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Abstract

Background: Delta radiomics is a high-throughput computational technique

used to describe quantitative changes in serial, time-series imaging by con-

sidering the relative change in radiomic features of images extracted at two

distinct time points. Recent work has demonstrated a lack of prognostic signal

of radiomic features extracted using this technique. We hypothesize that this

lack of signal is due to the fundamental assumptions made when extracting

features via delta radiomics, and that other methods should be investigated.

Purpose: The purpose of this work was to show a proof-of -concept of a new

radiomics paradigm for sparse, time-series imaging data, where features are

extracted from a spatial-temporal manifold modeling the time evolution between

images, and to assess the prognostic value on patients with oropharyngeal

cancer (OPC).

Methods: To accomplish this, we developed an algorithm to mathematically

describe the relationship between two images acquired at time t = 0 and t > 0.

These images serve as boundary conditions of a partial differential equation

describing the transition from one image to the other. To solve this equation,

we propagate the position and momentum of each voxel according to Fokker–

Planck dynamics (i.e., a technique common in statistical mechanics). This

transformation is driven by an underlying potential force uniquely determined

by the equilibrium image. The solution generates a spatial-temporal manifold

(3 spatial dimensions + time) from which we define dynamic radiomic fea-

tures. First, our approach was numerically verified by stochastically sampling

dynamic Gaussian processes of monotonically decreasing noise. The trans-

formation from high to low noise was compared between our Fokker–Planck

estimation and simulated ground-truth. To demonstrate feasibility and clinical

impact, we applied our approach to 18F-FDG-PET images to estimate early

metabolic response of patients (n = 57) undergoing definitive (chemo)radiation

for OPC. Images were acquired pre-treatment and 2-weeks intra-treatment

(after 20 Gy). Dynamic radiomic features capturing changes in texture and mor-

phology were then extracted.Patients were partitioned into two groups based on

similar dynamic radiomic feature expression via k-means clustering and com-

pared by Kaplan–Meier analyses with log-rank tests (p < 0.05). These results

were compared to conventional delta radiomics to test the added value of our

approach.

Results: Numerical results confirmed our technique can recover image noise

characteristics given sparse input data as boundary conditions. Our tech-

nique was able to model tumor shrinkage and metabolic response. While no
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delta radiomics features proved prognostic, Kaplan–Meier analyses identified

nine significant dynamic radiomic features. The most significant feature was

Gray-Level-Size-Zone-Matrix gray-level variance (p = 0.011), which demon-

strated prognostic improvement over its corresponding delta radiomic feature

(p = 0.722).

Conclusions: We developed, verified, and demonstrated the prognostic value

of a novel,physics-based radiomics approach over conventional delta radiomics

via data assimilation of quantitative imaging and differential equations.

KEYWORDS

modeling, radiomics, treatment response

1 INTRODUCTION

Radiomics is a high-throughput computational tech-

nique that enables the extraction and analysis of quan-

titative features from radiological images.1–3 Radiomic

features provide measures of different morphological,

topological, and/or textural characteristics of an image,

which can lead to new diagnostic and/or prognostic

value.4,5 In particular, delta radiomics aim to capture

quantitative changes in serial, time-series image rep-

resentation. This technique is based on calculating

the relative change in radiomic features between two

acquisition time points.6 Delta radiomic features have

shown improved prognostic value compared to radiomic

features of a single time point.7,8

There are numerous applications of delta radiomics

throughout the literature.8–14 However, despite the

potential advantages of incorporating multiple images,

an often-understudied aspect of delta radiomics is accu-

rate and reliable time interval analysis. Time interval

analysis is the characterization of quantitative changes

in image metrology over time.

Clinical image acquisition is temporally sparse, which

results in disease characterization based on radiomic

feature differences between a limited number of images.

For example, delta radiomics calculated via two images

acquired before and after treatment assumes a lin-

ear relationship between radiomic feature change and

treatment response. This is potentially an oversimplifi-

cation of the problem that may not be valid for complex

diseases such as cancer, where tumors likely exhibit

non-linear time dynamics.15

To address this limitation, we propose a novel

approach to delta radiomics based on the assimila-

tion of stochastic differential equations and quantitative

radiomic analysis.Our approach is based on the Fokker–

Planck16–18 equation, that is, a partial differential equa-

tion describing the probability distribution of a stochas-

tic process. Essentially, we first use Fokker–Planck

dynamics to model non-linear behavior between time

separated images, from which radiomic features are

calculated from a pseudo-continuous function. In gen-

eral, Fokker–Planck dynamics mathematically describe

countless many-body problems in physics (e.g., the dif-

fusion of pollutants through the atmosphere,19 electron

transport in semiconductors,20 calcium absorption in

bones,21 and the random walk of stars and black holes

due to the gravitational force of nearby stellar bodies22).

Thus, we consider Fokker–Planck a reasonable mathe-

matical framework for conducting time interval analysis

between images to drive delta radiomics.

In this paper, we first provide a theoretical frame-

work and numerical validation of our method. We then

apply our method to a characterize the early metabolic

response of patients undergoing definition radiation

therapy for oropharyngeal head and neck cancer, where

dynamic radiomic features on PET imaging are cal-

culated via Fokker–Planck dynamics and compared to

their classical delta radiomic analogues.

2 METHODS

2.1 Theory

2.1.1 Equilibrium-driven deformation via a
Fokker–Planck algorithm

We developed an equilibrium-driven deformation algo-

rithm (EDDA) to simulate the temporal evolution

between two tomographic images, ÿo(x, y, z) ∈ ℝ3 and

ÿt(x, y, z) ∈ ℝ3, acquired at t = 0 and t > 0, respectively.

Given two images, one initial (ÿo) and one final (ÿt),

the process of generating motions (i.e., extrapolated

intermediate images) between them is known as “inbe-

tweening auto-animation23”. Instead of using compli-

cated kinematic equations to evolve each object within

the starting image, this work used an algorithm based on

Fokker–Planck dynamics known as equilibrium-driven

deformation.24,25 The fundamental principle behind this

algorithm is the definition of a potential function that

drives the time dynamics between ÿo and ÿt.This poten-

tial function is uniquely defined by ÿt, which acts as

the equilibrium state under Fokker–Planck dynamics.

By using Fokker–Planck dynamics as an approach to

time interval analysis, it may capture the complex and
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F IGURE 1 Illustration of the Fokker–Planck image-inbetweening algorithm. The functions ÿ(x, t = 0) and ÿ(x, t > 0) represent the initial and

equilibrium boundary conditions, respectively. P(i, j|t) is the corresponding probability density function. The algorithm generates inbetween

states between 0 and 20 Gy shown by the lower panel.

often poorly described dynamics associated with the

biological processes of tumor treatment response.

First, let Ω ⊂ ℝ3 be a closed subset on ℝ3. We define

the initial and equilibrium images on Ω as ÿ0 and ÿt,

respectively.We then assume that the final image onΩ is

described by the equilibrium density function ÿ(x) : Ω →
R. Then, the time-evolution of the gray-level value of the

image, ÿ, is described by the Fokker–Planck equation,

ÿtÿ = Δÿ + ∇ ⋅ (ÿ∇ÿ) = ∇ ⋅
(
ÿ∇

( ÿ
ÿ

))
(1)

where ÿ represents a given energy landscape. One can

show by direct computation that the equilibrium is given

by ÿ ∝ e−ÿ. This is analogous to the concept of the

Gibbs measure in statistical mechanics.26 The initial

data, ÿ0, satisfies,

∫ ÿ0 dx = ∫ ÿ dx. (2)

In this context, the images ÿo and ÿt are interpreted

as no-flux boundary conditions of Equation (1), that is,

they obey

n ⋅ ∇
( ÿ
ÿ

)
= 0 on ÿΩ, (3)

where n is the normal vector to the boundary surface ÿΩ.

Physically, ÿ represents gray-level intensities (pixel val-

ues) of the equilibrium image ÿt. The evolution between

ÿ0 and ÿt is driven by a unique underlying potential

force defined by the equilibrium (Figure 1). For tomo-

graphic images on ℝ3, Equation (1) generates a set of

3D matrices which contain pixel values at each spatial

location. Each matrix corresponds to a given time point

between the initial and equilibrium image. Therefore, we

defined the spatial-temporal manifold as the 4D array

that describes the time evolution of a 3D spatial vol-

ume according to Equation (1). Equation (1) essentially

projects image data on ℝ3 to time-series data, defined

as a tensor object on ℝ4. Mathematically, we define this

manifold Ψ as the following tensor object,

Ψ ⊂ ℝ4 =
{

(x, y, z, t) |x, y, z ∈ ℝ, t ∈ ℝ+
}
. (4)

To numerically solve Equation (1), we apply an EDDA

using a finite-volume method on structured grids, as

implemented by Gao et al.23 Finite-volume discretiza-

tion methods can be applied to many conservation laws,

with a particular advantage being local conservativity

of fluxes.27 This is useful in problems such as image-

inbetweening, where fluxes are crucial in defining the

boundary conditions.

2.1.2 Dynamic radiomic feature extraction

As described in Section 2.1.1, Equation (1) pro-

duced a 4-dimensional spatial-temporal manifold. This

manifold was then mapped back into image space,

which produced a tensor object representing the time

evolution between the initial image and the equilib-

rium image. High-throughput radiomics features were

extracted using an in-house pipeline,28 validated both

through standard Image Biomarker Standardization Ini-

tiative (IBSI) benchmarking4 and externally, using digital

bar phantoms.29 This feature extraction generated a

dynamic radiomic feature space, capturing the time

 2
4
7
3
4
2
0
9
, 2

0
2
4
, 5

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://aap
m

.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/m

p
.1

6
9
0
5
 b

y
 D

u
k
e U

n
iv

ersity
 L

ib
raries, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

5
/0

5
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o

m
m

o
n
s L

icen
se



RADIOMICS VIA FOKKER–PLANCK DYNAMICS 3337

F IGURE 2 Visualization of the dynamic radiomic feature space

extracted from the spatial-temporal manifold generated via

Fokker–Planck dynamics.

evolution of the radiomic features. Mathematically, the

feature space can be represented by a tensor object, ,

given a set of p features for q image sets (i.e., pairs of

initial and equilibrium images) across r time points,

 =
(
fi,j,k

)
∈ ℝp×q×r (5)

where, the coordinates (i, j, k) represent the ith radiomic

feature observed for the jth image set at the kth time

step. As an illustrating example, if each image set corre-

sponded to a given patient,Figure 2 shows the structure

of the resulting dynamic feature space.

This feature space encodes variation of radiomic

features across different patients and across time. By

construction, this feature space allows for analysis along

all three dimensions, that is, features for all patients at a

given time, variations of single features across time for

all patients etc.

2.1.3 Numerical validation on 2D random
Gaussian processes

To experimentally verify the technique outlined in Sec-

tion 2.1.1, the algorithm was used to model monotoni-

cally decreasing noise generated by randomly sampling

2D Gaussian processes. By stochastically sampling 2D

Gaussian processes of different full-width-half -max val-

ues, images of various noise levels were generated,

which served as the ground-truth for the experiment. In

this experiment we consider “noise evolution”, that is, the

transition between images of high noise value to images

of low noise value, rather than “time evolution”.

All steps of the evolution were zero-mean centered

Gaussian noise acting on the same 128 × 128 random

matrix of pixel intensities ranging from 0 to 1. Each step

had a non-linear narrowing of the noise distribution full

width at half maximum (FWHM) ranging from 0.8 to

0.0003 spanning 14 measurements.

The Fokker–Planck method (Equation (1)) was then

applied, using only the images with maximum and min-

imum noise as the initial and equilibrium boundary

conditions, respectively, according to Equation (3). To

compare the Fokker–Planck technique to the experi-

mental ground-truth, image energy and entropy were

calculated and plotted against noise level. These fea-

tures were calculated via the image intensity histograms

and the standard IBSI definitions,30

E =

Ng∑

i=1

p2
i

(6)

S = −

Ng∑

i=1

pi log2 pi , (7)

where Ng is the number of discretized intensity bins and

pi is ratio of counts in the ith intensity bin to the total

number of pixels in the image.

2.2 Proof-of-concept application of
Fokker–Planck dynamics to patients
treated for oropharyngeal cancer

Figure 3 shows the overall workflow of our patient study,

as described in the following section.

2.2.1 Clinical trial design and PET image
acquisition

In this work, patient data was acquired from a single-

institution, prospective clinical study (NCT01908504)

conducted at Duke University Medical Center. Patients

underwent curative intensity modulated radiation ther-

apy (IMRT) for a positive diagnosis of oropharyngeal

cancer (OPC). Radiation treatment was delivered via

two distinct fractionation schemes:a total dose of 70 Gy

in 35 fractions, and a total dose of 67.5 Gy in 30 frac-

tions. Most patients received concurrent chemotherapy

according to well-established clinical procedures (mod-

ified bolus cisplatin at 20 mg/m2 over Days 1−5 and

29−33, weekly cisplatin, or weekly docetaxel). For the

purposes of this analysis, exclusion criteria were as

follows: (i) a diagnosis of p16-positive head and neck

squamous cell carcinoma with unknown primary; (ii) any

prior surgical removal/resection of the primary tumor;

(iii) multiple synchronous primary tumors; and (iv) any

neoadjuvant chemotherapy before definitive radiation

treatment.

At the conclusion of radiation treatment,patients were

examined every 2−3 months via fiberoptic laryngoscopy,

diagnostic imaging (PET/CT and additional imaging as

necessary) and biopsy of recurrence-indicating lesions.

Recurrence-free survival (RFS) was used as the main
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F IGURE 3 Retrospective patient study workflow. (a) Pre- and intra-treatment PET/CT images are acquired for N patients and the gross

tumor volume (GTV) is manually segmented. Images serve as boundary conditions to the Fokker–Planck equation (ÿo and ÿt) and are input into

the algorithm, generating simulated images between the boundary conditions (i.e., the spatial-temporal manifold Ψ defined in Equation (4). (b)

Radiomic features are extracted from the time series data, generating the feature space  , defined in Equation (5). Patient-specific feature

trajectories are clustered using a k-means algorithm into 2 groups and tested for prognostic significance, according to Equation (9).

endpoint for the study and defined as the time between

conclusion of radiation treatment and detection of

recurrent/residual local, regional, and/or distant disease.

After the final follow-up patients were censored, and

median follow-up time was computed via the reverse

Kaplan–Meier approach.31

For each patient, two sets of 18F-FDG-PET/CT

images were taken. The first set was obtained before

patients underwent radiation treatment, and the second

set was obtained after 2 weeks (20 Gy) of treatment.

The same scanner (Siemens Biograph mCT PET/CT,

Siemens Medical Solutions, Knoxville, TN) was used

for each patient. Imaging protocols were standardized

across the patient according to the prospective clini-

cal trial design. Depending on the weight of the patient,

8−15 mCi of FDG activity was injected following 4 h

of fasting, with the time between injection and imaging

kept constant across pre-treatment and intra-treatment

imaging for each patient. For the PET imaging pro-

tocol, a 54 cm field-of-view with a 400 × 400 matrix

size and 2 mm slice thickness. For the CT imaging

protocol, an extended 65 cm field-of-view was used,

with a 512 × 512 matrix size and 3 mm slice thick-

ness. PET images were reconstructed via ordered

subset expectation maximization (OSEM) with time-

of -flight (TOF) correction and attenuation correction

(from CT). CT images were reconstructed using filtered

back-projection.

Following image acquisition, a radiation oncologist

manually delineated the gross tumor volumes at the

primary disease location (GTVp). This was done on the

CT images and then transferred to the PET images.

Images were re-sampled to an isotropic resolution of

1.17 mm via tri-cubic spline interpolation and sub-

sequently re-binned to a dynamic range of 64 gray

levels, as recommended by the IBSI. Image registration

and verification was done following a method estab-

lished by prior work.32 Intra-treatment PET/CT images

were registered to pre-treatment images first by rigid

bony structure alignment, followed by local soft tissue
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F IGURE 4 Inbetween PET/CT images of a given patient generated by Fokker–Planck evolution from two clinical images, ÿ0 and ÿt .

adjustment using the deformable multi-pass registration

algorithm within the Velocity software (Varian Medical

Systems, Palo Alto, CA, United States).

2.2.2 Construction of a spatial-temporal
manifold

The pre-treatment and intra-treatment PET/CT images

defined the initial and equilibrium conditions for Equa-

tion (1), which obey the boundary conditions prescribed

by Equation (3). As an illustrating example, consider

Figure 4, which shows a single 2D slice of a PET/CT

image volume (for a representative patient) at different

timepoints across the 2-week interval, with the real and

simulated images indicated.

PET/CT imaging data is generally sparse and shows

mostly uniform uptake with small regions of much higher

uptake, which define the tumor. Therefore, a minimum

bounding box around the initial gross tumor volume

was defined using contours drawn by physicians. These

minimum bounding boxes define the initial and equilib-

rium images on which we applied the Fokker–Planck

method.

To evaluate convergence of the Fokker–Planck solu-

tion to the equilibrium image, the following maximum

error metric was used,

M (t) = max {|ÿt (i, j, k, t) − ÿt (i, j, k, nt)|} (8)

where, nt = 10000 is the final timestep.

Fokker–Planck dynamics follow a non-linear time

evolution determined by Equation (1). The differences

between an image at time t and the equilibrium

image (i.e., time nt) decrease very quickly at the start

of the evolution and then gently converge at larger

timesteps. To capture this non-linearity, timestep val-

ues were sampled at equal intervals along the y-axis,

which gave a scalar vector of timesteps represent-

ing equivalent change in maximum error. By sampling

the original spatial-temporal manifold at these calcu-

lated timesteps, a new four-dimensional tensor, ÿt was

defined.

Given the well-studied importance of image texture

as a biomarker for metabolic heterogeneity and sub-

sequent recurrence-free survival,1 it was necessary to

describe changes in the tumor shape and volume across

the evolution. As there is no “gold-standard” method for

thresholding tumor volume in PET/CT images, an abso-

lute standardized uptake value (SUV) of 2.5 was used.33

Given that the transformation into Fokker–Planck space

(i.e. probability density functions) does not preserve the

physical meaning of pixel intensity values, an absolute

SUV threshold of 2.5 was scaled by the SUVmax of

the initial image, thereby defining a tumor-specific rel-

ative threshold.33 This threshold allowed for generation

of binary masks at each timestep and therefore calcu-

lation of intensity masks and subsequent extraction of

radiomic features, as introduced in Section 2.1.2.

2.2.3 Dynamic radiomic feature analysis

For each patient included in this clinical application, we

applied Equation (1) to generate a fourth-order ten-

sor representing the time-evolution of a spatial volume

surrounding the primary tumor bed. This formed the

(patient-specific) spatial-temporal manifold from which

we extracted dynamic radiomic features.

We performed feature extraction via the method

outlined in Section 2.1.2. For each dynamic radiomic

feature, we partitioned the curves (representing patient-

specific time evolution of a given feature) using the

following k-means clustering algorithm:Given a dynamic

radiomic feature f , we have a set of N feature vec-

tors (f 1, f 2,… , f N), where N = 57 is the number of

patients. Therefore, each feature vector f i represents

the time evolution of feature f for the ith patient. To

compare patients that responded to treatment with

those that did not, the algorithm then partitions the

set of feature vectors into k = 2 sets (or clusters), S =
{Group 1, Group 2}. This is accomplished by minimiz-

ing the within-cluster sum of squares (WCSS), which is
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F IGURE 5 Noisy images generated via random sampling of 2D Gaussian processes. Top: ground truth images. Bottom: images estimated

via the Fokker–Planck algorithm.

F IGURE 6 Energy and entropy versus noise level (variance) of images with monotonically decreasing noise generated by random 2D

Gaussian processes.

equivalent to the variance. Hence, the objective is to find

arg min
S

k∑

i=1

∑

f∈Si

||f − ÿi||
2, (9)

where ÿi is the mean of all points in cluster i, Si denotes

cluster i, and ‖.‖ is the standard L2 norm. This algo-

rithm was used to identify those patients with intrinsically

similar feature curves.

To compare with traditional delta radiomics, we cal-

culated another feature space by taking the differ-

ence between the final and initial feature values and

patients were partitioned based on their median fea-

ture value. Kaplan–Meier analyses were performed

to test the prognostic value of the radiomic encod-

ing. Log-rank tests34 were used to test for differences

in patient partitions, where a p-value less than or

equal to 0.05 was considered statistically significant.

This analysis was constructed in MATLAB (Math-

Works, Natick, MA) using the MatSurv package.35

To evaluate the potential added value of our tech-

nique, dynamic radiomic features computed via Fokker–

Planck were compared to their classical delta radiomic

counterparts.

3 RESULTS

3.1 Numerical validation

Numerical results confirmed that the Fokker–Planck

method (introduced in Section 2.1.1) can recover image

noise characteristics given sparse input data as bound-

ary conditions. Figure 5 depicts the noise evolution

for the experimental ground truth images and images

generated via Fokker–Planck.

Figure 6 shows plots of image energy and entropy as

noise level, that is, variance of the Gaussian distribution,

is decreased.
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As expected, image energy increases as noise level

decreases, as the image becomes more homogeneous.

The converse is observed for image entropy, again as

expected.The calculated cross-correlations of 0.82 and

0.94 for energy and entropy, respectively, demonstrate

that the image series generated by the Fokker–Planck

method was consistent with the experimental ground

truth.

3.2 Patient study

3.2.1 Patient characteristics

Relevant characteristics of the patient dataset are

summarized in Table 1.

Median follow up time was 40.9 months.82% (n = 47)

of patients were HPV-positive or p16-positive. Tumor

staging was performed via the AJCC 8th edition.

3.2.2 Fokker–Planck trajectories

Implementation of the Fokker–Planck method via Equa-

tion (1) generated a 4D tensor, ÿt, which consisted of

simulated 3D images sampled from the manifold. To

visualise the structure of the data, consider Figure 7,

which shows an illustrating example of a 2D slice of

the 3D time evolution for the primary GTV images of

a single patient. A qualitative inspection of the image

series reveals reduction in FDG uptake as a function of

time and accumulation of therapeutic dose,as expected.

This reduction is highly non-linear across both spatial

and temporal dimensions,and complex textural and mor-

phological changes are observed across the 2-week

treatment period. By implementing the thresholding pro-

cedure, a volumetric representation of tumor shrinkage

as a response to treatment can be generated. An exam-

ple of this is shown in Figure 8 and demonstrates the

expected shrinkage of the primary tumor volume across

the treatment period.

3.2.3 Association of dynamic radiomics
with treatment response

Beginning with simple, first order image features, nor-

malized image energy and entropy changes across the

treatment period of a single representative patient are

shown in Figure 9.

Kaplan–Meier analysis identified nine prognostic

dynamic radiomic features where the corresponding

delta radiomic feature was not prognostic. Summary

statistics for these features are shown in Table 2.

Figure 10 shows Kaplan–Meier survival curves for a

representative radiomic feature, in this case Gray Level

Size Zone Matrix (GLSZM) gray-level variance.

TABLE 1 Characteristics of the patient dataset used in this work.

Parameter Total (n = 57)

Sex

Male 46 (80.7%)

Female 11 (19.3%)

Patient age (years)

Median (max—min) 59.3 (77.9 – 39.8)

Primary tumor (T)

T0 1 (1.8%)

T1 12 (21.1%)

T2 22 (38.6%)

T3 9 (15.8%)

T4 4 (7%)

T4a 8 (14%)

T4b 1 (1.8%)

Regional lymph nodes (N)

N0 5 (8.8%)

N1 3 (5.3%)

N2a 2 (3.5%)

N2b 30 (52.6%)

N2c 14 (24.6%)

N3 3 (5.3%)

STAGE

I 1 (1.8%)

II 1 (1.8%)

III 3 (5.3%)

IVa 48 (84.2%)

IVb 4 (7%)

Chemotherapy

Yes 53 (93%)

No 4 (7%)

Smoking status

≤ 10 packs per year 34 (59.6%)

> 10 packs per year 23 (40.4%)

Recurrence/residual

disease

Yes 16 (28.1%)

No 41 (71.9%)

4 DISCUSSION

Our algorithm was able to estimate the time evolution

of PET images of patients with HNSCC throughout

a 2-week treatment period. We observed non-linear

changes in the texture of the images, which is to

be expected given the non-linear changes in tumor

size/shape during radiation treatment. Furthermore,

there was apparent spatial heterogeneity in the evo-

lution of metabolic uptake. Future work will implement

a spatial clustering approach to interrogate potential
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F IGURE 7 Temporal evolution for a single axial slice of a tumor volume across the 2-week treatment period.

F IGURE 8 Volumetric visualization of tumor shrinkage in response to treatment.

F IGURE 9 Time evolution (in days) of image energy and entropy for a representative patient during the 2-week treatment period.
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TABLE 2 Summary statistics for significant dynamic features showing lack of significance in delta radiomic features.

Feature

p-value

(dynamic)

p-value

(delta)

Hazard ratio

(dynamic)

Hazard ratio

(delta)

GLRLM Gray-level non-uniformity 0.0479 0.0938 0.31 2.94

GLRLM Run-length non-uniformity 0.0479 0.103 0.31 2.87

GLRLM Low gray level run emphasis 0.0179 0.397 0.125 1.69

GLRLM Run-length variance 0.0429 0.152 0.314 2.55

GLSZM Gray-level variance 0.0113 0.722 0.174 0.806

MORPHOLOGY Volume 0.0479 0.0832 0.31 3.04

MORPHOLOGY Surface area 0.0162 0.377 0.26 1.73

MORPHOLOGY Compactness 1 0.0218 0.669 0.264 1.29

MORPHOLOGY Perimeter 0.0162 0.155 0.26 2.53

F IGURE 10 Kaplan–Meier curves for the radiomic feature x = GLSZM Gray-level variance. (a) Dynamic radiomics features are partitioned

into two groups via k-means clustering of the patient-specific feature curves. This feature is prognostically significant (p = 0.01) and the curves

show clear separation between group 1 and group 2. (b) Delta radiomics features are partitioned into two groups using the median feature

value. This feature is not prognostically significant (p = 0.72) and shows no clear separation between groups. Risk tables are shown below each

plot and the number of events (and censored patients) is displayed for a set of time points.

heterogeneity in the biological response of the tumor

due to treatment.

We aim to map the regions identified by the clus-

tering to specific areas in the tumor bounding box,

thereby identifying regions of tumor shrinkage. We

hypothesize that the formation of these spatial tumor

habitats is potentially due to underlying biological phe-

nomena, such as aerobic vs sub-hypoxic regions of

disease and/or spatial differences in tumor radiosensi-

tivity. Further work to characterize and interrogate these

phenomena will provide further biological insight and

advance our understanding of treatment response of

oropharyngeal tumors.

The key finding of our study was the prognos-

tic significance of dynamic radiomics over traditional

delta radiomics. Specifically, we observed significance

in dynamic texture and morphology features, but did

not see any prognostic benefit in the corresponding

delta radiomic features. This supports our hypothesis

that the application of delta radiomics in this dataset

may remove useful radiomic signal and affect prognos-

tic value of these features. This work has demonstrated

that the application of delta radiomics should be more

closely studied,and further techniques to boost radiomic

signal should be investigated.

This is a valuable insight, given the prevalence of

delta radiomics in the literature. It has been used as

an analytical tool for a wide variety of applications

and disease sites. Fave et al. investigated changes

in, and prognostic value of, delta radiomics features

extracted from CT images of patients undergoing treat-

ment for non-small cell lung cancer (NSCLC). To a

similar end, Delgadillo et al. examined applications of

delta radiomics to prostate cancer radiotherapy, with an
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emphasis on features extracted from multiple MRIs pre-

and post-treatment.36 Furthermore, Wang et al. applied

a delta radiomics analysis to study acute normal tis-

sue (pulmonary) toxicity following radiation treatment for

oesophageal cancer. PET and CT-based radiomics is

often used to quantify metabolic response of patients

undergoing definitive radio/chemotherapy for head and

neck squamous cell carcinoma. Applications include

tumor segmentation,37 predictive/prognostic studies,38

and normal tissue response to radiation therapy.39,40

Delta radiomics has also been applied outside the field

of radiation therapy, including treatment of metastatic

melanoma via immunotherapy41,42 and differentiation

of radiation-induced necrosis and cancer tissue in

treatments using Gamma Knife radiosurgery.43 Review

articles by Nardone et al., Kothari et al., Spohn et al.,

and Wang, H. et al. provide exhaustive analyses on the

various applications of delta radiomics.

Another key advantage of our technique is the

breadth of analysis that can be performed on the

radiomic feature space. By generating another dimen-

sion of input data, the feature space becomes a

higher-dimensional object. Therefore, it becomes pos-

sible to analyze the data across additional dimensions

and various methods can be used to reduce the dimen-

sionality of the feature space such that it can be

compared to traditional delta radiomics. In our case,

we primarily implemented a k-means clustering tech-

nique, as we hypothesized that this would most effec-

tively capture intrinsic differences between the feature

curves. However, other methods could be used, many

of which apply deep learning tools.44 These methods

would provide a valuable extension to the work done

here.

A key hypothesis underpinning this work stated that

the lack of prognostic significance of delta radiomics

features (obtained from pre- and intra-treatment PET

imaging) arises, at least in part, due to the coarse-

grained nature of delta radiomics.45 There are, however,

other potential reasons for this lack of signal. One such

reason is the lack of 3D radiation dosimetry data in

the original study. One cannot expect to fully realize

the behavior of the physical system without including

such information, as the biological perturbation induced

by radiation therapy is the most significant driver of

changes between pre- and intra-treatment imaging data.

For our data, dosimetry modeling was not a main con-

cern, as patients were given a uniform dose under

well-defined prescriptions outlined in the clinical trial.

Furthermore, prior work has demonstrated that dosime-

try is a shallow feature in this dataset, and that all

necessary useful information comes directly from the

PET/CT images.46 However, if our algorithm were to

be applied to other disease sites, this phenomenon

would need to be accounted for, as we could no longer

guarantee dosimetric homogeneity.

One strategy to incorporate radiation dose informa-

tion is implementation of a biologically guided deep

learning model for post-radiotherapy outcome predic-

tion. Our lab has developed and applied this method

to the OPC dataset studied in this work.32,46 The use

of deep learning tools alone was common to assess

treatment response using the pre-treatment images and

dose distribution information as inputs (e.g.,Wang et al.).

To extend this analysis, Ji et al. developed a novel par-

tial differential equation, based on a reaction-diffusion

model, to incorporate spatial radiation dose information.

Then, a 7-layer encoder-decoder-based convolutional

neural network was trained to generate post-radiation

PET images and break them down into constituent

parts related to each of the terms in the biological

model.This represents integration of both deep learning

models and analytical techniques that encode biolog-

ical information. The study was able to generate the

post-treatment images and break them down into the

constituent mathematical components of the model.

Gamma tests indicated good agreement between the

generated images and ground truth images. This anal-

ysis is particularly relevant to this work, as a possible

extension of our analysis is to model the effects of the

radiation dose as a heat bath in our statistical mechan-

ical framework. Further, encoding biological information

directly via partial differential equations represents a key

step in improving the explainability of analyses such as

ours.

There is an important distinction to be made when

defining the term “equilibrium” in this work. The equi-

librium state of the Fokker–Planck equation, which

generates the evolution of the images, is defined as

the intra-treatment PET/CT images, i.e., after 20 Gy of

radiation therapy. This is clearly different from the bio-

logical equilibrium, as the tumor will continue to evolve

dynamically throughout the remaining treatment period

and beyond. It is therefore important to emphasize that

the equilibrium referred to in this work is not biological,

rather it is statistical and defined a priori by our algorithm.

However, we do not consider this a major limitation of

the work—indeed we make no claim that our algorithm

directly simulates biology. Rather, we consider this work

an application of statistical mechanics and thus our aim

was to describe the macroscopic behavior of a system

without direct modeling of the microscopic environment.

This work seeked to integrate a traditional radiomics

approach with techniques from applied mathematics

and statistical mechanics to generate a new formal-

ism. Integration of radiomic analysis and other ana-

lytical tools that are mechanistically informed may

increase both generalization and interpretation.46–50

For example, radiomics-boosted deep learning mod-

els have been developed for diverse applications,

such as COVID-19 pneumonia detection via chest

radiographs,51 post-resection survival prediction of
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patients with glioblastoma50 and identification of

radionecrosis following stereotactic radiosurgery (SRS)

for brain metastases.48 In each case, integration of

radiomics and deep learning approaches serves to

improve interpretability of deep learning models other-

wise described as “black boxes”. Additionally, inclusion

of time-series information, such as cell-free DNA sam-

ples (acquired via liquid biopsies52) into these types

of studies further enhances the robustness of their

results. These types of analyses, collectively known

as “data fusion”, and the quantification of fusion qual-

ity are exciting new frontiers in computational imaging

research.53

Despite the prognostic value and numerical validation

of our algorithm, a key limitation of this work is lack

of biological validation of our algorithm. By construc-

tion, we attempted to model and analyze data for which

no ground-truth images exist. While we did not explic-

itly aim to simulate biology, the question of validation is

nonetheless of paramount importance. We addressed

this question first via a numerical validation on 2D Gaus-

sian processes. We showed good agreement between

first-order features (energy and entropy) extracted from

images generated by our algorithm and the correspond-

ing features extracted from the ground truth images.This

suggests that our algorithm was able to capture noise

characteristics of the images to a reasonable degree.

Ultimately, this key limitation lies in the lack of inde-

pendent, validation data. The proof-of -concept patient

study outlined in Section 2.2 is a secondary analysis

of a prospective clinical trial (NCT01908504). As such,

enlargement of this dataset is not yet a feasible val-

idation strategy. However, the methodology outlined in

Section 2.1 was developed with small sample sizes in

mind. By using the PDE model based on Equation (1),

we were able to generate unique solutions for each

patient in the dataset.Hence,our method does not suffer

from the traditional pitfalls of overfitting that are common

in analyses based on machine learning techniques.1

To further validate our method, we require quasi-

continuous ground truth datasets of time-series imag-

ing. One possible example includes 4DCT/4D-MRI

images of patients acquired during radiation therapy

treatment planning.54,55 These would provide the neces-

sary ground truth images on which our algorithm could

be validated.This would also necessitate the adaptation

of our algorithm to other disease sites, which introduces

further challenges as described above.

Mouse models could serve as another potential strat-

egy for validation. Specifically, our lab has plans to

conduct an animal trial wherein genetically engineered

mice56 are treated for HNSCC and images are acquired

across multiple length scales (radiological and patholog-

ical). These images would then serve as a ground truth

for our algorithm, with the significant advantage of simi-

larity with our study regarding disease type and imaging

modality.

5 CONCLUSION

In this work,we successfully developed a novel,physics-

based analytical framework,which we define as dynamic

radiomics, that integrated radiomics with partial differ-

ential equations. We were able to validate our method

using a numerical experiment and compared first order

features calculated using our method with ground truth,

which showed good agreement.We then estimated time

evolution between 18F-FDG-PET images of patients

undergoing definitive radiation therapy for OPC.Survival

analysis demonstrated added prognostic value of our

technique over traditional delta radiomics.Our study lays

the groundwork for deeper and more nuanced analysis

of the implications of delta radiomics and the integra-

tion of radiomic analysis with diverse data sources and

techniques.
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