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Abstract. In this paper we derive the best constant for the following L°°-type
Gagliardo-Nirenberg interpolation inequality
_ pd

dp+(p—d(g+1)
where parameters ¢ and p satisfy the conditions p > d > 1, ¢ > 0. The best constant
Cq,00,p is given by

lullzoe < Coopllull s IVullge, 6

_8
Covop =0 7(1—0)s M, 7, M, := /Rd ud*ldz,

where u. o is the unique radial non-increasing solution to a generalized Lane-Emden
equation. The case of equality holds when u = Au; oo (A(z — z¢)) for any real numbers
A, X > 0 and 2o € R% In fact, the generalized Lane-Emden equation in R contains a
delta function as a source and it is a Thomas-Fermi type equation. For ¢ =0 or d = 1,
Uc,0o have closed form solutions expressed in terms of the incomplete Beta functions.
Moreover, we show that ue m — Ue,0o a0d Cymp = Cg 00 p as m — 400 for d = 1, where
Ue,m and Cgm p are the function achieving equality and the best constant of L™-type
Gagliardo-Nirenberg interpolation inequality, respectively.
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1. Introduction. Research on functional inequalities is an important topic in the
Functional Analysis. In some circumstances one is interested in the exact value of the
smallest admissible constant in some functional inequalities. Possible motivations for
this can be described from the three respects: (i) it provides some geometrical insights (a
sharp version of some functional inequality is equivalent to the Euclidean isoperimetric
inequality [10]); (ii) it is helpful for the computation of the ground-state energy in a
physical model; (iii) it can be used to determine sharp conditions on initial data to
distinguish between global existence and finite time blow-up for some partial differential
equations with competition effects from some biological or physical systems, cf. [2,3,5,
8,9,19,33,34].

In 1938, Sobolev [30] proved that there is a constant Cy, > 0 such that for d > 3,
1 <p < d, any function u € L#5 (RY) with Vu € LP(R?), it holds that

[ull _ps < CapllVullLe. (1.1)
Ld-p

The best constant Cy, in (1.1) is established by Aubin and Talenti [1,31]. Together
with the interpolation inequality, it becomes the well-known Gagliardo-Nirenberg (G-N)
inequality for the case p < d. A general G-N inequality is given by the following form
(cf. [21, pp. 176, (2.3.50)] and [16,24])

(m+Dldp+ (p = d)(q+ 1)]’
where Cy ,,, p, > 0 is a constant, and the parameters d, g, m and p belong to the following
two ranges:

[[ul

1 < Cqmplull i IVullg,, 6=

(i) one range is
p>d, ¢>0andm=oco. (1.3)

We refer to this case as the L*°-type G-N inequality.
(ii) the other range is

p>1, 0<qg<m<oao, (1.4)
where o is defined by

o= {(p e ip<d, (1.5)
00 if p>d.
This case is referred to as the L™-type G-N inequality. For the case m = o, this
G-N inequality reduces to the Sobolev inequality (1.1) and for m = ¢, it is a
trivial case.

For some special parameters d, g, m and p in (1.4) and (1.5), the best constant of the
G-N inequality has been derived in terms of some closed formulas and studied widely in
the literatures [6,7,10-13, 20, 22,23, 33]. For m = oo, the best constant Cy , in the
inequality (1.2) was obtained in [22] only for d = 1. However, the best constant Cy o p in
the inequality (1.2) is not yet obtained for general parameters in (1.3) with d > 2. The
goal of this paper is to derive the best constant Cy o p of the L*°-type G-N inequality
(1.2).
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For parameters in the range (1.3), the inequality (1.2) can be written as the following

form
pd

Cpd+(g+1)(p—d)
Following a standard variational method, a minimizing problem is established in the

0 —0
lull Lo < Cooopl|VullLollull 5t 0<8

<1.  (16)

solution space
Y = {u] u e LI (RY), Vue LP(RY)} C L®(RY),
and we know that there is a positive constant « such that

—0
ol et Vel g

o = inf 1.7
A 7

Define a functional G : Y — R
wi Gu) = [lull 57 [ Vul| 7. (1.8)

The minimizing problem (1.7) is equivalent to the following minimizing problem

a= inf G(u). (1.9)

u€Y, [lul|goo=1
Thanks to the rearrangement technique (see [18, Chapter 3])
1" |e = [IAllLer, 1 <p < oo, (1.10)
where h* is the rearrangement function of h, and the Pdlya-Szegé inequality [4,27],
IVR*ls < IVAle, 1< p < oo, (1.11)

we know that the minimizing problem (1.9) is equivalent (The proof of this equivalence
is standard, cf. [19, Lemma 2.1]) to the following minimizing problem

a:uelr)yi G(u), (1.12)

rad

where Y% ; is a non-negative radial symmetric decreasing function space

r—0t

o0
el = {u(r) > 0| lim u(r)=1, u'(r) <0 ae., / (Ju + [ P) vt dr < oo} .
0

we take always u(0) = 1. And hence Y’

rad

For any u € Y} ,, C C([0,00)).

In Section 2, Propositions 1, 3 and 4 give the Euler-Lagrange equations for critical
points of the functional G(u) in Y* ;. For the case ¢ < p—1, by constructing an auxiliary
functional and connecting it with the contact angle by a Pohozaev type identity, we show

that the Euler-Lagrange equation is a free boundary problem, i.e. for some finite R > 0,
d—1
(| [P72u") + —— |/ |P72u' =u?  for 0 <r <R, (1.13)
r
u(0) =1, u(R) = u/(R) = 0. (1.14)

For the case ¢ > p — 1, the Euler-Lagrange equation is given by the following form
d—1

(Ju'|P~2) + |u/|P72u = ud  for 0 < r < oo, (1.15)
w(0) =1, lim u(r) =0. (1.16)
=00
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308 JIAN-GUO LIU anp JINHUAN WANG

We provide the decay rate of positive solutions to the problem (1.15)-(1.16) at the far
field in Proposition 5. Moreover, in Proposition 6, we show that solutions to Euler
Lagrange equations are also critical points of G(u) in Y} ;.

Since the L*-space is not reflexive space, the direct method of calculus variation
cannot be used for the L>°(R?) minimizing problem (1.12). Instead, in Section 3, we will
prove existence and uniqueness of solutions to the above corresponding Euler-Lagrange
equations, then show that the unique solution is a minimizer of G(u) in Y ;. Hence we

have the following result

THEOREM 1.1. Assume that exponents p > d > 1 and ¢ > 0, then there is a unique
solution u(r) € C'((0,00)) NY;*, for the problems (1.13)—(1.14) and (1.15)—(1.16), re-
spectively. Moreover, v'(r) < 0 in {r|u(r) > 0}.

Moreover, we show that the Euler-Lagrange equation is the following Thomas-Fermi
type equation, which contains a delta function as a source (see Proposition 10). For
g < p — 1, the solution to (1.13)—(1.14) is equivalent to the non-negative radial solution
of the Thomas-Fermi type equation with a free boundary, i.e. for some R > 0

Apu+ad(z) =u?, inD'(B(0,R)), (1.17)

a:=||Vull, + [lull £, (1.18)
)

w(0) =1, u(z) = a—f_i(x) =0, for |z| = R, (1.19)

where 0(z) is a delta function and 7 is the unit outward normal vector to 9B(0, R).
When ¢ > p — 1, the solution to the problem (1.15)—(1.16) is equivalent to the positive
radial solution to the Thomas-Fermi type equation
Ayu+ad(x) = u?, in D' (R?), (1.20)
u(0) =1, | l‘im u(z) = 0. (1.21)
xTr|— 00

This delta function in the above Thomas-Fermi type equations gives rise to a singularity
lim, o+ v/ (r) = oo (see (3.20)) in (1.13)—(1.14) and (1.15)—(1.16). To overcome this
singularity, we construct an approximation sequence by solutions of exterior problems in
the domain (r;,00), r; = 0, and provide some delicate estimates and new techniques to
finish the proof of Theorem 1.1.

In Section 4, we will derive the best constant of L>°-type G-N inequality and show
closed form solutions for some special parameters d, p and q. The main result is given by
Theorem 1.2.

THEOREM 1.2. Suppose p > d > 1, ¢ > 0, u € LI (R?) and Vu € LP(RY). Then
u € L*(R?) and it satisfies the following inequality

pd

wl| e < Cyoopllullt20 VU, 6= , 1.22
l[ull e < Cqoo0,plltell o [[Vullzo dp+ (p—d)(qg + 1) ( )
where the best constant
_8
Cq,oo,p = 97%(1 - 9)%MC d7 MC = ‘uc,oo‘q-i_ldx- (123)

Rn
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Here u, o is the unique radial solution as described by the following two cases:
o if ¢ < p—1, ucoo is the unique non-increasing solution of the free boundary
problem (1.13)—(1.14) and u(r) =0 for » > R.
o if ¢ > p—1, uc oo is the unique positive solution to the problem (1.15)—(1.16).
Moreover, the case of equality holds if u = Au, o (A|z — z¢|) for any A > 0, A € R and
Xo € R,

For the case p > d > 1 and ¢ = 0, a closed form solution u. can be expressed in
terms of an incomplete Beta function, which is defined as

B(z;a,b) = /Ow t2 =11 —t)b~ L. (1.24)

The best constant Cp o is given by

d

p— d\ pitr—d _ d+p —
C10,00,1) = p—d M. **r* , MC = /Rd ucmdm.

see Proposition 11.

For p > d =1 and g > 0, the free boundary problem (1.13)—(1.14) and the problem
(1.15)—(1.16) have closed form solutions respectively (see Proposition 12). And using
them we deduce the best constant

p
2p T pr(—D(q+D)
Cyoonp = . 1.25
e (p+(p—1)(Q+1)) (1.25)

Recall the L™-type G-N inequality

_ d(m — q)
mi1 < C ranlIVullg,, 0= P 1.26
fullereer = Campllansl¥elir: 0= Gy =g =+ p vy 20
with the best constant
qum)p = 9‘%(1 — 9)%——m1+1 Mc_%, M, = ugﬁdw, (1'27)

Rd
which can be found in [20]. Here parameters p, g, m satisfy (1.4) with some restrictive
conditions p > max{1, %} and ¢ < 0 — 1, u¢,m, is described by the following two cases:
(i) if ¢ < p — 1, there is a finite R,, > 0 such that wu,,, is the unique decreasing
solution of the following free boundary problem

d—1
(| |P~2u") + T\u’|p72u’ +um=u! for0<r< Ry, (1.28)
' (0) =0, u(Ry) = (Ry) =0, (1.29)

and u(r) =0 for r > R,,.
(i) if ¢ > p — 1, uc,m is the unique positive decreasing solution to the following

problem
1p—2,/\/ d—1 -2,/ m
(Ju'P~=u") + —— P72 +u™ =u?  for 0 < r < oo, (1.30)
r
v (0) =0, lim wu(r)=0. (1.31)
r—00
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Contrasting to L*°-type, there is no singularity at the origin in the Euler-Lagrange
equations (1.28)—(1.29) and (1.30)—(1.31). In Section 5, we will show the singular limit
behavior in the best constant and the solution to the Euler-Lagrange equations as m — oo
for d = 1, which indicates the connection between the L™-type G-N inequality (1.26)
and L*°-type G-N inequality (1.22). The result is given by Theorem 1.3.

THEOREM 1.3. Let u¢,, and u. oo be respectively the unique non-increasing radial solu-
tions of the problem (1.28)—(1.29) and the problem (1.13)—(1.14)(or the problem (1.30)—
(1.31) and the problem (1.15)—(1.16)) in the one-dimensional case. Then the following
facts hold

Ue,m (1) = Ue,oo(r)  forany 7 >0, Cymp = Cqoop, asm — oo.

Moreover, for ¢ < p — 1, let R,, and R be the free boundaries for u.,, and uc oo
respectively. Then we have R,, — R. as m — oo, where R, and R,, defined in
[20, formula (3.2)] are respectively given by

p Yy
R = , and
((p—l)(q+1)> p—q—1
_1\7 1) Po=ay e 1 p— 1
Rm:(p ) (m + )7 (g + 1) B(l__/ﬂ (¢+1 >), (1.32)
p m—q p’ p(m—q)

For simplicity, we will use the same function v = u(z) and v = u(r) to represent
a radial solution with u(z) = u(|x|) in this paper. It should be clear according to the
content of the text.

2. Euler-Lagrange equations for L>*°-type G-N inequalities. In the beginning
of this section, we derive the Euler-Lagrange equations for critical points of the functional
G(u) in Y

rad*

PROPOSITION 1. Assume that @(r) € Y7, is a critical point of G(u), then there is
Ao > 0 such that the re-scaling function u(r) = @(Agr) satisfies the following equation in

the classical sense

d—1
(| P72u) + —— [/ P72 = u?, 0 <7 <R, (2.1)
r
and the boundary conditions
li =1, 1 =0, 2.2
. 22

for some 0 < R < +o0.

Proof. Step 1 (Re-scaling and admissible variation). Let uy(r) := @(A1r), Ay > 0 be

a re-scaling parameter to be determined by (2.4). Noticing the scaling invariant of G(u)
for uyi(r) = u(Ar), we have

G(u1) = G(a). (2.3)

9Gu) _

Hence if u(r) € Y% ; is the critical point of G(u), then u; is also a critical point (=

0), and by choosing A1, it holds that

luallzass =1, [IVuallZ, =2 ax. (2.4)
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Since u; € Y%, ;, we have that u(r) is continuous in [0, 00).> Denote
Ry :=inf{r > OJus(r) = 0} € RT U {+00}.

For any admissible variation ¢ € C§°(0, R1) at w1, i.e., there is an €9 > 0 such that for
any 0 < |e] < &g, one has u; +e¢ € ;¥ ;. Then from a direction computation and using
(2.4), we have

d

Ri o o
o OG(u1 +e¢) = Sd/ fay ! (r My [P2u) ¢ () + (1 — O)af ulr® ¢(r) dr = 0.
e= 0

This implies that uq satisfies the following generalized Lane-Emden equation in the dis-
tribution sense

— 0 (r* Huy P 2u1) + (1= 0)artud =0, in (0,Ry),
lim wi(r) =1, lim wu(r) =0,
r—0+ r—R

where 0 < Ry < +o00.

Step 2 (Normalization). We re-scale the function uy as u(r) = uq(Ar), where A will
be given in (2.7). From (2.3), we know that w is also a critical point of G(u) in Y ,.
From (2.5) we deduce that u satisfies the following equation

—O\P (,rd71|u/|p72u/)’ + (1 _ e)alrdfluq — O, 0O<r< % — R
Taking

( ) . ie OAP = (1—O)ay, (2.7)

we have that u satisfies (2.1)—(2. 2) in the distribution sense.

Step 3 (u satisfies (2.1) (2 2) in the classical sense). The purpose of this step is to
prove that solutions of (2.1)—(2.2) in the distribution sense are also classical solutions
in any closed interval of (0, R). We need only to show that equation (2.1) is uniformly
elliptic, i.e., to prove |u/(r)| > C for some C > 0 in any closed interval of (0, R). That
will be a consequence of the following claim.

Claim. If there is 0 < r, < R such that u/(r.) = 0, then u(r,) = 0.

Proof of Claim. If not, then u(r.) > 0. Noticing that lim, o+ u(r) = 1 and
u/(r) < 0, then for any fixed r > r., we have f: s971y9(s) ds < oo. Moreover, by the
continuity of u(r) in (0,00), we know that there is 7* : r, < r* < oo such that if
r € [r«,r*), u(r) > 0. Hence integrating (2.1) from r, to r*, we deduce

*

o ) = [ " sl (s)ds. (2.8)

s

Notice that (r*)4=L|u/(r*)[P~2u/(r*) < 0 due to u'(r*) < 0 and the right side of the above

equation is positive. That is a contradiction. This completes the proof of this claim.
Since R := inf{r > 0u(r) = 0} € RT U{+4o00}, then we have r. = R by the claim. So,

we have that |u/(r)| > 0 in (0, R). Therefore, from regularity of solutions to the elliptic

f w1 € Y% ,;, we know that for any 0 < a < b < 400, u1 € Wmd([ b]). Hence u1(r) is continuous
in (0,00). The continuity at = 0 is given by lim _, o+ u1(r) = 1.
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312 JIAN-GUO LIU anp JINHUAN WANG

equation, we know that any weak solution of equation (2.5) in Y ; is also a classical
solution in any closed interval of (0, R). Hence equation (2.1) holds in the classical
sense. (]
In the following, we show the three important results: (i) For the case ¢ < p — 1, all
critical points of G(u) in Y}* ; satisfy the free boundary problem (1.13)—(1.14). Here we
need to derive a Pohozaev type identity and use it to prove that the contact angle is zero.
(ii) For the case ¢ > p — 1, we derive the Euler-Lagrange equations (1.15)—(1.16) for the
critical points of G'(u) in Y}¥ ;. Solutions to the Euler-Lagrange equations (1.15)—(1.16)
are positive and have decay properties at the infinity. (iii) We show that the solution to
the Euler-Lagrange equations in Y* ; is also a critical point of G(u) up to a re-scaling.
2.1. Case q < p—1: Compact support, zero contact angle and free boundary problem.
In this subsection, we prove that all critical points of G(u) satisfy the free boundary
problem (1.13)—(1.14). First, we show that a solution to (2.1)-(2.2) has a compact
support in [0,400) (see Proposition 2). Next we show that the solution has a zero-
contact-angle at the boundary of the compact support (see Lemma 2.1 and Lemma 2.2).
Finally we use the zero-contact-angle result to derive a complete free boundary problem

(1.13)—(1.14) (see Proposition 3).

PROPOSITION 2. Assume that u(r) € Y% ; is a critical point of G(u). Let u(r) = @(Aor)
for some A\g > 0 satisfy (2.1)—(2.2). If p > 1,0 < ¢ < p—1, then there is R € (0, 00) such
that u(R) = 0.

Proof. For a radial decreasing non-negative function v € Y* ,, there only exist two
cases: (i) there exists a finite R such that u(R) = 0; (ii) u(r) > 0 for all » > 0, and hence
u(r) = 0, v (r) = 0 as r — co.

Inspired by the work [26, Theorem 5.1], using a contradiction method, we show that
the second case cannot happen. Indeed, if (ii) holds, then v > 0 is a solution to the

following problem

d—1

(\u/\’FQu')’ + —|u’\p72u' =ul, 0<r<oo, (2.9)
Tlir(r)l+ u(r) =1, Tlg{)lo u(r) =0. (2.10)

Multiplying u’ to both sides of (2.9), we get

d (p=1_, - ult(r) d=1 ., .
— | — - =0. 2.11
o (A wer - ) ) 2.11)
Integrating (2.11) from r to 400 and utilizing the fact u(r) — 0 and «/(r) — 0 as r — oo,
we have
p—1, p uq+1(7") /Jrood_1 1\ |P
—|u' ()| = = —|u'(s)|Pds. 2.12
r - S [ ) (212)

Hence from (2.12), it holds that

1/p
/ _r ur (r). .
—ulr) = <<p—1><q+1>> r) (2.13)
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Using the method of separation of variable for (2.13) and integrating the resulting in-
equality from 0 to r, r € (0, +00), we obtain

! gt+1 P p
v du> | ————— for all
/W)“ ”(<p—1><q+1>) roforallr =t

which gives

—1/p
P P p=g=1
r<|{-—mm—m—m—— —(1=u > (r)]. 2.14
_<(p—1)(q+1)> p—q—l( ()) 219
Noticing that p > 1, ¢ < p — 1, by (2.14) we have
—1/p
p p
r<|—— _. 2.15
(<p—1>(q+1>) pog-1 (2.15)

Taking r — +00, we obtain a contradiction from (2.15). Hence the second case cannot
happen, i.e., there exists a finite R such that u(R) = 0.
O
Now we show that solutions to (2.1)—(2.2) have a zero contact angle at the boundary
of the compact support by constructing an auxiliary energy functional

p—d d 1
= VulPdx — —— g, 2.16
0w =5 [ \Vurdo - L [ wrtiaa (2.16)

LEMMA 2.1. Let a(r) € Y% ; be a critical point of G(u). Then there is Ay > 0 such that
the re-scaling function u(r) = @(Aor) is a zero point of the energy functional G(u) defined
in (2.16), i.e.,

G(u) = 0. (2.17)
Proof. From (2.4), the re-scaling function u(r) = a(A;7), A1 > 0 satisfies
1= / witde, a) = / |Vuq [Pdz. (2.18)
R4 R4

Let u(r) = uy (Ar), where X is given by (2.7). Thus from (2.18) we deduce

1
/ ut™tdy = VL / |VulPdy = a; AP~
Rd A R4

Hence

p—d p d / +1
= — d _— q d
G(u) ’ /Rd |VulPdz | Rdu x
p—d —d d_\a
“ q+1

Using (2.7) and the definition (1.8) of #, we have

_p—d 4 —pyp—d _ _ 4 ya_
) = L ()it - i,

ie., (2.17) holds.
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LEMMA 2.2. Let u(r) be a solution to the problem (2.1)—(2.2) in Y* .. Assume that

rad’
u(r) has a touchdown point R (i.e. u(R) = 0). Then the following relation between the
energy functional defined by (2.16) and the contact angle holds

(p - 1)Sd . dy,
~————— lim p 2.19
Ity sl (P, (2.19)

G(u) =
where Sy is the surface area of d-dimensional unit ball.

Proof. Now we prove (2.19) by using a similar idea to the proof of the Pohozaev
identity. Introduce the energy function

1 udtL(r)

p—- ’
H(r)=—— p . 2.20
() = P2 ) - (2:20)
Using (2.11), we have the following energy-dissipation relation
dH(r) d—-1 ,
_—t + — =0. 2.21
0+ e =0 (221)

Multiplying 7¢ to (2.21) and integrating the resulting equation from r to Ry, for any
fixed 0 < Ry < R, we obtain that

Ro RO
R4H(Ry) — rH(r) — d/ s H(s)ds + (d — 1)/ [ (s)|Ps?tds = 0.

By (2.20), the above equation can be written as the following form

afP—1, p uqul(T)) d p—d flo d—1y, 1
—_— — =RyH(Ry) — —— P
(Pt - ) —mgre - P [ s pas

T

d [T

q+1/,
Since u(r) € Y% ,;, we have that the limit of the right side of (2.22) exists as r — 07.

Hence taking the limit for both sides of (2.22), we have

5171yt (s)ds. (2.22)

-1 —d [T
P= 2 Yim v/ (7)]P =REH(Ry) — 2—2 / s/ (s)|Pds
p 0

P r—0t
d R
q+1Jo
Notice that 7¢|u/(r)|P > 0. Hence there is a constant C' > 0 such that

lim ¢/ (r)|P = C.
r—0+

0
5171yt (s)ds. (2.23)

Now we claim C' = 0. If C' > 0, then there is § > 0 such that

ru (r)|P > 3 for 0 <r <4,
which means C
P ()P > 57~*1 for 0 < r <.

Integrating above inequality from 0 to &, we deduce

) C )
00 > / s/ (5)[Pds > 5/ r~tdr = +oo0.
0 0
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This is a contradiction. Hence it holds that

lim ¢/ (r)|P = 0. (2.24)
r—0+
Therefore, using (2.20), (2.24) and taking the limit for (2.23) as Ry — R~, we have
p - 1 . di. 1 . d
— 1 R Ro)|P= 1 R{H(R
o pim Folw(Ro)l” = lim  RoH (o)
—d (" d [
= p_/ rd= ! (r)|Pdr — —— rd= Lyt (1) dr
P Jo q+1Jo
—d 1 1 1
= p-dl |VulPdx — i—/ uilde = —G(u).
P SaJBgyo) q+1Sa JBro Sd
Hence (2.19) holds. O

Finally, we show that all critical points of G(u) satisfy the free boundary problem
(1.13)—(1.14) up to a re-scaling.

PROPOSITION 3. Assume p > 1,0 < ¢ < p— 1. Let u(r) € Y}, be a critical point of
G(u). Then there is A\g > 0 such that the re-scaling function u(r) = @(\gr) satisfies the
free boundary problem (1.13)—(1.14).

Proof. As a direct consequence of (2.19) and G(u) = 0, one knows that «'(R) = 0. In
the other words, the contact angle is zero. This case is the so-called complete wetting
regime in Young’s law [17]. O

2.2. Case q > p — 1: Positivity and decay property. In this subsection, we show that
solutions to (2.1)—(2.2) are positive (see Proposition 4). And decay properties of solutions
to the problem (1.15)—(1.16) are proved in Proposition 5.

PROPOSITION 4. Assume p > 1, ¢ > p — 1. Let u(r) be a solution of (2.1)-(2.2). Then
u(r) > 0 for any 0 < r < co.

Proof. Now we only need to prove that R =ooc for p > 1, ¢ > p— 1. If not, R < 0.
By Proposition 3, we have u/(R) = 0. Multiplying 7¢~! to equation (2.1) and using
u'(r) < 0, we have

(=Y (r) [P + r i (r) =0, 0 <7 < R.

We extend the function u to u = 0 for r > R. Let Q. :=R%\ B.(0),Ve > 0 be a domain
without the origin. For any ¢(z) = ¢(|z|) > 0 and ¢ € C°(€2), it holds that

/ (= ()@ ! () [P~ + o (r)r®Lud (r))dr = 0.
And noticing Vu € LP(R?), we have

/ (Vo - Vu|VulP~2 + pu?)dx = 0.

€

Hence we have for any R > R > 0

Apu=u? in D(Bg(0)\ B:(0)).
Moreover, by Step 3 in the proof of Proposition 1 and u/(R) = 0, we know u € C(Bz(0)\

B.(0)). Positivity of u in Bg(0) \ B:(0) is a direct consequence of the Strong Maximum
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Principle given by Pucci and Serrin [29, Theorem 1.1.1]. To prove this positivity, we only
need to verify the necessary and sufﬁcient condition for the Strong Maximum Principle:
f(s) > 0 for s € (0,0) and [, 7 w = 00 (in the same notations as that in [29],

f(s) =59, F(s) = f;_:l , H(s) = —sp) While the condition f,, H—F()) = oo holds if
and only if ¢ > p — 1.
Therefore, positivity in Bz(0) \ B:(0) is a contradiction with v = 0 in Bz(0) \ Br(0).

O

PROPOSITION 5. Let u(r) be a solution of the problem (1.15)—(1.16). Then u(r) satisfies
the following decay estimate

lim 4o/ (r)P~ = 0. (2.25)

=00
Moreover, u(r) satisfies the following decay rates
(i) for ¢ > p — 1, it holds that
u(r) +rlu/(r)] < Cpqr™ i for r > 0; (2.26)
(ii) for ¢ = p — 1, it holds that

_1
u(r) + [u'(r)] < Cpe= @1 7T for p > 0. (2.27)

Proof. Step 1. We prove the decay estimate (2.25). Since the function u(r) satisfies
equation (1.15), hence we have

(r W ()P = —uir?Tt < 0 for any 7 > 0.

So, 74~/ (r)|P~1 is decreasing in r. Notice that r?=!u/(r)[P~* > 0. Hence there is a
constant C' > 0 such that

lim 4o/ (r) P71 = C.
r—00

Now we claim C' = 0. If C > 0, we have

r4 ! (r)|P7 > C for any 7 > 0,
which means

—u/(r) > Cr~ v for any r > 0.

Integrating above inequality from r to oo for any 7 > 0 and using the fact lim, o, u(r) =
0, we obtain

p—l 17ﬂoo

u(r) >C =1 = 4o0. (2.28)
p—

r

This is a contradiction, i.e., (2.25) holds.
Step 2 (The decay rate of u). From (2.20) and (2.21), we have

4y p— P4 pld-11
dru(r)| (p—l)(q—l—l)dru p—1 r

Integrating (2.29) from r to co and using u(r), v'(r) — 0 as r — oo, we obtain

AP p w2 PA=D L e
WP~ e 0 = B [ S

() + |/ (r)|P = 0. (2.29)
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Thus

q+1
W (r)p — 2
p—1 qg+1

>0 forr>0,

ie.,

—'(r) > (mfu%(r).

Using the method of separation of variable for above formula and integrating the resulting
inequality from 0 to r, r € (0,00), we deduce

u(r) < Cpqgr @i forr >0, ¢g>p—1; (2.30)
1
u(r) <e PN T for >0, g=p— 1. (2.31)

. o d—1
Step 3 (The refined decay rate of u/(r)). Again multiplying r*, k = % on both
sides of (2.29), it holds that

d 1P — p - iuq L) —
%(THU’ (T)| ) (p_l)(qu‘]-) de * ( )_0

The decay rate in (2.25) implies lim, o 7%|u/(r)|? = 0. Hence integrating the above
equality from r to oo gives

ki, ./ p * k d +1
rlu (r ”—1—4/ s"—u97"(s)ds = 0.
e PR A TR
Using (2.30), we can directly check that lim, ., 75u?*1(r) = 0 due to k — % < 0 for
p > d. Hence using the integration by parts, we have
R/ (r)|P = P Ry () 4 P k/oo sF 1yt () ds.
(p—1(g+1) (p—-Dg+1) J»
Thus we get
[u'(r)|P = #uqﬂ(r) TR —— /OO syt (s)ds.  (2.32)
P—1(g+1) (p—1)(g+1) r

Using (2.30), (2.31) and (2.32), a direct computation gives that for any r > 0

rlu’ ()| < Cpgr~ 75 for ¢ >p—1; (2.33)
_1
[/ (r)| < Cpe= ™D 7T for g =p—1. (2.34)
Hence (2.30) and (2.33) give (2.26). Formulas (2.31) and (2.34) imply (2.27). O

2.3. Solutions to Euler Lagrange equations are critical points of G(u). Since the zero
contact angle in the free boundary condition (1.14) provides a C! zero extension for the
case ¢ < p — 1, we can recast the free boundary problem (1.13)—(1.14) into the problem
(1.15)—(1.16) as in Lemma 2.3.
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LEMMA 2.3. Let u(r) be a solution to the free boundary problem (1.13)—(1.14), and
u(r) =0 for r > R. Then the zero extension solution u(r) € C1(0,00) is a non-negative
solution to the following problem in the distribution sense

d—1
(|u/|P—2u/)/ + _|u/|p—2u/ — Uq, 0 <r< +OO, (235)
T
Jlim w(r) =1, lim u(r) =0. (2.36)

Proof. Since u is a solution to the free boundary problem (1.13)—(1.14), by Step 3 in
the proof of Proposition 1, we know that u is also a classical solution in (0, R). Notice
that u'(R) = 0, which allows us to make a C''-zero extension, i.e., extend it to u(r) = 0
for r > R. Thus we have that the solution u is a C!-non-negative solution to (2.35)—(2.36)
n (0, c0). O

PROPOSITION 6. Let u(r) be a solution to (2.35)—(2.36) in Y.’ ,. Then for any A > 0,

the re-scaling function ux(r) = u(5) is a critical point of G(u) in Y7 ;.

Proof. Step 1. In this step, we show that G(u) = 0, G(u) is defined by (2.16).
Since u satisfies equations (2.35)—(2.36) and the decay estimates (2.26)—(2.27), hence
by (2.19), we have G(u) = 0, i.e.,

pd / +1
VU pdﬂ? = uq dl’ 237
AJ | (q+1)(p—d) Jpa (2:37)

Step 2. We prove that for any A > 0, the re-scaling function ux(r) = u(¥) is a critical
point of G(u) in Y’ .

In fact, it is directly verified that for any admissible variation ¢ € C1(0, ) at uy (i.e.,
there is an €9 > 0 such that for any |¢| < g9 one has uy +¢e¢y € ¥ ;), we have

L d
G(u,\) de

— — 0| Vun| / Al P11 ds + (1= 6) un 25 / grul s~ ds

G(UA + E(ﬁ)\)

e=0

I / &/ dr - (1 0) |l 05 / B(ryut ()it dr. (2.38)
Together with (2.37), we deduce

1 d
G(uy) de €:OG(u,\ +eon)

——oIvalt ([ et [T ot tar).

then it holds that

Noticing that w is a distribution solution to (2.35)—(2.36) in Y*

rad’
Lo
G(uy) de

70G<u}\ +edy) =0.

Hence any re-scaling function of u is a critical point of G(u) in Y! ;.
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3. Existence and uniqueness for Euler-Lagrange equations in L>° case. In
this section, we prove existence and uniqueness of solutions to the Euler-Lagrange equa-
tions (2.35)—(2.36) of L*>°-type G-N inequalities. We also show that the Euler-Lagrange
equations are equivalent to some Thomas-Fermi type equations.

3.1. Euistence. In this subsection, we prove existence of solutions u(r) to the problem
(2.35)—(2.36). First, we show that there is a singularity of «/(r) at r = 0: /(1) ~ Cr—i1
at r — 0 (Proposition 7). We then prove existence through a limit of a sequence of
solutions in the exterior domain (r;,00), 7; — 0. The main ingredients of the convergence
proof are: (i) Comparison principle (Lemma 3.1); (ii) Uniform low bound nearby r = 0
(Lemma 3.3); (iii) Application of the Dini theorem.

We introduce the following exterior Dirichlet problem on (rg,00), which was studied
in [29]

-1
(Ju'|P~2u") + dT|u'|p72u’ =ul, ro<r<oo, (3.1)
u(reg) =1, Tlg{)lo u(r) = 0. (3.2)

From [29, Theorem 4.3.1] and [29, Theorem 4.3.2], we know that the problem (3.1)—(3.2)
has a unique solution u(r) € C1[rg, o) satisfying u/(r) < 0 when u(r) > 0. Furthermore,
this solution u(r) is non-increasing in [rg, +00), although this statement is not directly
stated in [29, Theorem 4.3.1], the non-increase of u is a consequence in their proof [29, p.
94, line 1-4]. See also the proof of Proposition 7. We refer to u(r) as a C'! non-increasing
solution.

Proposition 7 is to give a characterization of singularity of «/(r) at r = 0.

PROPOSITION 7. For p >d > 1, ¢ > 0, and any rg > 0, the non-increasing solution u(r)
to the exterior problem (3.1)—(3.2) on (rg, c0) satisfies for any r > rg

o0

A ()P = / s 1 (s)ds < oo; (3.3)
T

/ sd_1|u’(s)\pds+/ sT Lyt (s)ds = 3 Yu(r) |/ (r) [P L. (3.4)

Proof. From the proof of [29, Theorem 4.3.1], we know that the non-increasing solu-
tion u(r) to the problem (3.1)—(3.2) is the limit of a non-increasing function sequence
{u;(r)}$°, which is a solution to the following truncated exterior problem

d—1
(' |P~2u') + T|U'|p72u’ =ul, ro <7 <710+ ], (3.5)

u(TO) = 13 U(TO +.7) = 07 (36)
u'(r) <0, in [rg,ro + 4],

and satisfies u;(r) < uj1(r) <1 for r > rg. This implies that
(1) Juj(r)] < Jufjy ()] < - < Jur(r)l;
(ii) there is u(r) such that lim; o u;(r) = u(r).
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Multiplying r?~! to (3.5) and integrating the resulting equation from r to 7o + j, 79 <
r <719+ j, we obtain

ro+J
(ro + 5) e (ro + )P — P4l (1) P+ / (s =0, (38)

which means

ro+Jj
I ::/ sdilu?(s)ds < ()P < e ()P for any j € NTL(3.9)

Extending u;(r) = 0 for r > ro + j, we have [ sd_lug(s)ds < a1} (r)|P~1. Hence
by the Monotone Convergence Theorem, we have
/ s ud(s)ds = lim sT ud (s)ds < P Hug (r)]P T < oo
T J—00 T
Similar to the process to obtain (2.25), we can get that the solution of the problem
(3.1)—(3.2) also has the decay property
lim 4o/ (r)P~ = 0. (3.10)

=00

Hence taking the limit for (3.8), we have (3.3).
Multiplying u(r) on both sides of equation (3.1), integrating it from r to oo, and using
the facts u(r) — 0, 74~ Hu/|P~1 — 0 as r — oo, we have

/ sT L (s)[Pds —|—/ sT Lyt (5)ds = v u(r) |/ ()P, > .

]
In order to show existence of solutions to the problem (2.35)—(2.36) (see Proposition
8), first we prove Lemmas 3.1-3.3.

LEMMA 3.1 (Comparison principle). Let u; and us be C' non-increasing solutions to
the exterior problem (3.1)—(3.2) on (r1,00) and (73, 00), respectively. Then if r; < rq,
we have that for r € {r|us(r) > 0},

uy (r) < us(r), uy(r) > uh(r). (3.11)

Proof. Since u1(r1) = 1 and u}(r) < 0 when u1(r) > 0, we have u1(r) < 1 in (r1,72].
Hence ug(r2) > wui(re) due to ug(re) = 1. Using a contradiction method, we assume
that there is 7, : ro < ry < 00 such that us(r.) = ui(ry) =: m* > 0. Considering the
following problem

d—1
(|u/|p—2u1)/ + _|u/|p—2ul _ uq7 re <1 < 00, (3.12)
T
u(ry) =m*,  lim u(r) =0, (3.13)
r—>00

we know that solutions u; (1) and ua(r) defined in [r,, c0) are C'! non-increasing solutions
to (3.12)—(3.13). The uniqueness of the C'! non-increasing solution to the problem (3.12)-
(3.13) implies that uy(r) = ua(r) for r € [ry, 00). By ODE theory, we know that u,(r) =
ug(r) for any r > rp, which is a contradiction with wa(r2) > wui(re). Hence for an
r € {rlua(r) > 0}, ua(r) > ui(r).
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From (3.3) and the comparison principle, we deduce that for any r € {r|uz(r) > 0}

o0 o0
r*WWW*zsz@@m>/s*%@m=ﬂﬂ%MW%
s T

which implies w5 (r) < uf(r). This is the proof of Lemma 3.1. O

LEMMA 3.2 (Uniform estimate in r;). Let u; and us be C' non-increasing solutions to
the exterior problem (3.1)—(3.2) on (r1,00) and (73, 00), respectively. Then if r; < rq,

d__d
we have ji,, < fiy, + 2L,

Proof. Since u(r) < 0 in (ri,+00), we have ui(r) < 1 in [r1,r2]. Hence for any
r1,79 > 0 satisfying 1 < ro, a direct computation gives

+o00 T2 +oo
</ / ) =1y 9( )dr</ rdildT—F/ = (r)dr. (3.14)

Using the comparison principle in Lemma 3.1, we have

+oo +oo
/ ra=Lud (r)dr §/ rd=Lud (r)dr. (3.15)
T2 T2
Hence (3.14) and (3.15) imply that i, < fiy, + 250, 0

LEMMA 3.3 (Uniform low bound). Let u be the C! non-increasing solution to the exterior
problem (3.1)—(3.2) on (r9,00). Then for any r > rg, there is C' > 0 independent of rg
and r such that

p—d p—d
u(ry>1-0C (rﬁ — 7“5’1> . (3.16)

Proof. Multiplying r?~! to (3.1) and integrating the resulting equation from 74 to oo,
we deduce

A = [ e = (3.17)
To

Again multiplying r?~! to (3.1) and integrating it from ro to r, and using (3.17), we
obtain

T
PP =y = [ (e
To

From above equation with r > rg and u > 0, we have

—u/(r) <t (3.18)

u(r)>1-— %p,‘f’? <T’£T1 - 7"6’1) . (3.19)

d_ . d d
By Lemma 3.2, we know that for a fixed r, > ro, pir, < pir, + =7 < pip, + . Denote

1
C:= g%cll (um + %) """ Hence (3.19) implies that (3.16) holds true.
]
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ProprosITION 8 (Existence). Assume that exponents p > d > 1 and ¢ > 0, then there is
a C'! non-increasing solution u(r) to the problem (2.35)—(2.36), and satisfies the following
properties

(i) u € LITYRY), Vu € LP(RY), and

oo oo oo
/ rd*1|u/|pd7"+/ rd= 0t dr = lim 47t/ [P :/ réuddr < oo;  (3.20)
0 0 r—0+ 0

(ii) «'(r) <0 for u(r) > 0.

Proof. Let u;(r) be the C! non-increasing solution to the exterior Dirichlet problem
(3.1)—(3.2) on the domain (r;, +00) with the boundary condition u;(r;) = 1. We take a
sequence {r; }$2, satisfying r; > r;41 > 0 for any i € N*t, and r; — 01 as ¢ — 4+00. We
will show the limit function of w; is the solution of the problem (2.35)-(2.36).

Step 1. We prove that there is a continuous, non-negative and non-increasing function
u(r) such that as i — oo,

wi(r) = u(r), w(r)—u/'(r), forallr >0, (3.21)

and they converge uniformly in any interval [a, ] for 0 < a < b < 0.

Notice that {u;(r)}{° is continuous, non-negative and non-increasing sequence and
bounded below in [a,0), a > 0 (0 < r;, < a). Hence by the Dini theorem the sequence
{ui(r)}5 converges uniformly on every compact interval [a, b] of (0, c0) to a non-negative,
non-increasing, continuous function u(r), i.e.,

ui(r) = u(r) forallr >0, asi— +oo, (3.22)

and they converge uniformly in any interval [a,b] for 0 < a < b < oo. Since u;(r) is
a non-negative and non-increasing function in r, hence u(r) is also a non-negative and
non-increasing function. Furthermore, by the comparison principle we know that for any
i € N, it holds that
u(r) <w(r) forall r € (r;, 00). (3.23)
Moreover, let u;(r) be a solution to equation (3.1) with u(r;) = 1. Hence by (3.11)
and the Dini theorem we have

wi(r) —u'(r) forall r >0, (3.24)

and they converge uniformly in any interval [a,b] for 0 < a < b < co. Moreover, by the
comparison principle we know that for any ¢ € N, it holds that

o' (r) > wu(r) forall r € (r;,00). (3.25)

Step 2. We prove lim, o, u(r) = 0 and lim, g+ u(r) = 1.
Since lim, o u;(r) = 0 by (3.2), we have lim,_,o, u(r) = 0. On the other hand, by
Lemma 3.3 we have

lim lim u;(r) > 1.
r—0+ i—oco

Together with lim, g+ lim; 00 u;(r) < 1 gives that lim, o+ u(r) = 1. Thus the limit
function u(r) satisfies the boundary condition (2.36).
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Step 3. We show the L%integrability of the limit function u(r), i.e., for fixed ig € N,

it holds that
d

+o0 P
/ r () dr < g, + % (3.26)
0

Indeed, for any € > 0, there exists i, € N such that 0 < r;, < e < r;;. And hence by
(3.23), we have

o0 o0 (o]
/ Td_luq(r)dr g/ rd_lug* (r)dr §/ rd_lu?* (r)dr.
€ € T

s

Hence by Lemma 3.2, we know that for r;, < ry,

o0 o0 rd d
/ rd= Lyl (rYdr < / rd71u30 (r)dr + 20—, (3.27)
5 i
Taking € — 0, we get (3.26).
Step 4. We give u € Y} ;. Mainly v € LY and Vu € LP.
For any € > 0, there exists ¢, € N such that 0 < r;, < e < r,. For any j > i,, let

u;j(r) be a solution to equation (3.1) with u(r;) = 1. Then we have

/ sd_1|u;(s)|pds+/ sd_lugﬂ(s)ds = sd_lu(6)|u;(5)|p_l (3.28)
€ €
d—1 1 = d-1 i
— — —_ K2
< e (o) = /E s uf(s)ds < ppy, + 7" (3.29)
Hence by the Monotone Convergence Theorem, as j — oo, we have
/ sd*1|u'(s)|pds—|—/ s17 a1t (8)ds = e Tu(e) [u/ () P71 (3.30)
< e (e) P! :/ 11 (5)ds. (3.31)
g

Notice that

lim e tu(e)|u' () P! = lim e/ (€)[P1
e—0 e—0

due to lim._,gu(e) =1 in Step 2, we deduce (3.20).

Step 5. We prove that the limit function u(r) is the required radial solution of (2.35)
in the distribution sense.

In fact, for any ¢ € C1(0, +00), we have

+oo —+oo
—/0 i P dr + /0 or®tuddr = 0. (3.32)
Using the uniform convergence property of u; and u} from Step 1, we obtain
+o0 +oo
- &' P dr + / ori~tuldr = 0, (3.33)
0 0

i.e., the limit function u(r) is the required radial solution of (2.35) in the distribution
sense.
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Step 6 (To prove the property (ii)). Since u € LI*t1(R?) and Vu € LP(R?), from
equation (2.35), we can obtain (2.13). Hence we have that v/(r) < 0 in the set {r|u(r) >
0}, i.e., the case (ii) holds.

This completes the proof of Proposition 8. (]

REMARK 3.4. Proposition 8 proved existence of C'* non-increasing solutions to (2.35)—
(2.36) for the case ¢ > 0. Existence for the case ¢ = 0 will be established in Proposition
11 by giving an exact closed form solution.

3.2. Uniqueness. In this subsection, we prove uniqueness of solutions to (2.35)—(2.36)
by following works [15, Theorem 1] given by Franchi, Lanconelli and Serrin. Let u(r)
and v(r) be two C' non-increasing solutions to the problem (2.35)-(2.36). By (i) of
Proposition 8, we have u/(r) < 0 when u(r) > 0, and hence both u(r) and v(s) possess
inverse functions in those supports. We denote respectively by r(u) and s(v) the inverse
functions of u(r) and v(s), defined on the interval (0, 1].

Lemmas 3.5 and 3.6 are special cases from results in [7]. We supply a proof to show
how their proof is used in our special cases.

LEMMA 3.5 ([15, Lemma 3.3.1]). Assume ¢ > 0 and d > 1. If 7(u) > s(u) in some open
interval (0, 1), then r(u) — s(u) can have at most one critical point in (0,1). Moreover if
such a critical point exists, it must be a strict maximum point.

Proof. By equation (2.35), it is immediately verified that the function = r(u) satisfies
the equation
-1

d
(p— Druu — 7"3 - |7“u|p+luq =0,0<u<l,

and the same equation holds for s(u). Hence by subtracting one from another, we get

’1"2 82

=1 =8)uu—(d—-1) (7“ - ;“) — (JrulP™ = [suPt) u? = 0. (3.34)

Now we suppose that v = u, € (0,1) is a critical point of r(u) — s(u), then r,, = s, <0
at u = u,. Thus from (3.34), we have that

1 1
(p—1)(r —8)yu = (d—1)r2 (— - —) <0, at u = uy,
r s
where the last inequality used the fact r(u) > s(u) in (0,1). Hence we get that all critical
points must be maximum points, which implies that r(u) — s(u) has at most one critical
point in (0, 1). O

LEMMA 3.6 ([15, Lemma 3.3.2]). Assume ¢ > 0 and d > 1. If r(u) — s(u) has two zero
points in (0, 1], denoting them as &y and &;, then r(u) = s(u) for all u between &y and &;.

Proof. Inspired by [15, Lemma 3.3.2], use the contradiction method to prove this
lemma. Without loss of generality, we assume that & < & and r(u) > s(u) for all
u € (€0,&1). By Lemma 3.5, we know that r(u) — s(u) has at most one critical point in
(€0, &1). Since r(&) — s(&o) = r(&1) — s(&1) = 0, then there is at least one critical point
in (€0, &1). Suppose that & € (&, &) is a unique critical point satisfying (r — s)' (&) = 0.
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From (3.34), we have

1 1
— 1) (" M — — (s 2 _ = .
(0= D070 = ") = (@ - D) (775 - 5y ) <0 = G39)
where the last inequality used the fact r(&3) > s(£2). Hence by the continuity of r/(u),
we know that there is a 6 > 0 such that (r — s)’(u) < 0 in (€2,& + d). Since the critical

point of r(u) — s(u) is unique in (&p,&1), we have
(r—s)(u) <0, in(&.&), ie [r'(u)]>]s'(u)l. (3.36)
Denote 71 = r(&;1) and 79 = r(&). Multiplying r¢~! to equation (2.35) and integrating
the resulting equation from r; to ry, we deduce
/m i (rd71|u/|p72u/(r)) dr — /7“2 Tdiluq(r)dr _ /51 r(u)(#l ud du (3 37)
o dr - : w/ (r(u)|
Hence it holds that
&1 q
d—1y,/ -2,/ d—1,,/ -2,/ d—1 u
ry | (ro) [P (re) — i | (r) [P () = / r(u)* ———du. (3.38)
? ' & |u'(r(u))]
Similar for v, denote s; = s(&1) and s2 = s(&2). We have the same formula

&1 ud
S ()20 (s0) = s )P (o) = [ s e (339)
Due to r1 = r(&1) = s(&1) = s1 and 7/(&) = s'(&2), subtracting (3.39) from (3.38) gives
that

(s57" =g ) W/ (r2) P~ T (Ju/ (r) [P = [0 (s0) )

-/ 5 v (u(?)wm - |Z'(Zs)<z>l>|) o (340)

Since (3.36), s2 < 7o and r(u) > s(u) for all u € (&,&1), we directly verify that both
terms on the left side of (3.40) are strictly negative, while the right side of (3.40) is
non-negative. This is a contradiction. Hence the assumption is not true, i.e., r(u) = s(u)

in (50751)‘

O

PROPOSITION 9 (Uniqueness). Assume ¢ > 0 and p > d > 1. Let w and v be two
C' non-increasing solutions of the problem (2.35)—(2.36). Then u(r) = v(r) for any
0<r<oo.

Proof. We use a contradiction method to prove this proposition. If not, then u(r) #
v(r) on [0,00). Equivalently their inverse functions r(u) # r(u) in (0,1]. Hence there
is us € (0,1) such that r(u.) # s(us). Then Lemma 3.6 implies that r(u), s(u) satisfy
either r(u) > s(u) or r(u) < s(u) in (0, 1).

For the case ¢ > p—1, without loss of generality, we suppose r(u) > s(u) for u € (0,1),
then u(r) > v(r) for 7 > 0. Multiplying 7~! to equation (2.35) and integrating the
resulting equation from r to oo and using (2.25), we have

o0
rd_1|u'|p_1=/ 571yl (s)ds. (3.41)
T
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The same process for v(r) gives
rd= L Pt = /00 571y (s)ds. (3.42)
Subtracting (3.42) from (3.41) gives that
7"dfl|u/(1")|pf1 - rd71|v/(r)\p71 = /OO sdil(uq(s) —vi(s))ds.

Since u(r) > v(r) and ¢ > p — 1 > 0, then we have from the above equation
v'(r) > d/(r), forr>0. (3.43)

Integrating (3.43), we obtain lim, g+ v(r) < lim,_,o+ u(r), which is a contradiction with
lim, g+ v(r) = lim,_o+ u(r) = 1.

For the case 0 < g < p — 1, we suppose r(u) > s(u) for v € (0,1). Then u(r) > v(r)
for 0 <r < R,, and u >0, v =0 for R, < r < R,. Multiplying r?~! to equation (2.35)
and integrating the resulting equation from r to R,, we have

R,
rd=1 Pt :/ s 1y(s)ds
T

R, R,
< (/ +/ ) sl (s)ds = /P for 0 <7 < R,
r R,

Thus v'(r) > u/(r) for 0 < r < R,. In (R, Ry,), v/(r) < 0 =1'(r). Hence we have

0 < /OR“ W' (r) — o (r))dr = /OR” o (r)dr — /OR“ o' (r)dr = 0,

which is a contradiction. |

REMARK 3.7. For the case d = 1, uniqueness of C'' non-increasing solutions to the
problem (2.35)—(2.36) is given by a direct computation in Proposition 12. Hence the
proof of Theorem 1.1 will be given in Subsection 4.3.

3.3. Thomas-Fermi type equation. This subsection shows that the non-increasing so-
lution of the Euler Lagrange equation obtained above is equivalent to the radial non-
increasing solution to a Thomas-Fermi type equation.

DEFINITION 3.8. We call a function u(]z|) a radial non-increasing weak solution to
the Thomas-Fermi type equation (1.20)—(1.21) if u(|z|) satisfies

(i) u(]x|) is a non-increasing function in |z| and lim o+ u(|z|) = 1,
(i) Vu € LP, u € L7, and denote a := ||Vul/%, + [lu] %1,
(iii) for any ¢(|z|) € C2°(R?), it holds that (V¢, |[Vu[P~2Vu) + (¢, u?) = a(¢, d.—o).

PROPOSITION 10. Assume p > d > 1, then
(i) For the case ¢ > p — 1,
(a) if u(r) is the weak solution to the problem (1.15)—(1.16) in Y;*

rad’

then u(|z|)
is a radial non-increasing weak solution to a Thomas-Fermi type equation
(1.20)~(1.21).

(b) if u(|z]) € W1P(R9) is a radial non-increasing weak solution to the Thomas-
Fermi type equation (1.20)—(1.21), then u(r) is also the solution of (1.15)-
(1.16) in Y*

rad®
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(ii) For the case ¢ <p—1,

(a) if u(r) is the solution to the free boundary problem (1.13)-(1.14) in Y? ,,
then u(|z|) is a radial non-increasing solution to a Thomas-Fermi type equa-
tion (1.17)—(1.19).

(b) if u(|z]) € WHP(R?) is a radial non-increasing solution to the Thomas-Fermi
type equation (1.17)—(1.19), then u(r) is also the solution of (1.13)—(1.14)

in Y5
p—1
In particular, for d = 1 we have a = 2 ((q-kl)}'ﬁ) "

Proof. We first prove the case (i). For the case (a), suppose that u(r) is the solution
to (1.15)-(1.16) in Y ;. Hence we know that u(|z|) € WP(R?) is radial non-increasing

rad*

and satisfies ©(0) = 1 and u(]z|) — 0 as |z| — oco. Hence the boundary condition (1.21)
holds.
For any test function ¢(|z|) € C°(R?), it holds that

—(V¢,|VulP~*Vu) — (¢,u?) = Sq /OOO (¢'(r) |/ (r) P~ = p(r)ud(r)) r¢ dr.

From Proposition 1, we have that the solution is classical in (0, c0). Hence by integration
by parts we have

(V. [Vul’*Vu) + (¢, u?) = Sa(0) lim_ [/ ()|~

+ Sd/ o (/)P r1) 4wt ar. (3.44)
0
On the other hand, from Proposition 8 we know that
lim Sgrd=tu/ (r)P~1 = Sd/ rd= ! [Pdr 4 Sd/ rd=lydtldr = a. (3.45)
r—0+t 0 0
Using (3.45) and equation (2.35), from (3.44) we obtain
(V, [VulP~2Vu) + (¢, u?) = ag(0) = a(¢, dz—o)-
Hence we have that the following equation holds in the distribution sense
Apu + adz=g = ul.

Therefore, u(|z|) is a radial non-increasing weak solution to a Thomas-Fermi type equa-
tion (1.20)—(1.21).

Now we prove the case (b), assume that u(|z|) € W1P(R9) is a radial non-increasing
weak solution of (1.20)—(1.21) in Definition 3.8, then u(r) := u(|z|) satisfies (1.16) and
for any test function ¢(|z|) € C2°(RY) satisfying ¢(0) = 0, it holds that

0= (V6. [VuP=20) — (6vut) = Sa [ (S (0P = 60 )u()
=5y /000 1) ((Tdilul|u'|p72)/ - uqrdfl) dr.

Hence u(r) satisfies (1.15). This completes the proof of the case (i).
The proof of the case (ii) is exactly the same as the case (i). Here we omit the details.
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Finally, we determine the value of a for d = 1. Since v’ < 0, (3.45) implies a =
Sqlim, o+ 747 u/(r)|P~. Thus multiplying u’ to equation (1.15) with d = 1, and inte-
grating it from r to co, and using the boundary condition (1.16), we deduce

wd T

-1
s
qg+1

Noticing the fact lim, g+ u(r) = 1, we have

<=

i 001 = (1w

Thus
pT?l
a=2 lim [/ (r)|P"t =2 #> .
i, ()l ((Q+1)(p—1)
This completes the proof of Proposition 10. O

4. Best constant for L>°-type G-N inequality. This section is divided into three
subsections. We give some closed form solutions for the case ¢ = 0 in Subsection 4.1 or
for the case d = 1 in Subsection 4.2. In Subsection 4.3, we will complete the proofs of
Theorem 1.1 and Theorem 1.2.

4.1. Ezxistence, uniqueness and closed form solution for ¢ =0, p > d > 1. In Propo-
sition 7, we require the condition ¢ > 0. For the case ¢ = 0, we use the closed form
solution to prove existence and uniqueness in Proposition 11.

PROPOSITION 11. Suppose d > 1, p > d and ¢ = 0. Then there is a unique non-negative
solution .o to the free boundary problem (1.13)—(1.14) and u. o has the following
closed form

=t (gt 1) () ). o

o)

Proof. Let r = Rs, and v(s) = u(Rs). Hence we have v(1) = u(R) = 0 and v(0) =
u(0) = 1. Then from (1.13) with ¢ = 0, we obtain that v(s) satisfies the following
equation

1 1—d

—0/(s)/R=d 77 (R — R%s%)(Rs)' =) " T =d 71 R7T(1 - sh) 71571,
Hence
—/(s)=d FIRFT(1— sh)Fsr1, (4.3)
Integrating (4.3) from s to 1, we deduce

1—d

Ll
v(s) :d_P_ilRF/ (1—7’d)ﬁrﬁdr

__p D p—d p ) (d p—d p ))
=d R (B, —— | -B(s" o, —— | | .
( (d(p—l) p—1 dp—1) p—1
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Hence we obtain the closed form solution u. o to the free boundary problem (1.13)—(1.14)
given by (4.1).
With condition v(0) = 1, we have explicit formula of R:

1
1:d—1/(p—1)Rp/(p—1)/ (1_7"d)ﬁ7"ﬁldr
0

_g Rt (L= L)
R B<d(p—1)’p—1 ’
which means that (4.2) holds.
O
4.2. The closed form solution for ¢ > 0 and p > d = 1. In this subsection, we present
a result in the one dimensional case, for which there is a closed form solution and deduce
the best constant Cy o0 p of the inequality (1.6) for d = 1.

PROPOSITION 12. Suppose p > d =1, and ¢ > 0. Then the solution u. ~ of the problem
(2.35)—(2.36) possesses the following closed form:

(1) forq:p—lv

_1
Ueoo(r) = e~ P=H 7T, (4.4)
(ii) for g <p—1,
7 =, (p=D)YP(g+ )P .
Ueroo (1) = (1 - E)+ R oy > 0 (4.5)

(iii) for ¢ > p—1,

1/p—1 — i
_ p (g+1-p)
Ue,o0(T) 1= (1 + - D/(gt 1)1/pr> , for r > 0. (4.6)

p
p+(p—1)(q+1)) pHp=1{a+1)

The best constant is given by Cy o0 p = ( 5

Proof. For ¢ = p— 1, multiplying «' on both sides of equation (2.35) with d = 1 gives

that o
d (p—1 ,, uf
i O -} =0. 4.7
dr < D ] qg+1 (47)
Noticing u € WHP(R) and integrating (4.7) from r to oo, we have
p— 1 /\p uq+1
u|P — =0, 4.8
L - 2 (45)

which implies that
_1
u(fr) = e:t(pil) p’r'

1
Hence u(r) = e~ =1 7 is the unique solution satisfying «(0) = 1 and lim,_, u(r) = 0.
For g # p—1, solving (4.8) and using boundary conditions «(0) = 1 and lim,_, o u(r) =
0, we can obtain (4.5) and (4.6).
Hence plugging u. o into M, in (1.23) below, we deduce

Y _ 2= )YP(g+ 1)VP
Me(ue.00) = /RUCE (z)de = PP p+(p—1)(g+1))
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and thus it holds that

1
ooy = ((p — (g + 1)) R Yo oy

p
P
p+ (p — 1)((] + ]_) p+(p—1)(q+1)
= ( 5 . (4.9)
This completes the proof of Proposition 12. |

4.3. The proofs of main theorems. In this subsection, we utilize the results from above
sections to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. By Proposition 8, Proposition 9 and Proposition 12, we know
that the problem (2.35)—(2.36) has a unique solution u(r) for the case ¢ > 0. While for
the case ¢ = 0, from Proposition 11 we know that there is a unique closed form solution
Ue,00 () satisfying the free boundary problem (1.13)—(1.14). That completes the proof of
Theorem 1.1. O

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. From Proposition 1, Proposition 3 and Lemma 2.3, we have
that any critical point of G(u) in Y ; satisfies the problem (2.35)-(2.36) up to a re-
scaling. Conversely, any non-negative solution u of the problem (2.35)—(2.36) is also a
critical point of G(u) in Y ;. Moreover any re-scaling function of u is still a critical
point of G(u) in Y* ; by Proposition 6.

By Theorem 1.1, we know that the critical point of G(u) in Y! ,; is unique up to a
re-scaling.

Hence any re-scaling function set of 4. oo, {u )\} \>o contains all critical points of G(u)
and G(uy) = G(u¢,00). Notice that G(u) does not have maximum. Hence all critical
points {UA})\>O are minimizers of G(u).

Next we derive the best constant Cy o for ¢ > 0. Since the solution u, (7) to the
problem (2.35)—(2.36) is a minimizer of G(u). Hence from the problem (1.12) and the

formula (2.17), we have

|
s

0
-0 0 +1
o = ”Uc,ooHqurl”VUc,oo”LP = (m) (”uc,oo(r)‘ qu+1)

Notice Cy 00 = @1, thus we have (1.23). O

5. The large m limit behavior in the best constant problem for 1-D. In this
section, we show the limit behavior as m — oo in the best constant problem for d = 1,
which implies the closed relation between the functional inequalities (1.26) and (1.22) in
the one-dimension case. Now we show the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof of Theorem 1.3 is divided into the two steps.

Step 1. In this step, we prove

lm e (r) = teoo(r) for any r > 0. (5.1)

m—o0
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For any fixed 0 < u < 1, denote 7., (u) as an inverse function of uc.,(r). Let the
energy functional

p—1 ul () udt(r)
H(r):= 5 |u;7m(r)|p+ il P (5.2)

Then by multiplying uy, ,, () to (1.28), we have the following energy-dissipation relation
dH d—1
0, d-1,
dr

Hence we know that for d = 1, (1.28) possesses a first integral and it is a constant, i.e.,

()P = 0. (5.3)

c,m

p;lu/ |p+“?$1_ugﬂzc (5.4)
p o™ m+1 q+1 ’ ’
Due to e m(Rim) = Uy, (Rm) = 0, then C' = 0. Hence the conditions ¢, (0) = a. and

ul. ., (0) = 0 imply

c,m

amtl  qatl m—+1 =
= ——<— =0, ie. ,a.= > 1. 5.5
m+1 g+1 (q+1> (5:5)

Solving (5.4) gives

1/p (941 (p um L (p 1/p
ulc’m(r)__< p ) ( c,m( ) _ Tem ( )) ) (56)

p—1 g+1 m+1

From (5.6), we deduce

1/p 1/ p=g=Ll 4 g+l ,m-—q
1)Y/P 1\ r(m=—a) m+1 Ye,m —q-1
<L> Tem = i+l <m : ) / yil/p(l —y) pm=a) 1dy.
p—1 m—q g+1 0
(5.7)
For the case ¢ = p — 1, we have 5(;;1:;) =0, (5.7) becomes
l/p 1— q+1 wma
1 1 / m+1 _1/p 1
- Tem(u) = —— Y 1—y) “dy. 5.8
(27)  remtw=t | (1-v) (5.8

1

Since <—+1) "' 5 1 as m — oo, for m sufficient large, we have that 0 < ., <

q+1
1

m41) ™q
q+1 :

Taking the limit for (5.8) as m — oo and using the L’Hépital’s rule, we deduce that

1/p 1— ™
1
(—) lim 7. ,,(u) = lim Jo

y P(1—y)tdy

p—1 m—00 m—00 m—q
-1/p
= lim 1—q+1um7q ;—lnu
=—Inu (5.9)

Hence
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We denote the above limit function as 7.0 : (0,1) — (0,00), © — 7Teoo(u) =
—(p— 1)1/;; Inu. Denote inverse function as e : (0,00) = (0,1), r = ucoo(r) =

1
e~ "7 and u, o (r) is the solution to equation (1.15) by (4.4). Noticing ue ,(0) — 1
as m — 00 and Uc,(r) > 0 is continuous and strictly decreasing in (0, 00), hence we

have
Hm e (r) = teoo(r) for any r € (0, +00).
m—roo
1
For the case ¢ < p—1, let e, (r) = 223, (0) = (’;Tﬂl) " Then fie.pm(0) = 1,
and T, (r) satisfies the following equation
1 m+l—p 1 atl—p
+ m—q m + m—q
a2y + (1 = @7, 0 <7< Ry, 5.10
-2y + (2] . (5.10)
@(0) =1, @(Rp) = (Rm)=0. (5.11)

For any fixed 0 < @ < 1, denote the inverse function of @y (7) as rem (). A direct
computation gives that

m+l—p atl—p
-1 1 P 1\ ™« 1 1\ ™ 1
P (B L g (D @t = 0. (5.12)
p o |rlm (@) g+1 m+1 q+1 q+1
From (5.12), we deduce that
v 1
p > vy ~
— (=) rla@)= . (5.13)
<p -1 (uu,mgi)‘i*'l_p qa+l _ uc,ynig)Jr’”l'*'l_pﬁerl)l/p

Furthermore, integrating (5.13) with respect to @ from @ to 1 and plugging u¢ ., (0) =

1

(%) " give that

1
> 1
P 1
(%) Fom (il) = / — ds. (5.14)
p— w (UC,vn(O)q+17p Sq+1) (1 _ Sm—q)l/p

q+1

Making variable substitution y =1 — s™ ™%, we have

aq

1 p—g—1 ~m—
p \? - (q+D)YP [(m+1\ren—0 /1“ 1 p=g=1_q
= 1—y)rtn=a "dy. (5.15
(p—l) Te,m (1) m—q g+ 1 ; y 7 (1-y) y. ( )

pP—q—

1
Noticing that (?TJ?) "5 1 as m — oo, thus it holds

1/p 1—@™=9 _1 poa=1 g
p : ~ . f Yy P (1 — y) p(m—q) dy
(=) dmrem = i 2 69
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Since 0 < <1, wegetl—am 7> % if m is large. Hence

Sm—g 1/2 e\ 1 p=q=1
fliu y_%(l—y) zD(m Q- dy ( / +f )y p(]-_ )p(m Q) dy
lim =9 lim
m—00 m—q om0 m-—q
1—am—e _1 o=l g
-5 fl/g yr (1 - y) p(m=a) dy
ml—)oo m—q
1—am—e _1 p=q-1
—p y rd(l —y)reno
= lim Jus . (517
m—o0 pP—q— 1
Using the integration by parts, we know that
/1 a a 7ld(1 )p(;*l) 7l(1 )(7—71) 1—gm—4
y P —y p(m—q :y P _y m—q
1/2 1/2
1-gme 1\’ p—g—1
- / (y’F) (1 —y)rom=ody. (5.18)
1/2
We can directly check
1_gm—a , - L_gm—a .
1 p—g—1 1 1
Tim (y*%) (1—y)fmady = lim (y*%) dy=1-25. (5.19)
m—o0 [} /9 m=o0 J1/2
Plugging (5.18) and (5.19) into (5.17), we obtain
1—-g™m~7 _ L p—g=1l _ 1
p(l —y)rm=—a) ~( pog—
lim Jo i ( y) vy__ P (1—& ; ) (5.20)
m—00 —q pP—q— 1

Therefore, (5.16) and (5.20) imply that

—1/p
P P _p—g—1
lim re,(a) = 1—u »
i, Tem{®) <(p—1)(q+1)) p—q—l< )

=Re (1 @ ) : (5.21)

where R is the same as R defined in (4.5).
We denote the above limit function as 7.« : (0,1) = (0, R ):

@ = oo () = Roo (1 - a”’Z’l) .

Denote its inverse function as u¢ oo : (0, Roo) +— (0,1). Then it is given by

T = Ueoo(r) = <1 - %) TN for0<r < R.. (5.22)

Next we show that lim,, o R, = Roo. Indeed,

1 p—g—1 1 p—g—1
1\ 7 1) pCm—a) 1)p pm—a [1 —q-1
lim R,, = lim (p > (m+1) (g+1) / y_%(l—y)ﬁ(m?—ql> 1dy
m—o0 m—oo p m—q 0
1 1 1
-1 1 P p (1 — P(”" 4) d
:<(p )(g + )) S k) y (5.23)
p m—»oo m — q
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Due to ¢ < p — 1 we have

1 _1 p—gq=1
lim Jicam-ay 7 (1 —y)ren=o 'dy

m—00 m—q

(5.24)

1
= hm fl*ﬂjniq(l — y) p(m q) dy p p—q—1
m—»00 m—q p —q — 1 '
Combining (5.20) and (5.24), we have

p ey
lim Ry, = ——— S S— -
m—o0 (@—JXW+D) p—q—1

Noticing that ¢ ,,(0) — 1 as m — oo and ucm,(r) > 0 is continuous and strictly
decreasing in (0, Ry, ), hence we have from (5.21)

Hm e m(r) = teoo(r) for any r € (0, Roo).

m—
For the case ¢ > p — 1, the proof of (5.1) is exactly the same as the case ¢ < p — 1.
We omit the details.
Step 2. We prove decay properties of u¢ m, i.€., for m > 2¢ + 1 there is 7. > 0 (it is
independent of m) such that ., satisfies the following estimates
e for ¢ > p — 1, it holds that

u(r) 4+ rju/(r)] < Cr- a5, for r > 2r,, (5.25)
e for ¢ = p — 1, it holds that
u(r) <e 9T, forr>2r,, (5.26)

where C' is a constant independent of m.
In fact, since u(r) — 0 as r — oo, then there exists a 0 < r¢ < oo such that u(rg) = 1.
From (5.7), we have

poa=l g gt
< p )1/1’ o — (q+ 1)1/17 (m+ 1) p(m—q) /’1 m+1 y—l/p(l _ )p(m q) dy
p—1 m—q \q+1 0 ’
which means that
1-1/p 1/p
P m+ 1)
O<ro<|——Fr— . 5.27
< (o=ern) G (527
1-1/p
By (5.27), we deduce if m > 2¢ + 1, then 0 < 19 < 2 (m) =: r,. Since
+1 m+41
r’'(r) < 0 for > 0, we have 0 < u(r) < 1 for r > r,, hence “qq+£r) — um_ér) >
ud+i(r) (qi—l - m—_H) for r > r,. Therefore from (5.6), we have that
A 1\’
ey > (2 . "W (). 5.28
“&)—<p—1> (q+1 1n+1) we (r) (5.28)

Using the method of separation of variable for (5.28) and integrating the resulting in-
equality from r, to r for any r > r,, we obtain

1 1
1- A 1 \r
W > 14 4 p( p1> ( - ) (r—mr.).
-

P g+1 m+1
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Taking 7 > 2r,, we have r —r, > 7. Therefore, for r > 2r, we know that

1 1 __ P

1-— CVAS| 1 \* oy
u(r) < 1+Q+ P P - f
P p—1 g+1 m—+1 2

p 1 1
_ T qFi-p T ati-p T ati-p p
J(at1-p Na IR R
2p p—1 qg+1 m+1

Denoting

__p 1 1
q +1- p q+1-p P q+1-p 1 1 q+1-p
C(qamap) = (2—) <—) <— - 1 )
D p—1 g+1 m+1

then when m > 2¢ + 1, we have

1

q+1_p 7ﬁ P T gfi-p 1 7m
C(g,m,p) < | ——— —_ —_— =:C(q,p).
(4m.7) ( 2p > <p—1> <2(q+1)> (7]

Hence we obtain

u(r) < C(q,m,p)r_wlf——P < C(q,p)r_qﬁ—p, for r > 2r,. (5.29)

Again from (5.6), we obtain for any r > 0

won=(523)' (Fi-an) < (peiten) %0 o

Combining (5.29) and (5.30), we can deduce

i (r S(#)”cqm SrTaR for r > 2r,. 5.31
ju’(r)] =D D (¢,p) (5.31)

Hence (5.29) and (5.31) give (5.25).
For the case ¢ = p — 1, integrating (5.28) from r, to r for any r > r., we obtain

)= (27) (3= 25) e

Taking 7 > 2r,, we have r —r, > 7. Therefore, for r > 2r, we know that

1 1

7 /1 1 7
() < — (2=} (Ao L)'
p—1 p m+1 2

1
_ 1/ p \?
=3 (521)
1

Since m > 2g +1 > 2p — 1, we have Cp, , > % (ﬁ)a =: C(p). Then we obtain

Let

(5.32)

b2
/N
SRR

|

3
_I_)—‘
—_
~——

3 |

u(r) < e Cmrm < e C0r  for p > 2r., (5.33)

i.e., (5.26) holds.
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Step 3. We prove that

mlgnoo Com.p = Cgo0,p- (5.34)
For the case ¢ = p — 1, define
1
m-+1\me
, if0<r <7,
U(r) == <q+1) -
e ¢ if 7>l

From (5.26), we have u¢ ., (r) < U(r) for any r > 0. We directly compute |U(|z|)|| pa+r <
0.
For the case ¢ > p — 1, define

1

1 m—gq

mt , if0<r <7,
qg+1

Clp,q)r 75, ifr>F,

U(r) = (5.35)

1
We have ¢, (r) < U(r) for any r > 0 due to (5.25) and e 1 (1) < e, m(0) = (Z"LTJrll) o

A direct computation gives ||U(r)||pa+1 < 0.

For the case ¢ < p — 1, we know that the solution w.n,(r) has a finite support
(0, Ry), R — R as m — oo, where R, is defined by (1.32). Noticing that uc (1) <
1

(';TJT) e < 2 for m large, we have fOR‘” 20t1dr < C(p,q). Then for the above three

cases, the dominated convergence theorem implies that

lim M.(tey) = lim [ witl(z)de = / ultl (z)dr = M. (ue o). (5.36)
m—»o0 m—o0 [p s R 5
Hence from (1.23) and (1.27), we obtain (5.34). O
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