the gaps for the existence in the previous work. The
Galerkin method, or Galerkin approximation, is a very common method in numer-
ical analysis as well as in applied analysis, especially for finding the local existence
of the weak solutions to a particular differential equation. One can check more
details in standard textbooks, for example [10]. In order to use the Galerkin ap-
proximation, one may need to choose a Hilbert space or a Banach space and find a
Schauder basis. In this paper, by the natural structure of our differential equations
(2), one has to use Lp(Ω) and W 1,p

0 (Ω) spaces with divergence-free constraint as
the reference spaces. The study of the existence of Schauder basis on such spaces
can be tracked back to [11]. Later, in [4], by connecting with the Haar system
in one-dimensional case, the authors constructed a special Schauder basis with or-
thogonality properties on W 1,p

0 (Ω). As we shall see later, due to the boundary
condition, the Leray projection cannot be used directly to obtain the basis for the
subspaces with divergence-free constraint. For the self-consistency of this paper,
we construct a Schauder basis based on the eigenfunctions of a compact operator.
The significance of this work can be summarized as follows. First, the existence
of weak solutions is established rigorously using the Galerkin approximation, fixing
the previous gaps. In the proof, a chain rule for the Lp integral of the weak solution
is proved using the finite difference approximation, and this is also used to show the
energy dissipation equality. Note that this technique can also be used to fill in the
gap in [13] for the original model in R

d. Second, a Schauder basis is constructed

explicitly for W 1,p
0 (Ω) with divergence free constraint. This can be used further for

other models in Lp type spaces.
The structure of this paper is as follows. In Section 2, we introduce the notations

and definitions in this paper. In Section 3, we construct a Schauder basis in the
Sobolev spaces with divergence-free constraints. The basis consists of eigenfunc-
tions of the projected high order elliptic operator in the space with divergence free
constraint. In Section 4, we use the Galerkin approximation and run the compact-
ness argument. In Section 5, we finish the proof of the main theorem. Here, the
chain rule is established using finite time differences.

2. Notations and definitions. Fix Ω ¢ R
d simply connected, bounded with C∞

boundary ∂Ω. In the rest of this paper, we assume

p g d g 2. (5)

To make this paper self-consistent, we recall some notations in tensor analysis.
Let a, b ∈ R

d be vectors and A,B be matrices. We define a ¹ b to be a matrix;
called the tensor product of a and b:

(a¹ b)ij = aibj . (6)

We also define the dot product for vectors and matrices as

(a ·A)i =
d

∑

j=1

ajAji, (A · a)i =
d

∑

i=1

Aijaj ,

(A ·B)ij =
∑

k

AikBkj ,

A : B = tr(A ·BT ) =
∑

ij

AijBij .

(7)
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2.1. The weak solutions. To incorporate initial values in the definition of weak
solution to (2), we introduce the following definition.

Definition 2.1. A function f ∈ L1[0, T ] is said to have the weak time derivative
w ∈ (C∞

c [0, T ))′ with initial value f0 if
∫ T

0

ϕw dt = −

∫ T

0

ϕ′f dt− ϕ(0)f0, ∀ϕ ∈ C∞
c ([0, T )).

A function f ∈ L1
loc(Ω× [0, T ]) is said to have weak time derivative w ∈ (C∞

c (Ω×
[0, T )))′ and initial data f0(x) ∈ L1

loc(Ω) if
∫ T

0

∫

Ω

ϕw dxdt = −

∫ T

0

∫

Ω

∂tϕf dxdt−

∫

Ω

ϕ(x, 0)f0(x) dx, ∀ϕ ∈ C∞
c (Ω× [0, T )).

We define the bounded trace operator Tr : W 1,p(Ω;Rd) → Lp(∂Ω;Rd), such
that Tr(u) = u|∂Ω, for any u ∈ C∞(Ω;Rd). Such operator is unique, and one can
check this fact from standard PDE textbooks, for instance [10]. We then denote by

W 1,p
0 (Ω;Rd) all the functions u inW 1,p(Ω;Rd) such that Tr(u) = 0. One could verify

that the space W 1,p
0 (Ω;Rd) is the completion of C∞

0 (Ω;Rd) under the W 1,p(Ω;Rd)

norm. We further use W−1,q(Ω;Rd) to denote the the dual space of W 1,p
0 (Ω;Rd),

where q satisfies 1
p + 1

q = 1.

Following from the Poincaré inequality, ∥v∥Lp f c∥∇v∥Lp , for v ∈ W 1,p
0 (Ω;Rd).

As a consequence, the norm in W 1,p
0 (Ω;Rd) is equivalent to ∥∇v∥Lp + ∥v∥Lp . Such

norm is also equivalent to ∥D(v)∥Lp + ∥v∥Lp , for which the proof can be found in
[16]. Here, we state the fact as the following lemma and prove it in the Appendix
(Section A) for completeness.

Lemma 2.2. There exist two positive constants C1, C2; such that for any v ∈
W 1,p

0 (Ω;Rd),

C1(∥v∥Lp(Ω) + ∥∇v∥Lp(Ω))

f∥v∥Lp(Ω) + ∥D(v)∥Lp(Ω) (8)

fC2(∥v∥Lp(Ω) + ∥∇v∥Lp(Ω)).

The action of symmetric p-Laplacian can be considered as an operator Lp:

W 1,p
0 (Ω;Rd) →W−1,q(Ω;Rd). For u, v ∈W 1,p

0 (Ω;Rd), define

ïLp(u), vð := −

∫

Ω

|D(u)|p−2D(u) : ∇vdx . (9)

In addition, by Hölder’s inequality, one has

|ïLp(u), vð| =

∣

∣

∣

∣

−

∫

Ω

|D(u)|p−2D(u) : ∇vdx

∣

∣

∣

∣

f ∥D(u)∥p−1
p ∥∇v∥p,

for u, v ∈W 1,p
0 (Ω;Rd). Hence,

∫ T

0

∥Lp(u)∥
q
W−1,q(Ω;Rd)

dt f

∫ T

0

(∥D(u)∥p−1
p )qdt =

∫ T

0

∥D(u)∥ppdt

for u ∈ Lp(0, T ;W 1,p
0 (Ω;Rd)). This means that Lp maps bounded sets in

Lp(0, T ;W 1,p
0 (Ω;Rd)) to bounded sets in Lq(0, T ;W−1,q(Ω;Rd)).
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To motivate the definition of weak solutions, let us perform some formal estimate
( a priori estimate). Multiplying v on both sides of the first equation in (2) and
integrating over space and time, one has

∫

Ω

|v|p(x, T )dx−

∫

Ω

|v|p(x, 0)dx = −q¿

∫ T

0

∫

Ω

|D(v)|pdxdt. (10)

Hence, if v0 ∈ Lp(Ω;Rd), one is expected to have

v ∈ L∞(0, T, Lp(Ω;Rd)) ∩ Lp(0, T ;W 1,p
0 (Ω;Rd)). (11)

We remark that the energy dissipation equality (10) often reduces to inequality
for weak solutions (we will show this equality holds later for our weak solutions).
Nevertheless, the regularity of the v with this a priori estimate is expected to hold.
Let v̂ be the unit vector with the same direction as v. Based on the observation
∇vp = |v|p−2∇v · (I + (p− 2)v̂ ¹ v̂), we immediately obtain that in the case p > 2

vp ∈ L∞(0, T ;Lq(Ω;Rd)) ∩ Lq(0, T ;W 1,q
0 (Ω;Rd)) . (12)

By Definition 2.1, with these a priori estimates, it is natural for us to define the
weak solutions to the initial-boundary p-Navier-Stokes problems as follows.

Definition 2.3. Given v0 ∈ Lp(Ω;Rd) with
∫

Ω
∇È ·v0 dx = 0 for all È ∈ C∞(Ω;R),

we say v ∈ L∞(0, T, Lp(Ω;Rd) ∩ Lp(0, T ;W 1,p
0 (Ω;Rd)) is a weak solution of the p-

Navier-Stokes problem (Equation (2)) with initial value v0; if

lim
h→0+

∫ T−h

0

∥v(t+ h)− v(t)∥p
Lp(Ω;Rd)

dt = 0, (13)

and for any φ ∈ C∞
c (Ω× [0, T );Rd), ∇ · φ = 0, È ∈ C∞

c (Ω× [0, T );R), we have
∫ T

0

∫

Ω

vp · ∂tφdxdt+

∫ T

0

∫

Ω

∇φ : (v ¹ vp)dxdt− ¿

∫ T

0

∫

Ω

∇φ : D(v)|D(v)|p−2dxdt

+

∫

Ω

|v0|
p−2v0 · φ(x, 0)dx = 0,

∫ T

0

∫

Ω

∇È · v dxdt = 0.

(14)

If v ∈ L∞
loc(0,∞;Lp(Ω;Rd))∩Lp

loc(0,∞;W 1,p
0 (Ω;Rd)), and (14) holds with∞ instead

of T for all φ ∈ C∞
c (Ω× [0,∞);Rd) with ∇ · φ = 0 and È ∈ C∞

c (Ω× [0,∞);R), we
say v is a global solution.

Above, following (6) and (7), the double dots are interpreted as

∇φ : (v ¹ vp) =
∑

ij

∂iφjvi(vp)j ,

∇φ : D(v) =
∑

ij

∂iφj(D(v))ij .
(15)

2.2. The working subspaces. For the convenience of the discussion, we aim to
incorporate the divergence-free constraint into the working spaces. In particular,
we need to seek a solution v in the subspaces of Lp(Ω;Rd) andW 1,p

0 (Ω) with certain
divergence-free constraints. Define

U := {ϕ ∈ C∞
c (Ω;Rd) : divϕ = 0}. (16)
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For the space Lp(Ω;Rd), we recall the Helmohotlz-Weyl decomposition [12]. Denote
by Up(Ω) the L

p-completion of the space U , which is given by

Up(Ω) =

ß

w ∈ Lp(Ω;Rd) :

∫

Ω

w · ∇φdx = 0, ∀φ ∈ C1(Ω)

™

. (17)

This is the weak form of {w ∈ Lp(Ω;Rd) : ∇ · w = 0 in Ω, w · n = 0 on ∂Ω},
where n represents a normal vector field on the boundary. Let Gp(Ω) = {w ∈

Lp(Ω,Rd) : ∃φ ∈ W 1,p
loc (Ω), w = ∇φ}. Theorem III.1.2 and relevant results in [12]

can be summarized as the following lemma:

Lemma 2.4. Let Ω ¢ R
d, d g 2 be either a domain of class C2 or the whole space

or a half space, and then the Helmholtz-Weyl decomposition holds,

Lp(Ω;Rd) = Up(Ω)·Gp(Ω) , (18)

where · denotes direct sum. This defines the Leray projection operator P : Lp(Ω;Rd) →

Up(Ω). There is a constant C(p,Ω) such that for any w ∈ Lp(Ω;Rd),

∥Pw∥p f C(p,Ω)∥w∥p. (19)

This says that any w ∈ Lp(Ω;Rd) can be uniquely decomposed as

w = w1 + w2 ,

with w1 ∈ Up(Ω); and w2 ∈ Gp(Ω), and thus w1 = Pw. The decomposition here is
the so-called Helmholtz-Weyl decomposition.

Remark 2.5. The boundary condition matters. For example, ϕ = (−y, x) is di-
vergence free in Ω = {(x, y) : 2x2 + y2 < 1}, but ϕ · n ̸= 0 on ∂Ω. Then, Pϕ ̸= ϕ
since

∫

Ω
∇φ · ϕ dx ̸= 0 for some φ.

For W 1,p
0 , since the weak derivatives are well-defined, we can introduce directly

W :=
¶

v ∈W 1,p
0 (Ω;Rd) : ∇ · v = 0

©

. (20)

Here, ∇· means divergence in the weak sense. Moreover, we will also use

V := Lp(0, T ;W ), (21)

equipped with the Lp(0, T ;W 1,p) norm.

Remark 2.6. As in Lemma 2.4, for any ϕ ∈ W 1,p
0 , the Helmholtz-Weyl decompo-

sition of ϕ is given by

ϕ = Pϕ+∇φ,

where Pϕ ∈ Up(Ω), ∇φ ∈ Gp(Ω), and φ is unique up to a constant. Then, φ can
be determined by the following Poisson equation:







∆φ = ∇ · ϕ in Ω,

∂φ

∂n
= 0 on ∂Ω.

Clearly, one has Pϕ ∈W 1,p by the elliptic regularity. Unfortunately, the boundary
value of P is not necessarily zero (only the normal component is zero). Hence,

the projection of v ∈ W 1,p
0 onto W cannot be simply obtained using the Leray

projection.

With the spaces in hand, clearly, we will then seek solutions in L∞(0, T ;Up(Ω))∩
V . For this purpose, we need a Schauder basis for Up(Ω) and W .
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3. A Schauder basis. The existence of the Schauder basis of W 1,p
0 is well known

(see, for example, [4]). However, as commented in the last section, one cannot
simply use the Leray projection P to obtain a basis for W . In this section, we will
show that the eigenfunctions in certain spaces of P∆m, if m is large enough, will
form a Schauder basis for both Up(Ω) and W .

We first of all consider the following elliptic problem:

(−1)mP∆mu = f,

∆su|∂Ω = 0,
∂

∂n
∆ℓu|∂Ω = 0, ∀s ∈ S, ∀ℓ ∈ L.

(22)

Here, f ∈ U2(Ω), the space which is an L2-completion of the divergence-free smooth
functions as defined in (17). If m = 2k, then S = {s ∈ Z : 0 f s f k − 1}, and
L = {ℓ ∈ Z : 0 f ℓ f k − 1}. If m = 2k + 1, then S = {s ∈ Z : 0 f s f k},
L = {ℓ ∈ Z : 0 f ℓ f k − 1}. We use U2(Ω) here to make use of its Hilbert
structure. The domain of the operator A = (−1)mP∆m : U2(Ω) → U2(Ω) is given
by

D(A) = H2m ∩ H̃m,

where

H̃m =

ß

u ∈ Hm : div(u) = 0, ∆su|∂Ω = 0,
∂

∂n
∆ℓu|∂Ω = 0, ∀s ∈ S, ∀ℓ ∈ L

™

.

We remark that U is not dense in Hilbert space H̃m because the completion of U is
{u ∈ Hm

0 : div(u) = 0}.
Now, consider the weak solution to the problem (22). The associated bilinear

form B : H̃m × H̃m → R is given by

B[u, v] =

®
∫

∆ku∆kv dx, m = 2k,
∫

∇∆ku · ∇∆kv dx, m = 2k + 1.
(23)

A weak solution u ∈ H̃m is the one for which

B[u, v] =

∫

Ω

fv dx, ∀v ∈ H̃m.

We remark that this definition of a weak solution is consistent with problem (22).
In fact, a weak solution is called a strong solution if the left hand side is a locally
integrable function, and (22) holds for a.e. x. If a weak solution u ∈ H2m, then
integration by parts gives

∫

Ω

(−1)m∆muv dx =

∫

Ω

(−1)mP∆muv dx =

∫

Ω

fv dx,

for all v ∈ H̃m. Hence, u is a strong solution of (22).
By the Lax-Milgram theorem (see [10, Chapter 6]), the existence and uniqueness

of the weak solution hold. Hence, the solution map

S := ((−1)mP∆m)−1 : U2(Ω) → H̃m ¢ U2(Ω)

is well-defined.

Remark 3.1. The bilinear form for the equation (−1)m∆mu = f with the same

boundary conditions has the same expression, but the domain is Ĥm × Ĥm with
Ĥm = {u ∈ Hm, ∆su|∂Ω = 0, ∂

∂n∆
ℓu|∂Ω = 0, ∀s ∈ S, ∀ℓ ∈ L}. Note that though

(−1)mP∆m and (−1)m∆m agree on U , they do not agree as maps H̃m → (Ĥm)′

(they are identical as H̃m → (H̃m)′ though). Here, prime means the dual space.
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This suggests that ((−1)mP∆m)−1f is different from ((−1)m∆m)−1f as elements

in Ĥm when f ∈ U2(Ω). In particular, ((−1)m∆m)−1f may not be divergence free
even if f is.

Proposition 3.2. The eigenfunctions of S in U2(Ω) form a Schauder basis for both
UpΩ) and W if m is sufficiently large.

Proof. The operator S is self-adjoint and compact as a map from U2(Ω) to U2(Ω).
Then, it has a complete set of eigenfunctions in U2(Ω). Denote the set of eigen-
functions as {ϕk}

∞
k=1 and the corresponding eigenvalues as {¼k}

∞
k=1. They are

orthogonal in L2, and thus they form a Schauder basis for U2(Ω).

First, we show that the eigenfunctions form a Schauder basis for H̃m. This is
done by the same argument as in the proof of [10, Section 6.5, Theorem 2]. In
fact, by the elliptic regularity, one can show that ϕk ∈ H2m. Hence, ϕk are also
the eigenfunctions of (−1)mP∆m. For any u ∈ H̃m, by definition of B in (23) and
integration by parts, one has

B[u, ϕk] =

∫

Ω

u(−1)m∆mϕk =

∫

Ω

u(−1)mP∆mϕk = ¼−1
k

∫

Ω

uϕk dx.

Since {ϕk} form a basis for U2(Ω), then B[u, ϕk] = 0 for all k g 1 implies that

u = 0 in U2(Ω) and thus in H̃m. Hence, {ϕk} is also complete in H̃m. Moreover, it

is orthogonal as well in H̃m; hence, it is a Schauder basis for H̃m. The convergence
in H̃m clearly implies the convergence in U2(Ω). Hence, the expansion coefficient is
the same in the two spaces.

Second, choose m sufficiently large such that H̃m ¢ W ¢ U2(Ω), and the em-
beddings are continuous due to the Sobolev inequalities.

It is clear that U ¢ S(U2(Ω)) ¢ H̃m ¢ W where all the embeddings are contin-
uous. Hence, S(U2(Ω)) is dense both in Up(Ω) and W . Let X be Up(Ω) or W , and
∥ · ∥ is the corresponding norm.

For every u ∈ S(U2(Ω)) ¢W , one has the expansion in H̃m and thus

u =

∞
∑

k=1

ckϕk, in X .

Consider the projection operator on S(U2(Ω))

Pm,m′u :=

m′

∑

k=m

ckϕk.

One has

∥Pm,m′u∥ f C(m,m′)

Ã

m′

∑

k=m

c2k f C(m,m′)∥u∥L2 f C̃(m,m′,Ω, p)∥u∥.

The first inequality is by the equivlence of norms for finite dimensional space, while
others are trivial. Hence, Pm,m′ can be extended to the whole X . Since

∥Pm,m′u∥ f

∥

∥

∥

∥

∥

∥

m′

∑

k=1

ckϕk

∥

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

m
∑

k=1

ckϕk

∥

∥

∥

∥

∥

,
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and
∑m

k=1 ckϕk converges to u in X , the trajectory Ou := {Pm,m′u : 1 f m f m′ <
∞} is bounded. By the Uniform Boundedness Principle,

sup
1fmfm′<∞

∥Pm,m′∥ <∞.

Now, for any u∗ ∈ X , we take a sequence un ∈ S(U2(Ω)) such that un → u∗ in X ,
which can be expressed by

un =

∞
∑

k=1

cnkϕk in X .

Then, for any ϵ > 0, there exists n0 > 0 such that whenever n2 > n1 g n0,

sup
m,m′

∥Pm,m′(un1
− un2

)∥ f C∥un1
− un2

∥ < ϵ.

This implies that cnk → c̄k. Moreover, ∥Pm,m′un2
∥ f ∥Pm,m′un1

∥ + ϵ. Fixing n1,

taking m large enough and taking n2 → ∞, one then has ∥
∑m′

k=m c̄kϕk∥ < 2ϵ.
Then,

∑m
k=1 c̄kϕk is a Cauchy sequence in X . Hence,

ū =

∞
∑

k=1

c̄kϕk ∈ X .

It is easy to identify ū with u∗. This means that {ϕk} is a Schauder basis for X
as well, and the expansion coefficient should be the same as in U2(Ω) since the
embedding from X to U2(Ω) is continuous.

4. The Galerkin approximation and precompactness. In this section, we
apply the Galerkin approximations to (2) and perform the energy estimates. Then,
we obtain the precompactness of the solutions to the Galerkin systems.

4.1. Galerkin approximation. To introduce the Galerkin approximation, for any
v0 ∈ Up(Ω), we write it as

v0 =
∑

ng0

c0,nϕn in Up(Ω).

Here, {ϕn} is the Schauder basis we constructed in the last section. Since the case
for v0 = 0 is trivial, we consider the case v0 ̸= 0. Hence, there is a minimum n∗

such that c0,,n∗
̸= 0. For all N g n∗, let

WN = span{ϕ1, . . . , ϕN}. (24)

We hope to obtain a function vN : [0, T ] →WN ¢W of the form

vN (t) =
N
∑

n=1

cNn (t)ϕn,

where the coefficients cNn (t) ∈ R (0 f t f T, n = 1, · · · , N) satisfy the following

(i) The initial conditions hold for 0 f n f N :

cNn (0) = c0,n. (25)

(ii) For any 0 f t f T , φ ∈WN ,

d

dt

∫

Ω

φ · vNp dx+

∫

Ω

φ · (vN · ∇vNp )dx+ ¿

∫

Ω

∇φ : D(vN )|D(vN )|p−2dx = 0. (26)
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Here, similar to (2),

vNp = |vN |p−2vN . (27)

Clearly, the equation (26) holds if for i = 1, ..., N ,

d

dt

∫

Ω

ϕi · v
N
p dx+

∫

Ω

ϕi · (v
N · ∇vNp )dx+ ¿

∫

Ω

∇ϕi : D(vN )|D(vN )|p−2dx = 0.

(28)

The term d
dt

∫

Ω
ϕi · v

N
p dx is equal to

N
∑

j=1

d

dt
cNj (t)

∫

Ω

|vN |p−2ϕTi (I + (p− 2)v̂N ¹ v̂N )ϕjdx, (29)

where v̂N is the unit vector with the same direction as vN .
The term

∫

Ω
ϕi · (v

N · ∇vNp )dx is equal to

N
∑

j,k=1

∫

Ω

|vN |p−2ϕi,kv
N
j ∂jv

N
k dx+(p−2)

N
∑

j,k,l=1

∫

Ω

|vN |p−4ϕi,kv
N
j ∂jv

N
l v

N
l v

N
k dx. (30)

Define

AN
ij (t) :=

∫

Ω

|vN |p−2ϕTi (I + (p− 2)v̂N ¹ v̂N )ϕjdx, (31)

and

XN (t) :=

Ö

cN1 (t)
...

cNN (t)

è

. (32)

Then, the system (26) is reduced to the following equation:
{

AN ẊN (t) = F (XN (t)),

XN (0) = XN
0 .

(33)

Here, F (XN (t)) is a vector valued function in R
N with

(F (XN ))i = −¿

∫

Ω

∇ϕi : D(vN )|D(vN )|p−2dx−

N
∑

j,k=1

∫

Ω

|vN |p−2ϕi,kv
N
j ∂jv

N
k dx

− (p− 2)

N
∑

j,k,l=1

∫

Ω

|vN |p−4ϕi,kv
N
j ∂jv

N
l v

N
l v

N
k dx. (34)

Lemma 4.1. As long as XN ̸= 0, F (XN ) is locally Lipschitz in XN and AN is
positive definite .

Proof. From (34), it is straightforward that F (XN ) is C1 in XN as long as XN ̸= 0.
Pick any vector a ∈ R

N , a ̸= 0, and one has the following expression of aTANa
∫

Ω

|vN |p−2
N
∑

i=1

aiϕ
T
i (I + (p− 2)v̂N ¹ v̂N )

N
∑

j=1

ajϕj dx.

Define ³ =
∑N

i=1 aiϕi, and we thus have
∫

Ω

|vN |p−2³T (I + (p− 2)v̂N ¹ v̂N )³dx.
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We notice that the engenvectors of v̂N ¹ v̂N are vectors parallel to vN and vectors
perpendicular to vN , so the eigenvalues of v̂N ¹ v̂N are 1 and 0. Consequently the
eigenvalues of (I + (p− 2)v̂N ¹ v̂N ) are p− 1 and 1. Hence, we have
∫

Ω

|vN |p−2³T (I + (p− 2)v̂N ¹ v̂N )³dx g min{p− 1, 1}

∫

Ω

|vN |p−2|³|2 dx > 0,

as long as vN ̸= 0, i.e, XN ̸= 0.

Proposition 4.2. Given |X| ≠ 0, there exists ¶ > 0 and a unique XN (t) ∈
C1([0, ¶)) such that |XN (t)| > 0 satisfying (33), and XN (0) = X.

Proof. First, by Lemma 4.1, we can rewrite ODE (33) as ẊN (t) = (AN )−1F (XN ).
By Cramer’s rule,

(AN )−1 =
1

det(AN )
MT ,

where M is the matrix of cofactors of AN . Since det(AN ) and M are both C1 in
XN as long as XN ̸= 0, we have (AN )−1F (XN ) is C1 as long as XN ̸= 0. This
ensures (AN )−1F (XN ) is locally Lipchitz as long as XN ̸= 0. Hence, following from
classical ODE theory, we conclude that there exists ¶ > 0 such that ODE system
(33) has a unique solution on [0, ¶).

Note that by the argument in the proof of Proposition 4.2, as long as 0 <
|XN (t)| < ∞, the solution can be extended. The largest existence time t∗ before
|XN | touching 0 is thus defined by

t∗ := sup{t g 0 : (33) has a unique solution XN ∈ C
1[0, t], |XN (s)| ≠ 0 , ∀s ∈ [0, t)}.

(35)

Clearly, at least one of the following must happen if t∗ <∞:

• lim supt→t∗ |XN (t)| = +∞;
• lim inft→t∗ |XN (t)| = 0.

Next, we prove that XN (t) is never 0 and does not blow up . Once this has been
proved, the solution to ODE (33) is defined globally.

Proposition 4.3. Suppose v0 ∈ Up(Ω). For T < t∗, one has

d

dt

∫

Ω

|vN |pdx = −q¿

∫

Ω

|D(vN )|pdx, (36)

and thus there exists a constant C(p, ¿, v0) independent of N and T such that

∥vN∥L∞(0,T ;Lp(Ω)) f ∥vN0 ∥Lp(Ω),

∥vN∥Lp(0,T ;W 1,p
0 (Ω)) f C(p, ¿, v0).

(37)

Moreover, there are positive constants C,CN such that
∫

Ω
|vN |pdx g Ce−CN t for

any t f T . Consequently, the solution vN exists globally (i.e., t∗ = ∞).

Proof. First, take φ = vN in (26) (equivalently, multiply XN (t)T on both sides of
(33)). As vN is divergence free and disappears on the boundary, one has ïvN , vN ·
∇vNp ð = 0 . Moreover,

∇vN : D(vN ) = D(vN ) : D(vN ).

Hence, we have
d

dt

∫

Ω

|vN |pdx = −q¿

∫

Ω

|D(vN )|pdx,
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where q satisfies 1
p + 1

q = 1. As a result, we have ∥vN (t)∥Lp(Ω) f ∥v0∥Lp(Ω) for any

0 f t f T , or ∥vN∥L∞(0,T ;Lp(Ω)) f ∥v0∥Lp(Ω). Integrating equation (36) over time
interval [0, T ], one has

∥vN (T )∥pLp(Ω) − ∥vN (0)∥pLp(Ω) = −q¿∥D(vN )∥Lp(0,T ;Lp(Ω)).

This implies

∥vN∥Lp(0,T ;W 1,p
0 (Ω)) f C∥D(vN )∥Lp(0,T ;Lp(Ω))

=
C

q¿

(

∥vN (0)∥pLp(Ω) − ∥vN (T )∥pLp(Ω)

)

f
C

q¿
∥v0∥

p
Lp(Ω).

Next, we show that t∗ = ∞. In fact, define

∥XN∥1 :=

Å∫

Ω

|vN |pdx

ã1/p

and

∥XN∥2 :=

Å∫

Ω

|D(vN )|pdx

ã1/p

.

It is easy to see by Minkowski inequality that both ∥·∥1 and ∥·∥2 are norms for XN .
Since XN is in a finite dimensional Euclidean space, one thus can find a constant
c1N > 0, c2N > 0 such that

c1N∥XN∥2 f ∥XN∥1 f c2N∥XN∥2, ∀XN ∈ R
N .

Hence,
d

dt

∫

Ω

|vN |pdx g −
q¿

(c1N )p

∫

Ω

|vN |pdx.

Hence, vN is never zero. Moreover, since ∥vN∥L∞(0,T ;Lp(Ω)) f ∥vN0 ∥Lp(Ω), X
N never

blows up so that one can in fact take t∗ = ∞.

By the fact that vNp = |vN |p−2vN , it is easy to obtain the following corollary.

Corollary 4.4. It holds that

vNp ∈ L∞(0, T ;Lq(Ω;Rd)) ∩ Lq(0, T ;W 1,q
0 (Ω;Rd)).

Moreover,

sup
N

∥vNp ∥L∞(0,T ;Lq) + ∥vNp ∥Lq(0,T ;W 1,q) <∞.

4.2. Compactness. In this section, we prove the precompactness of the sequences
generated by the Galerkin approximation (25) and (28).

Later, we will need the time regularity of the sequences. To this end, we introduce
a time-shift operator:

Ähv
N (x, t) = vN (x, t+ h). (38)

First, we state a lemma which is useful in proving the convergence of time-shift
operator. For a detailed proof of the lemma, one can read [9] or [13, Lemma 2].

Lemma 4.5. Let p > 1. Then, there exists C(p) > 0 such that for any ¸1, ¸2 ∈ R
d,

it holds that

(|¸1|
p−2¸1 − |¸2|

p−2¸2) · (¸1 − ¸2) g C(p)(|¸1|+ |¸2|)
p−2|¸1 − ¸2|

2.

In the following lemma, we would study the asymptotic behavior of sequence
Ähv

N (x, t) as h goes to 0.
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Lemma 4.6. Let p g d g 2 and Ω be a bounded domain. then, it holds that
∥Ähv

N − vN∥Lp(0,T−h;Lp(Ω;Rd)) → 0 uniformly in N as h→ 0+.

Proof. For any fixed t f T − h and any φ ∈WN , one has

〈

Ähv
N
p (t)− vNp (t), φ

〉

+

Æ

∫ t+h

t

vN · ∇vNp ds, φ

∏

= ¿

Æ

∫ t+h

t

Lp(v
N )ds, φ

∏

. (39)

Taking φ = Ähv
N (t)− vN (t), we now estimate each term in (39) in detail.

First, by Lemma 4.5, it holds that∫
Ω

(τhv
N
p (t)− v

N
p (t)) · (τhv

N (t)− v
N (t))dx g C(p)

∫
Ω

(|τhv
N |+ |vN |)p−2|τhv

N − v
N |2dx

g C(p)∥(τhv
N − v

N )(t)∥pp.

(40)

For the term
∫

Ω

∫ t+h

t
Ähv

N (t) · Lp(v
N )dsdx, Young’s inequality yields:

∫

Ω

∫ t+h

t

Ähv
N (t) · Lp(v

N )dsdx = −

∫ t+h

t

∫

Ω

(D(Ähv
N ) : D(vN ))|D(vN )|p−2dxds

f

∫ t+h

t

(
1

p
∥D(Ähv

N )(t)∥pp +
1

q
∥D(vN )(s)∥pp)ds

=
h

p
∥D(Ähv

N )(t)∥pp +
1

q

∫ t+h

t

∥D(vN )(s)∥ppds,

(41)

where 1
p + 1

q = 1.

Similarly for the integral term
∫

Ω

∫ t+h

t
vN (t) · Lp(v

N )dsdx, one has

∫

Ω

∫ t+h

t

vN (t) · Lp(v
N )dsdx f

h

p
∥D(vN )(t)∥pp +

1

q

∫ t+h

t

∥D(vN )(s)∥ppds. (42)

To estimate the term
∫

Ω

∫ t+h

t
vN · ∇vNp · Ähv

N (t)dsdx, we need the Gagliardo-
Nirenberg inequality, which tells us that on a bounded domain Ω × [0, T ], for any
function f ∈ L∞(0, T ;Lp(Ω;Rd)) ∩ Lp(0, T ;W 1,p(Ω;Rd)),

∥f∥2p2p f C∥∇f∥dp∥f∥
2p−d
p f C(∥f∥L∞(0,T ;Lp(Ω;Rd)))∥∇f∥

d
p.

Therefore,
∫

Ω

∫ t+h

t

vN · ∇vNp · Ähv
N (t)dsdx

f

∫ t+h

t

1

2p
(∥Ähv

N (t)∥2p2p + ∥vN (s)∥2p2p) +
1

q
∥vNp (s)∥qW 1,pds

f C

Ç

h∥∇Ähv
N (t)∥dp +

∫ t+h

t

∥∇vN (s)∥dp + ∥vNp (s)∥qW 1,qds

å

.

(43)

Similarly, it holds that
∫
Ω

∫ t+h

t

v
N · ∇vNp · vN (t)dsdx f C

Ç

h∥∇vN (t)∥dp +

∫ t+h

t

∥∇vN (s)∥dp + ∥vNp (s)∥q
W1,qds

å

.

(44)



EXISTENCE OF WEAK SOLUTIONS TO p-NAVIER-STOKES EQUATIONS 1881

Overall, we have the final estimate:

∥(Ähv
N − vN )(t)∥pp f Ch(∥∇Ähv

N (t)∥pp + ∥∇vN (t)∥pp + |∇Ähv
N (t)∥dp + ∥∇vN (t)∥dp)

+ C

∫ t+h

t

∥∇vN (s)∥pp + ∥∇vN (s)∥dp + ∥vNp (s)∥qW 1,qds.

(45)

Integrating both sides over time t from 0 to T − h, one has

∥Ähv
N − vN∥p

Lp(0,T−h;Lp(Ω;Rd))

fC1h

∫ T−h

0

∥∇Ähv
N (t)∥pp + ∥∇vN (t)∥pp + |∇Ähv

N (t)∥dp + ∥∇vN (t)∥dpdt

+ C2

∫ T−h

0

∫ t+h

t

∥∇vN (s)∥pp + ∥∇vN (s)∥dp + ∥vNp (s)∥qW 1,qdsdt

fC1h

∫ T

0

∥∇vN (s)∥pp + ∥∇vN (s)∥dpdt+ C2h

∫ T

0

∥∇vN (s)∥pp

+ ∥∇vN (s)∥dp + ∥vNp (s)∥qW 1,qds.

fC̃h

∫ T

0

∥∇vN (s)∥pp + ∥∇vN (s)∥dp + ∥vNp (s)∥qW 1,qds.

(46)

With assumption d f p,
∫ T

0
∥∇vN (s)∥dp is bounded above by

Ç

∫ T

0

∥∇vN (s)∥ppds

å
d
p

T
p−d
p .

Following Proposition 4.3 and Remark 4.4, we conclude

∥Ähv
N − vN∥p

Lp(0,T−h;Lp(Ω;Rd))
f Ch, (47)

which is a bound uniform in N . Thus, the lemma is proved.

Next, we are going to derive some compactness results from the previous esti-
mates. To reach this goal, we need the help from a variant of the Aubin-Lions
Lemma [6, 18].

The operator B : X → Y is called a (nonlinear) compact operator; if it maps
bounded subsets of X to relatively compact subsets of Y . Let L1

loc(0, T ;X) be the
set of functions f such that for any 0 < t1 < t2 < T , f ∈ L1(t1, t2;X), equipped
with the semi-norms ∥f∥L1(t1,t2;X). A subset F of L1

loc(0, T ;X) is called bounded,

if for any 0 < t1 < t2 < T , F is bounded in L1(t1, t2;X).

Lemma 4.7. [Aubin-Lions] Let X,Y be Banach spaces, 1 f p < ∞ and B :
X → Y be a (nonlinear) compact operator. Assume that F is a bounded subset of
L1
loc(0, T ;X) such that E = B(F ) ¢ Lp(0, T ;Y ), and

• E is bounded in L1
loc(0, T ;Y ),

• ∥Ähu− u∥Lp(0,T−h;Y ) → 0 as h→ 0+, uniformly for u ∈ E.

Then, E is relatively compact in Lp(0, T ;Y ).

Now, we are ready to get a candidate of weak solutions through the limit of
subsequence of {vN}Ng1.



1882 YUANYUAN FENG, LEI LI, JIAN-GUO LIU AND XIAOQIAN XU

Proposition 4.8. Let vN be the solution to the ODE system ( 33). There exists a
subsequence {Nk}kg1, v ∈ L∞(0, T ;Up(Ω)) ∩ L

p(0, T ;W ) and a symmetric matrix
Ç ∈ Lq(0, T ;Lq(Ω;Rd×d)), such that as k → ∞,

vNk → v, strongly in Lp(0, T ;Lp(Ω;Rd)),

vNk
p → |v|p−2v =: vp, strongly in Lq(0, T ;Lq(Ω;Rd)),

∇vNk á ∇v, weakly in Lp(0, T ;Lp(Ω;Rd)),

|D(vNk)|p−2D(vNk)á Ç, weakly in Lq(0, T ;Lq(Ω;Rd)).

(48)

Proof. In Lemma 4.7, take X = W 1,p
0 (Ω;Rd), Y = Lp(Ω;Rd), E = F = {vN}Ngn∗

and B to be the embedding map from X to Y . By Proposition 4.3 and the fact
that W 1,p

0 (Ω;Rd) is compactly embedded to Lp(Ω;Rd), {vN}Ngn∗
is bounded in

L∞(0, T ;Lp(Ω;Rd)), and hence E is a bounded set in L1(0, T ;Lp(Ω;Rd)). In addi-
tion, by Lemma 4.6,

∥Ähv
N − vN∥Lp(0,T−h;Lp(Ω;Rd)) → 0

as h → 0+ uniformly for N . Then, by Lemma 4.7, E = {vN} is relatively
compact in Lp(0, T ;Lp(Ω;Rd)). Hence, there is a subsequence {vNk} and v ∈
Lp(0, T ;Lp(Ω;Rd)) such that

vNk → v, strongly in Lp(0, T ;Lp(Ω;Rd)).

Since vN ∈ L∞(0, T ;Up(Ω)) with the uniform bound ∥v0∥Lp , one has v ∈
L∞(0, T ;Up(Ω)) with the same bound.

The strong convergence of vNk in Lp(0, T ;Lp) implies the almost everywhere
convergence, and thus

vNk
p → |v|p−2v := vp, a.e in Ω× [0, T ].

Combining with the fact that

∥v
Nk
p ∥

Lq(0,T ;Lq(Ω;Rd))
= ∥v

Nk∥
p/q

Lp(0,T ;Lp(Ω;Rd))
→ ∥v∥

p/q

Lp(0,T ;Lp(Ω;Rd))
= ∥vp∥Lq(0,T ;Lq(Ω;Rd))

,

one has

vNk
p → |v|p−2v := vp, strongly in Lq(0, T ;Lq(Ω;Rd)).

From Proposition 4.3, we know that {∇vNk} is bounded in Lp(0, T ;Lp(Ω;Rd)),
which is a reflexive space. Then, for a subsequence (without relabeling), ∇vNk á
· ∈ Lp(0, T ;Lp(Ω;Rd)). Take ϕ ∈ C∞(Ω× [0, T );Rd×d). then,

∫ T

0

∫

Ω

· : ϕdxdt = lim
k→∞

∫ T

0

∫

Ω

∇vNk : ϕdxdt

= − lim
k→∞

∫ T

0

∫

Ω

vNk · (∇ · ϕ)dxdt = −

∫ T

0

∫

Ω

v · (∇ · ϕ)dxdt, (49)

where the last equality follows from the fact that vNk → v in Lp(0, T ;Lp(Ω;Rd)).
Hence, we have ∇v = ·. Then, vNk converges weakly to v in Lp(0, T ;W 1,p) with
vNk ∈ Lp(0, T ;W ). So, v ∈ Lp(0, T ;W ). Note that

∥|D(vNk)|p−2D(vNk)∥q
Lq(0,T ;Lq(Ω;Rd))

=

∫ T

0

∫

Rd

|D(vNk)|p dxdt < C,

which then yields that |D(vNk)|p−2D(vNk) á Ç, for some Ç ∈ Lq(0, T ;Lq(Ω;Rd)).
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5. Existence of weak solutions. To establish the existence of the weak solutions,
we need to identify Ç with |D(v)|p−2D(v). Now, define G : Lp(0, T ;Lp(Ω;Rd×d)) →
Lq(0, T ;Lq(Ω;Rd×d)) by

G(¹) := |¹|p−2¹. (50)

For any ¹1, ¹2 ∈ Lp(0, T ;Lp(Ω;Rd×d)) (see Lemma 4.5, where the product of two
matrices is A : B),

ï¹1 − ¹2, G(¹1)−G(¹2)ðL2
t (0,T ;L2

x(Ω)) g 0, (51)

which indicates that G is a monotone operator. We also note that the mapping
¼ → ïv2, G(v1 + ¼v2)ð is continuous. To verify that Ç = G(Dv), we will basically
apply the following Browder-Minty theorem ([17, Theorem 10.49]).

Lemma 5.1. Let X be a real reflexive Banach space. Let G: X → X ′ be a
nonlinear, bounded monotone operator satisfying that ∀v1, v2 ∈ X, the mapping
¼→ ïv2, G(v1 + ¼v2)ð is continuous. If wn á w in X, and G(wn)á ´ in X ′, and

lim sup
n→∞

ïwn, G(wn)ð f ïw, ´ð,

then G(w) = ´.

Below, we will set X = Lp(0, T ;Lq) and X ′ = Lq(0, T ;Lq). Moreover, recall that

V = {v ∈ Lp(0, T ;W 1,p
0 (Ω,Rd)),∇ · v = 0}. (52)

We note that V is reflexive since it is a closed subspace of Lp(0, T ;W 1,p(Ω,Rd)),
which is reflexive.

To establish the conditions in this lemma, we need to estimate the time regularity
of the solutions.

5.1. Time regularity and finite difference approximation. In the following
lemma, we discuss the time regularity. We aim to figure out the convergence of
subsequence {∂tv

Nk
p }. However, ∂tv

Nk
p is in W ′

N , which decreases as N becomes
large. Hence, we introduce the projection operator QN so that QN : W → WN .
Then, we can talk about the convergence of Q∗

N∂tv
Nk
p , where Q∗

N is the conjugate
operator of QN .

Particularly, we will introduce the following. For any u ∈ W , in terms of the
Schauder basis, one has

u =

∞
∑

k=1

ckϕk.

Define QN :W →WN to be the projection operator

QNu =

N
∑

k=1

ckϕk.

Similar to the proof of Proposition 3.2, the Uniform Boundedness principle implies
that QN :W →WN ¢W is uniformly bounded in N , i.e.,

sup
N∈N

∥QN∥W→W <∞.
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For a function v in V , for a.e. t, v(t) ∈ W . Hence, QN is well-defined on V as
well, and QN is also uniformly bounded in V . Let Q∗

N : V ′ −→ V ′ be the conjugate
operator of QN , i.e., for any u ∈ V , w ∈ V ′, it holds that

ïQNu,wðL2
t (0,T ;L2

x(Ω)) = ïu,Q∗
NwðL2

t (0,T ;L2
x(Ω)).

We are now ready to show the time regularity results for the sequence {Q∗
N∂tv

Nk
p }.

Lemma 5.2. For the subsequence {vNk} in Proposition 4.8, we can further get a
subsequence of vNk (without relabeling) such that

Q∗
Nk
∂tv

Nk
p á ∂tvp, weakly in V ′. (53)

Here, V ′ is the dual space of V as in (21). Moreover, for any w ∈ V , we have

ïw, ∂tPvpðL2
t (0,T ;L2

x(Ω)) −

∫ T

0

∫

Ω

∇w : v ¹ vp dxdt+ ¿

∫ T

0

∫

Ω

∇w : Çdxdt = 0.

(54)

Proof. For any fixed φ ∈ V with ∥φ∥Lp(0,T ;W 1,p
0 (Ω,Rd)) f 1, note that

ïφ,Q∗
Nk
∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω)) = ïQNk

φ, ∂tv
Nk
p ðL2

t (0,T ;L2
x(Ω)).

Since QNk
φ(t) ∈ WN for a.e. t, and QNk

is uniformly bounded, one then has by
(26) that

ïφ,Q∗
Nk
∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω))

= −ïQNk
φ, vNk · ∇vNk

p ðL2
t (0,T ;L2

x(Ω)) + ¿ïQNk
φ,Lp(v

Nk)ðL2
t (0,T ;L2

x(Ω))

=

∫ T

0

∫

Ω

∇QNk
φ : (vNk ¹ vNk

p )dxdt− ¿

∫ T

0

∫

Ω

∇QNk
φ : D(vNk)|D(vNk)|p−2dxdt.

Now, we estimate the right hand side term by term. For the first term, by the
Hölder inequality,
∣

∣

∣

∣

∫ T

0

∫
Ω

∇QNk
φ : (v

Nk ¹ v
Nk
p )dxdt

∣

∣

∣

∣

f

∫ T

0

∫
Ω

|∇QNk
φ|p

p
+

|vNk |2p

2p
+

2p − 3

2p
|v

Nk
p |

2p
2p−3 dxdt. (55)

Since QNk
is bounded in Lp(0, T ;W 1,p

0 ),
∫ T

0

∫

Ω
|∇QNk

φ|p dxdt is bounded uniformly
in Nk. Applying the Gagliardo-Nirenberg inequality, one has

∥vNk∥2p2p f C∥∇vNk∥dp∥v
Nk∥2p−d

p , (56)

and

∥vNk
p ∥

2p/(2p−3)
2p

2p−3

f C∥∇vNk
p ∥d/(2p−3)

q ∥vNk
p ∥(2p−d)/(2p−3)

q . (57)

Using the estimates in Proposition 4.3, and the fact that d
2p−3 f q and 2p−d

2p−3 f q

for p g d g 2, one concludes the boundedness.
For the second term, it is easy to check the boundedness, since the Hölder in-

equality yields that
∣

∣

∣

∣

∣

∫ T

0

∫

Ω

∇QNk
φ : D(vNk)|D(vNk)|p−2dxdt

∣

∣

∣

∣

∣

f

∫ T

0

∫

Ω

|∇QNk
φ|p

p
+

|D(vNk)|p

q
dxdt.

Again, using the estimates in Proposition 4.3, one gets the boundedness.
Therefore, Q∗

Nk
∂tv

Nk
p is bounded in V ′. Since V is reflexive, there are a subse-

quence (without relabeling) and ³ ∈ V ′ such that

Q∗
Nk
∂tv

Nk
p á ³ weakly in V ′. (58)
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For any È ∈ C1
c (Ω× [0, T )]) with ∇ · È = 0, one has

ïψ,Q∗

Nk
∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω)) = ïQNkψ, ∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω))

= −ï∂tQNkψ, v
Nk
p ðL2

t (0,T ;L2
x(Ω)) −

∫
Ω

QNkψ(x, 0)v
Nk
p (x, 0)dx

→ −ï∂tψ, vpðL2
t (0,T ;L2

x(Ω)) −

∫
Ω

ψ(x, 0)vp(x, 0)dx,

as k → ∞. Note that the completion of C1
c (Ω × [0, T )]) with zero divergence in

W 1,p
0 is V . Hence, ³ = ∂tvp in V ′.
Now, for any φ ∈ C1

c (Ω × [0, T )) with ∇ · φ = 0, by the convergence in Propo-
sition 4.8, one clearly has vNk ¹ vNk

p → v ¹ vp strongly in L1(0, T ;L1(Ω;Rd×d)).
Hence it holds that

ïφ, ∂tvpðL2
t (0,T ;L2

x(Ω)) −

∫ T

0

∫

Ω

∇φ : v ¹ vp dxdt+ ¿

∫ T

0

∫

Ω

∇φ : Çdxdt = 0.

Similar to the estimate in (55), v ¹ vp ∈ Lq(0, T ;Lq(Ω;Rd×d)). Hence, by density
argument, we can replace φ by any w ∈ V .

Remark 5.3. We do not have the convergence vN¹vNp → v¹vp in Lq(0, T ;Lq(Ω;Rd×d)).

Next, we need a technical result to obtain the chain rule for the weak time
derivative of the Lp integral for v. In the proof of the original work [13], there is
a gap to establish the chain rule (specifically, in the paragraph and equation below
Equation (97)). The method here can be used to fill that gap there. Define the
energy function

H(t) :=
1

q

∫

|v(x, t)|p dx =
1

q

∫

|vp(x, t)|
q dx. (59)

Consider the finite time differences

D+
h g(t) :=

1

h
(Ähg(t)− g(t)) (60)

and

D−
h g(t) :=

1

h
(g(t)− Ä−hg(t)). (61)

We have

Proposition 5.4. The time differences D+
h vp(t)1[0,T−h](t) and D

−
h vp(t)1[h,T ](t) are

bounded uniformly in V ′, and both have subsequences (without labeling) converging
weakly to ∂tvp as h → 0 in V ′. Moreover, there is a version of the mapping t 7→
H(t) that is continuous with H(0) = 1

q∥v0∥
p
Lp and satisfies the following for any

0 f s f t f T :
∫ t

s

∫

Ω

v(Ä)∂tvp(Ä) dxdÄ = H(t)−H(s). (62)

Proof. Take φ ∈ V , T > h > 0. Let Q∗
N be the conjugate operator of QN as defined

before. Then, by (26), one has

∫ T

0

∫

Ω

φ(t) ·Q∗
ND

−
h vp dxdt =

∫ T

h

1

h

∫ t

t−h

∫

Ω

∇xQNφ(t) : v
N (Ä)¹ vNp (Ä)dxdÄdt

− ¿

∫ T

h

1

h

∫ t

t−h

∫

Ω

∇xQNφ(t) : D(vN (Ä))|DvN (Ä)|p−2dxdÄdt =: I1 + I2. (63)
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Next, we estimate these two terms. By Young’s inequality,

|I1| f

∫ T

h

∫

Ω

|∇xQNφ(t)|
p

p
dt+

∫ T

h

1

h

∫ t

t−h

∫

Ω

|vN (Ä)¹ vNp (Ä)|q

q
dxdÄdt

f
Cp

p
∥φ∥p

Lp(0;T ;W 1,p
0 )

+

∫ T

0

∫

Ω

|vN (s)¹ vNp (s)|q

q
ds,

(64)

which is bounded as in (55), (56) and (57). In addition, one similarly has

|I2| f

∫ T

h

∫

Ω

|∇xQNφ(t)|
p

p
dt+

∫ T

h

1

h

∫ t

t−h

∫

Ω

(

|DvN (Ä)|p−1
)q

q
dxdÄdt

f
Cp

p
∥φ∥p

Lp(0;T ;W 1,p
0 )

+

∫ T

0

∫

Ω

∣

∣DvN (s)
∣

∣

(p−1)q

q
dxds,

(65)

which is also bounded due to the fact that D(vN ) is bounded in Lp(0, T ;Lp(Ω)).
Hence, 1

h (Q
∗
NPvNp (t)−Q∗

NPvNp (t− h))1[h,T ](t) is uniformly (in N and h) bounded

in V ′. Letting N → ∞, by the strong convergence of vNp to vp, we have that

D−
h vp(t)1[h,T ](t) is uniformly (in h) bounded in V ′. Similar arguments hold for

D+
h vp(t)1[0,T−h].

Now, up to a subsequence, as h → 0, D−
h vp(t)1[h,T ](t) would have a weak limit

in V ′, denoted by µ. By pairing with a smooth function, it is not hard to identify
that µ is just ∂tvp. Similarly, D+

h vp(t)1[0,T−h] would have a subsequence converging
to ∂tvp as well.

Now, since v ∈ V , let s, t ∈ (h, T ), and we have
∫ t

s

∫

Ω

v(Ä)D−
h vp(Ä) dxdÄ =

1

h

∫ t

s

∫

Ω

|v(Ä)|p − v(Ä)vp(Ä − h) dxdÄ

g
1

h

∫ t

s

∫

Ω

|v(Ä)|p −
|v(Ä)|p

p
−

1

q
|vp(Ä − h)|q dxdÄ

=
1

qh

∫ t−h

t

∫

Ω

|v(Ä)|p dxdÄ −
1

qh

∫ s−h

s

∫

Ω

|v(Ä)|p dxdÄ.

(66)

Then, as h→ 0+, the left hand side converges to
∫ t

s

∫

Ω
v(Ä)∂tvp(Ä) dxdÄ due to the

weak convergence of D−
h vp1[h,T ] and thus D−

h vp1[s,t] in V ′. The right hand side

tends to 1
q∥v(t)∥

p
Lp − 1

q∥v(s)∥
p
Lp as h tends to zero, for almost every t, s ∈ (0, T ).

Hence, for almost every s < t, s, t ∈ (0, T ), one has
∫ t

s

∫

Ω

v(Ä)∂tvp(Ä) dxdÄ g H(t)−H(s).

Moreover, one may do the same thing for D+
h vp(t) to get for almost every s, t ∈

(0, T − h) that
∫ t

s

∫

Ω

v(Ä)D+
h vp(Ä) dxdÄ f

1

qh

∫ t+h

t

∫

Ω

|v(Ä)|p dxdÄ −
1

qh

∫ s+h

s

∫

Ω

|v(Ä)|p dxdÄ.

By the same argument, for almost every s < t, s, t ∈ (0, T ), one has
∫ t

s

∫

Ω

v(Ä)∂tvp(Ä) dxdÄ f H(t)−H(s).
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Hence, we have the chain to hold

H(t)−H(s) =

∫ t

s

∫

Ω

v(Ä)∂tvp(Ä) dxdÄ. (67)

for almost every s, t ∈ (0, T ) with s < t. Since the right hand side is continuous in
s, t H can be made into a continuous function.

Moreover, to see H(0+) = 1
q∥v0∥

p
Lp , we note that

∣

∣

∣

∣

1

q

∫

Ω

|vN (t)|p dx−
1

q

∫

Ω

|vN (0)|p dx

∣

∣

∣

∣

f

∣

∣

∣

∣

∣

∫ t

0

∫

Ω

vN (Ä)∂tv
N
p (Ä) dÄ

∣

∣

∣

∣

∣

f Ct,

where C is uniform in N . As N → ∞, 1
q

∫

Ω
|vN (0)|p dx→ 1

q∥v0∥
p
Lp , and for almost

every t, 1
q

∫

Ω
|vN (t)|p dx converges to H(t). Hence, H(0+) is given as mentioned.

This also means in (67) we can take t = T and s = 0.

5.2. Existence of weak solutions and the energy dissipation equality. In
this subsection, we first identify Ç and then prove the existence of weak solutions.

Lemma 5.5. In Lq(0, T ;Lq(Ω;Rd×d)), we have

Ç = |Dv|p−2Dv. (68)

In other words, for any φ ∈ C∞
c ([0, T )× Ω),

∫ T

0

∫

Ω

∇φ : Çdxdt =

∫ T

0

∫

Ω

∇φ : D(v)|D(v)|p−2dxdt. (69)

Proof. Taking w = v in (54), due to the fact that Ç is symmetric, one has

ïv, ∂tvpðL2
t (0,T ;L2

x(Ω)) = −¿

∫ T

0

∫

Ω

∇v : Çdxdt = −¿

∫ T

0

∫

Ω

D(v) : Çdxdt.

In fact, we need to show
∫ T

0

∫

Ω

∇v : v ¹ vpdxdt = 0

To justify this, first recalling (56) and (57), one has v ∈ L2p(0, T ;L2p(Ω)) and
vp ∈ Lr(0, T ;Lr(Ω)) with r = 2p

2p−3 . We can extend v to be defined in R
d such

that v = 0 for x /∈ Ω. Then, v ∈ L2p(0, T ;L2p(Rd)), and ∇v ∈ Lp(0, T ;Lp(Rd)).
Then, vϵ := v ∗ Jϵ for a mollifier Jϵ. Then, one has vϵ → v in L2p(0, T ;L2p(Rd)),
∇vϵ → ∇v in Lp(0, T ;Lp(Rd)) and (vϵ)p → vp in Lr(0, T ;Lr(Ω)). Hence, due to
∇ · vϵ = 0, one has

0 =

∫ T

0

∫

Ω

∇vϵ : vϵ ¹ (vϵ)pdxdt→

∫ T

0

∫

Ω

∇v : v ¹ vpdxdt.

On the other hand, with the same notation as in Lemma 5.2 and Proposition 5.4,

∥vNk(t)∥pLp

q
−

∥vNk(s)∥pLp

q
→

∥v(t)∥pLp

q
−

∥v(s)∥pLp

q
=

∫ t

s

∫

Ω

v(Ä)∂tvp(Ä) dxdÄ.

(70)

By the continuity argument, same as in the end of the proof of Proposition 5.4, we
can take t = T and s = 0. Also, the left hand side of (70) equals

ïvNk , Q∗
N∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω)) = ïvNk , ∂tv

Nk
p ðL2

t (0,T ;L2
x(Ω)) = −

∫ T

0

∫

Ω

|DvNk |pdxdt.

(71)
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Hence, one actually has,

lim
k→∞

∫ T

0

∫

Ω

|DvNk |pdxdt =

∫ T

0

∫

Ω

D(v) : Çdxdt.

By the property of G and Lemma 5.1, one has

Ç = G(D(v)).

We get the existence of weak solution to p-Navier-Stokes equations.

Theorem 5.6. Let Ω be a bounded domain in R
d with C∞ boundary and p g d g

2. Let v0 ∈ Up(Ω). There exists a global weak solution to initial/boundary value
problem of the p-Navier-Stokes equations (Equations ( 2)) in the sense of Definition
2.3.

Proof. For any È ∈ C∞
c (Ω× [0, T )), one has

∫ T

0

∫

Ω

∇È · vNkdxdt = 0,

since vNk is divergence free and disappears on the boundary. Using Lemma 4.8,
sending k to ∞, one has

∫ T

0

∫

Ω

∇È · vdxdt = 0.

For any φ ∈ C∞
c (Ω× [0, T ),Rd), one has

∫ T

0

∫

Ω

vNk
p · ∂tφdxdt+

∫ T

0

∫

Ω

∇φ : (vNk ¹ vNk
p )dxdt

− ¿

∫ T

0

∫

Ω

∇φ : D(vNk)|D(vNk)|p−2dxdt+

∫

Ω

|vNk
0 |p−2vNk

0 · φ(x, 0)dx = 0.

Again using Lemma 4.8, sending k to ∞, one gets

∫ T

0

∫

Ω

vp · ∂tφdxdt+

∫ T

0

∫

Ω

∇φ : (v ¹ vp)dxdt

− ¿

∫ T

0

∫

Ω

∇φ : D(v)|D(v)|p−2dxdt+

∫

Ω

|v0|
p−2v0 · φ(x, 0)dx = 0.

For the time regularity, note that for some C independent of Nk,

∥Ähv
Nk − vNk∥p

Lp(0,T−h;Lp(Ω;Rd))
f Ch,

by Lemma 4.6. Using the fact that vNk → v strongly in Lp(0, T ;Lp(Ω;Rd)), one
then has

∥Ähv − v∥p
Lp(0,T−h;Lp(Ω;Rd))

f Ch.

Thus, the time regularity is proved. From all the above, we proved that v is a weak
solution to the p-Navier-Stokes problem for given T .

Note that T is arbitrary, and one may use a diagonal argument to extract a
subsequence of vNk that converges in the sense listed in Proposition 4.8 for every
[0, n]. The limit of this subsequence is then a weak solution on any bounded interval
and thus a global weak solution.
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Moreover, we have the following the energy dissipation law for the weak solutions,
which follows directly from Proposition 5.4 and the argument in the proof of Lemma
5.5.

Proposition 5.7. Suppose that p g d g 2. The weak solutions considered in
Theorem 5.6 satisfy the energy dissipation equality

H(t)−H(s) = −¿

∫ t

s

∫

Ω

|D(v)|p dxdÄ. (72)

As well-known, the usual Navier-Stokes equations have energy dissipation equal-
ity for d = 2 only and this may be lost for d = 3, related to the famous Onsager
conjecture [7]. Now, for the p-Navier-Stokes equations, when d g 3, if p is large
enough, the energy dissipation equality still holds.
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Appendix A. Equivalence of the norms. In this section, we show the following
equivalency of the W 1,p norm:

C ′(∥u∥Lp + ∥D(u)∥Lp) f ∥u∥Lp + ∥Du∥Lp f C(∥u∥Lp + ∥D(u)∥Lp), (73)

where C,C ′ are constants, D(u) = 1
2 (∇u +∇uT ). The proof can be found in [16],

Proposition 1.1, for completion. We sketch the main steps here.
The first inequality of (73) is trivial. For the second inequality, observe that one

has the following relations between u and D(u):

D(u)ij =
∂ui
∂xj

+
∂uj
∂xi

,

∂2ui
∂xj∂xk

=
∂D(u)ik
∂xj

+
∂D(u)ij
∂xk

−
∂D(u)jk
∂xi

.

Hence, suppose ∥u∥Lp + ∥D(u)∥Lp is finite, and then we have ∂2ui

∂xj∂xk
∈ W−1,p. By

Theorem 1.1 in [16],

∥∂jui∥Lp f C(∥∂jui∥W−1,p + ∥∇∂jui∥W−1,p),

so that ∂jui ∈ Lp. By the Open Mapping Theorem, these two norms are equivalent.
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