
Intelligent Systems with Applications 22 (2024) 200353

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

Conjunctive block coding for hyperdimensional graph representation
Ali Zakeri a,∗, Zhuowen Zou a, Hanning Chen a, Hugo Latapie b, Mohsen Imani a

a University of California, Irvine, Irvine, CA, 92697, USA
b Cisco Systems, Inc., San Jose, CA, 95134, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Hyperdimensional computing
Vector symbolic architecture
Graph representation
Cognitive computing

Knowledge Graphs (KGs) have become a pivotal knowledge representation tool in machine learning, not only
providing access to existing knowledge but also enabling the discovery of new knowledge through advanced
applications. Among the scalable reasoning methods used for such applications, distributed graph embedding
approaches, particularly GNNs, have become popular for large-scale graph-related tasks. However, many of
these methods have limitations in their interpretability and fail to take into account structural similarity in
their representation. Hyperdimensional Computing (HDC), also known as Vector Symbolic Architecture (VSA),
addresses this issue by using well-defined cognitive operations on distributed representations of symbolic
concepts. This work proposes and evaluates a new vector symbolic graph representation, CLOG, that preserves
approximate structural similarity beyond edge correspondence and fundamentally differs from previous methods.
The model’s effectiveness in graph representation is evaluated through theoretical analysis, graph reconstruction
experiments, and link prediction task, highlighting its efficiency and accuracy. This approach significantly
advances the field by enhancing the capabilities of HDC in graph representation, representing a notable
improvement over existing methods.
1. Introduction

Knowledge Graph (KG) as a type of knowledge representation has
gained particular interest in the machine learning community. A knowl-
edge graph is a multi-relational directed graph composed of entities as
nodes and relations as edges. It collects and organizes relations and
attributes about entities that play an increasingly important role in
many applications, including question-answering and information re-
trieval. In addition to retrieving existing information from a knowledge
graph, advanced applications such as link prediction and knowledge
graph completion enable the discovery of novel and concealed knowl-
edge within the graph (Chen et al., 2020).

Large-scale knowledge graphs like Freebase (Bollacker et al., 2008),
WordNet (Fellbaum, 2010), and GeneOntology (Ashburner et al., 2000),
are essential for AI applications including web/mobile search and QA.
Traditional formal logic reasoning struggles with long-range reasoning
in these extensive graphs (Zamini et al., 2022). Scalable methods like
distributed graph embeddings are now favored for large-scale tasks,
offering low-dimensional space representations for efficient graph al-
gorithm execution. Graph neural networks (GNNs) are increasingly

* Corresponding author.
E-mail addresses: azakerij@uci.edu (A. Zakeri), zhuowez1@uci.edu (Z. Zou), hanningc@uci.edu (H. Chen), hlatapie@cisco.com (H. Latapie), m.imani@uci.edu

popular for their effectiveness in graph-related problems (Arora, 2020,
Cheng et al., 2022, Park et al., 2019). However, GNNs often need ample
labeled data for optimal performance, and knowledge graphs’ long-tail
nature, where many relations are found in few triples (Zhang et al.,
2022), presents a challenge for purely data-driven methods.

Knowledge graph embedding approaches face two main limitations.
Firstly, they transform symbolic, logical knowledge graphs into contin-
uous representations without preserving entity and relation integrity,
limiting gradient-based methods to post-hoc explanation (Hersche et al.,
2023). Secondly, as highlighted by Zamini et al. (2022), many methods
struggle with capturing multistep relationships and leveraging struc-
tural similarity for link prediction and graph completion. While Graph
Neural Networks (GNNs) use network architecture to implicitly address
these issues, the overlap between constituent (entity, relation) similarity
and structural similarity often makes it unclear what drives predictions.
Constituent similarity primarily arises from an element’s intrinsic prop-
erties, whereas structural similarity is derived from its relationships
with other elements.

To motivate the disentanglement of structural and constituent simi-
larity, we turn to the study of analogical reasoning, a form of reasoning
Available online 8 March 2024
2667-3053/© 2024 The Authors. Published by Elsevier Ltd. This is an open access
nc/4.0/).

(M. Imani).

https://doi.org/10.1016/j.iswa.2024.200353
Received 21 November 2023; Received in revised form 8 February 2024; Accepted 4
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

 March 2024

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/intelligent-systems-with-applications
mailto:azakerij@uci.edu
mailto:zhuowez1@uci.edu
mailto:hanningc@uci.edu
mailto:hlatapie@cisco.com
mailto:m.imani@uci.edu
https://doi.org/10.1016/j.iswa.2024.200353
https://doi.org/10.1016/j.iswa.2024.200353
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2024.200353&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

A. Zakeri, Z. Zou, H. Chen et al.

ubiquitous in human cognition that aims to identify a common rela-
tional system between two situations and infer from their commonal-
ities (Gentner & Smith, 2013). As a method that relies heavily on the
structural similarity between two sets of entities and their relations, it
introduces as much insight as it introduces potential fallacy. Besides
quoting a proverb to highlight patterns in common situations, peo-
ple utilize analogical reasoning to draw connections between a known
system to an unknown one to facilitate understanding and hypothesis
generation (Gentner & Smith, 2013), while at times the analogy may
generate factually incorrect inferences due to a superficial matching of
entities and relations. By disambiguating the two types of similarity, we
may provide better control of a model in its usage of them.

Hyperdimensional Computing (HDC), synonymously Vector Sym-
bolic Architecture (VSA), addresses the issue of interpretability and
analogical similarity through well-defined cognitive operations over
distributed representation of symbolic concepts. HDC’s design ensures
the integrity of symbolic concepts within high-dimensional vectors (hy-
pervectors), enabling interpretability. These representations allow re-
covery of graph nodes and edges as long as the graph’s size is within
the hypervector’s memory capacity. Moreover, as the graph is repre-
sented by a single hypervector, the dot product of graph hypervectors
reflects some global similarity between them. While various algorithms
for graph representation exist (Gayler & Levy, 2009, Nunes et al., 2022,
Poduval et al., 2022), they all produce graph hypervectors that deter-
mine structural similarity based on edge matching, facing scalability
limits due to the hypervector’s memory capacity.

This works aims to propose and evaluate a new vector symbolic
graph representation that preserves approximate structural similarity
beyond edge correspondence. We introduce CLOG: Conjunctive bLOck
coding for hyperdimensional Graph representation, an approach that
fundamentally differs from the previous methods. Our contributions
are:

• A new hyperdimensional graph representation that leverages HD-
C’s variable binding operator to preserve the conjunctive con-
nections to neighbors for each node. A direct consequence is an
increase in the memory capacity of the hypervectors for sparse
graphs.

• A block encoding and masking scheme for projecting atomic con-
cepts (graph nodes in this case) to hyperspace that leads to loose
conjunction of the neighbors, enabling more efficient decoding of
the representation.

• As CLOG is orthogonal to the approach GNN takes, we propose
an integration of CLOG with GNN. To show CLOG’s knowledge
graph structure representation capability, we also test our model
on benchmark link prediction datasets and compare it with exist-
ing approaches.

The following section covers the related literature in the field. Sec-
tion 3 discusses the fundamentals of Hyperdimensional Computing and
existing HDC graph representations. Section 4 presents the details to
the proposed method and its components. Section 5 provides the ex-
periment and evaluation of CLOG and its performance across various
tasks.

2. Related work

2.1. Graph representation

Graph representation methods are a crucial area of research in com-
puter science, particularly in the domains of data science, machine
learning, and network analysis. These methods are designed to effi-
ciently and effectively represent graph-structured data, which is inher-
ently complex due to its non-Euclidean nature.

The pioneering work Perozzi et al. (2014) marked a foundational
2

shift by applying natural language processing techniques to graph data,
Intelligent Systems with Applications 22 (2024) 200353

using truncated random walks to learn social representations. This con-
cept was further refined in Grover and Leskovec (2016), which en-
hanced the model’s flexibility to capture both local and global network
structures. Building upon these embeddings, the domain of Graph Neu-
ral Networks (GNNs) emerged, with key contributions like Kipf and
Welling (2016), extending deep learning to graph-structured data. The
introduction of Graph Attention Networks (GATs) in Velickovic et al.
(2017) added an attention-based mechanism, allowing for more nu-
anced node importance assessments. Further sophistication was seen
in Dwivedi and Bresson (2020), extending the transformer architecture,
originally designed for sequence data in natural language processing, to
handle graph-structured data. Current research is focusing on enhanc-
ing the methods for greater scalability (Huang, Li, Cao, et al., 2022, Li et
al., 2023, Rampášek et al., 2022, Thakoor et al., 2021), interpretability
(Chen, Jiao, Liu, et al., 2022, Feng et al., 2022, Huang, Yamada, Tian,
et al., 2022, Wu et al., 2023), and generalization, addressing real-world
complexities in graph-structured data (Gao et al., 2023, Li, Zheng, Feng,
et al., 2023, Li, Zhang, Cui, et al., 2023, Liu et al., 2023, Wang et al.,
2022).

2.2. Hyperdimensional computing

The concepts underlying hyperdimensional computing have been es-
tablished for quite some time, but it’s only in recent years that they
have begun to gain significant attention, both in theory and practice.
Key theoretical developments (Clarkson et al., 2023, Frady et al., 2018)
have drawn the attention of the broader machine learning community,
leading to a wide spectrum of practical deployments, including health
monitoring (Ge & Parhi, 2022, Moin et al., 2021, Ni, Lesica, Zeng, et
al., 2022), reinforcement learning (Chen, Issa, Ni, et al., 2022, Ni et
al., 2022), and lightweight recognition algorithms (Imani et al., 2022,
Lee et al., 2023). This growing interest can be attributed to the way
HDC capabilities address some of the shortcomings found in contem-
porary artificial neural networks, including higher learning efficiency
(Hersche et al., 2022, Ni et al., 2024), better interpretability (Poduval
et al., 2022), and natural parallelizability on hardware platforms (Chen
et al., 2024). As a result, there’s an emerging trend towards hybrid mod-
els that merge neuro-symbolic approaches (Hersche et al., 2023, Lee et
al., 2023, Zou et al., 2022).

In particular, HDC has demonstrated substantial promise in compet-
ing with graph convolution neural networks (GCN) in the graph rep-
resentation learning domain (Poduval et al., 2022). While HDC graph
representation shares some similarities with the aggregation phase of
GNNs in processing graph data, its approach and objectives differ sig-
nificantly. GNNs are great for learning tasks but lack capabilities in
high-level reasoning and knowledge extraction, as neural networks
typically focus on learning rather than memorizing. In contrast, hy-
perdimensional learning uses symbolic hypervectors, mimicking robust
brain-like reasoning and eliminating the need for iterative node ag-
gregation across multiple layers (Chen et al., 2023, Kang et al., 2022,
Nunes et al., 2022, Poduval et al., 2022).

3. Preliminaries

3.1. Hyperdimensional computing

Hyperdimensional Computing (HDC), synonymously Vector Sym-
bolic Architecture (VSA) (Gayler, 1998, Kanerva, 1996, Plate et al.,
1991), has the capability to manipulate data structures into distributed
representations. HDC encodes data structures in high-dimensional vec-
tor spaces holographically, where random hypervectors, i.e., high-
dimensional vectors, are used as bases for the representation and
three main operations are employed to form an algebra over the high-
dimensional space.

In this study, independent random bipolar vectors of dimension

𝐷 are used as atomic primitives. The similarity between the vectors

A. Zakeri, Z. Zou, H. Chen et al.

are measured by their dot product, ⟨𝒙, 𝒚⟩ = 1
𝐷

∑𝐷

𝑖=1 𝑥𝑖𝑦𝑖, which indi-
cates whether or not the atomic objects are the same as well as the
structural similarity between complex object. To construct structured
objects, there are three HDC operations defined as below:

Bundling (+) operation is done via component-wise addition of hyper-
vectors, denoted as 𝒔 = 𝒙1 +𝒙2. This operation superposes the elements,
acting as a memorization function that keeps the information of input
data in the resulting vector. The bundled hypervector preserves similar-
ity to its atomic hypervectors, i.e., ⟨𝒔, 𝒙𝟏⟩ ≫ 0; thus, it is well suited for
representing sets. This similarity implies that even though information
from multiple vectors is combined, the essence of individual vectors is
not lost, facilitating associative memory retrieval within the HDC frame-
work.

Binding (⊙) of 𝒙1 and 𝒙2 is done by the Hadamard product, i.e.,
component-wise multiplication, between the two hypervectors and de-
noted as 𝒔 = 𝒙1 ⊙ 𝒙2. The resulting conjunct hypervector 𝒔 is dissimilar
to its constituent vectors, ⟨𝒔, 𝒙1⟩ ≈ 0. This operation is invertible, i.e.,
𝒙1 = 𝒔 ⊙ 𝒙𝟐. Since binding in some sense maintains the information
of its constituents without increasing the size, it can function as vari-
able association. This invertibility allows for the retrieval of original
information, making binding a powerful tool for encoding complex re-
lationships in HDC.

Permutation (𝜌) operation, 𝒔 = 𝜌(𝒙), applies a cyclic shift on the com-
ponents of 𝒙. Permutation distributes over bundling, 𝜌(𝒙𝟏 + 𝒙2) =
𝜌(𝒙1) + 𝜌(𝒙2), as well as binding, 𝜌(𝒙1 ⊙ 𝒙2) = 𝜌(𝒙1) ⊙𝜌(𝒙2). Like bind-
ing, permutation dissociates hypervectors, ⟨𝜌𝑙(𝒙), 𝒙⟩ ≈ 0 when 𝑙 ≠ 0. As
permutation is reversible and induces a natural order via repeated per-
mutation over the hypervector, it is used to represent sequences and
encoding order for different levels in a hierarchy.

3.2. Graph representation in HDC

Despite some differences in algorithms and node ordering, exist-
ing HDC graph representations mainly leverage edge correspondence
as measure of structural similarity (Gayler & Levy, 2009, Nunes et al.,
2022, Poduval et al., 2022). For an undirected graph 𝐺 = (𝑉 , 𝐸), the
framework first assigns a random bipolar hypervector 𝑯 𝑖 of size 𝐷
to each node 𝑖 ∈ 𝑉 in the graph, and generates the codebook matrix
𝐻 = [𝑯1, 𝑯2, ⋯ , 𝑯𝑛] of the size 𝐷 × 𝑛 as the high-dimensional repre-
sentation of graph nodes. As a result of random generation, the node
hypervectors are nearly orthogonal, and the similarity between each
pair of hypervectors is about zero: ⟨𝑯 𝑖, 𝑯 𝑗⟩ ≈ 0, 𝑖 ≠ 𝑗.

For each node 𝑙, the HDC-based model creates a node memory hy-
pervector by the set of its neighbors: 𝑴 𝑙 =

∑
𝑖∈𝑁𝑏ℎ(𝑙)𝑯 𝑖. Properties of

the bundling operation implies that the similarity between the node
memory and each of the bundled hypervectors is much greater than
zero: ∀𝑖 ∈𝑁𝑏ℎ(𝑙), ⟨𝑴 𝑙, 𝑯 𝑖⟩ ≫ 0. This property allows retrieval of each
neighbors during reconstruction process through similarity check.

The model then constructs a single hypervector for the full graph
in two steps. First, it associates (binds) each node hypervector with
the corresponding node memory, 𝑯 𝑖 ⊙𝑴 𝑖. This adds a distinction be-
tween the node memories and allows the model to recognize the correct
memory for each node during the graph reconstruction. Then, all the as-
sociated pairs are bundled together into the graph hypervector 𝑮:

𝑮 =
𝑛∑
𝑖=1

𝑯 𝑖 ⊙𝑴 𝑖 =
𝑛∑
𝑙=1

𝑯 𝑙 ⊙
∑

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖 (1)

= 2
∑

(𝑙,𝑖)∈𝐸
𝑯 𝑙 ⊙𝑯 𝑖

The last equality uses the distributivity of binding over bundling.
The result is a transparent model that has compressed all the edges in
3

the graph, where each edge is represented by the binding of endpoint
Intelligent Systems with Applications 22 (2024) 200353

hypervectors. It can be used to reconstruct the original graph or perform
reasoning tasks on it.

To retrieve the graph information from the graph hypervector, the
HDC-based representation framework first recovers each node’s mem-
ory, which can be approximately done by binding the graph hypervec-
tor 𝑮 with the corresponding node hypervector:

𝑴̂ 𝑙 =𝑮⊙𝑯 𝑙 =𝑴 𝑙 +
𝑛∑

𝑖=1,𝑖≠𝑙
𝑯 𝑙 ⊙𝑯 𝑖 ⊙𝑴 𝑖 (2)

The obtained node memory is denoted as 𝑴̂ 𝑙 and differs from the
original node memory hypervector 𝑴 𝑙 by including extra components.
In the subsequent and concluding phase of the decoding process, these
excess components are eliminated, thanks to the orthogonality of hy-
pervectors.

Having estimated the node memory, we can inspect the connection
between nodes 𝑖 and 𝑙 by measuring the similarity between the node
hypervector of one and the node memory hypervector of the other, ⟨𝑯 𝑖, 𝑴̂ 𝑙⟩. If there exists an edge between 𝑖 and 𝑙, then ⟨𝑯 𝑖, 𝑴̂ 𝑙⟩ ≫ 0.
Otherwise, ⟨𝑯 𝑖, 𝑴̂ 𝑙⟩ ≈ 0.

4. Main contribution

This section covers the method we propose to represent the struc-
ture of the graph in high-dimensional space. Hyperdimensional math-
ematics, as outlined in Section 3, is employed to distribute the graph
information across a fully holistic high-dimensional representation. We
introduce CLOG, which employs a unique two-stage block encoding and
an innovative decoding algorithm. The details of this design are dis-
cussed in depth in this section.

4.1. Resonator network

As discussed in Section 3.2, previous HDC-based work on graph
representation mainly utilize the bundling operation and its charac-
teristics to aggregate the node connections into memory hypervectors.
Using bundling to memorize hypervectors restricts the scalability of
the model, as the resulting memory hypervectors will be much larger
in magnitude than their atomic constituents, which leads to eventual
saturation of the memory. This saturation can be observed as the de-
coding process becomes more challenging, and the number of noise
terms increases while attempting to determine the similarity between
the memory and its constituents.

To overcome this, memorization can be performed by binding hyper-
vectors, eliminating the mentioned drawback. However, this approach
can be challenging when it comes to decoding the information from the
conjunct hypervectors.

While the binding operation is reversible once all but one of the con-
stituents is known, finding all constituent vectors from a given bound
hypervector is not trivial. In general, this factorization problem may
involve two or more factors, leading to exponential growth in the poten-
tial solutions space. Assume we are given a composite vector 𝒔, formed
as a product of 𝑚 vectors:

𝒔 = 𝒔1 ⊙ 𝒔2 ⊙⋯⊙ 𝒔𝑚 (3)

where the factors 𝒔𝑖 are drawn from codebooks 𝑋𝑖 = {𝒙𝑖1, 𝒙𝑖2, … , 𝒙𝑖𝑛}.
The task in the factorization problem is to find the factors 𝒔𝑖, given the
composite vector 𝒔 and codebooks 𝑋𝑖.

The resonator network proposed by Frady et al. (2020), Kent et
al. (2020), and further utilized in various applications (Frady et al.,
2022, Renner et al., 2022), attempts to solve this problem without ex-
haustively searching through all possible combinations of the factor, as
shown in Fig. 1. Initializing a guess for each factor by using superposi-
tion on all the vectors in each corresponding codebook, the algorithm
iteratively improves the guesses and infers new estimates from the ones

in the last iteration.

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Fig. 1. Structure of the resonator network, with the number of factors set to 4. The algorithm progressively refines its guesses for the constituents of 𝒔, 𝒔̂1 to 𝒔̂4 ,
deriving new estimates based on those from the previous iteration.
The vector 𝒔𝒊 represents the current estimate for each factor. First,
the estimates are initialized to be all possible factors bundled together,
i.e., 𝒔̂𝑖(0) =

∑𝑛

𝑗=1 𝒙𝑖𝑗 . A particular factor can then be inferred from 𝒔
based on the estimates for the other ones:

𝒔̂∗
𝑖
(1) = 𝒔⊙ 𝒔̂1(0)⊙⋯⊙ 𝒔̂𝑖−1(0) (4)

⊙ 𝒔̂𝑖+1(0)⊙⋯⊙ 𝒔̂𝑚(0) = 𝒔⊙

𝑚∏
𝑗≠𝑖

𝒔̂𝑗 (0)

where
∏

is the notation used for binding multiple vectors. Since bind-
ing distributes over bundling, the vector product 𝒔̂1(0) ⊙ 𝒔̂2(0) ⊙⋯ ⊙
𝒔̂𝑖−1(0) ⊙ 𝒔̂𝑖+1(0) ⊙⋯ ⊙ 𝒔̂𝑚(0) expresses every combination of factors
(with a total of 𝑛𝑚−1) during the first iteration, allowing many potential
combinations of the factors to be considered at once when deducing the
𝑖th factor.

However, the procedure for inferring new factors is noisy if many
guesses are processed simultaneously. This issue is resolved by project-
ing the noisy estimate 𝒔̂∗

𝑖
back to the span of original codebooks, that

contain all the possible factors of the input 𝒔. Formally, combining the
mentioned processes leads to the following update equation:

𝒔̂𝑖(𝑡+ 1) = 𝑓 (𝑋𝑖𝑋
𝑇
𝑖
𝒔̂∗
𝑖
(𝑡+ 1)) (5)

where the function 𝑓 prevents the diverging positive feedback by
thresholding the vector elements to ±1, and combines with the ma-
trix multiplication of 𝑋𝑖𝑋

𝑇
𝑖

to transform the noisy guess 𝒔̂∗
𝑖
(𝑡 + 1) =

𝒔̂⊙ 𝒔̂1(𝑡) ⊙ ... ⊙ 𝒔̂𝑖−1(𝑡) ⊙ 𝒔̂𝑖+1(𝑡) ⊙ ... ⊙ 𝒔̂𝑚(𝑡) to the span of the codebook.
𝑋𝑇
𝑖
𝒔̂∗
𝑖
(𝑡 + 1) computes the similarity of the noisy guess with the code-

book, which acts as a measure of confidence for the possibility of each
codebook vector being a factor in 𝒔. The final multiplication with 𝑋𝑖

then applies the projection to the desired span of possible factors, using
the confidence levels as weights.

By repeatedly executing the specified operations, the resonator net-
work can generate improved estimates while decreasing the level of
noise in the guesses, until the model reaches convergence and the solu-
tion is discovered.

4.2. Block encoding & masking

Even though the resonator network is a great and efficient approach
to factorizing composite hypervectors, it suffers from scalability is-
sues. Fig. 2 demonstrates changes in the accuracy and iterations of the
method with changes in the size of its search space, i.e., the number of
possible factor combinations. It is evident that the accuracy of the net-
work can be maintained only in a very small range of the search space
size, which limits the size and density of the input graphs in our case as
we utilize the method later in our design. It is also apparent that trials
on larger graphs lead to the algorithm’s inability to reach convergence,
resulting in a decrease in accuracy. Further increasing the search space
4

would lead to spurious points and low final accuracy as well.
To deal with the scalability issues, we propose a configuration in
the base encoding method that allows the resonator network to work
with smoother search spaces, enabling more efficient decoding of the
representation. We also change the update rule for the resonator net-
work accordingly, which significantly decreases the number of itera-
tions needed for the network to converge.

Instead of generating a random hypervector for each node, we split
each node hypervector into a number of blocks, only randomly gener-
ating a specific portion of them, leaving other blocks as vectors with
all the components set to 1. We define density, 𝜂, as the proportion of
random blocks to the total number of blocks:

𝜂 ∈ { 1
𝑑
,
2
𝑑
,
3
𝑑
, ...,1}, where 𝑑 = Number of blocks (6)

This practice can also be represented by applying a 1-mask, 𝜹, on
the hypervector:

(𝒙[𝜹])𝑖 =

{
𝑥𝑖 if 𝛿𝑖 = 0
1 if 𝛿𝑖 = 1

(7)

An example of such masking can be seen in Fig. 3(a).
Now suppose we are working on a set of hypervectors with masked

blocks in a factorization problem. The resonator network is able to up-
date its guesses more smoothly throughout its search space, as the pre-
viously orthogonal hypervectors now have correlations between them.
Additionally, it can be seen that by adding unit blocks in between the
randomly generated ones, each block in the final composite hypervector
would have less number of factors involved in its creation, an example
of which is provided in Fig. 3(b). We could exploit this new char-
acteristic of the conjunct vectors by changing the update rule of the
resonator network and including new termination rules, hence increas-
ing its speed of convergence.

We propose the new update rule for the resonator network as below:

𝒔̂𝑖(𝑡+ 1) = 𝑓 (1
𝜂
𝑋𝑖[Δ]𝑋𝑖[Δ̄]𝑇 𝒔̂∗𝑖 (𝑡+ 1)) (8)

where Δ is the matrix of 1-masks, i.e., concatenation of the masks ap-
plied to each hypervector, and Δ̄ contains the corresponding 0-masks.
In other words, 𝑋𝑖[Δ̄] is the same as 𝑋𝑖[Δ], with the 𝟏 blocks replaced
by 𝟎 blocks. This modification specifically negates the effect of excessive
correlation between hypervectors, which is a result of the introduction
of 𝟏 blocks. Also, multiplication with 1

𝜂
is needed for the network to

maintain the magnitude of the guesses.
The resonator network terminates its iterations when all factors have

reached convergence, meaning that further iteration does not lead to
any changes in the guesses. The same criterion works for the design
we propose as well, but the use of masks and block hypervectors can
be significantly advantageous here. By splitting the hypervector into
blocks and updating the resonator network accordingly, new criteria
can be added to ensure the convergence of individual blocks.

Suppose the resonator network is on its 𝑘𝑡ℎ iteration, currently hold-

ing onto the guesses 𝒔̂𝑖 for the factors building the composite hypervec-

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Fig. 2. Convergence behavior of the resonator network. The plots can be split into three sections: (a) is where the algorithm converges to the correct point in
its search space, (b) is where the factorization fails to converge and the performance deteriorates as the search space size grows, and (c) is the region where the
resonator network converges to spurious points.

Fig. 3. (a) Example of a mask being applied to blocks of a randomly generated hypervector. 𝜹, with a density of 2
𝑑

, masks the blocks 2 and 𝑑 of the hypervector 𝒙
with blocks of 𝟏. (b) Example of binding three masked hypervectors. It is evident that each block might contain less number of bound blocks than the number of
hypervectors.

Fig. 4. Overview of the CLOG encoding design. (a) The sample graph consists of 4 nodes and 4 edges. (b) The node hypervectors 𝒉𝑖 are generated and also converted
to a masked version 𝑯 𝑖. (c) The node memory hypervectors are generated as described by Equation (9). (d) A block permutation is performed on the node memories.
(e) The results are binded with the full node hypervectors. (f) The resulting calculations are bundled into the final graph hypervector 𝑮.
tor 𝒔. We can compare 𝒔 with the hypervector built from binding all
of the current guesses, denoted as 𝒔̂. If the similarity between the two
mentioned vectors is high, i.e., ⟨𝒔, ̂𝒔⟩ ≫ 0, we can conclude that the
guesses have converged to their respective codebook entries. Assuming
that the hypervector was split into blocks as previously described, the
mentioned criteria can be checked for each block, independent of the
others. Also taking masking into consideration, it can be seen that some
of the blocks might contain a number of masked blocks as their fac-
tors. If 1-masks are used for such cases, they can be disregarded as a
factor, since they act as the identity element in binding, implying that
individual blocks might have been built using fewer factors than the
full hypervector. This can significantly speed up the process of detect-
ing convergence; if the convergence criteria are satisfied for individual
hypervector blocks, they can be inspected and hint at factors for the full
hypervector.

4.3. CLOG: HDC-based graph representation

We now propose our novel graph memorization and learning
5

scheme, CLOG. We break the design in two parts, first explaining the
encoding process in detail, and then moving on to the decoding proce-
dure. Fig. 4 presents a high-level view of the design.

4.3.1. Encoding

In the new approach CLOG, we use a two-step encoding that reduces
the number of terms bundled together, allowing the model to scale bet-
ter with the size and density of the graph. This introduces an increase
in the memory capacity of hypervectors, addressing scalability issues
present in previous methods. To start, we generate a random hypervec-
tor of dimension 𝐷, 𝒉𝑖, for each node. Using a fixed number of blocks 𝑑,
we also apply a random mask 𝜹𝒊 of density 𝜂 to each node hypervector,
resulting in 𝑯 𝑖.

Having generated the necessary vectors to represent each node, the
graph encoding can now be separated into two levels of memorization.
For the first level, CLOG captures the information of nodes locally, asso-
ciating all the neighbors for each node together in a single node memory
hypervector 𝑴 𝑙 :

𝑴 =𝑩 ⊙
∏

𝑯 (9)
𝑙 𝑙

𝑖∈𝑁𝑏ℎ(𝑙)
𝑖

A. Zakeri, Z. Zou, H. Chen et al.

where 𝑯 𝑖 is the masked version of the full node hypervector, i.e.,
𝑯 𝑖 = 𝒉𝑖[𝜹𝑖], and 𝑩𝑙 is the base node memory, which is also a masked
hypervector. (Note that 𝑴 𝑙 = 𝑩𝑙 if the node doesn’t have any neigh-
bors.) To avoid generating more hypervectors for each node, we can
assign the masked node hypervector as its respective base node mem-
ory, 𝑩𝑙 = 𝑯 𝑙 , assuming that the graph doesn’t contain any self-loop.
Leveraging HDC’s variable binding operator in the first step allows
CLOG to preserve the conjunctive connections to neighbors for each
node, exhibiting a fundamental shift from previous methods that mostly
focused on edge correspondence.

For the second encoding level, all the information gathered in the
node memories is bundled together in the final graph hypervector:

𝑮 =
𝑛∑
𝑖=1

𝒉𝑖 ⊙ 𝜌(𝑴 𝑖) (10)

where 𝒉𝑖 is the full node hypervector, and a permutation is applied to
node memories as well to completely separate the two levels of encod-
ing. It is worth mentioning that the amount of permutation is equal to
the length of hypervector blocks, which ensures that the contents of
different blocks are not mixed together.

4.3.2. Decoding

The reconstruction process can be divided into two steps. First, an
estimate of the node memory for each node is retrieved from the graph
hypervector:

𝑴̂ 𝑖 = 𝜌−1(𝑮⊙ 𝒉𝑖) (11)

Note that we use the length of hypervector blocks as the size of per-
mutation here as well, essentially shifting the blocks back by one. The
result of the computation is denoted 𝑴̂ 𝑖, which is different than the
original node memories and may contain noise terms. For the next step,
CLOG needs to identify each node’s neighbors from its node memory hy-
pervector. Since the model creates node memories through binding, the
resulting bound hypervectors can be factorized into their constituents
using the resonator network, which provides an efficient mechanism for
hypervector factorization, as discussed in Section 4.1. We also apply the
modifications discussed in Section 4.2 to the resonator network, follow-
ing the use of block encoding and masking in the encoding step, to add
to the efficiency and scalability of the approach. Here we will use the
following equation:

𝑯̂ 𝑖(𝑡+ 1) = 𝑓 (1
𝜂
𝐻𝐻̄𝑇 (𝑴̂ 𝑙 ⊙𝑩𝑙 ⊙

𝑚∏
𝑗=1,𝑗≠𝑖

𝑯̂ 𝑗 (𝑡))) (12)

which associates all previous guesses for factors with the base vector
and the composite vector (i.e., the retrieved node memory), and then
computes a weighted linear combination of codebook entries as the new
guess for the current factor. Also note that the number of factors used
to build each node memory is assumed to be 𝑚, the maximum node
degree.

The resonator network would update its guesses for the factors, it-
erating from the first factor to the last one, and then going back to the
first one for a new set of guesses. The iterations will end when all fac-
tors have reached a stable point, where the new guesses for each factor
remain unchanged from the previous iteration. This process needs to be
performed for each node for CLOG to acquire the neighbors for all the
nodes, hence reconstructing the full graph.

With the use of block encoding and masking, we are able to modify
the algorithm to find the factors much earlier than the convergence of
the full hypervector, while also working with a smaller number of fac-
tors than 𝑚. Since the blocks are essentially independent of each other,
we perform a block-wise similarity check every few iterations. If there
are blocks where the binding of guesses matches the conjunct vector, it
implies that those blocks are converged. Beginning with a single factor,
i.e., 𝑚 = 1, the algorithm increases the number of factors while identi-
6

fying blocks that could be constructed with fewer factors, resulting in
Intelligent Systems with Applications 22 (2024) 200353

faster convergence. This is a direct result of the masking approach; some
of the blocks might contain more than one masked factors, which helps
the resonator network to identify and factorize them with a smaller
number of factors and search space size.

CLOG introduces significant advancements in hyperdimensional
computing for graph representation compared to previous models. Un-
like earlier models focused primarily on edge correspondence, this
framework uses the binding operation as the mean for connecting neigh-
boring nodes with each other, and incorporates a unique block encoding
and masking scheme, ensuring a looser conjunction of neighbors, which
enhances the decoding performed through our modified resonator net-
work. This approach not only preserves structural similarity beyond
simple edge connections but also improving memory capacity and ef-
ficiency in graph representations compared the previous frameworks.

5. Experiments

In this section, we will display the experiments carried out on CLOG
and discuss their significance. We conduct three types of experiment on
our model. First, we theoretically analyze the mathematical properties
of CLOG and display its competence by elaborating on the characteris-
tics of our design. Second, we demonstrate the effectiveness of CLOG
in reconstructing graphs from encoded graph hypervectors. We assess
our model empirically by measuring several performance metrics when
faced with the reconstruction task in a variety of input and model hy-
perparameter settings. Lastly, we examine the model’s capabilities on
the link prediction task for knowledge graphs. We evaluate our results
using benchmark datasets and compare them to several recent studies
on the task.

5.1. Theoretical evaluation

Having explained the underlying principles of CLOG, we will now
compare it to prior research on HDC-based graph representation and
point out the main distinctions through a theoretical examination. We
use GrapHD (Poduval et al., 2022) from the previous works, and also
include an intermediate model in the comparisons, which uses the same
approach as our design but does not utilize the masking and block en-
coding procedures. Previous graph representation, CLOG without block
encoding, and CLOG with block encoding are indexed 1, 2, 3 respec-
tively. Fig. 5 illustrates a comparison between two major aspects of the
models, computational complexity and memory sensitivity.

It is crucial to compare the amount of computation needed for each
model to perform its reconstruction. All the models use the same order
of computation for encoding the graph representation, but the decoding
process varies in complexity among the three models, which can be
quantified as follows:

Theorem 1. Given the graph 𝐺 = (𝑉 , 𝐸), with size |𝑉 | = 𝑛 and maximum
degree 𝑚, the time complexity of decoding the high-dimensional representa-

tion of the graph using each of the three models can be quantified as below:

𝑇1 =𝑂(𝑛2𝐷)

𝑇2 =𝑂(𝑛2𝐷2(1 + 𝑚

𝑛
𝐿𝑛,𝑚)) (13)

𝑇3 =𝑂(𝑛2𝐷2(1 + 1
𝑛

𝑚∑
𝑘=0

(
𝑚

𝑘

)
(1 − 𝜂)𝑘𝜂(𝑚−𝑘)𝑘𝐿𝑛,𝑘))

where 𝐿𝑛,𝑘 is the number of iterations needed for the resonator network to
converge when decomposing 𝑘 factors with a codebook size of 𝑛.

Proof. See proof in Appendix A □

Assuming that the hyperparameters of the model are fixed, Fig. 5(a)
illustrates the computational complexity measurements, calculated us-

ing Equation (13). The values for CLOG exhibit a near-quadratic in-

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Fig. 5. Comparison between GrapHD and CLOG without and with masking. (a) Computation complexity and (b) Sensitivity for decoding the reconstructed node
memory as a function of graph size. The values for 𝐿𝑛,𝑚 for CLOG w/o masking can be seen in Fig. 2, while 𝐿𝑛,𝑘 is seen to be approximately similar across different
values of 𝑘, provided that an appropriate block density is used (the ablation study in Section 5.2 shows that 𝜂 ∈ [0.3, 0.5] is the best range of values for density.)
Hypervector dimensionality and graph density are fixed: 𝐷 = 400, density = 0.1.
crease with respect to the graph size used for reconstruction, under
set values for graph density. The intermediate model follows a similar
trend, before reaching a point where the complexity infinitely grows
as we increase the graph size, with the model completely failing to
perform the task. The model is able to perform the reconstruction
but achieves spurious results for bigger graphs. Lastly, complexity of
GrapHD increases quadratically under similar conditions, and its values
are smaller than CLOG by a factor of dimensionality.

Another principal attribute of a representation method is the qual-
ity of the result it produces. In the case of HDC-based models, we can
evaluate the precision of the hypervectors used for representation. We
can quantify the quality of stored vectors in the memory hypervectors
by the sensitivity of the signal relative to noise, formally defined as fol-
lows:

Definition (Sensitivity). Sensitivity for detecting an existing pattern 𝒙
from a non-existent pattern 𝒙′ in the hypervector 𝒛 can be mathemati-
cally defined as below:

𝑆 ∶=
𝐄[⟨𝒙,𝒛⟩] −𝐄[⟨𝒙′,𝒛⟩]

𝐬𝐭𝐝[⟨𝒙′,𝒛⟩] (14)

where 𝐄[.] and 𝐬𝐭𝐝[.] denote the expectation and standard deviation
over the distributions of 𝒙, 𝒙′.

When storing through bundling, the sensitivity for detection of each
constituent in the memory hypervector decreases as more hypervectors
are added. More detailed explanation of the definition above can be
found in Frady et al. (2018). In order to quantify the power of graph
representation for each approach, we can calculate the sensitivity val-
ues for the reconstructed memories, which helps us demonstrate the
difference in memorization power and capacity of the methods.

Theorem 2. Given the graph 𝐺 = (𝑉 , 𝐸), with cardinalities |𝑉 | = 𝑛, |𝐸| =
𝑒, and maximum degree 𝑚, sensitivity of reconstructed node memory hyper-

vectors can be determined for each of the three methods using the following
formulas:

𝑆1 =
1√
𝑒

√
𝐷

𝑆2 =
1√
𝑛

√
𝐷 (15)

𝑆3 =
1 −

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1 − 𝜂)

2𝑘√
𝑛−

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1 − 𝜂)2𝑘

√
𝐷

where 𝑝 =

(𝑚+1
𝑚+1−𝑘

)(𝑛−(𝑚+1)
𝑘

)()

7

𝑘,𝑚 𝑛

𝑚+1
Fig. 6. ROC curves for CLOG, under different sets of parameters. (a) The graph
size and average degree are fixed: 𝑛 = 100, 𝑚̄ = 2, with the maximum degree of
the graph 𝑚 changing across four values (b) The maximum and average degree
of the graph are fixed: 𝑚 = 3, 𝑚̄ = 2, with the graph size changing across four
values.

Fig. 5(b) shows a plot of the sensitivity values of each method for
different graph sizes. It can be seen that the GrapHD holds the low-
est sensitivity evaluation, CLOG comes in second, and CLOG without
masking has the highest sensitivity with slightest of margins over CLOG.
Note that the graph density is set to a fixed value across the measure-
ments, leading to the following relation between the number of nodes
and edges in the graph: 𝑒 =𝑂(𝑛2).

Combining the two evaluations shown in Fig. 5, it can be inferred
that CLOG is the leading algorithm between the three, since it has
a clear advantage in sensitivity over previous work with the cost of
a slight increase in complexity. CLOG also surpasses the intermediate
design without masking, while maintaining a high level of memoriza-
tion quality. Not utilizing masking and block encoding leads to infinite
growth in complexity for larger graphs and eventually failing to pro-
duce acceptable results for the approach.

Considering two major properties of the frameworks, memory
sensitivity and computational complexity, the theoretical evaluation
presents the improvements CLOG brings to the table. Memory sensitiv-
ity, a key attribute of a representation method, evaluates the precision
of the hypervectors used for representation. This is quantified by the
sensitivity of the signal relative to noise. CLOG is demonstrated to
have high sensitivity with a clear advantage in sensitivity over pre-
vious work, indicating superior memorization power and capacity.
Computational complexity is crucial in determining the amount of
computation needed for each model to perform its reconstruction, in
which CLOG manages the trade-off between complexity and quality ef-
fectively, maintaining a reasonable amount of computation compared

to previous frameworks.

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Fig. 7. Classification accuracy plot for CLOG. The heatmaps illustrate the values for three scoring metrics of balanced accuracy, recall, and precision. The recon-
struction task is performed for graphs of varying sizes with fixed maximum and average degree values 𝑚 = 4, 𝑚̄ = 2, using a range of dimensionalities for the

model.

The theoretical assessment of CLOG showcases the improvements of
the framework over previous work by focusing on two crucial aspects:
memory sensitivity and computational complexity. Memory sensitiv-
ity measures the accuracy of the hypervectors in representation, with
CLOG showing enhanced sensitivity and superior memory capability
compared to previous methods. Meanwhile, computational complexity,
which gauges the necessary computational effort for model reconstruc-
tion, is effectively balanced by CLOG. It avoids the pitfalls of excessive
computational demand, ensuring it remains at a similar order compared
to earlier frameworks.

In addition, the adjustments provided by masking and block en-
coding prove to be greatly beneficial, which is demonstrated in the
comparison with the intermediate method without masking. The ab-
sence of these modifications leads to infinite growth in complexity for
larger graphs, whereas CLOG handles this effectively, without compro-
mising memorization quality

5.2. Graph reconstruction experiments

We also conducted numerous experiments to evaluate our model in
addition to the theoretical assessments mentioned. CLOG can be seen as
a classifier when tackling the graph reconstruction task. Each graph in-
cludes a number of edges, that can be given the label “1” or “existing
edge”, while the missing edges when compared to the complete graph
of the same size can be labeled as “0” or “non-existent edge”. Thus, the
objective of the graph reconstruction task can be stated as classifying
the edges of the graph. This allows us to evaluate CLOG using classifi-
cation performance measurements.

We first illustrate and discuss the receiver operating characteristic
(ROC) curve for our design, which shows the diagnostic ability of the
classifier as the decision threshold is changed. Fig. 6 demonstrates a
series of ROC curves generated from the performance of the model on
different types of graphs. We can observe that the curves don’t necessar-
ily start at (0, 0) and end at (1, 1) coordinates, as ROC curves generally
do, as the decision threshold is used in CLOG unlike most classifiers; it
affects multiple stages of the classification procedure, (such as checking
the hypervector similarities during the factorization of node memo-
ries) rather than solely the final stage. Regardless of this difference,
the curves demonstrate the capability of our model for various groups
of graphs, being close to the upper left corner, i.e., perfect classification,
in the ROC space. As shown in Fig. 6(a), the performance of our model
decreases slightly as the maximum degree increases, yet it still main-
tains a satisfactory level of edge classification accuracy. Fig. 6(b) also
illustrates the impact of graph size on the classification performance of
our model, with the degree parameters fixed. Although the curves de-
cline as the graph size increases, the model still performs acceptably
8

well.
Fig. 7 shows the classification performance metrics for CLOG, when
conducting the reconstruction task at various dimensionalities and
graph sizes. Note that balanced accuracy is utilized instead of accu-
racy as an overall performance metric for the model, as accuracy can
be a misleading metric for imbalanced datasets, such as sparse graphs.
The experiments were done on graphs generated with fixed values for
average and maximum degree, and the encoding hyperparameters also
kept unchanged. The results suggest the effectiveness of our model.

It is of significant importance to analyze the behavior of our model
with changes in its hyperparameters as well. CLOG employs three main
parameters for working with hyperdimensional vectors: dimensional-
ity, number of blocks, and density. The evaluation of our design with
respect to its hyperparameters is depicted in Fig. 8. In each of the plots
one of the hyperparameters is held constant and the other two are var-
ied across several values. The results imply that the accuracy values
decrease when the hypervector density and number of blocks are set
to relatively higher or lower values in their respective ranges. Addi-
tionally, increasing the dimensionality leads to improved reconstruction
results. However, this is not always beneficial as it requires the model to
perform more complex calculations when handling larger hypervectors.

5.3. Link prediction task

Similar to GNN, CLOG can also be utilized to represent structural
information of knowledge graphs for link prediction. Our general archi-
tecture for this task, shown in Fig. 9 and used by Schlichtkrull et al.
(2018), applies CLOG as the front-end encoder to acquire graph struc-
ture information, and a scoring function (DistMult (Yang et al., 2014))
as the decoder to predict the missing entity. Given HDC’s inherent
symbolic property, we only update the entity and relation embedding
vectors and maintain the encoding base hypervectors constant during
the training process.

As shown in Table 1, we use FB15k-237 (Toutanova & Chen, 2015)
and WN18RR (Dettmers et al., 2018) as benchmark datasets to eval-
uate the link prediction performance. The dimensionality of original
embedding vectors and encoded hypervectors is set to 400 bytes and
2000 bytes, respectively. Table 2 demonstrates that CLOG achieves out-
standing link prediction accuracy when compared to previous knowl-
edge graph representation models. For FB15K-237, CLOG achieves a
Mean Reciprocal Rank (MRR) of 0.356, Hits@10 of 0.526, Hits@3 of
0.393, and Hits@1 of 0.269. On the WN18RR dataset, CLOG records
an MRR of 0.465, Hits@10 of 0.521, Hits@3 of 0.487, and Hits@1 of
0.444. More specifically, CLOG demonstrates an average improvement
of approximately 26.7% in Mean Reciprocal Rank (MRR) compared
to the previous GNN-based model R-GCN (Schlichtkrull et al., 2018).
Notably, it achieves competitive results comparable to the advanced
GNN-based model CompGCN (Schlichtkrull et al., 2018) and several

leading embedding-based models such as InteractE (Vashishth et al.,

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Fig. 8. Reconstruction accuracy plot for CLOG, for different settings of model’s three hyperparameters: hypervector dimensionality, density, and number of blocks.
Balanced accuracy of the reconstruction is used as the metric for this experiment.

Fig. 9. Overview of the CLOG workflow for knowledge graph tasks. (a) The encoding process for a vector of 𝑑 dimensions is shown, performed by multiplication
with the encoding matrix 𝐸, and passing through an activation function, such as 𝑡𝑎𝑛ℎ. (b) The knowledge graph is initiated with low dimensional embeddings of 𝒉
and 𝒓 for each entity and relation, respectively. The embeddings are encoded to hypervectors, and passed through CLOG memorization process to obtain the node
memory hypervectors 𝑴 . (c) The node memory, along with the relation hypervectors 𝑹, are passed through a scoring function (DistMult in this instance), which
scores them based on the possibility of each triple occurring. The complete model is trained based on the scores, improving the low-dimensional embeddings with
each iteration. It is important to note that the HDC encoding matrix is fixed throughout the training process.

Table 1

Link prediction datasets statistics.

Dataset Entities Relations Train Valid Test Avg. degree

WN18RR 40943 11 86835 3034 3134 2.12
FB15K-237 14541 237 272115 17535 20466 18.71

Table 2

Link prediction performance of CLOG and previous models on FB15K-237 and WN18RR datasets. Baseline
results are directly taken from the previous works (‘-’ indicates a missing value). The best values for each
metric are highlighted in bold.

FB15K-237 WN18RR

MRR H@10 H@3 H@1 MRR H@10 H@3 H@1

TransE (Bordes et al., 2013) 0.279 0.441 0.376 0.198 0.243 0.532 0.441 0.043
DistMult (Yang et al., 2014) 0.281 0.446 0.301 0.199 0.444 0.504 0.470 0.412
ComplEx (Trouillon et al., 2016) 0.278 0.450 0.297 0.194 0.449 0.530 0.469 0.409
KBGAN (Cai & Wang, 2017) 0.278 0.458 - - 0.214 0.472 - -
ConvKB (Nguyen et al., 2017) 0.243 0.421 - - 0.249 0.524 - -
ConvE (Dettmers et al., 2018) 0.312 0.497 0.341 0.225 0.456 0.531 0.470 0.419
R-GCN (Schlichtkrull et al., 2018) 0.164 0.300 0.100 0.181 0.123 0.207 0.137 0.080
RotatE (Sun et al., 2019) 0.338 0.533 0.375 0.241 0.476 0.571 0.492 0.428
QuatE (Zhang et al., 2019) 0.331 0.495 0.342 0.221 0.481 0.564 0.500 0.436
CompGCN (Vashishth et al., 2019) 0.355 0.535 0.390 0.264 0.479 0.546 0.494 0.443
InteractE (Vashishth et al., 2020) 0.354 0.535 - 0.263 0.463 0.528 - 0.430

CLOG (Proposed Method) 0.356 0.526 0.393 0.269 0.465 0.521 0.487 0.444
2020) and RotatE (Sun et al., 2019), surpassing them in multiple met-
rics. CLOG demonstrates superior performance on FB15k-237 compared
to other models, as opposed to WN18RR, for which CLOG performs
9

competitively with other models, outperforming them in Hits@1. This
difference can be attributed to dataset properties, where FB15k-237 fea-
tures over 20 times more relations than WN18RR and approximately
7 times fewer samples per relation. The advancements suggest that

CLOG’s novel approach to capturing structural relationships within

A. Zakeri, Z. Zou, H. Chen et al.

graphs and its efficient encoding and decoding processes contribute to
its enhanced performance in predicting links within knowledge graphs.

6. Conclusion

In this study, we introduced CLOG, an innovative Hyperdimensional
Computing (HDC)-based graph representation method. CLOG utilizes
HDC’s variable binding operator to capture the structural relationships
between graph nodes. Our approach, which incorporates block encod-
ing and masking techniques, enables more efficient projection of atomic
concepts, such as graph nodes, into hyperspace. This leads to a more
relaxed conjunction of neighbors, facilitating improved decoding. The
effectiveness of CLOG has been validated through theoretical and em-
pirical experiments, as well as through comparisons with other methods
on benchmark link prediction datasets.

Looking ahead, there are several promising directions for further re-
search. Future work could explore the refinement of CLOG’s encoding
and more specifically decoding processes, the application of the model
to more diverse and complex graph types, and the integration of CLOG
with other machine learning frameworks to enhance its applicability
and performance. The potential for this framework to contribute sig-
nificantly to the field of graph-based knowledge representation and
reasoning is substantial, and continued exploration in this area is ex-
pected to yield valuable insights and advancements.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Mohsen Imani reports financial support was provided by National
Science Foundation #2127780. Mohsen Imani reports financial sup-
port was provided by Semiconductor Research Corp. Mohsen Imani
reports financial support was provided by Office of Naval Research
#N00014-21-1-2225, #N00014-22-1-2067. Mohsen Imani reports fi-
nancial support was provided by Air Force Office of Scientific Research
#FA9550-22-1-0253.

Data availability

We have utilized public datasets

Acknowledgements

This work was supported in part by National Science Foundation,
grant #2127780, Semiconductor Research Corporation (SRC), Office of
Naval Research Young Investigator Program Award, grants #N00014-
21-1-2225 and #N00014-22-1-2067, the Air Force Office of Scientific
Research under award #FA9550-22-1-0253, and generous gifts from
Cisco and Xilinx.

Appendix A

Theorem. Given the graph 𝐺 = (𝑉 , 𝐸), with size |𝑉 | = 𝑛 and maximum
degree 𝑚, the time complexity of decoding the high-dimensional representa-

tion of the graph using each of the three models can be quantified as below:

𝑇1 =𝑂(𝑛2𝐷)

𝑇2 =𝑂(𝑛2𝐷2(1 + 𝑚

𝑛
𝐿𝑛,𝑚))

𝑇3 =𝑂(𝑛2𝐷2(1 + 1
𝑛

𝑚∑
𝑘=0

(
𝑚

𝑘

)
(1 − 𝜂)𝑘𝜂(𝑚−𝑘)𝑘𝐿𝑛,𝑘))

where 𝐿𝑛,𝑘 is the number of iterations needed for the resonator network to
10

converge when decomposing 𝑘 factors with a codebook size of 𝑛.
Intelligent Systems with Applications 22 (2024) 200353

Proof. The decoding process in the previous graph representation
method in HDC is discussed in Section 3.2, with Equation (2) recon-
structing the node memories, and subsequently measuring their simi-
larity with each node, checking existence of every possible edge. The
node reconstruction process involves 𝑛 operations with 𝐷 element cal-
culations, leading to a complexity of 𝑂(𝑛𝐷). The edge reconstruction
includes 𝑛2 similarity checks between hypervectors of dimension 𝐷,
hence the complexity 𝑂(𝑛2𝐷). The total decoding complexity as a re-
sult is: 𝑇1 =𝑂(𝑛2𝐷)

The next two methods also include the two steps of node mem-
ory and edge reconstruction, the first of which is similar among both
methods, with the differences being in the use of blocks and masking.
As shown in Equation (11), the node memory reconstruction can be
done in 𝑂(𝑛𝐷) complexity. For the next step, the intermediate model
uses vanilla resonator network to decompose the neighbors from the
node memory hypervector, as shown in Equation (5). For each node
memory, the algorithm first calculates the product of codebook ma-
trix with its transpose 𝑋𝑖𝑋

𝑇
𝑖

, which is done in 𝑂(𝑛𝐷2), since 𝑋𝑖 has
the dimensions 𝐷 × 𝑛. The resulting matrix is then multiplied with the
binding of 𝑚 hypervectors during each iteration, all of which is com-
pleted in 𝑂(𝑚𝐷+𝐷2) =𝑂(𝐷2) time complexity. In total, the algorithm
is performed for 𝑚 factors and runs for 𝐿𝑛,𝑚 iterations, resulting in
𝑂(𝑛𝐷2 + 𝑚𝐷2𝐿𝑛,𝑚) complexity for each run. The decomposition pro-
cess should be performed for all 𝑛 nodes, which leads to the overall time
complexity 𝑇2 =𝑂(𝑛𝐷 + 𝑛(𝑛𝐷2 +𝑚𝐷2𝐿𝑛,𝑚)) =𝑂(𝑛2𝐷2(1 + 𝑚

𝑛
𝐿𝑛,𝑚))

CLOG also starts the decoding process by reconstructing the node
memory hypervectors in 𝑂(𝑛𝐷), similar to previous methods. The next
step is executed as shown in Equation (12). The product 𝐻𝐻̄𝑇 is cal-
culated once in 𝑂(𝑛𝐷2), and the process for finding a new guess for
each factor is done in 𝑂(𝑚𝐷 + 𝐷2) = 𝑂(𝐷2). With the use of mask-
ing, the algorithm can decompose the blocks with smaller number of
factors much faster, as opposed to running for 𝐿𝑛,𝑚 iterations. The
number of factors for each block differs in this method, and can be rep-
resented using the binomial distribution; when binding 𝑚 hypervectors,
masked with density of 𝜂, the probability of a block having 𝑘 factors is
𝑞𝑘 =

(𝑚
𝑘

)
(1 − 𝜂)𝑘𝜂(𝑚−𝑘). Hence, the resonator network will decompose 𝑘

factors, running for 𝐿𝑛,𝑘 iteration with probability 𝑞𝑘, which leads to
a time complexity of 𝑂(𝑛𝐷2 +𝐷2∑𝑚

𝑘=0
(𝑚
𝑘

)
(1 − 𝜂)𝑘𝜂(𝑚−𝑘)𝑘𝐿𝑛,𝑘). CLOG

performs the factorization for all 𝑛 nodes, resulting in the final com-
plexity of 𝑇3 =𝑂(𝑛2𝐷2(1 + 1

𝑛

∑𝑚

𝑘=0
(𝑚
𝑘

)
(1 − 𝜂)𝑘𝜂(𝑚−𝑘)𝑘𝐿𝑛,𝑘)) □

Theorem. Given the graph 𝐺 = (𝑉 , 𝐸), with cardinalities |𝑉 | = 𝑛, |𝐸| = 𝑒,
and maximum degree 𝑚, sensitivity of reconstructed node memory hyper-

vectors can be determined for each of the three methods using the following
formulas:

𝑆1 =
1√
𝑒

√
𝐷

𝑆2 =
1√
𝑛

√
𝐷

𝑆3 =
1 −

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1 − 𝜂)

2𝑘√
𝑛−

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1 − 𝜂)2𝑘

√
𝐷

where 𝑝𝑘,𝑚 =

(𝑚+1
𝑘

)(𝑛−(𝑚+1)
𝑘

)(𝑛

𝑚+1

)
Proof. Considering Equation (14), we can calculate the sensitivity for
detecting existing patterns from non-existing ones in the reconstructed
node memory for each method. For the first case, we start the calcula-
tion by expanding Equation (2) to its full form:

𝑴̂ 𝑙 =𝑮⊙𝑯 𝑙

= 2𝑯 ⊙
∑

𝑯 ⊙𝑯 (A.1)
𝑙

(𝑖,𝑗)∈𝐸
𝑖 𝑗

A. Zakeri, Z. Zou, H. Chen et al.

=
∑

𝑖∈𝑁𝑏ℎ(𝑙)
2𝑯 𝑖 +

∑
𝑖,𝑗≠𝑙,(𝑖,𝑗)∈𝐸

2𝑯 𝑙 ⊙𝑯 𝑖 ⊙𝑯 𝑗

In the expanded form, the initial expression consists of two compo-
nents. The first one is the unaltered node memory hypervector, which
contains the existing patterns in 𝑴̂ 𝑙 in the form of 𝒙 ∈ 𝐻 . Mean-
while, the second component comprises the crossterms, which solely
contribute to noise.

Given two random hypervectors 𝒙, 𝒙′ ∈ 𝐻 such that ⟨𝒙, 𝑴 𝑙⟩ ≫ 0
and ⟨𝒙′, 𝑴 𝑙⟩ ≈ 0, sensitivity for detecting 𝒙 from 𝒙′ in the recon-
structed node memory can be derived as below:

𝑆1 =
𝐄[⟨𝒙,𝑴̂ 𝑙⟩] −𝐄[⟨𝒙′,𝑴̂ 𝑙⟩]

𝐬𝐭𝐝[⟨𝒙′,𝑴̂ 𝑙⟩] (A.2)

The first expectation in the equation above can be expanded as fol-
lows:

𝐄[⟨𝒙,𝑴̂ 𝑙⟩] = ∑
𝑖∈𝑁𝑏ℎ(𝑙)

2𝐄[⟨𝒙,𝑯 𝑖⟩] (A.3)

+
∑

𝑖,𝑗≠𝑙,(𝑖,𝑗)∈𝐸
2𝐄[⟨𝒙,𝑯 𝑙 ⊙𝑯 𝑖 ⊙𝑯 𝑗⟩]

Since 𝒙 is selected from 𝐻 , all the similarities in the second sum are
approximately zero, leading to a zero expectation over random selec-
tions for 𝒙. Considering that 𝒙 has similarity with 𝑴 𝑙 , at least one of
the terms in the first sum is non-zero, and 𝒙 can be similar to only one
vector in 𝐻 , as it is a set of orthogonal hypervectors. Hence, we have:

𝐄[⟨𝒙,𝑴̂ 𝑙⟩] = 2 (A.4)

We reach a similar form for the second expectation in Equation (A.2)
as well, but in this case 𝒙′ has no similarity with 𝑴 𝑙 , which means
that all of the terms in the first sum have approximately zero values.
The second sum is also zero, similar to the previous case, since 𝑯 𝑙 ⊙

𝑯 𝑖 ⊙𝑯 𝑗 is always orthogonal to any hypervector selected from 𝐻 .
Consequently:

𝐄[⟨𝒙,𝑴̂ 𝑙⟩] = 0 (A.5)

To calculate the final component in Equation (A.2), we first display
the calculation of standard deviation of the similarity between two or-
thogonal hypervectors, 𝒙 and 𝒚, with dimensionality 𝐷. Starting from
the definition, we have:

𝐬𝐭𝐝[⟨𝒙,𝒚⟩]2 = 𝐄[⟨𝒙,𝒚⟩2] −𝐄[⟨𝒙,𝒚⟩]2
= 𝐄[1

𝐷2 (
𝐷∑
𝑖=1

𝑥𝑖𝑦𝑖)2] − 0

= 1
𝐷2 (𝐄[

𝐷∑
𝑖=1

𝑥2
𝑖
𝑦2
𝑖
] +𝐄[

𝐷∑
𝑖,𝑗=1,𝑖≠𝑗

𝑥𝑖𝑦𝑖𝑥𝑗𝑦𝑗])

= 1
𝐷2 (𝐷 + 0) = 1

𝐷
(A.6)

leading to the following result: 𝐬𝐭𝐝[⟨𝒙, 𝒚⟩] = 1√
𝐷

. Returning to the pri-

mary issue, the standard deviation can be computed as follows:

𝐬𝐭𝐝[⟨𝒙′,𝑴̂ 𝑙⟩]2 = ∑
𝑖∈𝑁𝑏ℎ(𝐻𝑙)

4𝐬𝐭𝐝[⟨𝒙′,𝑯 𝑖⟩]2 (A.7)

+
∑

𝑖,𝑗≠𝑙,(𝑖,𝑗)∈𝐸
4𝐬𝐭𝐝[⟨𝒙′,𝑯 𝑙 ⊙𝑯 𝑖 ⊙𝑯 𝑗⟩]2

As discussed before, all the similarity terms in both summations are
between orthogonal hypervectors, and the number of terms are as many
as the number of edges 𝑒, which leads us to:

𝐬𝐭𝐝[⟨𝒙′,𝑴̂ 𝑙⟩] =√
(4𝑒) = 2

√
𝑒

(A.8)
11

𝐷 𝐷
Intelligent Systems with Applications 22 (2024) 200353

Combining the calculations, we get the final sensitivity value for the
first model: 𝑆1 =

√
𝐷

𝑒

We can follow a similar proof to derive 𝑆2 as well. The node memory
hypervector is reconstructed for the second model as below:

𝑴̂ 𝑙 = 𝜌−1(𝑮⊙𝑯 𝑙)

= 𝜌−1(𝑯 𝑙 ⊙

𝑛∑
𝑖=1

𝑯 𝑖 ⊙ 𝜌(
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗))

=
∏

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖 (A.9)

+
𝑛∑
𝑖≠𝑙

𝜌−1(𝑯 𝑙)⊙ 𝜌−1(𝑯 𝑖)⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗

We need to select the random hypervector for existing and non-
existent patterns differently for this model: 𝒙, 𝒙′ ∈ {

∏𝑚𝑙
𝑖∈𝑉 𝑯 𝑖} such that ⟨𝒙, 𝑴 𝑙⟩ ≫ 0 and ⟨𝒙′, 𝑴 𝑙⟩ ≈ 0. The degree of node 𝑙 is denoted as 𝑚𝑙 ,

which also represents the number of bound hypervectors in 𝑀𝑙 . Given
the expanded form, we can calculate the needed standard deviation and
expectation similar to previous model:

𝐄[⟨𝒙,𝑴̂ 𝑙⟩] = 1

𝐄[⟨𝒙′,𝑴̂ 𝑙⟩] = 0 (A.10)

𝐬𝐭𝐝[⟨𝒙′,𝑴̂ 𝑙⟩] = 2
√

𝑛

𝐷

Note that the number of terms summed together in 𝑴̂ 𝑙 is 𝑛 in this
case, as opposed to 𝑒 for the first model. As the final result we have
𝑆2 =

√
𝐷

𝑛
.

Finally for 𝑆3, which the sensitivity measurement corresponding to
CLOG, we have:

𝑴̂ 𝑙 = 𝜌−1(𝑮⊙ 𝒉𝑙)

= 𝜌−1(𝒉𝑙 ⊙
𝑛∑
𝑖=1

𝒉𝑖 ⊙ 𝜌(𝑯 𝑖 ⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗))

=𝑯 𝑙 ⊙
∏

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖 (A.11)

+
𝑛∑
𝑖≠𝑙

𝜌−1(𝒉𝑙)⊙ 𝜌−1(𝒉𝑖)⊙𝑯 𝑖 ⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗

We select the random hypervector for existing and non-existent
patterns as follows: 𝒙, 𝒙′ ∈ {

∏𝑚𝑙+1
𝑖∈𝑉 𝑯 𝑖} such that ⟨𝒙, 𝑴 𝑙⟩ ≫ 0 and ⟨𝒙′, 𝑴 𝑙⟩ ≈ 0. The use of masking introduces a difference in the calcu-

lations for this case compared to both previous models, as the masked
hypervectors are not necessarily orthogonal.

This can be observed when measuring the similarity between two
hypervectors that have been made by binding masked factors. Assume
two hypervectors 𝑿 =𝑿1⊙⋯ ⊙𝑿𝑘 and 𝒀 = 𝒀 1⊙⋯ ⊙𝒀 𝑘, where 𝑿𝑖 ’s
and 𝒀 𝑖’s are randomly generated masked hypervectors: 𝑿𝑖 = 𝒙𝑖[𝜹𝒙𝒊].
Denoting 𝑿(𝑖) as the 𝑖th block of 𝑋, the expectation and standard de-
viation of the similarity between such two hypervectors is derived as
follows:

𝐄[⟨𝑿,𝒀 ⟩] = 𝐄[1
𝐷
(
𝑑∑
𝑖=1

⟨𝑿(𝑖),𝒀 (𝑖)⟩)]
= 1
𝐷
𝐄[

𝑑∑
𝑖,∀𝑗∶𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖]=1

⟨𝑿(𝑖),𝒀 (𝑖)⟩]
+ 1 𝐄[

𝑑∑ ⟨𝑿(𝑖),𝒀 (𝑖)⟩]

𝐷

𝑖,∃𝑗∶𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖]=0

A. Zakeri, Z. Zou, H. Chen et al.

= 1
𝐷
(𝑑 × 𝐏𝐫(∀𝑗 ∶ 𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖] = 1) × 𝐷

𝑑
+ 0)

= (1 − 𝜂)2𝑘 (A.12)

𝐬𝐭𝐝[⟨𝑿,𝒀 ⟩]2 = 𝐬𝐭𝐝[1
𝐷
(
𝑑∑
𝑖=1

⟨𝑿(𝑖),𝒀 (𝑖)⟩)]2
= 1
𝐷2 𝐬𝐭𝐝[

𝑑∑
𝑖,∀𝑗∶𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖]=1

⟨𝑿(𝑖),𝒀 (𝑖)⟩]2
+ 1
𝐷2 𝐬𝐭𝐝[

𝑑∑
𝑖,∃𝑗∶𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖]=0

⟨𝑿(𝑖),𝒀 (𝑖)⟩]2
= 1
𝐷2 (0 + 𝑑 × 𝐏𝐫(∃𝑗 ∶ 𝜹𝒙𝒋 [𝑖]𝜹𝒚𝒋 [𝑖] = 0) × 𝐷

𝑑
)

= 1
𝐷
(1 − (1 − 𝜂)2𝑘) (A.13)

Having the mentioned measurements in mind, we start deriving the
sensitivity in the case of CLOG:

𝐄[⟨𝒙,𝑴̂ 𝑙⟩] = 𝐄[⟨𝒙,𝑯 𝑙 ⊙
∏

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖⟩]

+
𝑛∑
𝑖≠𝑙

𝐄[⟨𝒙, 𝜌−1(𝒉𝑙 ⊙ 𝒉𝑖)⊙𝑯 𝑖 ⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗⟩]

= 1 + 0 = 1 (A.14)

Note that 𝒙 is similar to 𝑯 𝑙 ⊙
∏

𝑖∈𝑁𝑏ℎ(𝑙)𝑯 𝑖 since it is selected as an
existing pattern in the node memory hypervector. It is also not possi-
ble for any of the terms in the following summation to have non-zero
values, as binding of the hypervector 𝜌−1(𝒉𝑙 ⊙ 𝒉𝑖) prevents it.

As for 𝒙′, it can contain factors that are also a part of the term
𝑯 𝑙 ⊙

∏
𝑖∈𝑁𝑏ℎ(𝑙)𝑯 𝑖, depending on how it is selected. The probability of

these two hypervectors having 𝑘 non-similar factors (out of 𝑚 + 1 total
factors), denoted as 𝑝𝑘,𝑚, is shown below:

𝑝𝑘,𝑚 =

(𝑚+1
𝑘

)(𝑛−(𝑚+1)
𝑘

)(𝑛

𝑚+1

) (A.15)

which is derived by selecting the 𝑘 non-similar factors out of 𝑚 + 1,
and the remaining factors from all the other 𝑛 − (𝑚 + 1) factors that are
not in 𝑯 𝑙

∏
𝑖∈𝑁𝑏ℎ(𝑙)𝑯 𝑖, and then normalizing with the total number of

selections for 𝑚 + 1 factors out of all the possible 𝑛 factors.
Consequently, the similarity between 𝒙′ and 𝑴̂ 𝑙 can be measured

by getting an expectation over all the possible values of 𝑘 as below:

𝐄[⟨𝒙′,𝑴̂ 𝑙⟩] = 𝐄[⟨𝒙′,𝑯 𝑙 ⊙
∏

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖⟩]

+
𝑛∑
𝑖≠𝑙

𝐄[⟨𝒙′, 𝜌−1(𝒉𝑙 ⊙ 𝒉𝑖)⊙𝑯 𝑖 ⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗⟩]

=
𝑚+1∑
𝑘=0

(𝑚+1
𝑘

)(𝑛−(𝑚+1)
𝑘

)(𝑛

𝑚+1

) (1 − 𝜂)2𝑘 + 0

=
𝑚+1∑
𝑘=0

𝑝𝑘,𝑚(1 − 𝜂)2𝑘 (A.16)

To calculate the standard deviation of the similarity we also have:

𝐬𝐭𝐝[⟨𝒙′,𝑴̂ 𝑙⟩]2 = 𝐬𝐭𝐝[⟨𝒙′,𝑯 𝑙 ⊙
∏

𝑖∈𝑁𝑏ℎ(𝑙)
𝑯 𝑖⟩]2

+
𝑛∑
𝑖≠𝑙

𝐬𝐭𝐝[⟨𝒙′, 𝜌−1(𝒉𝑙 ⊙ 𝒉𝑖)⊙𝑯 𝑖 ⊙
∏

𝑗∈𝑁𝑏ℎ(𝑖)
𝑯 𝑗⟩]2

= 1
𝑚+1∑ (𝑚+1

𝑘

)(𝑛−(𝑚+1)
𝑘

)() (1 − (1 − 𝜂)2𝑘)
12

𝐷
𝑘=0

𝑛

𝑚+1
Intelligent Systems with Applications 22 (2024) 200353

+ (𝑛− 1) × 1
𝐷

= 1
𝐷

𝑚+1∑
𝑘=0

(𝑚+1
𝑘

)(𝑛−(𝑚+1)
𝑘

)(𝑛

𝑚+1

)
− 1
𝐷

𝑚+1∑
𝑘=0

(𝑚+1
𝑘

)(𝑛−(𝑚+1)
𝑘

)(𝑛

𝑚+1

) (1 − 𝜂)2𝑘

+ 1
𝐷
(𝑛− 1)

= 1
𝐷
(𝑛−

𝑚+1∑
𝑘=0

𝑝𝑘,𝑚(1 − 𝜂)2𝑘) (A.17)

Combining all the computations, we arrive at the outcome presented

in Equation (15): 𝑆3 =
1−

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1−𝜂)

2𝑘√
𝑛−

∑𝑚+1
𝑘=0 𝑝𝑘,𝑚(1−𝜂)

2𝑘

√
𝐷. □

References

Arora, S. (2020). A survey on graph neural networks for knowledge graph completion.
arXiv preprint, arXiv :2007 .12374.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A.
P., Dolinski, K., Dwight, S. S., Eppig, J. T., et al. (2000). Gene ontology: Tool for the
unification of biology. Nature Genetics, 25, 25–29.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collabora-
tively created graph database for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD international conference on management of data (pp. 1247–1250).

Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., & Yakhnenko, O. (2013). Trans-
lating embeddings for modeling multi-relational data. Advances in Neural Information
Processing Systems, 26.

Cai, L., & Wang, W. Y. (2017). Kbgan: Adversarial learning for knowledge graph embed-
dings. arXiv preprint, arXiv :1711 .04071.

Chen, H., Issa, M., Ni, Y., & Imani, M. (2022). DARL: Distributed Reconfigurable Ac-
celerator for Hyperdimensional Reinforcement Learning. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design (pp. 1–9). IEEE.

Chen, H., Zakeri, A., Wen, F., Barkam, H. E., & Imani, M. (2023). Hypergraf: Hyper-
dimensional graph-based reasoning acceleration on fpga. In 2023 33rd International
Conference on Field-Programmable Logic and Applications (FPL) (pp. 34–41). IEEE.

Chen, H., Ni, Y., Zakeri, A., Zhuowen, Z., Yun, S., Wen, F., Khaleghi, B., Srinivasa, N.,
Latapie, H., & Imani, M. (2024). HDReason: Algorithm-Hardware Codesign for Hy-
perdimensional Knowledge Graph Reasoning. arXiv preprint, arXiv :2403 .05763.

Chen, P., Jiao, R., Liu, J., Liu, Y., & Lu, Y. (2022). Interpretable graph transformer network
for predicting adsorption isotherms of metal–organic frameworks. Journal of Chemical
Information and Modeling, 62, 5446–5456.

Chen, X., Jia, S., & Xiang, Y. (2020). A review: Knowledge reasoning over knowledge
graph. Expert Systems with Applications, 141, Article 112948.

Cheng, D., Yang, F., Xiang, S., & Liu, J. (2022). Financial time series forecasting with
multi-modality graph neural network. Pattern Recognition, 121, Article 108218.

Clarkson, K. L., Ubaru, S., & Yang, E. (2023). Capacity analysis of vector symbolic archi-
tectures. arXiv preprint, arXiv :2301 .10352.

Dettmers, T., Minervini, P., Stenetorp, P., & Riedel, S. (2018). Convolutional 2d knowl-
edge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence:
Vol. 32.

Dwivedi, V. P., & Bresson, X. (2020). A generalization of transformer networks to graphs.
arXiv preprint, arXiv :2012 .09699.

Fellbaum, C. (2010). Wordnet, in: Theory and applications of ontology: Computer applications.
Springer (pp. 231–243).

Feng, A., You, C., Wang, S., & Tassiulas, L. (2022). Kergnns: Interpretable graph neu-
ral networks with graph kernels. In Proceedings of the AAAI Conference on Artificial
Intelligence: Vol. 36 (pp. 6614–6622).

Frady, E. P., Kleyko, D., & Sommer, F. T. (2018). A theory of sequence indexing and
working memory in recurrent neural networks. Neural Computation, 30, 1449–1513.

Frady, E. P., Kent, S. J., Olshausen, B. A., & Sommer, F. T. (2020). Resonator networks,
1: An efficient solution for factoring high-dimensional, distributed representations of
data structures. Neural Computation, 32, 2311–2331.

Frady, E. P., Sanborn, S., Shrestha, S. B., Rubin, D. B. D., Orchard, G., Sommer, F. T., &
Davies, M. (2022). Efficient neuromorphic signal processing with resonator neurons.
Journal of Signal Processing Systems, 94, 917–927.

Gao, Z., Jiang, C., Zhang, J., Jiang, X., Li, L., Zhao, P., Yang, H., Huang, Y., & Li, J. (2023).
Hierarchical graph learning for protein–protein interaction. Nature Communications,
14, 1093.

Gayler, R. (1998). Multiplicative binding, representation operators and analogy.
Gayler, R. W., & Levy, S. D. (2009). A distributed basis for analogical mapping. In New

Frontiers in Analogy Research; Proc. of 2nd Intern. Analogy Conf.: Vol. 9.
Ge, L., & Parhi, K. K. (2022). Applicability of hyperdimensional computing to seizure
detection. IEEE Open Journal of Circuits and Systems, 3, 59–71.

http://refhub.elsevier.com/S2667-3053(24)00029-2/bibBD0BF20C5F9BA88F34311B0F8EE51EC1s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibBD0BF20C5F9BA88F34311B0F8EE51EC1s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1DB9AA94C19165C91BB63D9A4BD05BD4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1DB9AA94C19165C91BB63D9A4BD05BD4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1DB9AA94C19165C91BB63D9A4BD05BD4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib71CA8267E26F69B7A5DDF0C61B59DC54s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib71CA8267E26F69B7A5DDF0C61B59DC54s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib71CA8267E26F69B7A5DDF0C61B59DC54s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9708514303D80DD1F4765575C6D9F4D2s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9708514303D80DD1F4765575C6D9F4D2s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9708514303D80DD1F4765575C6D9F4D2s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibDC46802CB7FA8BB30BB9558917AB2F44s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibDC46802CB7FA8BB30BB9558917AB2F44s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFCDF00FE862F3E156C0B43AE726983E6s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFCDF00FE862F3E156C0B43AE726983E6s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFCDF00FE862F3E156C0B43AE726983E6s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibA1E7B28465231D24C436619BD8A05416s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibA1E7B28465231D24C436619BD8A05416s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibA1E7B28465231D24C436619BD8A05416s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1BD2A40788341336C079A15741769AE4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1BD2A40788341336C079A15741769AE4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1BD2A40788341336C079A15741769AE4s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib419DEED1647C7D5039ADB9A151DB9545s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib419DEED1647C7D5039ADB9A151DB9545s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib419DEED1647C7D5039ADB9A151DB9545s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib157111C45E40A381CDCD49448581D7A3s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib157111C45E40A381CDCD49448581D7A3s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8B4ED4C48EDAE97750D01AB4EC90C81Cs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8B4ED4C48EDAE97750D01AB4EC90C81Cs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3B3FEBE3A05FFBC5ABE0175A2D0C104Bs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3B3FEBE3A05FFBC5ABE0175A2D0C104Bs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7EE9EA8DC8DCA4CB7A07F21A40C00C2As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7EE9EA8DC8DCA4CB7A07F21A40C00C2As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7EE9EA8DC8DCA4CB7A07F21A40C00C2As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib82E7AA894B9B6883B5A2DB5837E45C73s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib82E7AA894B9B6883B5A2DB5837E45C73s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCFC3D6B3B19474895EFE05AEFCE8EA00s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCFC3D6B3B19474895EFE05AEFCE8EA00s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib0B0F6417D11359C05289F40B851F805Es1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib0B0F6417D11359C05289F40B851F805Es1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib0B0F6417D11359C05289F40B851F805Es1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib52E83953B2CB7D67B44DBCA5BFC945D7s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib52E83953B2CB7D67B44DBCA5BFC945D7s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3DB53FC95E9AE1CA642C6DDB2111A1BFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3DB53FC95E9AE1CA642C6DDB2111A1BFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3DB53FC95E9AE1CA642C6DDB2111A1BFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7E9EFD02FACDBE62FF5993A7708F9958s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7E9EFD02FACDBE62FF5993A7708F9958s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7E9EFD02FACDBE62FF5993A7708F9958s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6CB88B657F8A9A132ED0BDE670532410s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6CB88B657F8A9A132ED0BDE670532410s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6CB88B657F8A9A132ED0BDE670532410s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9CB7413488E9EB1738A74F24FB653900s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib29BBCA48360820C203A5354D758B065As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib29BBCA48360820C203A5354D758B065As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibAF205F16F0BCF33243162683C1CED1B7s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibAF205F16F0BCF33243162683C1CED1B7s1

Intelligent Systems with Applications 22 (2024) 200353A. Zakeri, Z. Zou, H. Chen et al.

Gentner, D., & Smith, L. A. (2013). Analogical learning and reasoning. In The Oxford
handbook of cognitive psychology (pp. 668–681).

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 855–864).

Hersche, M., Karunaratne, G., Cherubini, G., Benini, L., Sebastian, A., & Rahimi, A. (2022).
Constrained few-shot class-incremental learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition (pp. 9057–9067).
Hersche, M., Zeqiri, M., Benini, L., Sebastian, A., & Rahimi, A. (2023). A neuro-vector-

symbolic architecture for solving raven’s progressive matrices. Nature Machine Intelli-

gence, 1–13.
Huang, C., Li, M., Cao, F., Fujita, H., Li, Z., & Wu, X. (2022). Are graph convolutional

networks with random weights feasible? IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45, 2751–2768.

Huang, Q., Yamada, M., Tian, Y., Singh, D., & Chang, Y. (2022). Graphlime: Local inter-
pretable model explanations for graph neural networks. IEEE Transactions on Knowl-

edge and Data Engineering, 35, 6968–6972.
Imani, M., Zakeri, A., Chen, H., Kim, T., Poduval, P., Lee, H., Kim, Y., Sadredini, E., &

Imani, F. (2022). Neural computation for robust and holographic face detection. In
2022 59th ACM/IEEE Design Automation Conference (pp. 31–36).

Kanerva, P. (1996). Binary spatter-coding of ordered k-tuples. In International Conference
on Artificial Neural Networks (pp. 869–873). Springer.

Kang, J., Zhou, M., Bhansali, A., Xu, W., Thomas, A., & Rosing, T. (2022). Relhd: A
graph-based learning on fefet with hyperdimensional computing. In 2022 IEEE 40th
International Conference on Computer Design (ICCD) (pp. 553–560). IEEE.

Kent, S. J., Frady, E. P., Sommer, F. T., & Olshausen, B. A. (2020). Resonator networks,
2: Factorization performance and capacity compared to optimization-based methods.
Neural Computation, 32, 2332–2388.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. arXiv preprint, arXiv :1609 .02907.

Lee, H., Kim, J., Chen, H., Zeira, A., Srinivasa, N., Imani, M., & Kim, Y. (2023). Com-
prehensive Integration of Hyperdimensional Computing with Deep Learning towards
Neuro-Symbolic AI. In 2023 60th ACM/IEEE Design Automation Conference (DAC)

(pp. 1–6).
Li, J., Yu, Z., Zhu, Z., Chen, L., Yu, Q., Zheng, Z., Tian, S., Wu, R., & Meng, C. (2023).

Scaling up dynamic graph representation learning via spiking neural networks. In
Proceedings of the AAAI Conference on Artificial Intelligence: Vol. 37 (pp. 8588–8596).

Li, J., Zheng, R., Feng, H., & Zhuang, X. (2023). Permutaion equivariant graph framelets
for heterophilous semi-supervised learning. arXiv preprint, arXiv :2306 .04265.

Li, M., Zhang, L., Cui, L., Bai, L., Li, Z., & Wu, X. (2023). Blog: Bootstrapped graph repre-
sentation learning with local and global regularization for recommendation. Pattern
Recognition, 144, Article 109874.

Liu, L., Wen, G., Cao, P., Hong, T., Yang, J., Zhang, X., & Zaiane, O. R. (2023). Braintgl: A
dynamic graph representation learning model for brain network analysis. Computers
in Biology and Medicine, 153, Article 106521.

Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G., Tamakloe, S.,
Ting, J., Yamamoto, N., Khan, Y., et al. (2021). A wearable biosensing system with
in-sensor adaptive machine learning for hand gesture recognition. Nature Electronics,
4, 54–63.

Nguyen, D. Q., Nguyen, T. D., Nguyen, D. Q., & Phung, D. (2017). A novel embedding
model for knowledge base completion based on convolutional neural network. arXiv
preprint, arXiv :1712 .02121.

Ni, Y., Issa, M., Abraham, D., Imani, M., Yin, X., & Imani, M. (2022). Hdpg: Hyperdimen-
sional policy-based reinforcement learning for continuous control. In Proceedings of
the 59th ACM/IEEE Design Automation Conference (pp. 1141–1146).

Ni, Y., Lesica, N., Zeng, F., & Imani, M. (2022). Neurally-Inspired Hyperdimensional Clas-
sification for Efficient and Robust Biosignal Processing. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design (pp. 1–9).

Ni, Y., Zou, Z., Huang, W., Chen, H., Chung, W. Y., Cho, S., Krishnan, R., & Imani,
M. (2024). HEAL: Brain-inspired Hyperdimensional Efficient Active Learning. arXiv
preprint, arXiv :2402 .11223.

Nunes, I., Heddes, M., Givargis, T., Nicolau, A., & Veidenbaum, A. (2022). Graphhd:
Efficient graph classification using hyperdimensional computing. In 2022 Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE) (pp. 1485–1490). IEEE.

Park, N., Kan, A., Dong, X. L., Zhao, T., & Faloutsos, C. (2019). Estimating node im-
portance in knowledge graphs using graph neural networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

(pp. 596–606).
Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social represen-

tations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 701–710).

Plate, T., et al. (1991). Holographic reduced representations: Convolution algebra for
compositional distributed representations. In IJCAI (pp. 30–35). Citeseer.

Poduval, P., Alimohamadi, H., Zakeri, A., Imani, F., Najafi, M. H., Givargis, T., & Imani,
M. (2022). Graphd: Graph-based hyperdimensional memorization for brain-like cog-
nitive learning. Frontiers in Neuroscience, 16, Article 757125.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022). Recipe
for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35, 14501–14515.

Renner, A., Supic, L., Danielescu, A., Indiveri, G., Olshausen, B. A., Sandamirskaya, Y.,
Sommer, F. T., & Frady, E. P. (2022). Neuromorphic visual scene understanding with
resonator networks. arXiv preprint, arXiv :2208 .12880.

Schlichtkrull, M., Kipf, T. N., Bloem, P., Berg, R. v. d., Titov, I., & Welling, M. (2018).
Modeling relational data with graph convolutional networks. In European semantic
web conference (pp. 593–607). Springer.

Sun, Z., Deng, Z.-H., Nie, J.-Y., & Tang, J. (2019). Rotate: Knowledge graph embedding
by relational rotation in complex space. arXiv preprint, arXiv :1902 .10197.

Thakoor, S., Tallec, C., Azar, M. G., Azabou, M., Dyer, E. L., Munos, R., Veličković, P.,
& Valko, M. (2021). Large-scale representation learning on graphs via bootstrapping.
arXiv preprint, arXiv :2102 .06514.

Toutanova, K., & Chen, D. (2015). Observed versus latent features for knowledge base and
text inference. In Proceedings of the 3rd Workshop on Continuous Vector Space Models
and their Compositionality (pp. 57–66).

Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., & Bouchard, G. (2016). Complex em-
beddings for simple link prediction. In International Conference on Machine Learning

(pp. 2071–2080). PMLR.
Vashishth, S., Sanyal, S., Nitin, V., & Talukdar, P. (2019). Composition-based multi-

relational graph convolutional networks. arXiv preprint, arXiv :1911 .03082.
Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., & Talukdar, P. (2020). Interacte: Im-

proving convolution-based knowledge graph embeddings by increasing feature in-
teractions. In Proceedings of the AAAI Conference on Artificial Intelligence: Vol. 34

(pp. 3009–3016).
Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., et al. (2017).

Graph attention networks. Stat, 1050, Article 10-48550.
Wang, Z., Li, Z., Leng, J., Li, M., & Bai, L. (2022). Multiple pedestrian tracking with graph

attention map on urban road scene. IEEE Transactions on Intelligent Transportation
Systems, 24(8), 8567–8579.

Wu, Z., Lin, X., Lin, Z., Chen, Z., Bai, Y., & Wang, S. (2023). Interpretable graph con-
volutional network for multi-view semi-supervised learning. IEEE Transactions on
Multimedia, 25, 8593–8606.

Yang, B., Yih, W-t., He, X., Gao, J., & Deng, L. (2014). Embedding entities and relations
for learning and inference in knowledge bases. arXiv preprint, arXiv :1412 .6575.

Zamini, M., Reza, H., & Rabiei, M. (2022). A review of knowledge graph completion.
Information, 13, 396.

Zhang, D., Yuan, Z., Liu, H., Xiong, H., et al. (2022). Learning to walk with dual agents
for knowledge graph reasoning. In Proceedings of the AAAI Conference on Artificial
Intelligence: Vol. 36 (pp. 5932–5941).

Zhang, S., Tay, Y., Yao, L., & Liu, Q. (2019). Quaternion knowledge graph embeddings.
Advances in Neural Information Processing Systems, 32.

Zou, Z., Alimohamadi, H., Zakeri, A., Imani, F., Kim, Y., Najafi, M. H., & Imani, M. (2022).
Memory-inspired spiking hyperdimensional network for robust online learning. Sci-

entific Reports, 12, 7641.
13

http://refhub.elsevier.com/S2667-3053(24)00029-2/bib501A2474D7A67FD205B94A837F140A7Ds1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib501A2474D7A67FD205B94A837F140A7Ds1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD458B96F41D0EEB80F9BD2AB17DAD149s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD458B96F41D0EEB80F9BD2AB17DAD149s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD458B96F41D0EEB80F9BD2AB17DAD149s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibABD0B2A89D4085CE30294B58DED36457s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibABD0B2A89D4085CE30294B58DED36457s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibABD0B2A89D4085CE30294B58DED36457s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC1524A9293DFAA637F9459D3713381DBs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC1524A9293DFAA637F9459D3713381DBs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC1524A9293DFAA637F9459D3713381DBs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6E4E13EB966289389FE91BE48FCE7D13s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6E4E13EB966289389FE91BE48FCE7D13s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6E4E13EB966289389FE91BE48FCE7D13s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1983319275024F75E0FBA71610B4B797s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1983319275024F75E0FBA71610B4B797s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1983319275024F75E0FBA71610B4B797s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7D950349050EE6B698299267566D61EDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7D950349050EE6B698299267566D61EDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7D950349050EE6B698299267566D61EDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib703291B6A03305BE87060D0E258F05C6s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib703291B6A03305BE87060D0E258F05C6s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibDDE665AC7D3D6DB99B49111DC2B24240s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibDDE665AC7D3D6DB99B49111DC2B24240s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibDDE665AC7D3D6DB99B49111DC2B24240s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD376A5E46067D56D7F15681508402D4Bs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD376A5E46067D56D7F15681508402D4Bs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD376A5E46067D56D7F15681508402D4Bs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib4EFBCCF638B63E6C3FFAC5F3E8B26EB3s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib4EFBCCF638B63E6C3FFAC5F3E8B26EB3s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE99D8C53CBC9026694E0B63E8F8C1ED9s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE99D8C53CBC9026694E0B63E8F8C1ED9s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE99D8C53CBC9026694E0B63E8F8C1ED9s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE99D8C53CBC9026694E0B63E8F8C1ED9s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib31FC1569A5DB892CE9BE80F9C33CA4AAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib31FC1569A5DB892CE9BE80F9C33CA4AAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib31FC1569A5DB892CE9BE80F9C33CA4AAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1C120425C89D592FE11A2538AEB67C55s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1C120425C89D592FE11A2538AEB67C55s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE46D74DE8963369B5FAD724F0BC9EAD8s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE46D74DE8963369B5FAD724F0BC9EAD8s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibE46D74DE8963369B5FAD724F0BC9EAD8s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3C4A87B26E19FFA8F4A0BC9A24E91C10s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3C4A87B26E19FFA8F4A0BC9A24E91C10s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3C4A87B26E19FFA8F4A0BC9A24E91C10s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8348712D543E3A45A8135A7EA81E2EFCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8348712D543E3A45A8135A7EA81E2EFCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8348712D543E3A45A8135A7EA81E2EFCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8348712D543E3A45A8135A7EA81E2EFCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC0F1D4773CA9C0408CA8626B94D7C249s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC0F1D4773CA9C0408CA8626B94D7C249s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC0F1D4773CA9C0408CA8626B94D7C249s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFA78C5E3765DCAEA126DBFB187AB39CDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFA78C5E3765DCAEA126DBFB187AB39CDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibFA78C5E3765DCAEA126DBFB187AB39CDs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6308DCBC8CE79FE721BDDC23AEB0741Cs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6308DCBC8CE79FE721BDDC23AEB0741Cs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib6308DCBC8CE79FE721BDDC23AEB0741Cs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibEDB42E695CA12FCB979FF18D807CD138s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibEDB42E695CA12FCB979FF18D807CD138s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibEDB42E695CA12FCB979FF18D807CD138s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib46BD00188DE19F26D41D2D00D4307B0As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib46BD00188DE19F26D41D2D00D4307B0As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib46BD00188DE19F26D41D2D00D4307B0As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib2AFA4BDA50B70EFD6788476575477480s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib2AFA4BDA50B70EFD6788476575477480s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib2AFA4BDA50B70EFD6788476575477480s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib2AFA4BDA50B70EFD6788476575477480s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9D9FE8FAC1E760950A8AA8EFD4623DDCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9D9FE8FAC1E760950A8AA8EFD4623DDCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib9D9FE8FAC1E760950A8AA8EFD4623DDCs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7BED65E16926958866DBC833D91F5B6Fs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib7BED65E16926958866DBC833D91F5B6Fs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8C1392A7AF40B6DEF97D26CBEF04FA69s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8C1392A7AF40B6DEF97D26CBEF04FA69s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib8C1392A7AF40B6DEF97D26CBEF04FA69s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib79124B96015E4A588615324007FFB6EAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib79124B96015E4A588615324007FFB6EAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib79124B96015E4A588615324007FFB6EAs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib78052F5AD7EE71AC5EAE809D0022DF80s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib78052F5AD7EE71AC5EAE809D0022DF80s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib78052F5AD7EE71AC5EAE809D0022DF80s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib589F274FDF679E9A8118CF4A20C6FB17s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib589F274FDF679E9A8118CF4A20C6FB17s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib589F274FDF679E9A8118CF4A20C6FB17s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC993011139E860842B9910CDD1AC2563s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC993011139E860842B9910CDD1AC2563s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCDB9A011A5ACB6A01A2E0C4A6EF71065s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCDB9A011A5ACB6A01A2E0C4A6EF71065s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCDB9A011A5ACB6A01A2E0C4A6EF71065s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib49997E09393361F3824A6773D7324271s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib49997E09393361F3824A6773D7324271s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib49997E09393361F3824A6773D7324271s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib16DDA294254544E0D9DC3AF2582BCB16s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib16DDA294254544E0D9DC3AF2582BCB16s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib16DDA294254544E0D9DC3AF2582BCB16s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC302387F2AD52DB8DCB24B8BDC204FEFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibC302387F2AD52DB8DCB24B8BDC204FEFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3E89D435CC60555D375E9335C42853EEs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3E89D435CC60555D375E9335C42853EEs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3E89D435CC60555D375E9335C42853EEs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3E89D435CC60555D375E9335C42853EEs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1CA7806A7ED27CAC5836D6557296B170s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib1CA7806A7ED27CAC5836D6557296B170s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibBC4818F0B56A9021D5B22C6F85CA3D48s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibBC4818F0B56A9021D5B22C6F85CA3D48s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibBC4818F0B56A9021D5B22C6F85CA3D48s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib80CE4DAEEC71287D08E690E67632C6EFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib80CE4DAEEC71287D08E690E67632C6EFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib80CE4DAEEC71287D08E690E67632C6EFs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib90D4E3E5BB62D3D9C69053B1CE09344As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib90D4E3E5BB62D3D9C69053B1CE09344As1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD63CA87AB4FE69BF5207411EE8F4C5D7s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibD63CA87AB4FE69BF5207411EE8F4C5D7s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibCD9E9BC86EF0E0381B4CD383951AE57Fs1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibF3913B8028F95E1328154DACA08DBD49s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bibF3913B8028F95E1328154DACA08DBD49s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3F004C364D18ED72797198994F1CBF99s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3F004C364D18ED72797198994F1CBF99s1
http://refhub.elsevier.com/S2667-3053(24)00029-2/bib3F004C364D18ED72797198994F1CBF99s1

	Conjunctive block coding for hyperdimensional graph representation
	1 Introduction
	2 Related work
	2.1 Graph representation
	2.2 Hyperdimensional computing

	3 Preliminaries
	3.1 Hyperdimensional computing
	3.2 Graph representation in HDC

	4 Main contribution
	4.1 Resonator network
	4.2 Block encoding & masking
	4.3 CLOG: HDC-based graph representation
	4.3.1 Encoding
	4.3.2 Decoding

	5 Experiments
	5.1 Theoretical evaluation
	5.2 Graph reconstruction experiments
	5.3 Link prediction task

	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

