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Abstract. In this paper we derive the best constant for the following L∞-type

Gagliardo-Nirenberg interpolation inequality

‖u‖L∞ ≤ Cq,∞,p‖u‖
1−θ
Lq+1‖∇u‖θLp , θ =

pd

dp+ (p− d)(q + 1)
,

where parameters q and p satisfy the conditions p > d ≥ 1, q ≥ 0. The best constant

Cq,∞,p is given by

Cq,∞,p = θ−
θ
p (1− θ)

θ
pM

− θ
d

c , Mc :=

∫

Rd

uq+1
c,∞dx,

where uc,∞ is the unique radial non-increasing solution to a generalized Lane-Emden

equation. The case of equality holds when u = Auc,∞(λ(x − x0)) for any real numbers

A, λ > 0 and x0 ∈ R
d. In fact, the generalized Lane-Emden equation in R

d contains a

delta function as a source and it is a Thomas-Fermi type equation. For q = 0 or d = 1,

uc,∞ have closed form solutions expressed in terms of the incomplete Beta functions.

Moreover, we show that uc,m → uc,∞ and Cq,m,p → Cq,∞,p as m → +∞ for d = 1, where

uc,m and Cq,m,p are the function achieving equality and the best constant of Lm-type

Gagliardo-Nirenberg interpolation inequality, respectively.
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1. Introduction. Research on functional inequalities is an important topic in the

Functional Analysis. In some circumstances one is interested in the exact value of the

smallest admissible constant in some functional inequalities. Possible motivations for

this can be described from the three respects: (i) it provides some geometrical insights (a

sharp version of some functional inequality is equivalent to the Euclidean isoperimetric

inequality [10]); (ii) it is helpful for the computation of the ground-state energy in a

physical model; (iii) it can be used to determine sharp conditions on initial data to

distinguish between global existence and finite time blow-up for some partial differential

equations with competition effects from some biological or physical systems, cf. [2, 3, 5,

8, 9, 19, 33, 34].

In 1938, Sobolev [30] proved that there is a constant Cd,p > 0 such that for d ≥ 3,

1 ≤ p < d, any function u ∈ L
pd

d−p (Rd) with ∇u ∈ Lp(Rd), it holds that

‖u‖
L

pd
d−p

≤ Cd,p‖∇u‖Lp . (1.1)

The best constant Cd,p in (1.1) is established by Aubin and Talenti [1, 31]. Together

with the interpolation inequality, it becomes the well-known Gagliardo-Nirenberg (G-N)

inequality for the case p < d. A general G-N inequality is given by the following form

(cf. [21, pp. 176, (2.3.50)] and [16, 24])

‖u‖Lm+1 ≤ Cq,m,p‖u‖
1−θ
Lq+1‖∇u‖θLp , θ =

pd(m− q)

(m+ 1)[dp+ (p− d)(q + 1)]
, (1.2)

where Cq,m,p > 0 is a constant, and the parameters d, q,m and p belong to the following

two ranges:

(i) one range is

p > d, q ≥ 0 and m = ∞. (1.3)

We refer to this case as the L∞-type G-N inequality.

(ii) the other range is

p ≥ 1, 0 ≤ q < m < σ, (1.4)

where σ is defined by

σ :=

{

(p−1)d+p
d−p if p < d,

∞ if p ≥ d.
(1.5)

This case is referred to as the Lm-type G-N inequality. For the case m = σ, this

G-N inequality reduces to the Sobolev inequality (1.1) and for m = q, it is a

trivial case.

For some special parameters d, q,m and p in (1.4) and (1.5), the best constant of the

G-N inequality has been derived in terms of some closed formulas and studied widely in

the literatures [6, 7, 10–13, 20, 22, 23, 33]. For m = ∞, the best constant Cq,∞,p in the

inequality (1.2) was obtained in [22] only for d = 1. However, the best constant Cq,∞,p in

the inequality (1.2) is not yet obtained for general parameters in (1.3) with d ≥ 2. The

goal of this paper is to derive the best constant Cq,∞,p of the L∞-type G-N inequality

(1.2).
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For parameters in the range (1.3), the inequality (1.2) can be written as the following

form

‖u‖L∞ ≤ Cq,∞,p‖∇u‖θLp‖u‖1−θ
Lq+1 , 0 < θ =

pd

pd+ (q + 1)(p− d)
< 1. (1.6)

Following a standard variational method, a minimizing problem is established in the

solution space

Y =
{

u| u ∈ Lq+1(Rd), ∇u ∈ Lp(Rd)
}

⊂ L∞(Rd),

and we know that there is a positive constant α such that

α = inf
u∈Y

‖u‖1−θ
Lq+1‖∇u‖θLp

‖u‖L∞

. (1.7)

Define a functional G : Y → R

u 
→ G(u) := ‖u‖1−θ
Lq+1‖∇u‖θLp . (1.8)

The minimizing problem (1.7) is equivalent to the following minimizing problem

α = inf
u∈Y, ‖u‖L∞=1

G(u). (1.9)

Thanks to the rearrangement technique (see [18, Chapter 3])

‖h∗‖Lp = ‖h‖Lp , 1 ≤ p ≤ ∞, (1.10)

where h∗ is the rearrangement function of h, and the Pólya-Szegő inequality [4, 27],

‖∇h∗‖Lp ≤ ‖∇h‖Lp , 1 ≤ p ≤ ∞, (1.11)

we know that the minimizing problem (1.9) is equivalent (The proof of this equivalence

is standard, cf. [19, Lemma 2.1]) to the following minimizing problem

α = inf
u∈Y ∗

rad

G(u), (1.12)

where Y ∗
rad is a non-negative radial symmetric decreasing function space

Y ∗
rad =

{

u(r) ≥ 0
∣

∣ lim
r→0+

u(r) = 1, u′(r) ≤ 0 a.e.,

∫ ∞

0

(

|u|q+1 + |u′|p
)

rd−1 dr < ∞

}

.

For any u ∈ Y ∗
rad, we take always u(0) = 1. And hence Y ∗

rad ⊂ C([0,∞)).

In Section 2, Propositions 1, 3 and 4 give the Euler-Lagrange equations for critical

points of the functional G(u) in Y ∗
rad. For the case q < p−1, by constructing an auxiliary

functional and connecting it with the contact angle by a Pohozaev type identity, we show

that the Euler-Lagrange equation is a free boundary problem, i.e. for some finite R > 0,

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq for 0 < r < R, (1.13)

u(0) = 1, u(R) = u′(R) = 0. (1.14)

For the case q ≥ p− 1, the Euler-Lagrange equation is given by the following form

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq for 0 < r < ∞, (1.15)

u(0) = 1, lim
r→∞

u(r) = 0. (1.16)
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We provide the decay rate of positive solutions to the problem (1.15)–(1.16) at the far

field in Proposition 5. Moreover, in Proposition 6, we show that solutions to Euler

Lagrange equations are also critical points of G(u) in Y ∗
rad.

Since the L∞-space is not reflexive space, the direct method of calculus variation

cannot be used for the L∞(Rd) minimizing problem (1.12). Instead, in Section 3, we will

prove existence and uniqueness of solutions to the above corresponding Euler-Lagrange

equations, then show that the unique solution is a minimizer of G(u) in Y ∗
rad. Hence we

have the following result

Theorem 1.1. Assume that exponents p > d ≥ 1 and q ≥ 0, then there is a unique

solution u(r) ∈ C1((0,∞)) + Y ∗
rad for the problems (1.13)–(1.14) and (1.15)–(1.16), re-

spectively. Moreover, u′(r) < 0 in {r|u(r) > 0}.

Moreover, we show that the Euler-Lagrange equation is the following Thomas-Fermi

type equation, which contains a delta function as a source (see Proposition 10). For

q < p− 1, the solution to (1.13)–(1.14) is equivalent to the non-negative radial solution

of the Thomas-Fermi type equation with a free boundary, i.e. for some R > 0

∆pu+ aδ(x) = uq, in D′(B(0, R)), (1.17)

a := ‖∇u‖pLp + ‖u‖q+1
Lq+1 , (1.18)

u(0) = 1, u(x) =
∂u

∂�n
(x) = 0, for |x| = R, (1.19)

where δ(x) is a delta function and �n is the unit outward normal vector to ∂B(0, R).

When q ≥ p − 1, the solution to the problem (1.15)–(1.16) is equivalent to the positive

radial solution to the Thomas-Fermi type equation

∆pu+ aδ(x) = uq, in D′(Rd), (1.20)

u(0) = 1, lim
|x|→∞

u(x) = 0. (1.21)

This delta function in the above Thomas-Fermi type equations gives rise to a singularity

limr→0+ u′(r) = ∞ (see (3.20)) in (1.13)–(1.14) and (1.15)–(1.16). To overcome this

singularity, we construct an approximation sequence by solutions of exterior problems in

the domain (ri,∞), ri → 0, and provide some delicate estimates and new techniques to

finish the proof of Theorem 1.1.

In Section 4, we will derive the best constant of L∞-type G-N inequality and show

closed form solutions for some special parameters d, p and q. The main result is given by

Theorem 1.2.

Theorem 1.2. Suppose p > d ≥ 1, q ≥ 0, u ∈ Lq+1(Rd) and ∇u ∈ Lp(Rd). Then

u ∈ L∞(Rd) and it satisfies the following inequality

‖u‖L∞ ≤ Cq,∞,p‖u‖
1−θ
Lq+1‖∇u‖θLp , θ =

pd

dp+ (p− d)(q + 1)
, (1.22)

where the best constant

Cq,∞,p = θ−
θ
p (1− θ)

θ
pM

− θ
d

c , Mc =

∫

Rn

|uc,∞|q+1dx. (1.23)
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Here uc,∞ is the unique radial solution as described by the following two cases:

• if q < p − 1, uc,∞ is the unique non-increasing solution of the free boundary

problem (1.13)–(1.14) and u(r) = 0 for r ≥ R.

• if q ≥ p− 1, uc,∞ is the unique positive solution to the problem (1.15)–(1.16).

Moreover, the case of equality holds if u = Auc,∞(λ|x − x0|) for any λ > 0, A ∈ R and

x0 ∈ R
d.

For the case p > d ≥ 1 and q = 0, a closed form solution uc,∞ can be expressed in

terms of an incomplete Beta function, which is defined as

B(x; a, b) =

∫ x

0

ta−1(1− t)b−1dt. (1.24)

The best constant C0,∞,p is given by

C0,∞,p =

(

p− d

pd

)
d

pd+p−d

M
− p

pd+p−d
c , Mc =

∫

Rd

uc,∞dx.

see Proposition 11.

For p > d = 1 and q ≥ 0, the free boundary problem (1.13)–(1.14) and the problem

(1.15)–(1.16) have closed form solutions respectively (see Proposition 12). And using

them we deduce the best constant

Cq,∞,p =

(

2p

p+ (p− 1)(q + 1)

)− p

p+(p−1)(q+1)

. (1.25)

Recall the Lm-type G-N inequality

‖u‖Lm+1 ≤ Cq,m,p‖u‖
1−θ
Lq+1‖∇u‖θLp , θ =

pd(m− q)

(m+ 1)[d(p− q − 1) + p(q + 1)]
(1.26)

with the best constant

Cq,m,p = θ−
θ
p (1− θ)

θ
p
− 1

m+1M
− θ

d
c , Mc =

∫

Rd

uq+1
c,m dx, (1.27)

which can be found in [20]. Here parameters p, q,m satisfy (1.4) with some restrictive

conditions p > max{1, 2d
d+2} and q < σ − 1, uc,m is described by the following two cases:

(i) if q < p − 1, there is a finite Rm > 0 such that uc,m is the unique decreasing

solution of the following free boundary problem

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ + um = uq for 0 < r < Rm, (1.28)

u′(0) = 0, u(Rm) = u′(Rm) = 0, (1.29)

and u(r) = 0 for r ≥ Rm.

(ii) if q ≥ p − 1, uc,m is the unique positive decreasing solution to the following

problem

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ + um = uq for 0 < r < ∞, (1.30)

u′(0) = 0, lim
r→∞

u(r) = 0. (1.31)
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Contrasting to L∞-type, there is no singularity at the origin in the Euler-Lagrange

equations (1.28)–(1.29) and (1.30)–(1.31). In Section 5, we will show the singular limit

behavior in the best constant and the solution to the Euler-Lagrange equations asm → ∞

for d = 1, which indicates the connection between the Lm-type G-N inequality (1.26)

and L∞-type G-N inequality (1.22). The result is given by Theorem 1.3.

Theorem 1.3. Let uc,m and uc,∞ be respectively the unique non-increasing radial solu-

tions of the problem (1.28)–(1.29) and the problem (1.13)–(1.14)(or the problem (1.30)–

(1.31) and the problem (1.15)–(1.16)) in the one-dimensional case. Then the following

facts hold

uc,m(r) → uc,∞(r) for any r > 0, Cq,m,p → Cq,∞,p, as m → ∞.

Moreover, for q < p − 1, let Rm and R∞ be the free boundaries for uc,m and uc,∞

respectively. Then we have Rm → R∞ as m → ∞, where R∞ and Rm defined in

[20, formula (3.2)] are respectively given by

R∞ =

(

p

(p− 1)(q + 1)

)−1/p
p

p− q − 1
, and

Rm =

(

p− 1

p

)
1
p (m+ 1)

p−q−1
p(m−q) (q + 1)

1
p
− p−q−1

p(m−q)

m− q
B

(

1−
1

p
,
p− (q + 1)

p(m− q)

)

. (1.32)

For simplicity, we will use the same function u = u(x) and u = u(r) to represent

a radial solution with u(x) = u(|x|) in this paper. It should be clear according to the

content of the text.

2. Euler-Lagrange equations for L∞-type G-N inequalities. In the beginning

of this section, we derive the Euler-Lagrange equations for critical points of the functional

G(u) in Y ∗
rad.

Proposition 1. Assume that ū(r) ∈ Y ∗
rad is a critical point of G(u), then there is

λ0 > 0 such that the re-scaling function u(r) = ū(λ0r) satisfies the following equation in

the classical sense

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, 0 < r < R, (2.1)

and the boundary conditions

lim
r→0+

u(r) = 1, lim
r→R−

u(r) = 0, (2.2)

for some 0 < R ≤ +∞.

Proof. Step 1 (Re-scaling and admissible variation). Let u1(r) := ū(λ1r), λ1 > 0 be

a re-scaling parameter to be determined by (2.4). Noticing the scaling invariant of G(u)

for u1(r) = ū(λ1r), we have

G(u1) = G(ū). (2.3)

Hence if ū(r) ∈ Y ∗
rad is the critical point of G(u), then u1 is also a critical point ( δG(u1)

δu =

0), and by choosing λ1, it holds that

‖u1‖Lq+1 = 1, ‖∇u1‖
p
Lp =: a1. (2.4)
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Since u1 ∈ Y ∗
rad, we have that u1(r) is continuous in [0,∞).1 Denote

R1 := inf{r > 0|u1(r) = 0} ∈ R
+ , {+∞}.

For any admissible variation φ ∈ C∞
0 (0, R1) at u1, i.e., there is an ε0 > 0 such that for

any 0 < |ε| < ε0, one has u1 + εφ ∈ Y ∗
rad. Then from a direction computation and using

(2.4), we have

d

dε

∣

∣

∣

ε=0
G(u1 + εφ) = Sd

∫ R1

0

θa
θ
p
−1

1

(

rd−1|u′
1|

p−2u′
1

)

φ′(r) + (1− θ)a
θ
p

1 u
q
1r

d−1φ(r) dr = 0.

This implies that u1 satisfies the following generalized Lane-Emden equation in the dis-

tribution sense

− θ
(

rd−1|u′
1|

p−2u′
1

)′
+ (1− θ)a1r

d−1uq
1 = 0, in (0, R1), (2.5)

lim
r→0+

u1(r) = 1, lim
r→R−

1

u1(r) = 0, (2.6)

where 0 < R1 ≤ +∞.

Step 2 (Normalization). We re-scale the function u1 as u(r) = u1(λr), where λ will

be given in (2.7). From (2.3), we know that u is also a critical point of G(u) in Y ∗
rad.

From (2.5) we deduce that u satisfies the following equation

−θλ−p
(

rd−1|u′|p−2u′
)′
+ (1− θ)a1r

d−1uq = 0, 0 < r <
R1

λ
=: R.

Taking

λ =

(

θ

(1− θ)a1

)1/p

, i.e. θλ−p = (1− θ)a1, (2.7)

we have that u satisfies (2.1)–(2.2) in the distribution sense.

Step 3 (u satisfies (2.1)–(2.2) in the classical sense). The purpose of this step is to

prove that solutions of (2.1)–(2.2) in the distribution sense are also classical solutions

in any closed interval of (0, R). We need only to show that equation (2.1) is uniformly

elliptic, i.e., to prove |u′(r)| ≥ C for some C > 0 in any closed interval of (0, R). That

will be a consequence of the following claim.

Claim. If there is 0 < r∗ ≤ R such that u′(r∗) = 0, then u(r∗) = 0.

Proof of Claim. If not, then u(r∗) > 0. Noticing that limr→0+ u(r) = 1 and

u′(r) ≤ 0, then for any fixed r > r∗, we have
∫ r

r∗
sd−1uq(s) ds < ∞. Moreover, by the

continuity of u(r) in (0,∞), we know that there is r∗ : r∗ < r∗ < ∞ such that if

r ∈ [r∗, r
∗), u(r) > 0. Hence integrating (2.1) from r∗ to r∗, we deduce

(r∗)d−1|u′(r∗)|p−2u′(r∗) =

∫ r∗

r∗

sd−1uq(s)ds. (2.8)

Notice that (r∗)d−1|u′(r∗)|p−2u′(r∗) ≤ 0 due to u′(r∗) ≤ 0 and the right side of the above

equation is positive. That is a contradiction. This completes the proof of this claim.

Since R := inf{r > 0|u(r) = 0} ∈ R
+ , {+∞}, then we have r∗ = R by the claim. So,

we have that |u′(r)| > 0 in (0, R). Therefore, from regularity of solutions to the elliptic

1If u1 ∈ Y ∗

rad
, we know that for any 0 < a < b < +∞, u1 ∈ W

1,p

rad
([a, b]). Hence u1(r) is continuous

in (0,∞). The continuity at x = 0 is given by limr→0+ u1(r) = 1.
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equation, we know that any weak solution of equation (2.5) in Y ∗
rad is also a classical

solution in any closed interval of (0, R). Hence equation (2.1) holds in the classical

sense. �

In the following, we show the three important results: (i) For the case q < p − 1, all

critical points of G(u) in Y ∗
rad satisfy the free boundary problem (1.13)–(1.14). Here we

need to derive a Pohozaev type identity and use it to prove that the contact angle is zero.

(ii) For the case q ≥ p− 1, we derive the Euler-Lagrange equations (1.15)–(1.16) for the

critical points of G(u) in Y ∗
rad. Solutions to the Euler-Lagrange equations (1.15)–(1.16)

are positive and have decay properties at the infinity. (iii) We show that the solution to

the Euler-Lagrange equations in Y ∗
rad is also a critical point of G(u) up to a re-scaling.

2.1. Case q < p− 1: Compact support, zero contact angle and free boundary problem.

In this subsection, we prove that all critical points of G(u) satisfy the free boundary

problem (1.13)–(1.14). First, we show that a solution to (2.1)–(2.2) has a compact

support in [0,+∞) (see Proposition 2). Next we show that the solution has a zero-

contact-angle at the boundary of the compact support (see Lemma 2.1 and Lemma 2.2).

Finally we use the zero-contact-angle result to derive a complete free boundary problem

(1.13)–(1.14) (see Proposition 3).

Proposition 2. Assume that ū(r) ∈ Y ∗
rad is a critical point of G(u). Let u(r) = ū(λ0r)

for some λ0 > 0 satisfy (2.1)–(2.2). If p > 1, 0 ≤ q < p− 1, then there is R ∈ (0,∞) such

that u(R) = 0.

Proof. For a radial decreasing non-negative function u ∈ Y ∗
rad, there only exist two

cases: (i) there exists a finite R such that u(R) = 0; (ii) u(r) > 0 for all r > 0, and hence

u(r) → 0, u′(r) → 0 as r → ∞.

Inspired by the work [26, Theorem 5.1], using a contradiction method, we show that

the second case cannot happen. Indeed, if (ii) holds, then u > 0 is a solution to the

following problem

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, 0 < r < ∞, (2.9)

lim
r→0+

u(r) = 1, lim
r→∞

u(r) = 0. (2.10)

Multiplying u′ to both sides of (2.9), we get

d

dr

(

p− 1

p
|u′(r)|p −

uq+1(r)

q + 1

)

+
d− 1

r
|u′(r)|p = 0. (2.11)

Integrating (2.11) from r to +∞ and utilizing the fact u(r) → 0 and u′(r) → 0 as r → ∞,

we have

p− 1

p
|u′(r)|p −

uq+1(r)

q + 1
=

∫ +∞

r

d− 1

s
|u′(s)|pds. (2.12)

Hence from (2.12), it holds that

−u′(r) ≥

(

p

(p− 1)(q + 1)

)1/p

u
q+1
p (r). (2.13)
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Using the method of separation of variable for (2.13) and integrating the resulting in-

equality from 0 to r, r ∈ (0,+∞), we obtain

∫ 1

u(r)

u− q+1
p du ≥

(

p

(p− 1)(q + 1)

)1/p

r for all r > 0,

which gives

r ≤

(

p

(p− 1)(q + 1)

)−1/p
p

p− q − 1

(

1− u
p−q−1

p (r)
)

. (2.14)

Noticing that p > 1, q < p− 1, by (2.14) we have

r ≤

(

p

(p− 1)(q + 1)

)−1/p
p

p− q − 1
. (2.15)

Taking r → +∞, we obtain a contradiction from (2.15). Hence the second case cannot

happen, i.e., there exists a finite R such that u(R) = 0.

�

Now we show that solutions to (2.1)–(2.2) have a zero contact angle at the boundary

of the compact support by constructing an auxiliary energy functional

G(u) :=
p− d

p

∫

Rd

|∇u|pdx−
d

q + 1

∫

Rd

uq+1dx. (2.16)

Lemma 2.1. Let ū(r) ∈ Y ∗
rad be a critical point of G(u). Then there is λ0 > 0 such that

the re-scaling function u(r) = ū(λ0r) is a zero point of the energy functional G(u) defined

in (2.16), i.e.,

G(u) = 0. (2.17)

Proof. From (2.4), the re-scaling function u1(r) = ū(λ1r), λ1 > 0 satisfies

1 =

∫

Rd

uq+1
1 dx, a1 =

∫

Rd

|∇u1|
pdx. (2.18)

Let u(r) = u1(λr), where λ is given by (2.7). Thus from (2.18) we deduce
∫

Rd

uq+1dy =
1

λd
,

∫

Rd

|∇u|pdy = a1λ
p−d.

Hence

G(u) =
p− d

p

∫

Rd

|∇u|pdx−
d

q + 1

∫

Rd

uq+1dx

=
p− d

p
a1λ

p−d −
d

q + 1
λ−d.

Using (2.7) and the definition (1.8) of θ, we have

G(u) =
p− d

p

(

θ

1− θ

)

λ−pλp−d −
d

q + 1
λ−d = 0,

i.e., (2.17) holds.

�
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Lemma 2.2. Let u(r) be a solution to the problem (2.1)–(2.2) in Y ∗
rad. Assume that

u(r) has a touchdown point R (i.e. u(R) = 0). Then the following relation between the

energy functional defined by (2.16) and the contact angle holds

G(u) =
(p− 1)Sd

p
lim

r→R−

rd|u′(r)|p, (2.19)

where Sd is the surface area of d-dimensional unit ball.

Proof. Now we prove (2.19) by using a similar idea to the proof of the Pohozaev

identity. Introduce the energy function

H(r) :=
p− 1

p
|u′(r)|p −

uq+1(r)

q + 1
. (2.20)

Using (2.11), we have the following energy-dissipation relation

dH(r)

dr
+

d− 1

r
|u′(r)|p = 0. (2.21)

Multiplying rd to (2.21) and integrating the resulting equation from r to R0, for any

fixed 0 < R0 < R, we obtain that

Rd
0H(R0)− rdH(r)− d

∫ R0

r

sd−1H(s)ds+ (d− 1)

∫ R0

r

|u′(s)|psd−1ds = 0.

By (2.20), the above equation can be written as the following form

rd
(

p− 1

p
|u′(r)|p −

uq+1(r)

q + 1

)

=Rd
0H(R0)−

p− d

p

∫ R0

r

sd−1|u′(s)|pds

+
d

q + 1

∫ R0

r

sd−1uq+1(s)ds. (2.22)

Since u(r) ∈ Y ∗
rad, we have that the limit of the right side of (2.22) exists as r → 0+.

Hence taking the limit for both sides of (2.22), we have

p− 1

p
lim

r→0+
rd|u′(r)|p =Rd

0H(R0)−
p− d

p

∫ R0

0

sd−1|u′(s)|pds

+
d

q + 1

∫ R0

0

sd−1uq+1(s)ds. (2.23)

Notice that rd|u′(r)|p ≥ 0. Hence there is a constant C ≥ 0 such that

lim
r→0+

rd|u′(r)|p = C.

Now we claim C = 0. If C > 0, then there is δ > 0 such that

rd|u′(r)|p ≥
C

2
for 0 < r ≤ δ,

which means

rd−1|u′(r)|p ≥
C

2
r−1 for 0 < r ≤ δ.

Integrating above inequality from 0 to δ, we deduce

∞ >

∫ δ

0

sd−1|u′(s)|pds ≥
C

2

∫ δ

0

r−1dr = +∞.
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This is a contradiction. Hence it holds that

lim
r→0+

rd|u′(r)|p = 0. (2.24)

Therefore, using (2.20), (2.24) and taking the limit for (2.23) as R0 → R−, we have

p− 1

p
lim

R0→R−

Rd
0|u

′(R0)|
p = lim

R0→R−

Rd
0H(R0)

=
p− d

p

∫ R

0

rd−1|u′(r)|pdr −
d

q + 1

∫ R

0

rd−1uq+1(r)dr

=
p− d

p

1

Sd

∫

BR(0)

|∇u|pdx−
d

q + 1

1

Sd

∫

BR(0)

uq+1dx =
1

Sd
G(u).

Hence (2.19) holds. �

Finally, we show that all critical points of G(u) satisfy the free boundary problem

(1.13)–(1.14) up to a re-scaling.

Proposition 3. Assume p > 1, 0 ≤ q < p − 1. Let ū(r) ∈ Y ∗
rad be a critical point of

G(u). Then there is λ0 > 0 such that the re-scaling function u(r) = ū(λ0r) satisfies the

free boundary problem (1.13)–(1.14).

Proof. As a direct consequence of (2.19) and G(u) = 0, one knows that u′(R) = 0. In

the other words, the contact angle is zero. This case is the so-called complete wetting

regime in Young’s law [17]. �

2.2. Case q ≥ p − 1: Positivity and decay property. In this subsection, we show that

solutions to (2.1)–(2.2) are positive (see Proposition 4). And decay properties of solutions

to the problem (1.15)–(1.16) are proved in Proposition 5.

Proposition 4. Assume p > 1, q ≥ p − 1. Let u(r) be a solution of (2.1)–(2.2). Then

u(r) > 0 for any 0 < r < ∞.

Proof. Now we only need to prove that R = ∞ for p > 1, q ≥ p− 1. If not, R < ∞.

By Proposition 3, we have u′(R) = 0. Multiplying rd−1 to equation (2.1) and using

u′(r) ≤ 0, we have

(rd−1|u′(r)|p−1)′ + rd−1uq(r) = 0, 0 < r < R.

We extend the function u to u = 0 for r ≥ R. Let Ωε := R
d \Bε(0), ∀ε > 0 be a domain

without the origin. For any φ(x) = φ(|x|) ≥ 0 and φ ∈ C∞
c (Ωε), it holds that

∫ ∞

ε

(−φ′(r)rd−1|u′(r)|p−1 + φ(r)rd−1uq(r))dr = 0.

And noticing ∇u ∈ Lp(Rd), we have
∫

Ωε

(∇φ · ∇u|∇u|p−2 + φuq)dx = 0.

Hence we have for any R̄ > R > 0

∆pu = uq in D(BR̄(0) \Bε(0)).

Moreover, by Step 3 in the proof of Proposition 1 and u′(R) = 0, we know u ∈ C1(BR̄(0)\

Bε(0)). Positivity of u in BR̄(0) \Bε(0) is a direct consequence of the Strong Maximum
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Principle given by Pucci and Serrin [29, Theorem 1.1.1]. To prove this positivity, we only

need to verify the necessary and sufficient condition for the Strong Maximum Principle:

f(s) > 0 for s ∈ (0, δ) and
∫

0+
ds

H−1(F (s)) = ∞ (in the same notations as that in [29],

f(s) = sq, F (s) = sq+1

q+1 , H(s) = p−1
p sp). While the condition

∫

0+
ds

H−1(F (s)) = ∞ holds if

and only if q ≥ p− 1.

Therefore, positivity in BR̄(0) \Bε(0) is a contradiction with u ≡ 0 in BR̄(0) \BR(0).

�

Proposition 5. Let u(r) be a solution of the problem (1.15)–(1.16). Then u(r) satisfies

the following decay estimate

lim
r→∞

rd−1|u′(r)|p−1 = 0. (2.25)

Moreover, u(r) satisfies the following decay rates

(i) for q > p− 1, it holds that

u(r) + r|u′(r)| ≤ Cp,qr
− p

q+1−p for r > 0; (2.26)

(ii) for q = p− 1, it holds that

u(r) + |u′(r)| ≤ Cpe
−(p−1)

−
1
p r for r > 0. (2.27)

Proof. Step 1. We prove the decay estimate (2.25). Since the function u(r) satisfies

equation (1.15), hence we have

(rd−1|u′(r)|p−1)′ = −uqrd−1 < 0 for any r > 0.

So, rd−1|u′(r)|p−1 is decreasing in r. Notice that rd−1|u′(r)|p−1 ≥ 0. Hence there is a

constant C ≥ 0 such that

lim
r→∞

rd−1|u′(r)|p−1 = C.

Now we claim C = 0. If C > 0, we have

rd−1|u′(r)|p−1 ≥ C for any r > 0,

which means

−u′(r) ≥ Cr−
d−1
p−1 for any r > 0.

Integrating above inequality from r to ∞ for any r > 0 and using the fact limr→∞ u(r) =

0, we obtain

u(r) ≥ C
p− 1

p− d
r1−

d−1
p−1

∣

∣

∣

∞

r
= +∞. (2.28)

This is a contradiction, i.e., (2.25) holds.

Step 2 (The decay rate of u). From (2.20) and (2.21), we have

d

dr
|u′(r)|p −

p

(p− 1)(q + 1)

d

dr
uq+1(r) +

p(d− 1)

p− 1

1

r
|u′(r)|p = 0. (2.29)

Integrating (2.29) from r to ∞ and using u(r), u′(r) → 0 as r → ∞, we obtain

|u′(r)|p −
p

(p− 1)(q + 1)
uq+1(r) =

p(d− 1)

p− 1

∫ ∞

r

1

s
|u′(s)|pds.
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Thus

|u′(r)|p −
p

p− 1

uq+1(r)

q + 1
≥ 0 for r > 0,

i.e.,

−u′(r) ≥

(

p

(p− 1)(q + 1)

)
1
p

u
q+1
p (r).

Using the method of separation of variable for above formula and integrating the resulting

inequality from 0 to r, r ∈ (0,∞), we deduce

u(r) ≤ Cp,qr
− p

q+1−p for r > 0, q > p− 1; (2.30)

u(r) ≤ e−(p−1)
−

1
p r for r > 0, q = p− 1. (2.31)

Step 3 (The refined decay rate of u′(r)). Again multiplying rk, k = p(d−1)
p−1 on both

sides of (2.29), it holds that

d

dr
(rk|u′(r)|p)−

p

(p− 1)(q + 1)
rk

d

dr
uq+1(r) = 0.

The decay rate in (2.25) implies limr→∞ rk|u′(r)|p = 0. Hence integrating the above

equality from r to ∞ gives

rk|u′(r)|p +
p

(p− 1)(q + 1)

∫ ∞

r

sk
d

ds
uq+1(s)ds = 0.

Using (2.30), we can directly check that limr→∞ rkuq+1(r) = 0 due to k− p(q+1)
q+1−p < 0 for

p > d. Hence using the integration by parts, we have

rk|u′(r)|p =
p

(p− 1)(q + 1)
rkuq+1(r) +

p

(p− 1)(q + 1)
k

∫ ∞

r

sk−1uq+1(s)ds.

Thus we get

|u′(r)|p =
p

(p− 1)(q + 1)
uq+1(r) +

p

(p− 1)(q + 1)
kr−k

∫ ∞

r

sk−1uq+1(s)ds. (2.32)

Using (2.30), (2.31) and (2.32), a direct computation gives that for any r > 0

r|u′(r)| ≤ Cp,qr
− p

q+1−p for q > p− 1; (2.33)

|u′(r)| ≤ Cpe
−(p−1)

−
1
p r for q = p− 1. (2.34)

Hence (2.30) and (2.33) give (2.26). Formulas (2.31) and (2.34) imply (2.27). �

2.3. Solutions to Euler Lagrange equations are critical points of G(u). Since the zero

contact angle in the free boundary condition (1.14) provides a C1 zero extension for the

case q < p− 1, we can recast the free boundary problem (1.13)–(1.14) into the problem

(1.15)–(1.16) as in Lemma 2.3.
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Lemma 2.3. Let u(r) be a solution to the free boundary problem (1.13)–(1.14), and

u(r) = 0 for r ≥ R. Then the zero extension solution u(r) ∈ C1(0,∞) is a non-negative

solution to the following problem in the distribution sense

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, 0 < r < +∞, (2.35)

lim
r→0+

u(r) = 1, lim
r→∞

u(r) = 0. (2.36)

Proof. Since u is a solution to the free boundary problem (1.13)–(1.14), by Step 3 in

the proof of Proposition 1, we know that u is also a classical solution in (0, R). Notice

that u′(R) = 0, which allows us to make a C1-zero extension, i.e., extend it to u(r) = 0

for r ≥ R. Thus we have that the solution u is a C1-non-negative solution to (2.35)–(2.36)

in (0,∞). �

Proposition 6. Let u(r) be a solution to (2.35)–(2.36) in Y ∗
rad. Then for any λ > 0,

the re-scaling function uλ(r) = u( rλ ) is a critical point of G(u) in Y ∗
rad.

Proof. Step 1. In this step, we show that G(u) = 0, G(u) is defined by (2.16).

Since u satisfies equations (2.35)–(2.36) and the decay estimates (2.26)–(2.27), hence

by (2.19), we have G(u) = 0, i.e.,
∫

Rd

|∇u|pdx =
pd

(q + 1)(p− d)

∫

Rd

uq+1dx. (2.37)

Step 2. We prove that for any λ > 0, the re-scaling function uλ(r) = u( xλ ) is a critical

point of G(u) in Y ∗
rad.

In fact, it is directly verified that for any admissible variation φ ∈ C1
c (0,∞) at uλ (i.e.,

there is an ε0 > 0 such that for any |ε| < ε0 one has uλ + εφλ ∈ Y ∗
rad), we have

1

G(uλ)

d

dε

∣

∣

∣

ε=0
G(uλ + εφλ)

=− θ‖∇uλ‖
−p
Lp

∫ ∞

0

φ′
λ|u

′
λ|

p−1sd−1 ds+ (1− θ)‖uλ‖
−q−1
Lq+1

∫ ∞

0

φλu
q
λs

d−1 ds

=− θ‖∇u‖−p
Lp

∫ ∞

0

φ′|u′|p−1rd−1 dr + (1− θ)‖u‖−q−1
Lq+1

∫ ∞

0

φ(r)uq(r)rd−1 dr. (2.38)

Together with (2.37), we deduce

1

G(uλ)

d

dε

∣

∣

∣

ε=0
G(uλ + εφλ)

= −θ‖∇u‖−p
Lp

(
∫ ∞

0

φ′|u′|p−1rd−1 dr −

∫ ∞

0

φ(r)uq(r)rd−1 dr

)

.

Noticing that u is a distribution solution to (2.35)–(2.36) in Y ∗
rad, then it holds that

1

G(uλ)

d

dε

∣

∣

∣

ε=0
G(uλ + εφλ) = 0.

Hence any re-scaling function of u is a critical point of G(u) in Y ∗
rad.

�
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3. Existence and uniqueness for Euler-Lagrange equations in L∞ case. In

this section, we prove existence and uniqueness of solutions to the Euler-Lagrange equa-

tions (2.35)–(2.36) of L∞-type G-N inequalities. We also show that the Euler-Lagrange

equations are equivalent to some Thomas-Fermi type equations.

3.1. Existence. In this subsection, we prove existence of solutions u(r) to the problem

(2.35)–(2.36). First, we show that there is a singularity of u′(r) at r = 0: u′(r) ∼ Cr−
d−1
p−1

at r → 0 (Proposition 7). We then prove existence through a limit of a sequence of

solutions in the exterior domain (ri,∞), ri → 0. The main ingredients of the convergence

proof are: (i) Comparison principle (Lemma 3.1); (ii) Uniform low bound nearby r = 0

(Lemma 3.3); (iii) Application of the Dini theorem.

We introduce the following exterior Dirichlet problem on (r0,∞), which was studied

in [29]

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, r0 < r < ∞, (3.1)

u(r0) = 1, lim
r→∞

u(r) = 0. (3.2)

From [29, Theorem 4.3.1] and [29, Theorem 4.3.2], we know that the problem (3.1)–(3.2)

has a unique solution u(r) ∈ C1[r0,∞) satisfying u′(r) < 0 when u(r) > 0. Furthermore,

this solution u(r) is non-increasing in [r0,+∞), although this statement is not directly

stated in [29, Theorem 4.3.1], the non-increase of u is a consequence in their proof [29, p.

94, line 1-4]. See also the proof of Proposition 7. We refer to u(r) as a C1 non-increasing

solution.

Proposition 7 is to give a characterization of singularity of u′(r) at r = 0.

Proposition 7. For p > d ≥ 1, q > 0, and any r0 > 0, the non-increasing solution u(r)

to the exterior problem (3.1)–(3.2) on (r0,∞) satisfies for any r > r0

rd−1|u′(r)|p−1 =

∫ ∞

r

sd−1uq(s)ds < ∞; (3.3)

∫ ∞

r

sd−1|u′(s)|pds+

∫ ∞

r

sd−1uq+1(s)ds = rd−1u(r)|u′(r)|p−1. (3.4)

Proof. From the proof of [29, Theorem 4.3.1], we know that the non-increasing solu-

tion u(r) to the problem (3.1)–(3.2) is the limit of a non-increasing function sequence

{uj(r)}
∞
1 , which is a solution to the following truncated exterior problem

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, r0 < r < r0 + j, (3.5)

u(r0) = 1, u(r0 + j) = 0, (3.6)

u′(r) ≤ 0, in [r0, r0 + j], (3.7)

and satisfies uj(r) < uj+1(r) ≤ 1 for r > r0. This implies that

(i) |u′
j(r)| ≤ |u′

j−1(r)| ≤ · · · ≤ |u′
1(r)|;

(ii) there is u(r) such that limj→∞ uj(r) = u(r).
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Multiplying rd−1 to (3.5) and integrating the resulting equation from r to r0 + j, r0 <

r < r0 + j, we obtain

(r0 + j)d−1|u′
j(r0 + j)|p−1 − rd−1|u′

j(r)|
p−1 +

∫ r0+j

r

sd−1uq
j(s)ds = 0, (3.8)

which means

Ij :=

∫ r0+j

r

sd−1uq
j(s)ds ≤ rd−1|u′

j(r)|
p−1 ≤ rd−1|u′

1(r)|
p−1 for any j ∈ N

+. (3.9)

Extending uj(r) = 0 for r ≥ r0 + j, we have
∫∞

r
sd−1uq

j(s)ds < rd−1|u′
1(r)|

p−1. Hence

by the Monotone Convergence Theorem, we have
∫ ∞

r

sd−1uq(s)ds = lim
j→∞

∫ ∞

r

sd−1uq
j(s)ds ≤ rd−1|u′

1(r)|
p−1 < ∞.

Similar to the process to obtain (2.25), we can get that the solution of the problem

(3.1)–(3.2) also has the decay property

lim
r→∞

rd−1|u′(r)|p−1 = 0. (3.10)

Hence taking the limit for (3.8), we have (3.3).

Multiplying u(r) on both sides of equation (3.1), integrating it from r to ∞, and using

the facts u(r) → 0, rd−1|u′|p−1 → 0 as r → ∞, we have
∫ ∞

r

sd−1|u′(s)|pds+

∫ ∞

r

sd−1uq+1(s)ds = rd−1u(r)|u′(r)|p−1, r > r0.

�

In order to show existence of solutions to the problem (2.35)–(2.36) (see Proposition

8), first we prove Lemmas 3.1–3.3.

Lemma 3.1 (Comparison principle). Let u1 and u2 be C1 non-increasing solutions to

the exterior problem (3.1)–(3.2) on (r1,∞) and (r2,∞), respectively. Then if r1 < r2,

we have that for r ∈ {r|u2(r) > 0},

u1(r) < u2(r), u′
1(r) > u′

2(r). (3.11)

Proof. Since u1(r1) = 1 and u′
1(r) < 0 when u1(r) > 0, we have u1(r) < 1 in (r1, r2].

Hence u2(r2) > u1(r2) due to u2(r2) = 1. Using a contradiction method, we assume

that there is r∗ : r2 < r∗ < ∞ such that u2(r∗) = u1(r∗) =: m∗ > 0. Considering the

following problem

(|u′|p−2u′)′ +
d− 1

r
|u′|p−2u′ = uq, r∗ < r < ∞, (3.12)

u(r∗) = m∗, lim
r→∞

u(r) = 0, (3.13)

we know that solutions u1(r) and u2(r) defined in [r∗,∞) are C1 non-increasing solutions

to (3.12)–(3.13). The uniqueness of the C1 non-increasing solution to the problem (3.12)–

(3.13) implies that u1(r) = u2(r) for r ∈ [r∗,∞). By ODE theory, we know that u1(r) =

u2(r) for any r ≥ r2, which is a contradiction with u2(r2) > u1(r2). Hence for an

r ∈ {r|u2(r) > 0}, u2(r) > u1(r).
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From (3.3) and the comparison principle, we deduce that for any r ∈ {r|u2(r) > 0}

rd−1|u′
2(r)|

p−1 =

∫ ∞

r

sd−1uq
2(s)ds >

∫ ∞

r

sd−1uq
1(s)ds = rd−1|u′

1(r)|
p−1,

which implies u′
2(r) < u′

1(r). This is the proof of Lemma 3.1. �

Lemma 3.2 (Uniform estimate in rj). Let u1 and u2 be C1 non-increasing solutions to

the exterior problem (3.1)–(3.2) on (r1,∞) and (r2,∞), respectively. Then if r1 < r2,

we have μr1 ≤ μr2 +
rd2−rd1

d .

Proof. Since u′
1(r) ≤ 0 in (r1,+∞), we have u1(r) ≤ 1 in [r1, r2]. Hence for any

r1, r2 > 0 satisfying r1 < r2, a direct computation gives

μr1 =

(
∫ r2

r1

+

∫ +∞

r2

)

rd−1uq
1(r)dr ≤

∫ r2

r1

rd−1dr +

∫ +∞

r2

rd−1uq
1(r)dr. (3.14)

Using the comparison principle in Lemma 3.1, we have
∫ +∞

r2

rd−1uq
1(r)dr ≤

∫ +∞

r2

rd−1uq
2(r)dr. (3.15)

Hence (3.14) and (3.15) imply that μr1 ≤ μr2 +
rd2−rd1

d . �

Lemma 3.3 (Uniform low bound). Let u be the C1 non-increasing solution to the exterior

problem (3.1)–(3.2) on (r0,∞). Then for any r > r0, there is C > 0 independent of r0
and r such that

u(r) ≥ 1− C

(

r
p−d

p−1 − r
p−d
p−1

0

)

. (3.16)

Proof. Multiplying rd−1 to (3.1) and integrating the resulting equation from r0 to ∞,

we deduce

rd−1
0 |u′(r0)|

p−1 =

∫ ∞

r0

rd−1uq(r)dr = μr0 . (3.17)

Again multiplying rd−1 to (3.1) and integrating it from r0 to r, and using (3.17), we

obtain

rd−1|u′(r)|p−1 − μr0 = −

∫ r

r0

rd−1uq(r)dr.

From above equation with r > r0 and u ≥ 0, we have

−u′(r) ≤ r−
d−1
p−1μ

1
p−1
r0 . (3.18)

Integrating (3.18) from r0 to r, we deduce

u(r) ≥ 1−
p− 1

p− d
μ

1
p−1
r0

(

r
p−d
p−1 − r

p−d

p−1

0

)

. (3.19)

By Lemma 3.2, we know that for a fixed r∗ > r0, μr0 ≤ μr∗ +
rd
∗
−rd0
d ≤ μr∗ +

rd
∗

d . Denote

C := p−1
p−d

(

μr∗ +
rd
∗

d

)
1

p−1

. Hence (3.19) implies that (3.16) holds true.

�
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Proposition 8 (Existence). Assume that exponents p > d ≥ 1 and q > 0, then there is

a C1 non-increasing solution u(r) to the problem (2.35)–(2.36), and satisfies the following

properties

(i) u ∈ Lq+1(Rd), ∇u ∈ Lp(Rd), and
∫ ∞

0

rd−1|u′|pdr +

∫ ∞

0

rd−1uq+1dr = lim
r→0+

rd−1|u′|p−1 =

∫ ∞

0

rd−1uqdr < ∞; (3.20)

(ii) u′(r) < 0 for u(r) > 0.

Proof. Let ui(r) be the C1 non-increasing solution to the exterior Dirichlet problem

(3.1)–(3.2) on the domain (ri,+∞) with the boundary condition ui(ri) = 1. We take a

sequence {ri}
∞
i=1 satisfying ri > ri+1 > 0 for any i ∈ N

+, and ri → 0+ as i → +∞. We

will show the limit function of ui is the solution of the problem (2.35)–(2.36).

Step 1. We prove that there is a continuous, non-negative and non-increasing function

u(r) such that as i → ∞,

ui(r) → u(r), u′
i(r) → u′(r), for all r > 0, (3.21)

and they converge uniformly in any interval [a, b] for 0 < a < b < ∞.

Notice that {ui(r)}
∞
i0

is continuous, non-negative and non-increasing sequence and

bounded below in [a,∞), a > 0 (0 < ri0 < a). Hence by the Dini theorem the sequence

{ui(r)}
∞
i0

converges uniformly on every compact interval [a, b] of (0,∞) to a non-negative,

non-increasing, continuous function u(r), i.e.,

ui(r) → u(r) for all r > 0, as i → +∞, (3.22)

and they converge uniformly in any interval [a, b] for 0 < a < b < ∞. Since ui(r) is

a non-negative and non-increasing function in r, hence u(r) is also a non-negative and

non-increasing function. Furthermore, by the comparison principle we know that for any

i ∈ N, it holds that

u(r) ≤ ui(r) for all r ∈ (ri,∞). (3.23)

Moreover, let uj(r) be a solution to equation (3.1) with u(rj) = 1. Hence by (3.11)

and the Dini theorem we have

u′
j(r) → u′(r) for all r > 0, (3.24)

and they converge uniformly in any interval [a, b] for 0 < a < b < ∞. Moreover, by the

comparison principle we know that for any i ∈ N, it holds that

u′(r) ≥ u′
i(r) for all r ∈ (ri,∞). (3.25)

Step 2. We prove limr→∞ u(r) = 0 and limr→0+ u(r) = 1.

Since limr→∞ ui(r) = 0 by (3.2), we have limr→∞ u(r) = 0. On the other hand, by

Lemma 3.3 we have

lim
r→0+

lim
i→∞

ui(r) ≥ 1.

Together with limr→0+ limi→∞ ui(r) ≤ 1 gives that limr→0+ u(r) = 1. Thus the limit

function u(r) satisfies the boundary condition (2.36).
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Step 3. We show the Lq-integrability of the limit function u(r), i.e., for fixed i0 ∈ N,

it holds that
∫ +∞

0

rd−1uq(r)dr < μri0
+

rdi0
d
. (3.26)

Indeed, for any ε > 0, there exists i∗ ∈ N such that 0 < ri∗ < ε < ri0 . And hence by

(3.23), we have
∫ ∞

ε

rd−1uq(r)dr ≤

∫ ∞

ε

rd−1uq
i∗
(r)dr ≤

∫ ∞

r∗

rd−1uq
i∗
(r)dr.

Hence by Lemma 3.2, we know that for ri∗ < ri0
∫ ∞

ε

rd−1uq(r)dr ≤

∫ ∞

i0

rd−1uq
i0
(r)dr +

rdi0 − rdi∗
d

. (3.27)

Taking ε → 0, we get (3.26).

Step 4. We give u ∈ Y ∗
rad. Mainly u ∈ Lq+1 and ∇u ∈ Lp.

For any ε > 0, there exists i∗ ∈ N such that 0 < ri∗ < ε < ri0 . For any j ≥ i∗, let

uj(r) be a solution to equation (3.1) with u(rj) = 1. Then we have
∫ ∞

ε

sd−1|u′
j(s)|

pds+

∫ ∞

ε

sd−1uq+1
j (s)ds = εd−1u(ε)|u′

j(ε)|
p−1 (3.28)

≤ εd−1|u′
j(ε)|

p−1 =

∫ ∞

ε

sd−1uq
j(s)ds ≤ μri0

+
rdi0
d
. (3.29)

Hence by the Monotone Convergence Theorem, as j → ∞, we have
∫ ∞

ε

sd−1|u′(s)|pds+

∫ ∞

ε

sd−1uq+1(s)ds = εd−1u(ε)|u′(ε)|p−1 (3.30)

≤ εd−1|u′(ε)|p−1 =

∫ ∞

ε

sd−1uq(s)ds. (3.31)

Notice that

lim
ε→0

εd−1u(ε)|u′(ε)|p−1 = lim
ε→0

εd−1|u′(ε)|p−1

due to limε→0 u(ε) = 1 in Step 2, we deduce (3.20).

Step 5. We prove that the limit function u(r) is the required radial solution of (2.35)

in the distribution sense.

In fact, for any φ ∈ C1
c (0,+∞), we have

−

∫ +∞

0

φ′rd−1|u′
i|
p−1dr +

∫ +∞

0

φrd−1uq
i dr = 0. (3.32)

Using the uniform convergence property of ui and u′
i from Step 1, we obtain

−

∫ +∞

0

φ′rd−1|u′|p−1dr +

∫ +∞

0

φrd−1uqdr = 0, (3.33)

i.e., the limit function u(r) is the required radial solution of (2.35) in the distribution

sense.
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Step 6 (To prove the property (ii)). Since u ∈ Lq+1(Rd) and ∇u ∈ Lp(Rd), from

equation (2.35), we can obtain (2.13). Hence we have that u′(r) < 0 in the set {r|u(r) >

0}, i.e., the case (ii) holds.

This completes the proof of Proposition 8. �

Remark 3.4. Proposition 8 proved existence of C1 non-increasing solutions to (2.35)–

(2.36) for the case q > 0. Existence for the case q = 0 will be established in Proposition

11 by giving an exact closed form solution.

3.2. Uniqueness. In this subsection, we prove uniqueness of solutions to (2.35)–(2.36)

by following works [15, Theorem 1] given by Franchi, Lanconelli and Serrin. Let u(r)

and v(r) be two C1 non-increasing solutions to the problem (2.35)–(2.36). By (i) of

Proposition 8, we have u′(r) < 0 when u(r) > 0, and hence both u(r) and v(s) possess

inverse functions in those supports. We denote respectively by r(u) and s(v) the inverse

functions of u(r) and v(s), defined on the interval (0, 1].

Lemmas 3.5 and 3.6 are special cases from results in [7]. We supply a proof to show

how their proof is used in our special cases.

Lemma 3.5 ([15, Lemma 3.3.1]). Assume q ≥ 0 and d > 1. If r(u) > s(u) in some open

interval (0, 1), then r(u)− s(u) can have at most one critical point in (0, 1). Moreover if

such a critical point exists, it must be a strict maximum point.

Proof. By equation (2.35), it is immediately verified that the function r = r(u) satisfies

the equation

(p− 1)ruu −
d− 1

r
r2u − |ru|

p+1uq = 0, 0 < u < 1,

and the same equation holds for s(u). Hence by subtracting one from another, we get

(p− 1)(r − s)uu − (d− 1)

(

r2u
r

−
s2u
s

)

−
(

|ru|
p+1 − |su|

p+1
)

uq = 0. (3.34)

Now we suppose that u = u∗ ∈ (0, 1) is a critical point of r(u)− s(u), then ru = su < 0

at u = u∗. Thus from (3.34), we have that

(p− 1)(r − s)uu = (d− 1)r2u

(

1

r
−

1

s

)

< 0, at u = u∗,

where the last inequality used the fact r(u) > s(u) in (0, 1). Hence we get that all critical

points must be maximum points, which implies that r(u)− s(u) has at most one critical

point in (0, 1). �

Lemma 3.6 ([15, Lemma 3.3.2]). Assume q ≥ 0 and d > 1. If r(u) − s(u) has two zero

points in (0, 1], denoting them as ξ0 and ξ1, then r(u) = s(u) for all u between ξ0 and ξ1.

Proof. Inspired by [15, Lemma 3.3.2], use the contradiction method to prove this

lemma. Without loss of generality, we assume that ξ0 < ξ1 and r(u) > s(u) for all

u ∈ (ξ0, ξ1). By Lemma 3.5, we know that r(u)− s(u) has at most one critical point in

(ξ0, ξ1). Since r(ξ0) − s(ξ0) = r(ξ1) − s(ξ1) = 0, then there is at least one critical point

in (ξ0, ξ1). Suppose that ξ2 ∈ (ξ0, ξ1) is a unique critical point satisfying (r− s)′(ξ2) = 0.
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From (3.34), we have

(p− 1)(r′′(u)− s′′(u)) = (d− 1)(r′(u))2
(

1

r(u)
−

1

s(u)

)

< 0, at u = ξ2, (3.35)

where the last inequality used the fact r(ξ2) > s(ξ2). Hence by the continuity of r′(u),

we know that there is a δ > 0 such that (r − s)′(u) < 0 in (ξ2, ξ2 + δ). Since the critical

point of r(u)− s(u) is unique in (ξ0, ξ1), we have

(r − s)′(u) < 0, in (ξ2, ξ1), i.e. |r′(u)| > |s′(u)|. (3.36)

Denote r1 = r(ξ1) and r2 = r(ξ2). Multiplying rd−1 to equation (2.35) and integrating

the resulting equation from r1 to r2, we deduce
∫ r2

r1

d

dr

(

rd−1|u′|p−2u′(r)
)

dr =

∫ r2

r1

rd−1uq(r)dr =

∫ ξ1

ξ2

r(u)d−1 uq

|u′(r(u))|
du. (3.37)

Hence it holds that

rd−1
2 |u′(r2)|

p−2u′(r2)− rd−1
1 |u′(r1)|

p−2u′(r1) =

∫ ξ1

ξ2

r(u)d−1 uq

|u′(r(u))|
du. (3.38)

Similar for v, denote s1 = s(ξ1) and s2 = s(ξ2). We have the same formula

sd−1
2 |v′(s2)|

p−2v′(s2)− sd−1
1 |v′(s1)|

p−2v′(s1) =

∫ ξ1

ξ2

s(u)d−1 uq

|v′(s(u))|
du. (3.39)

Due to r1 = r(ξ1) = s(ξ1) = s1 and r′(ξ2) = s′(ξ2), subtracting (3.39) from (3.38) gives

that
(

sd−1
2 − rd−1

2

)

|u′(r2)|
p−1+rd−1

1

(

|u′(r1)|
p−1 − |v′(s1)|

p−1
)

=

∫ ξ1

ξ2

uq

(

r(u)d−1

|u′(r(u))|
−

s(u)d−1

|v′(s(u))|

)

du. (3.40)

Since (3.36), s2 < r2 and r(u) > s(u) for all u ∈ (ξ0, ξ1), we directly verify that both

terms on the left side of (3.40) are strictly negative, while the right side of (3.40) is

non-negative. This is a contradiction. Hence the assumption is not true, i.e., r(u) = s(u)

in (ξ0, ξ1).

�

Proposition 9 (Uniqueness). Assume q ≥ 0 and p > d > 1. Let u and v be two

C1 non-increasing solutions of the problem (2.35)–(2.36). Then u(r) ≡ v(r) for any

0 ≤ r < ∞.

Proof. We use a contradiction method to prove this proposition. If not, then u(r) �≡

v(r) on [0,∞). Equivalently their inverse functions r(u) �≡ r(u) in (0, 1]. Hence there

is u∗ ∈ (0, 1) such that r(u∗) �= s(u∗). Then Lemma 3.6 implies that r(u), s(u) satisfy

either r(u) > s(u) or r(u) < s(u) in (0, 1).

For the case q ≥ p−1, without loss of generality, we suppose r(u) > s(u) for u ∈ (0, 1),

then u(r) > v(r) for r > 0. Multiplying rd−1 to equation (2.35) and integrating the

resulting equation from r to ∞ and using (2.25), we have

rd−1|u′|p−1 =

∫ ∞

r

sd−1uq(s)ds. (3.41)
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The same process for v(r) gives

rd−1|v′|p−1 =

∫ ∞

r

sd−1vq(s)ds. (3.42)

Subtracting (3.42) from (3.41) gives that

rd−1|u′(r)|p−1 − rd−1|v′(r)|p−1 =

∫ ∞

r

sd−1(uq(s)− vq(s))ds.

Since u(r) > v(r) and q ≥ p− 1 > 0, then we have from the above equation

v′(r) > u′(r), for r > 0. (3.43)

Integrating (3.43), we obtain limr→0+ v(r) < limr→0+ u(r), which is a contradiction with

limr→0+ v(r) = limr→0+ u(r) = 1.

For the case 0 ≤ q < p − 1, we suppose r(u) > s(u) for u ∈ (0, 1). Then u(r) > v(r)

for 0 < r < Rv, and u > 0, v = 0 for Rv < r < Ru. Multiplying rd−1 to equation (2.35)

and integrating the resulting equation from r to Rv, we have

rd−1|v′|p−1 =

∫ Rv

r

sd−1vq(s)ds

<

(

∫ Rv

r

+

∫ Ru

Rv

)

sd−1uq(s)ds = rd−1|u′|p−1 for 0 < r < Rv.

Thus v′(r) > u′(r) for 0 < r < Rv. In (Rv, Ru), u
′(r) < 0 = v′(r). Hence we have

0 <

∫ Ru

0

(v′(r)− u′(r))dr =

∫ Rv

0

v′(r)dr −

∫ Ru

0

u′(r)dr = 0,

which is a contradiction. �

Remark 3.7. For the case d = 1, uniqueness of C1 non-increasing solutions to the

problem (2.35)–(2.36) is given by a direct computation in Proposition 12. Hence the

proof of Theorem 1.1 will be given in Subsection 4.3.

3.3. Thomas-Fermi type equation. This subsection shows that the non-increasing so-

lution of the Euler Lagrange equation obtained above is equivalent to the radial non-

increasing solution to a Thomas-Fermi type equation.

Definition 3.8. We call a function u(|x|) a radial non-increasing weak solution to

the Thomas-Fermi type equation (1.20)–(1.21) if u(|x|) satisfies

(i) u(|x|) is a non-increasing function in |x| and lim|x|→0+ u(|x|) = 1,

(ii) ∇u ∈ Lp, u ∈ Lq+1, and denote a := ‖∇u‖pLp + ‖u‖q+1
Lq+1 ,

(iii) for any φ(|x|) ∈ C∞
c (Rd), it holds that (∇φ, |∇u|p−2∇u) + (φ, uq) = a(φ, δx=0).

Proposition 10. Assume p > d ≥ 1, then

(i) For the case q ≥ p− 1,

(a) if u(r) is the weak solution to the problem (1.15)–(1.16) in Y ∗
rad, then u(|x|)

is a radial non-increasing weak solution to a Thomas-Fermi type equation

(1.20)–(1.21).

(b) if u(|x|) ∈ W 1,p(Rd) is a radial non-increasing weak solution to the Thomas-

Fermi type equation (1.20)–(1.21), then u(r) is also the solution of (1.15)–

(1.16) in Y ∗
rad.
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(ii) For the case q < p− 1,

(a) if u(r) is the solution to the free boundary problem (1.13)–(1.14) in Y ∗
rad,

then u(|x|) is a radial non-increasing solution to a Thomas-Fermi type equa-

tion (1.17)–(1.19).

(b) if u(|x|) ∈ W 1,p(Rd) is a radial non-increasing solution to the Thomas-Fermi

type equation (1.17)–(1.19), then u(r) is also the solution of (1.13)–(1.14)

in Y ∗
rad.

In particular, for d = 1 we have a = 2
(

p
(q+1)(p−1)

)

p−1
p

.

Proof. We first prove the case (i). For the case (a), suppose that u(r) is the solution

to (1.15)–(1.16) in Y ∗
rad. Hence we know that u(|x|) ∈ W 1,p(Rd) is radial non-increasing

and satisfies u(0) = 1 and u(|x|) → 0 as |x| → ∞. Hence the boundary condition (1.21)

holds.

For any test function φ(|x|) ∈ C∞
c (Rd), it holds that

−(∇φ, |∇u|p−2∇u)− (φ, uq) = Sd

∫ ∞

0

(

φ′(r)|u′(r)|p−1 − φ(r)uq(r)
)

rd−1dr.

From Proposition 1, we have that the solution is classical in (0,∞). Hence by integration

by parts we have

(∇φ, |∇u|p−2∇u) + (φ, uq) = Sdφ(0) lim
r→0+

|u′(r)|p−1rd−1

+ Sd

∫ ∞

0

φ
(

(

|u′(r)|p−1rd−1
)′
+ uqrd−1

)

dr. (3.44)

On the other hand, from Proposition 8 we know that

lim
r→0+

Sdr
d−1|u′(r)|p−1 = Sd

∫ ∞

0

rd−1|u′|pdr + Sd

∫ ∞

0

rd−1uq+1dr = a. (3.45)

Using (3.45) and equation (2.35), from (3.44) we obtain

(∇φ, |∇u|p−2∇u) + (φ, uq) = aφ(0) = a(φ, δx=0).

Hence we have that the following equation holds in the distribution sense

∆pu+ aδx=0 = uq.

Therefore, u(|x|) is a radial non-increasing weak solution to a Thomas-Fermi type equa-

tion (1.20)–(1.21).

Now we prove the case (b), assume that u(|x|) ∈ W 1,p(Rd) is a radial non-increasing

weak solution of (1.20)–(1.21) in Definition 3.8, then u(r) := u(|x|) satisfies (1.16) and

for any test function φ(|x|) ∈ C∞
c (Rd) satisfying φ(0) = 0, it holds that

0 = −(∇φ, |∇u|p−2∇u)− (φ, uq) = Sd

∫ ∞

0

(

φ′(r)|u′(r)|p−1 − φ(r)uq(r)
)

rd−1dr

= Sd

∫ ∞

0

φ
(

(

rd−1u′|u′|p−2
)′
− uqrd−1

)

dr.

Hence u(r) satisfies (1.15). This completes the proof of the case (i).

The proof of the case (ii) is exactly the same as the case (i). Here we omit the details.
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Finally, we determine the value of a for d = 1. Since u′ < 0, (3.45) implies a =

Sd limr→0+ rd−1|u′(r)|p−1. Thus multiplying u′ to equation (1.15) with d = 1, and inte-

grating it from r to ∞, and using the boundary condition (1.16), we deduce

p− 1

p
|u′|p =

uq+1

q + 1
.

Noticing the fact limr→0+ u(r) = 1, we have

lim
r→0+

|u′(r)| =

(

p

(p− 1)(q + 1)

)
1
p

.

Thus

a = 2 lim
r→0+

|u′(r)|p−1 = 2

(

p

(q + 1)(p− 1)

)

p−1
p

.

This completes the proof of Proposition 10. �

4. Best constant for L∞-type G-N inequality. This section is divided into three

subsections. We give some closed form solutions for the case q = 0 in Subsection 4.1 or

for the case d = 1 in Subsection 4.2. In Subsection 4.3, we will complete the proofs of

Theorem 1.1 and Theorem 1.2.

4.1. Existence, uniqueness and closed form solution for q = 0, p > d ≥ 1. In Propo-

sition 7, we require the condition q > 0. For the case q = 0, we use the closed form

solution to prove existence and uniqueness in Proposition 11.

Proposition 11. Suppose d ≥ 1, p > d and q = 0. Then there is a unique non-negative

solution uc,∞ to the free boundary problem (1.13)–(1.14) and uc,∞ has the following

closed form

uc,∞(r) = d−
p

p−1R
p

p−1

(

B

(

p− d

d(p− 1)
,

p

p− 1

)

−B

(

( r

R

)d

;
p− d

d(p− 1)
,

p

p− 1

))

, (4.1)

R = d

(

B

(

p− d

d(p− 1)
,

p

p− 1

))− p−1
p

. (4.2)

Proof. Let r = Rs, and v(s) = u(Rs). Hence we have v(1) = u(R) = 0 and v(0) =

u(0) = 1. Then from (1.13) with q = 0, we obtain that v(s) satisfies the following

equation

−v′(s)/R = d−
1

p−1
(

(Rd −Rdsd)(Rs)1−d
)

1
p−1 = d−

1
p−1R

1
p−1 (1− sd)

1
p−1 s

1−d
p−1 .

Hence

−v′(s) = d−
1

p−1R
p

p−1 (1− sd)
1

p−1 s
1−d
p−1 . (4.3)

Integrating (4.3) from s to 1, we deduce

v(s) =d−
1

p−1R
p

p−1

∫ 1

s

(1− rd)
1

p−1 r
1−d
p−1 dr

=d−
p

p−1R
p

p−1

(

B

(

p− d

d(p− 1)
,

p

p− 1

)

−B

(

sd;
p− d

d(p− 1)
,

p

p− 1

))

.
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Hence we obtain the closed form solution uc,∞ to the free boundary problem (1.13)–(1.14)

given by (4.1).

With condition v(0) = 1, we have explicit formula of R:

1 =d−1/(p−1)Rp/(p−1)

∫ 1

0

(1− rd)
1

p−1 r
1−d
p−1 dr

=d−
p

p−1R
p

p−1B

(

p− d

d(p− 1)
,

p

p− 1

)

,

which means that (4.2) holds.

�

4.2. The closed form solution for q ≥ 0 and p > d = 1. In this subsection, we present

a result in the one dimensional case, for which there is a closed form solution and deduce

the best constant Cq,∞,p of the inequality (1.6) for d = 1.

Proposition 12. Suppose p > d = 1, and q ≥ 0. Then the solution uc,∞ of the problem

(2.35)–(2.36) possesses the following closed form:

(i) for q = p− 1,

uc,∞(r) = e−(p−1)
−

1
p r; (4.4)

(ii) for q < p− 1,

uc,∞(r) =
(

1−
r

R

)

p

p−q−1

+
, R =

(p− 1)1/p(q + 1)1/p

p1/p−1(p− q − 1)
, for r > 0; (4.5)

(iii) for q > p− 1,

uc,∞(r) :=

(

1 +
p1/p−1(q + 1− p)

(p− 1)1/p(q + 1)1/p
r

)− p

q+1−p

, for r > 0. (4.6)

The best constant is given by Cq,∞,p =
(

p+(p−1)(q+1)
2p

)

p

p+(p−1)(q+1)

.

Proof. For q = p− 1, multiplying u′ on both sides of equation (2.35) with d = 1 gives

that
d

dr

(

p− 1

p
|u′|p −

uq+1

q + 1

)

= 0. (4.7)

Noticing u ∈ W 1,p(R) and integrating (4.7) from r to ∞, we have

p− 1

p
|u′|p −

uq+1

q + 1
= 0, (4.8)

which implies that

u(r) = e±(p−1)
−

1
p r.

Hence u(r) = e−(p−1)
−

1
p r is the unique solution satisfying u(0) = 1 and limr→∞ u(r) = 0.

For q �= p−1, solving (4.8) and using boundary conditions u(0) = 1 and limr→∞ u(r) =

0, we can obtain (4.5) and (4.6).

Hence plugging uc,∞ into Mc in (1.23) below, we deduce

Mc(uc,∞) =

∫

R

uq+1
c,∞(x)dx =

2(p− 1)1/p(q + 1)1/p

p1/p−1(p+ (p− 1)(q + 1))
,
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and thus it holds that

Cq,∞,p =

(

(p− 1)(q + 1)

p

)
1

p+(p−1)(q+1)

M
− p

p+(p−1)(q+1)
c

=

(

p+ (p− 1)(q + 1)

2p

)

p

p+(p−1)(q+1)

. (4.9)

This completes the proof of Proposition 12. �

4.3. The proofs of main theorems. In this subsection, we utilize the results from above

sections to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1. By Proposition 8, Proposition 9 and Proposition 12, we know

that the problem (2.35)–(2.36) has a unique solution u(r) for the case q > 0. While for

the case q = 0, from Proposition 11 we know that there is a unique closed form solution

uc,∞(r) satisfying the free boundary problem (1.13)–(1.14). That completes the proof of

Theorem 1.1. �

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. From Proposition 1, Proposition 3 and Lemma 2.3, we have

that any critical point of G(u) in Y ∗
rad satisfies the problem (2.35)–(2.36) up to a re-

scaling. Conversely, any non-negative solution u of the problem (2.35)–(2.36) is also a

critical point of G(u) in Y ∗
rad. Moreover any re-scaling function of u is still a critical

point of G(u) in Y ∗
rad by Proposition 6.

By Theorem 1.1, we know that the critical point of G(u) in Y ∗
rad is unique up to a

re-scaling.

Hence any re-scaling function set of uc,∞,
{

uλ

}

λ>0
contains all critical points of G(u)

and G(uλ) ≡ G(uc,∞). Notice that G(u) does not have maximum. Hence all critical

points
{

uλ

}

λ>0
are minimizers of G(u).

Next we derive the best constant Cq,∞,p for q ≥ 0. Since the solution uc,∞(r) to the

problem (2.35)–(2.36) is a minimizer of G(u). Hence from the problem (1.12) and the

formula (2.17), we have

α = ‖uc,∞‖1−θ
Lq+1‖∇uc,∞‖θLp =

(

θ

1− θ

)
θ
p (

‖uc,∞(r)‖q+1
Lq+1

)
θ
d

.

Notice Cq,∞,p = α−1, thus we have (1.23). �

5. The large m limit behavior in the best constant problem for 1-D. In this

section, we show the limit behavior as m → ∞ in the best constant problem for d = 1,

which implies the closed relation between the functional inequalities (1.26) and (1.22) in

the one-dimension case. Now we show the proof of Theorem 1.3.

Proof of Theorem 1.3. The proof of Theorem 1.3 is divided into the two steps.

Step 1. In this step, we prove

lim
m→∞

uc,m(r) = uc,∞(r) for any r > 0. (5.1)
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For any fixed 0 < u < 1, denote rc,m(u) as an inverse function of uc,m(r). Let the

energy functional

H(r) :=
p− 1

p
|u′

c,m(r)|p +
um+1
c,m (r)

m+ 1
−

uq+1
c,m (r)

q + 1
. (5.2)

Then by multiplying u′
c,m(r) to (1.28), we have the following energy-dissipation relation

dH(r)

dr
+

d− 1

r
|u′

c,m(r)|p = 0. (5.3)

Hence we know that for d = 1, (1.28) possesses a first integral and it is a constant, i.e.,

p− 1

p
|u′

c,m|p +
um+1
c,m

m+ 1
−

uq+1
c,m

q + 1
= C. (5.4)

Due to uc,m(Rm) = u′
c,m(Rm) = 0, then C = 0. Hence the conditions uc,m(0) = αc and

u′
c,m(0) = 0 imply

αm+1
c

m+ 1
−

αq+1
c

q + 1
= 0, i.e. , αc =

(

m+ 1

q + 1

)
1

m−q

> 1. (5.5)

Solving (5.4) gives

u′
c,m(r) = −

(

p

p− 1

)1/p
(

uq+1
c,m (r)

q + 1
−

um+1
c,m (r)

m+ 1

)1/p

. (5.6)

From (5.6), we deduce

(

p

p− 1

)1/p

rc,m =
(q + 1)1/p

m− q

(

m+ 1

q + 1

)

p−q−1
p(m−q)

∫ 1− q+1
m+1u

m−q
c,m

0

y−1/p(1− y)
p−q−1
p(m−q)−1dy.

(5.7)

For the case q = p− 1, we have p−q−1
p(m−q) = 0, (5.7) becomes

(

1

p− 1

)1/p

rc,m(u) =
1

m− q

∫ 1− q+1
m+1u

m−q

0

y−1/p(1− y)−1dy. (5.8)

Since
(

m+1
q+1

)
1

m−q

→ 1 as m → ∞, for m sufficient large, we have that 0 < uc,m <
(

m+1
q+1

)
1

m−q

.

Taking the limit for (5.8) as m → ∞ and using the L’Hôpital’s rule, we deduce that

(

1

p− 1

)1/p

lim
m→∞

rc,m(u) = lim
m→∞

∫ 1− q+1
m+1u

m−q

0 y−1/p(1− y)−1dy

m− q

= lim
m→∞

(

1−
q + 1

m+ 1
um−q

)−1/p (
1

m+ 1
− lnu

)

=− lnu. (5.9)

Hence

lim
m→∞

rc,m(u) = − (p− 1)1/p lnu.
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We denote the above limit function as rc,∞ : (0, 1) 
→ (0,∞), u → rc,∞(u) :=

− (p− 1)1/p lnu. Denote inverse function as uc,∞ : (0,∞) 
→ (0, 1), r → uc,∞(r) =

e−(p−1)
−

1
p r, and uc,∞(r) is the solution to equation (1.15) by (4.4). Noticing uc,m(0) → 1

as m → ∞ and uc,m(r) > 0 is continuous and strictly decreasing in (0,∞), hence we

have

lim
m→∞

uc,m(r) = uc,∞(r) for any r ∈ (0,+∞).

For the case q < p−1, let ũc,m(r) =
uc,m(r)
uc,m(0) , uc,m(0) =

(

m+1
q+1

)
1

m−q

. Then ũc,m(0) = 1,

and ũc,m(r) satisfies the following equation

(|ũ′|p−2ũ′)′ +

(

m+ 1

q + 1

)

m+1−p
m−q

ũm =

(

m+ 1

q + 1

)

q+1−p
m−q

ũq, 0 < r < Rm, (5.10)

ũ(0) = 1, ũ(Rm) = ũ′(Rm) = 0. (5.11)

For any fixed 0 < ũ < 1, denote the inverse function of ũc,m(r) as rc,m(ũ). A direct

computation gives that

p− 1

p

∣

∣

∣

∣

1

r′c,m(ũ)

∣

∣

∣

∣

p

+

(

m+ 1

q + 1

)

m+1−p
m−q 1

m+ 1
ũm+1−

(

m+ 1

q + 1

)

q+1−p
m−q 1

q + 1
ũq+1 = 0. (5.12)

From (5.12), we deduce that

−

(

p

p− 1

)
1
p

r′c,m(ũ) =
1

(

uc,m(0)q+1−p

q+1 ũq+1 −
uc,m(0)m+1−p

m+1 ũm+1
)1/p

. (5.13)

Furthermore, integrating (5.13) with respect to ũ from ũ to 1 and plugging uc,m(0) =
(

m+1
q+1

)
1

m−q

give that

(

p

p− 1

)
1
p

rc,m(ũ) =

∫ 1

ũ

1
(

uc,m(0)q+1−p

q+1 sq+1
)1/p

(1− sm−q)1/p
ds. (5.14)

Making variable substitution y = 1− sm−q, we have

(

p

p− 1

)
1
p

rc,m(ũ) =
(q + 1)1/p

m− q

(

m+ 1

q + 1

)

p−q−1
p(m−q)

∫ 1−ũm−q

0

y−
1
p (1−y)

p−q−1
p(m−q)

−1dy. (5.15)

Noticing that
(

m+1
q+1

)

p−q−1
p(m−q)

→ 1 as m → ∞, thus it holds

(

p

(p− 1)(q + 1)

)1/p

lim
m→∞

rc,m(ũ) = lim
m→∞

∫ 1−ũm−q

0
y−

1
p (1− y)

p−q−1
p(m−q)

−1dy

m− q
. (5.16)
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Since 0 < ũ < 1, we get 1− ũm−q > 1
2 if m is large. Hence

lim
m→∞

∫ 1−ũm−q

0
y−

1
p (1− y)

p−q−1
p(m−q)

−1dy

m− q
= lim

m→∞

(

∫ 1/2

0
+
∫ 1−ũm−q

1/2

)

y−
1
p (1− y)

p−q−1
p(m−q)

−1dy

m− q

= lim
m→∞

∫ 1−ũm−q

1/2
y−

1
p (1− y)

p−q−1
p(m−q)−1dy

m− q

= lim
m→∞

−p
∫ 1−ũm−q

1/2
y−

1
p d(1− y)

p−q−1
p(m−q)

p− q − 1
. (5.17)

Using the integration by parts, we know that

∫ 1−ũm−q

1/2

y−
1
p d(1− y)

p−q−1
p(m−q) =y−

1
p (1− y)

p−q−1
p(m−q)

∣

∣

∣

1−ũm−q

1/2

−

∫ 1−ũm−q

1/2

(

y−
1
p

)′

(1− y)
p−q−1
p(m−q) dy. (5.18)

We can directly check

lim
m→∞

∫ 1−ũm−q

1/2

(

y−
1
p

)′

(1− y)
p−q−1
p(m−q) dy = lim

m→∞

∫ 1−ũm−q

1/2

(

y−
1
p

)′

dy = 1− 2
1
p . (5.19)

Plugging (5.18) and (5.19) into (5.17), we obtain

lim
m→∞

∫ 1−ũm−q

0
y−

1
p (1− y)

p−q−1
p(m−q)

−1dy

m− q
=

p

p− q − 1

(

1− ũ
p−q−1

p

)

. (5.20)

Therefore, (5.16) and (5.20) imply that

lim
m→∞

rc,m(ũ) =

(

p

(p− 1)(q + 1)

)−1/p
p

p− q − 1

(

1− ũ
p−q−1

p

)

=R∞

(

1− ũ
p−q−1

p

)

, (5.21)

where R∞ is the same as R defined in (4.5).

We denote the above limit function as rc,∞ : (0, 1) 
→ (0, R∞):

ũ → rc,∞(ũ) := R∞

(

1− ũ
p−q−1

p

)

.

Denote its inverse function as uc,∞ : (0, R∞) 
→ (0, 1). Then it is given by

r → uc,∞(r) =
(

1−
r

R

)

p
p−q−1

for 0 < r < R∞. (5.22)

Next we show that limm→∞ Rm = R∞. Indeed,

lim
m→∞

Rm = lim
m→∞

(

p− 1

p

)
1
p (m+ 1)

p−q−1
p(m−q) (q + 1)

1
p
− p−q−1

p(m−q)

m− q

∫ 1

0

y−
1
p (1− y)

p−q−1
p(m−q)

−1dy

=

(

(p− 1)(q + 1)

p

)
1
p

lim
m→∞

∫ 1

0
y−

1
p (1− y)

p−q−1
p(m−q)

−1dy

m− q
. (5.23)
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Due to q < p− 1 we have

lim
m→∞

∫ 1

1−ũm−q y
− 1

p (1− y)
p−q−1
p(m−q)

−1dy

m− q

= lim
m→∞

∫ 1

1−ũm−q (1− y)
p−q−1
p(m−q)−1dy

m− q
=

p

p− q − 1
ũ

p−q−1
p .

(5.24)

Combining (5.20) and (5.24), we have

lim
m→∞

Rm =

(

p

(p− 1)(q + 1)

)−1/p
p

p− q − 1
= R∞.

Noticing that uc,m(0) → 1 as m → ∞ and uc,m(r) > 0 is continuous and strictly

decreasing in (0, Rm), hence we have from (5.21)

lim
m→∞

uc,m(r) = uc,∞(r) for any r ∈ (0, R∞).

For the case q > p − 1, the proof of (5.1) is exactly the same as the case q < p − 1.

We omit the details.

Step 2. We prove decay properties of uc,m, i.e., for m > 2q + 1 there is r∗ > 0 (it is

independent of m) such that uc,m satisfies the following estimates

• for q > p− 1, it holds that

u(r) + r|u′(r)| ≤ Cr−
p

q+1−p , for r ≥ 2r∗, (5.25)

• for q = p− 1, it holds that

u(r) ≤ e−Cr, for r ≥ 2r∗, (5.26)

where C is a constant independent of m.

In fact, since u(r) → 0 as r → ∞, then there exists a 0 < r0 < ∞ such that u(r0) = 1.

From (5.7), we have

(

p

p− 1

)1/p

r0 =
(q + 1)1/p

m− q

(

m+ 1

q + 1

)

p−q−1
p(m−q)

∫ 1− q+1
m+1

0

y−1/p(1− y)
p−q−1
p(m−q)

−1dy,

which means that

0 < r0 ≤

(

p

(p− 1)(q + 1)

)1−1/p (
m+ 1

m− q

)1/p

. (5.27)

By (5.27), we deduce if m > 2q + 1, then 0 < r0 < 2
(

p
(p−1)(q+1)

)1−1/p

=: r∗. Since

r′(r) < 0 for r > 0, we have 0 < u(r) < 1 for r ≥ r∗, hence uq+1(r)
q+1 − um+1(r)

m+1 ≥

uq+1(r)
(

1
q+1 − 1

m+1

)

for r ≥ r∗. Therefore from (5.6), we have that

−u′(r) ≥

(

p

p− 1

)
1
p
(

1

q + 1
−

1

m+ 1

)
1
p

u
q+1
p (r). (5.28)

Using the method of separation of variable for (5.28) and integrating the resulting in-

equality from r∗ to r for any r > r∗, we obtain

u
p−q−1

p (r) ≥ 1 +
q + 1− p

p

(

p

p− 1

)
1
p
(

1

q + 1
−

1

m+ 1

)
1
p

(r − r∗).
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Taking r > 2r∗, we have r − r∗ ≥ r
2 . Therefore, for r > 2r∗ we know that

u(r) ≤

(

1 +
q + 1− p

p

(

p

p− 1

)
1
p
(

1

q + 1
−

1

m+ 1

)
1
p r

2

)− p

q+1−p

≤

(

q + 1− p

2p

)− p

q+1−p
(

p

p− 1

)− 1
q+1−p

(

1

q + 1
−

1

m+ 1

)− 1
q+1−p

r−
p

q+1−p .

Denoting

C(q,m, p) :=

(

q + 1− p

2p

)− p

q+1−p
(

p

p− 1

)− 1
q+1−p

(

1

q + 1
−

1

m+ 1

)− 1
q+1−p

,

then when m > 2q + 1, we have

C(q,m, p) ≤

(

q + 1− p

2p

)− p

q+1−p
(

p

p− 1

)− 1
q+1−p

(

1

2(q + 1)

)− 1
q+1−p

=: C(q, p).

Hence we obtain

u(r) ≤ C(q,m, p)r−
p

q+1−p ≤ C(q, p)r−
p

q+1−p , for r ≥ 2r∗. (5.29)

Again from (5.6), we obtain for any r > 0

|u′(r)| =

(

p

p− 1

)
1
p
(

uq+1

q + 1
−

um+1

m+ 1

)

1
p

≤

(

p

(p− 1)(q + 1)

)
1
p

u
q+1
p . (5.30)

Combining (5.29) and (5.30), we can deduce

r|u′(r)| ≤

(

p

(p− 1)(q + 1)

)
1
p

C(q, p)
q+1
p r−

p
q+1−p for r ≥ 2r∗. (5.31)

Hence (5.29) and (5.31) give (5.25).

For the case q = p− 1, integrating (5.28) from r∗ to r for any r > r∗, we obtain

− lnu(r) ≥

(

p

p− 1

)
1
p
(

1

p
−

1

m+ 1

)
1
p

(r − r∗).

Taking r > 2r∗, we have r − r∗ ≥ r
2 . Therefore, for r > 2r∗ we know that

lnu(r) ≤ −

(

p

p− 1

)
1
p
(

1

p
−

1

m+ 1

)
1
p r

2
.

Let

Cm,p :=
1

2

(

p

p− 1

)
1
p
(

1

p
−

1

m+ 1

)
1
p

. (5.32)

Since m > 2q + 1 > 2p− 1, we have Cm,p > 1
2

(

1
2(p−1)

)
1
p

=: C(p). Then we obtain

u(r) ≤ e−Cm,pr ≤ e−C(p)r for r ≥ 2r∗, (5.33)

i.e., (5.26) holds.
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Step 3. We prove that

lim
m→∞

Cq,m,p = Cq,∞,p. (5.34)

For the case q = p− 1, define

U(r) :=

⎧

⎪

«

⎪

¬

(

m+ 1

q + 1

)
1

m−q

, if 0 < r ≤ r′∗,

e−C(p)r, if r > r′∗.

From (5.26), we have uc,m(r) ≤ U(r) for any r > 0. We directly compute ‖U(|x|)‖Lq+1 <

∞.

For the case q > p− 1, define

U(r) :=

⎧

⎪

«

⎪

¬

(

m+ 1

q + 1

)
1

m−q

, if 0 < r ≤ r̄∗,

C(p, q)r−
p

q+1−p , if r > r̄∗.

(5.35)

We have uc,m(r) ≤ U(r) for any r > 0 due to (5.25) and uc,m(r) ≤ uc,m(0) =
(

m+1
q+1

)
1

m−q

.

A direct computation gives ‖U(r)‖Lq+1 < ∞.

For the case q < p − 1, we know that the solution uc,m(r) has a finite support

(0, Rm), Rm → R∞ as m → ∞, where Rm is defined by (1.32). Noticing that uc,m(r) ≤
(

m+1
q+1

)
1

m−q

≤ 2 for m large, we have
∫ R∞

0
2q+1dr ≤ C(p, q). Then for the above three

cases, the dominated convergence theorem implies that

lim
m→∞

Mc(uc,m) = lim
m→∞

∫

R

uq+1
c,m (x)dx =

∫

R

uq+1
c,∞(x)dx = Mc(uc,∞). (5.36)

Hence from (1.23) and (1.27), we obtain (5.34). �
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