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ABSTRACT Event-based vision is a novel perception modality that offers several advantages, such as high
dynamic range and robustness to motion blur. In order to process events in batches and utilize modern
computer vision deep-learning architectures, an intermediate representation is required. Nevertheless,
constructing an effective batch representation is non-trivial. In this paper, we propose a novel representation
for event-based vision, called the compact spatio-temporal representation (CSTR). The CSTR encodes an
event batch’s spatial, temporal, and polarity information in a 3-channel image-like format. It achieves this by
calculating the mean of the events’ timestamps in combination with the event count at each spatial position
in the frame. This representation shows robustness to motion-overlapping, high event density, and varying
event-batch durations. Due to its compact 3-channel form, the CSTR is directly compatible with modern
computer vision architectures, serving as an excellent choice for deploying event-based solutions. In addition,
we complement the CSTR with an augmentation framework that introduces randomized training variations
to the spatial, temporal, and polarity characteristics of event data. Experimentation over different object and
action recognition datasets shows that the CSTR outperforms other representations of similar complexity
under a consistent baseline. Further, the CSTR is made more robust and significantly benefits from the
proposed augmentation framework, considerably addressing the sparseness in event-based datasets.

INDEX TERMS Event-based vision, event representation, object recognition, data augmentation.

I. INTRODUCTION or high-speed motion scenes) and in potentially dynamic

Perception plays a crucial role in real-time robotic applica-
tions, enabling their operation in dynamic and unpredictable
environments [1], [2]. These applications often operate under
challenging lighting conditions, including high dynamic
range (HDR) or high-speed motion scenes. Ensuring accurate
perception and prompt responses under such conditions is
vital for their success, especially in safety- or time-critical
applications like autonomous vehicles [1] and industrial
automation [2]. For instance, in an HDR scene such as
when emerging from a tunnel in broad daylight, the failure
to detect objects like vehicles or traffic signs can have
severe consequences [3]. To address the challenges of robust
operation in challenging lighting conditions (e.g., HDR
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and unpredictable environments, many researchers have
increasingly turned to event-based vision [4], [5] as a
promising alternative visual sensing modality.

Event-based sensors, such as the Dynamic Vision Sensor
(DVS) [6] or the Asynchronous Time-Based Image Sensor
(ATIS) [7], operate by capturing per-pixel brightness changes
asynchronously and at very high temporal resolutions [6],
[7]. This results in a spatially sparse yet temporally dense
output that effectively represents all visual changes in a
scene over a specified time interval. In contrast, traditional
cameras capture intensity images at a fixed rate, such as
24 frames per second [8]. This fixed rate can possibly lead
to oversampling of static scenes, resulting in redundant data;
or undersampling of scenes with high-speed motion, resulting
in motion blur [5]. Overall, event-based vision offers several
distinct properties that address dynamic range, response
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FIGURE 1. Overview of the general framework of this paper. Sparse and asynchronous events, representing brightness changes at each pixel, are
captured using an event-based sensor. To utilize this spatio-temporal event data, an intermediate representation is required to leverage modern
deep-learning solutions when processing events in batches. In this work, we propose the Compact Spatio-Temporal Representation (CSTR) that encodes
spatial, temporal, and polarity information of event data in a 3-channel image-like format. Accordingly, the CSTR is directly compatible with off-the-shelf

pre-trained computer vision architectures.

time, and motion blur issues. These properties include an
HDR of >120 dB, microsecond-level temporal resolution,
low output latency in the order of microseconds, and low
power consumption averaging a few milliwatts [5], [6].
Consequently, these characteristics make event-based vision
particularly well-suited for real-time robotic applications [9],
[10]. Such applications require accurate perception and
prompt response to visual changes, especially in challenging
scenarios such as HDR scenes [11], low-light conditions [12],
or high-speed motion environments [13]. In comparison,
traditional cameras often struggle to perform effectively in
such scenarios [3], [10].

While the properties of event-based vision are very
compelling, effectively utilizing event data in various appli-
cations presents a challenge. The generated event stream
is asynchronous and sparse, necessitating its transformation
into a compatible format for established algorithmic method-
ologies. For instance, most traditional object detectors and
classifiers employ a three-channel input designed for RGB
imagery [14], [15]. However, the independence and sparsity
of events make it non-trivial to establish batch relationships,
often leading to the creation of hand-crafted representations
tailored to specific applications [16], [17]. This inherent
problem hampers generalization, as traditional frame-based
cameras benefit from standardized formats that facilitate the
canonical transfer learning of dataset weights across tasks.
In contrast, event-based algorithms, are highly sensitive to the
specific type of open-source data and its representation. This
further exacerbates the data sparsity issue. As aresult, the data
needs to be closely associated with the particular task at hand,
adversely impacting generalization and posing challenges for
training convergence.

Accordingly, most works resort to using image-like rep-
resentations in order to leverage pre-trained computer vision
models. One common representation is the Event Frame [18],
[19], chosen for its simplicity. This representation keeps track
of whether any event has occurred at each pixel within a
given time period (where the time period is a variable that
can be adjusted per task). By doing so, the batch of events is
effectively transformed into a single-channel image (or can
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be replicated to form a 3-channel image) that can be utilized
with existing algorithms. While convenient, this approach
has some limitations. Notably, it binarizes the behavior
for the specified sampling period, losing temporal and
polarity information (brightness changes), and is generally
outperformed by more sophisticated approaches [20], [21],
[22], [23]. Alternatively, more advanced representations have
been explored to capture temporal and polarity contexts [20],
[21], [22], [23]. These representations demonstrate better
performance, but they come with either the trade-off of
notable pre-processing overhead [20], [21] or are not directly
compatible with pre-trained computer vision architectures
that require a 3-channel input [22], [23].

To address these challenges, we propose a novel repre-
sentation for event data called the Compact Spatio-Temporal
Representation (CSTR). The CSTR efficiently encodes the
spatial, temporal, polarity, and event count information of
a given event batch while requiring minimal processing
overhead. This is achieved by calculating the mean times-
tamps of the events per polarity type (positive or negative)
and the normalized event counts at every spatial position
in the resulting representation frame. This results in a
3-channel image-like format that is directly compatible with
existing state-of-the-art networks [14], [15], allowing for
seamless integration without the need for additional modi-
fications. We visualize the general framework of this paper
in Fig. 1.

We demonstrate the effectiveness of the CSTR through
a comprehensive series of well-established event-based
recognition benchmarks. This benchmarking includes
six well-known representations that are similarly com-
patible with off-the-shelf networks over the following
datasets: N-MNIST [24], N-CARS [25], N-Caltech101 [24],
CIFAR10-DVS [26], ASL-DVS [27], and DVS-Gesture [28].
The CSTR is consistently an excellent performer, achieving
the highest overall classification accuracy. Furthermore, the
CSTR is stable when applying random augmentations; these
are demonstrated to notably enhance classification accuracy,
validating that the CSTR is a robust approach for encoding
event data.
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We summarize the contributions of this work as follows:

« We introduce the compact spatio-temporal representa-
tion (CSTR) for event-based vision, which efficiently
encodes the spatio-temporal information of events in a
3-channel image-like format, directly compatible with
modern computer vision architectures.

« We provide a comprehensive evaluation of the CSTR
against foundational event representations of similar
complexity using six event-based recognition datasets.

o We propose an augmentation framework for event data,
significantly improving the performance of the CSTR
and other spatio-temporal representations.

« We demonstrate the effectiveness of the CSTR and the
data augmentation framework when combined with off-
the-shelf pre-trained classifiers.

Our source code is available at: https://github.com/Zelshair/
cstr-event-vision.

Il. RELATED WORK

Event-based vision has recently seen significant advance-
ments that leverage its unique characteristics for various
applications [5], [10], [12], [13], [23]. There are two
general approaches to effectively utilize the asynchronous
and sparse event data. These include event-by-event and
batch processing. In this section, we provide an overview
of the relevant methods of each approach, highlighting their
strengths and identifying their limitations. Next, we provide
an overview of augmentation methods explored in the
literature for enhancing event data. Finally, we introduce the
proposed CSTR along with a new augmentation in the context
of these limitations, noting how they address some of the
remaining challenges.

A. EVENT-BY-EVENT PROCESSING
Event-by-event processing methods directly utilize events as
they are received [29], [30], [31], [32]. This approach is
intuitive and minimizes processing delays. The most promi-
nent methods are spiking-neural-networks (SNNs) [32], [33],
[34], [35], [36]. An SNN is a bio-inspired version of
artificial neural networks comprising interconnected neurons.
SNNs operate by integrating incoming spikes (events at the
input layer) over time. An output spike is generated when
the membrane potential of a neuron surpasses a certain
threshold causing it to reset. The generated output spikes
propagate information to other neurons in deeper layers,
connected hierarchically. This neuron-activation threshold
enables SNNs to be computationally efficient [35], [36], [37].
Despite the computational efficiency and minimal latency
of event-by-event algorithms, they suffer from some limita-
tions. Processing events individually inherently lacks tem-
poral context, necessitating tailored solutions to compensate
for the lack of event history [29], [30], [31]. Ironically,
this approach can become computationally expensive during
periods of high event density. Scenes with significant motion
and texture can generate a substantial amount of events
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per second, requiring a proportional number of operations.
As event-based sensors continue to improve their frame
resolutions [8], [38], this computational challenge will
only intensify. While SNNs somewhat address the latter
with their energy-efficient design, they are non-trivial to
set up and implement [32], [33], [34]. Moreover, SNNs
require specialized hardware, which limits their widespread
adoption, posing additional barriers to deployment.

B. BATCH PROCESSING

Batch processing methods accumulate, encode, and clas-
sify the events generated in a given time period. These
approaches add temporal context with the capability to
provide synchronous responses (i.e., a classification per each
batch period). By applying an intermediate encoding method,
they have the key benefit of being able to employ modern
computer-vision networks. This is directly germane to the
problem statement of being able to leverage existing state-
of-the-art networks (and corresponding training weights).
Hence, we focus this survey on event-batch representations
that are compatible with frame-based networks.

1) IMAGE-LIKE REPRESENTATIONS
Many opt to represent event batches in a simple image-
like format. These representations encode spatial, temporal,
and/or polarity information into traditional one, two, or three-
channel images. Such approaches are popular because they
enable rapid prototyping and demonstrate strong perfor-
mance across various perception tasks [18], [19], [39].
For example, the Event Frame encodes the event’s spatial
information (i.e. the existence of any events per spatial
position) [18], while the Event Count (also known as
Event Histograms) [39], [40], [41] indicates the number
of events recorded, instead. More advanced versions of
these representations incorporate polarity information as
well [19], [39], [41]. These representations, however, are
inherently limited as they do not capture the temporal
information of the event data. To address this limitation,
more comprehensive representations have been developed
to incorporate spatio-temporal information in an image-like
format. One popular representation is Timestamp Images
[42], also referred to as Time Surfaces [17]. Timestamp
Images encode the timestamp information of the latest event
at each spatial index [42], often represented using a separate
channel per polarity type resulting in a 2-channel representa-
tion [42]. Recent advancements related to Timestamp Images
have explored sophisticated techniques to enhance robustness
against noise [25], [43]. For instance, DiST [43] incorporates
temporal discounting by considering the p spatio-temporally
neighboring events at each spatial position. Thus, discounting
the timestamps of the latest events using a normalized time
range of the neighboring pixels.

One challenge encountered in temporal representations
is motion overwriting. While timestamp images excel in
retaining contour information, the recent timestamps can
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be overwritten. This can happen when using long batch
periods or in highly textured scenes. Accordingly, various
representations have emerged that incorporate both the
temporal and count information of events in different forms
[44], [45], [46], [47]. For instance, a 4-channel representation,
known as Event Image [45], [46], incorporates recent
timestamps and event count per polarity. Another work by
Bai et al. [47] proposes a more compact 3D representation
that includes the temporal information of both polarities as
well as the event count in separate channels. This forms a
spatio-temporal image-like representation that encompasses
vital information about the event data. The authors also
investigate the advantages of this approach in the context of
event-based object recognition.

Overall, the limitation of most spatio-temporal image-
like representations can be distilled to overlapping events.
A high number of overlapping events often results when
using long batch periods or when operating in highly textured
scenes. This can result in the overwriting of recent events
causing a loss of information. Shortening the batch period
can potentially limit this issue [45], however, this reduces
temporal context and increases processing frequency.

As an alternative, image reconstruction from events is
an effective approach that results in intensity images that
enable the direct use of modern frame-based computer vision
architectures [48]. However, generating images from events
is a very processing-heavy task, making it not very suitable
for real-time systems.

2) ADVANCED 4D GRID-LIKE REPRESENTATIONS

Advanced grid-like representations have been proposed to
overcome the issue of event overlapping, thus, retaining
more information [22], [23]. For example, TORE volumes
[23] utilizes a first-in-first-out buffer at each spatial position
to retain the temporal information of the last K events,
for both polarity types, where K > 1. This results in a
4D representation with a resolution of 2x K x H x W, where
H and W are the frame’s height and width, respectively.
By doing so, TORE volumes [23] limit the problem of
event-overwriting which is often encountered in image-like
representations.

Another notable representation is Event Spike Tensors
(EST) [22]. EST employs an end-to-end learning approach to
derive event representations from input data. This is achieved
by applying convolutional operations on a batch of events
with a learned kernel comprising a multi-layer perceptron
with two hidden layers. Then, the resulting convolutions
are discretized, yielding a 4D grid-like representation with
dimensions of 2xBxH xW, where B is the pre-selected
number of temporal bins.

Although these representations demonstrate remarkable
performance in a multitude of tasks [22], [23], it is
important to note that the choice of compatible deep
learning architectures is somewhat limited. Consequently,
an additional quantization step is often required to convert
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the 4D representation into a 3D format [22]. An alternative
approach involves splitting the 4D grid along the polarity
dimension (first dimension) and employing multiple deep
learning models in parallel to process the resulting outputs,
or modifying the input layers of a deep learning model to
accommodate the higher-dimensional input. However, both
approaches may lead to higher memory and computational
requirements due to the increased dimensionality of the
inputs.

3) VOXEL GRIDS
Voxel grids offer a precise means of capturing the spatial
and temporal characteristics of events. A voxel represents
a 3D point, traditionally denoting the height, width, and
depth coordinates in a 3D model. Combining these voxels
creates a 3D structure known as a voxel grid. Voxel grids
are widely used in 3D computer vision, especially for
representing a LIDAR-generated point cloud [49]. Similarly,
it can be also used to handle sparse event data. Voxel grids
are applied to event batches by converting the depth axis
to a temporal axis using B temporal bins per event batch.
This conversion is typically achieved through spatio-temporal
quantization employing a designed sampling kernel. The
resulting voxel grid has dimensions of BxH x W, allowing it
to retain the essential spatio-temporal relationships within the
event batches [16], [21], [50]. Accordingly, researchers have
explored the application of voxel grids in various computer
vision tasks, including optical flow estimation [16], [21],
HDR video reconstruction [50], and object recognition [51].
Despite their advantages, the use of voxel grids poses
two primary challenges. Firstly, generating voxel grids can
be computationally demanding, especially when utilizing
sophisticated sampling kernels. Secondly, the adoption of
voxel grids may lead to high memory requirements due to
the resulting increased input dimensionality, similar to the
challenges with 4D representations discussed earlier. This
issue becomes particularly prominent with high-resolution
grids (i.e., a large number of bins B) and long batch periods.

4) GRAPH-BASED REPRESENTATIONS
Alternative to voxel-grids, events can be represented as
graphs [20], [27], [52]. Here, each sampled event in an
event batch is treated as a vertex v;. These vertices v (also
referred to as nodes) are then connected to each other using
edges ¢, based on a pre-defined spatio-temporal distance
metric, forming the graph G. This approach similarly captures
the temporal relationships within the event batch and offers
compatibility with existing graph-convolutional networks
(GCNs) [20], [27]. Graph-based solutions provide flexibility
in the processing of the event data, allowing for a natural
way to incorporate their spatial and temporal information
[20], [27], [52]. Compared to traditional CNNs, GCNs exhibit
significantly lower inference computational complexity [52].
Nevertheless, generating the graphs can be computation-
ally demanding. This is particularly true when dealing with
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high-density event streams, resulting in a large number of
vertices and edges [53]. Consequently, it is often necessary
to sample a subset of events from the batch to reduce storage
and computational costs [20], [52]. Moreover, unlike CNNs
in traditional computer vision, there is limited availability
of GCN models pre-trained on large-scale datasets. This
hampers the ability to leverage transfer learning. As a result,
researchers often develop their own GCN architectures to
accommodate the generated graphs [20], [27], [52].

C. AUGMENTATION METHODS FOR EVENT-BASED VISION
Data augmentation techniques play a crucial role in enhanc-
ing the performance and generalization of deep learning
models. Given the limited availability of labeled event-based
datasets, augmentation methods offer an effective approach
to expand the training data and improve model robustness.
In this subsection, we provide an overview of the different
augmentation methods proposed for event data.

Li et al. [54] propose several randomized geometric aug-
mentations for training SNNs. These include common
techniques such as horizontal flip, translation, and rotation;
as well as other unique techniques such as cutout, shear,
and CutMix. These transformations introduce variations and
enhance model performance. Gu et al. [55] introduce Event-
Drop, an augmentation framework for randomly dropping
events within an event batch. It explores various event-
dropping techniques, including dropping events within a
random time period, pixel area, or a random portion of the
sampled events. EventDrop improves robustness and has been
evaluated for event-based object recognition. The authors
also explore the use of EventDrop on different combina-
tions of event representations and pre-trained classification
models. EventMix [56] presents an advanced augmentation
framework that uses a random 3D mask to mix different
event-batch samples and their labels. This mixing technique
enhances the diversity of the training data and has been
evaluated on a set of event-based recognition benchmarks as
well. Naeini et al. [57] propose spatial, noise, and time-series
augmentations to improve contact-force estimation. Spatial
augmentations include rotations and resizing. Noise augmen-
tations add sequences of noise to the dataset, which are gener-
ated by recording similar sequences without any movement.
Time-series augmentations include frame-shifting, which
shifts all generated batch-representation frames within a
given sequence; and temporal event shifting, where a fraction
of events are randomly selected and removed from one frame
and appended to an adjacent frame. For both types of time-
series augmentations, the authors explore a fixed index-shift
range of +3 to —3. These augmentation methods, along with
others proposed in the literature, contribute to addressing
the dataset scarcity issue in event-based vision. By applying
these techniques, models can better handle variations in event
data and improve their generalization capabilities. However,
despite their importance, event data augmentation techniques
are still not thoroughly explored in the literature.
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D. LITERATURE CONTRIBUTION
In this paper, we present the CSTR, an alternative image-
like representation for event-based vision. The CSTR offers
a comprehensive representation of sparse event data when
processed in batches while requiring minimal memory
resources. It provides a choice that eliminates the need for
manual parameter tuning and can be generated in an online
manner. It is important to note that the CSTR is not meant
to replace advanced or more sophisticated representations.
Rather, it serves as an excellent representation choice for
initial proof-of-concept and facilitates the rapid deployment
of event-based solutions. This is due to the compact 3-channel
image-like format of the CSTR, which enables the direct
utilization of state-of-the-art computer vision architectures.
To validate the effectiveness of the CSTR, we conduct
several experiments on various event-based recognition
benchmarks comparing it to other image-like representations
of similar complexity using various pre-trained classification
networks. Additionally, we supplement our representation
with several randomized augmentation methods that impact
different components of events, including spatial, temporal,
and polarity. These augmentation techniques further con-
tribute to improving the performance and the generalization
capabilities of event-based vision models.

lil. METHODOLOGY

In this section, we present our proposed event-based rep-
resentation. First, we provide a detailed overview of how
events are generated. Then, we define the common and
foundational image-like representations that form the basis
of our work. These representations fundamentally encode
the spatial and/or temporal components of events within
the event batch. By analyzing the characteristics of these
representations, we derive a more advanced spatio-temporal
representation that enhances performance. We visualize these
representations on the evaluation datasets in Fig. 2 (see: next
page). Given that our approach aims to improve temporal
context, we also introduce a novel temporal augmentation
technique to address the sparseness of training data.

A. EVENT GENERATION MODEL

In contrast to traditional cameras, event-based sensors
capture per-pixel brightness changes, asynchronously [6].
At a given pixel (x,y), an event e is generated whenever
the logarithmic change in brightness intensity exceeds a
predefined contrast threshold C. This can be expressed as
follows:

[log(I(x, y, 1)) — log(I(x,y,t — At))| = C, ey

where I(x,y,t) represents the intensity measurement at
spatial position (x, y) at time ¢, and At represents the time
duration since the last generated event at the same spatial
position. The polarity p of an event is determined by the
sign of the brightness change. A brightness increase (on

event) is assigned p = 41, while a brightness decrease
(off event) is assigned p = —1. Thus, p e {41, —1}.
102903
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FIGURE 2. Visualizations of the CSTR as well as the foundational event representations investigated in this work using various object and action
recognition datasets. To enable visualization, we normalize the Binary and Polarized Event Count representations. Further, due to the significant event
noise present in the N-Caltech101 [24] samples, we amplify the event count channels by a factor of 20 to improve visualization. This is shown in the 3rd

row, columns 3, 4, 6, and 8.

Event-based sensors report each captured event e; as a
combination of a microsecond timestamp ¢;, a polarity p;,
and a two-dimensional spatial coordinate (x;, y;). In general,
an event stream & composed of n sequential events can be
denoted as:

& = {(t1, x1,y1, P1), (02, X2, Y2, P2)s « -, (tus Xt Y Pi)}-
(2)

Events can be grouped into batches either based on a
specified batch-sampling period AT or a fixed number of
events. In this work, we focus on event batches accumulated
using predefined batch periods to enable a synchronous
response.

The event generation process outlined above captures the
spatio-temporal dynamics of the scene. This is done by
detecting changes in brightness intensity and encoding them
as events with corresponding timestamps, spatial coordinates,
and polarities.
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B. FOUNDATIONAL EVENT REPRESENTATIONS

To represent a batch of events ¢ captured during a sampling
period AT, several image-like representations can be formed.
We identify five foundational approaches identified in the
literature: Binary Event Frame, Polarized Event Frame,
Binary Event Count, Polarized Event Count, and Times-
tamp Image. While these representations are not typically
referred to as Binary or Polarized, we use these terms to
distinguish between them clearly. We detail these approaches
next.

1) BINARY EVENT FRAME
The Binary Event Frame binarizes whether any events are
detected at a given spatial location. Each pixel position in
the resulting two-dimensional H x W representation can be
encoded as follows:

1, ifx=x, & y=y;

FioinCx, y) = 3
bin(x. ) 0, otherwise, )
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where x; and y; are the spatial coordinates of each event e;
in the batch €. We encode the presence of an event as 1 and
the absence of any as 0. This representation is visualized in
Fig. 2, column one. Note how this approach is very simplistic
and has low contrast; this is because it is highly sensitive
to motion-overlapping, where multiple events occur at the
same spatial location, as well as noise captured by the event
camera. Accordingly, this representation suffers from frame
saturation which results under almost any batch-sampling
duration, as shown in Fig. 2.

2) POLARIZED EVENT FRAME

The Binary Event Frame can be extended to include polarity
information. The Polarized Event Frame incorporates this in
a 2xH xW 3D matrix. The event batches are defined by:
I, ifx=x & y=y; & p=pi @)

0, otherwise,

F(x,y,p)=[

where x; and y; are the spatial coordinates and p; is the
polarity of each event e;. We similarly encode detected
events by 1 and the absence of events as 0, but for
each polarity. This representation is visualized in Fig. 2
(second column), showing a notable contrast improvement.
Similar to the Binary Event Frame, this representation also
suffers from frame saturation. Accordingly, both Event Frame
representations are more effective when generating batches
based on a constant number of events (ideally a low number)
instead of a fixed sampling duration [19].

3) BINARY EVENT COUNT

Alternative to the Binary Event Frame, the Binary Event
Count representation captures the number of events at each
spatial position. We encode this with the following equation:

Coin(x,3) = D [x=x & y=yi, )
i=1

where n is the number of events. The Iverson bracket here
would be equal to 1 if the expression is true, which is
whenever an event has the same spatial location as the pixel
(x, ¥). This representation retains more information about the
scene at each spatial location. Moreover, as visualized in
Fig. 2 (third column), this representation shows high temporal
precision, albeit at the cost of less sharp contour details.

4) POLARIZED EVENT COUNT

Analogous to the Polarized Event Frame, the Binary Event
Count can be extended to include event-polarity context.
We similarly represent this with a 2 x H x W matrix as
follows:

n
Ce.y.p)=D [x=x & y=yi & p=pil. (6)

i=1
where n is the number of events, x; and y; are the spatial
coordinates and p; is the polarity of each event e;. This is
visualized in Fig. 2 (fourth column), improving the contour
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details (though still not as sharp as the Polarized Event
Frame). In contrast to the Event Frame representations, the
Binary and Polarized Event Count representations do not
suffer from frame saturation. Instead, they are robust to long
batch-sampling durations, as shown in Fig. 2. Nevertheless,
both Event Count representations require significant motion
overlap and high event-density streams to yield a meaningful
signal.

5) TIMESTAMP IMAGE

An alternative approach to tracking the number of events is to
identify the most recent timestamp instead. This is achieved
using the Timestamp Image representation [42], whichis a 3D
matrix of size 2x H x W. Assuming that the batch’s events are
sorted in chronological order (i.e., from oldest to newest) we
obtain this representation as follows:

i — 1y

TS(x7 y, P) = AT
0, otherwise,

, ifx=x; & y=yi & p=pi

@)

where f; is the raw time offset representing the start of
the event batch with temporal duration AT, and #; is the
timestamp of the event e;. In (7), Ty(x,y, p) represents the
normalized timestamp (in the range of [0, 1]) of the latest
event occurring at the pixel location (x,y) and polarity
p. The subtraction of #; removes the time offset from
each event’s timestamp. This representation is visualized in
Fig. 2 (fifth column), where the normalized recent timestamp
further improves contour details over the naive Event Frame
representations. Note, however, that this improved contrast
diminishes under high-density event streams with long
batch periods. Additionally, the Timestamp Image is also
susceptible to noise in more recent events.

6) COMBINING TIMESTAMP IMAGE AND EVENT COUNT
Given the inherent limitations of the Timestamp Image
and the Event Count representations, combining them can
enhance their robustness [47]. To achieve this, we concatenate
the two-channel Timestamp Image 7, defined in (7), with the
normalized one-channel Binary Event Count. The normalized
Binary Event Count C‘bin is defined as follows:

Chin(x, y)
max(Cpin)’

Coin(x,y) = ®)

where max(Cpiy) is the maximum event count in the frame.
This combination results in a 3 x H x W 3D matrix,
as visualized in Fig. 2 (sixth column). While the addition of
the event-count information improves the contour details, the
contrast of the recent timestamp channels is still affected by
long batch periods with high event density.

C. COMPACT SPATIO-TEMPORAL REPRESENTATION

The combined Timestamp Image and Event Count repre-
sentation is generally robust but can lose temporal context
with motion-overlapping. A recent timestamp is most useful

102905



IEEE Access

Z. A. El Shair et al.: CSTR for Event-Based Vision

when the event data is temporally sparse; however, can lose
general temporal context when there are many overlapping
events. This bias can happen frequently when subjected to
highly textured scenes or long batch periods. To address
this, we introduce the compact spatio-temporal representation
(CSTR).

The CSTR improves the timestamp information by utiliz-
ing the mean timestamp instead to better capture temporal
context. Thus, we initially accumulate the normalized
timestamp values of all events at each spatial position as
follows:

n t —

Is
NESNOEDD AT
i=1 )

ifx=x & y=yi & p=pi
otherwise,

©))
where S(x, y, p) represents the sum of the normalized event

timestamps at position (x, y, p). Then, we calculate the mean
of events’ timestamps by dividing (9) over (6) as follows:

S(x,y, )
] SWID) it Cenyp) £ 0
Ty(x,y.p) =1 Cx,y,p) (10)
0, otherwise,

where T(x, v, p) represents the mean timestamp at position
(x,y,p). This is visualized in Fig. 2 (seventh column).
Nevertheless, mean timestamps on their own can be insuf-
ficient to represent the event data. Incorporating the event
count can provide vital event-overlap context. Therefore,
we concatenate the 2-channel mean timestamp T, defined in
(10), with the normalized Binary Event Count C‘bin, defined
in (8). This yields a 3-channel representation. We visualize
the CSTR in Fig 2 (last column), showing that it retains
strong temporal context and contour sharpness. Hence, the
CSTR approach adds robustness to motion-overlapping while
retaining direct compatibility with existing computer-vision
networks.

D. EVENT-BASED DATA AUGMENTATION FRAMEWORK
Randomized data augmentations can improve the generaliza-
tion of deep learning models. Further, they can complement
the spatio-temporal representations in event-based solutions.
Accordingly, we propose a simple framework for randomized
event-data augmentations that affect the spatial, temporal, and
polarity information of event data. These augmentations can
be combined and applied when training an event-based deep
learning model with a spatio-temporal representation.

1) SPATIAL AUGMENTATIONS

Spatial augmentations are a common solution for introducing
variations across the spatial dimension. In our framework,
we explore a combination of rotations, rescalings, crops, and
horizontal flips, each with its own parameters to set. For opti-
mal computational efficiency, we apply spatial augmentations
to the generated image-like event-batch representations.

102906

6, (AAT) 0, (AAT)
. " °l, ® e/ s o s s
s s s o [® s ® ® s o s o
- X Lo od] o O] . .
s o * o (6 4 ® & s ® o ®
LN s o .' P o . Py t
AAT 0 AAT AT-AAT AT AT +A AT

FIGURE 3. lllustration of the proposed temporal augmentation method.
Spatio-temporal events within a given batch are uniformly time-shifted
by a randomized value \ multiplied by AT. Events that fall outside the
original temporal range [0, AT] are subsequently removed. The maximum
temporal shift 6; that is demonstrated here is +50% of the batch
duration AT.

2) TEMPORAL AUGMENTATIONS

Rich temporal information is a major component of event
data. Temporal augmentations can help enhance a model’s
ability to handle temporal dynamics. This is vital for
representations that incorporate temporal information (e.g.,
Timestamp Image [42]). As illustrated in Fig. 3, events are
shifted based on a randomized value A\ within the range
of [—1, 4+1], which is generated per event batch sample ¢.
This dynamic but consistent temporal shifting allows the
model to learn from different temporal perspectives and
improves its robustness to varying temporal dynamics. The
temporal shift for each event e; in the event batch ¢ can be
expressed as:

1l = t; + 6,(AAT), (11)

where tl./ is the shifted timestamp of event e;, 6; is the max
temporal shift threshold (6; € (0, 1)), and AT is the batch-
sampling period. A balanced value for the max temporal shift
threshold 6; is 0.5, which indicates that the batch’s events can
be only shifted by a max of % in either direction (shown
in Fig. 3). Then, we filter out any events that fall outside
the original batch’s temporal range of [0, AT]. Note that the
proposed temporal augmentations are applied to a given event
batch € before generating an image-like representation.

3) POLARITY AUGMENTATIONS

Polarity augmentations introduce variations across the polar-
ity domain, enabling the model to learn from varying
polarity correlations of events. In our framework, we adopt
a simple approach of inverting all the polarities in an event
batch prior to frame transformation. This polarity inversion
typically implies the reversal of the direction of motion
and can introduce robustness to variations in lighting and
motion. Hence, for each event ¢; in an event batch &, the
polarity p; is inverted to p; if the threshold 6, is met. The
threshold 6, is ideally set to 0.5, indicating a 50% chance
of inverting the polarities of a given event batch ¢. Similar
to the proposed temporal augmentation method, the polarity
augmentations are applied before generating the image-like
representation.
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TABLE 1. Statistics of the event-based object and action recognition datasets used in our experiments. The symbol } indicates that the referenced dataset

does not have an official test split, while ; denotes that the dataset’s original sequences were divided into samples of 500 ms with a 250 ms step size

(following [58]).

Dataset

Parameter Object Recognition Action Recognition

N-MNIST [24] N-Cars [25] N-Caltech101 [24]  CIFAR10-DVST [26]  ASL-DVS' [27]  DVS-Gesture? [28]
Number of classes 10 2 101 10 24 11
Dataset Type Static True Static Static True True
Event Camera / Event Sensor ATIS [7] ATIS [7] ATIS [7] DVS-128 [6] DAVIS-240c [8] DVS-128 [6]
Frame Dimension (W x H) 35%35 128x 128 240x 180 128x 128 240x 180 128x 128
# Total Samples 70000 24029 8709 10000 100800 38962
# Train Samples 60000 (86%) 15422 (64%) 6967 (80%) 8000 (80%) 80640 (80%) 30,978 (80%)
# Test Samples 10000 (14%) 8607 (36%) 1742 (20%) 2000 (20%) 20160 (20%) 7,984 (20%)
Avg + Std of # samples/class 7000 + 399.3 12015 + 321.5 86 +119.3 1000 + 0.0 4200 £ 0.0 3542 + 1122
Min-Max range of # samples/class 6313-7877 11693-12336 31-800 1000-1000 4200-4200 2503-6676
Average # events/sample 4176 3966 115298 205072 28149 27339
Average event-batch duration 310 ms 100 ms 300 ms 1298 ms 110 ms 481 ms

IV. EXPERIMENT SETUP

In this section, we evaluate the proposed event-based
representation for object and action recognition. Our primary
comparison is evaluating our proposed event representation,
the CSTR, against the foundational representations defined
in the methodology (Section III-B). We do this over a series
of well-known datasets to demonstrate our improvements
in recognition tasks. Next, we take the best-performing
spatio-temporal representations and do a second comparison
while employing our proposed augmentation framework.
Our experimental setup, including the network structures,
datasets, augmentations, and training parameters are intro-
duced next.

A. EXP I: BASELINE REPRESENTATION EVALUATION

In the baseline experiment, we compare the CSTR against
the six foundational event representations presented in
Section III-B. Recall that the Event Frame representations are
traditionally encoded as either O or 1, while the foundational
Event Count representations are encoded as the number of
events (without scaling). However, the Event Count channel
associated with the combined Timestamp Image & Event
Count and the CSTR is normalized. This is done by dividing
each event-count value by the maximum number of events
in the frame as defined in (8). We apply this because the
temporal representations are already scaled to be in the [0, 1]
range.

We add rigor by exploring three-channel configurations
for the one- and two-channel representations. We do this to
enable direct compatibility with the classification networks’
input structures and better leverage their pre-trained weights.
In the case of the one-channel Binary Event Frame and
Binary Event Count, we replicate the resulting channel three
times. In the case of the Polarized Event Count, Timestamp
Image, and the CSTR with mean timestamps only, we append
an empty channel of zeros of the same spatial dimensions.
Lastly, for the two-channel Polarized Event Frame, we first
convert to an intermediary one-channel representation, where
positive and negative events are denoted by values of
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+1 and —1 (following the approach proposed in [18]).
We then replicate this three times instead of padding with
a channel of zeros. These configurations are determined
through experimentation to yield optimal results for each
representation.

1) EVENT-BASED RECOGNITION DATASETS

Several event-based object and action recognition datasets are
available in the literature. In this work, we utilize four com-
monly used event-based datasets to evaluate our proposed
methods for object recognition: N-MNIST [24], N-Cars [25],
N-Caltech101 [24], and CIFAR10-DVS [26]. Additionally,
we evaluate our methods on two action recognition datasets,
namely ASL-DVS [27] and DVS-Gesture [28]. In Table 1,
we provide an overview of the main details and statistics of
the selected recognition datasets.

For object recognition, all datasets except N-Cars [25]
are effectively event-based versions of their frame-based
counterparts commonly used in conventional computer
vision. These datasets are generated using an event-based
sensor, such as the DVS-128 [6] or the ATIS [7], mounted on
a platform that moves in parallel to a screen displaying image
samples of each dataset. The platform is programmed to move
at various velocities and motions to simulate events similar
to real-world sensor data. N-Cars [25], on the other hand,
was generated using an event camera mounted on a moving
vehicle driving on real-world roads. The dataset consists of
events captured by the event camera as the vehicle encounters
different objects, including cars and pedestrians, in various
driving scenarios.

For action recognition, ASL-DVS [27] consists of 24 hand
shapes resembling different letters from the American
Sign Language. These shapes were recorded in an office
environment with constant illumination using DAVIS240c
[8]. For each letter, 4200 samples were collected at a sampling
duration of 100 ms. Meanwhile, DVS-Gesture [28] consists
of 1342 event-data sequence recordings of 11 different
gestures. These sequences were captured under three lighting
conditions and performed by 29 individuals. Due to the
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considerable length of the dataset’s sequences (~100 seconds
on average), we divide each into shorter samples of a fixed
batch-sampling period. Initially, each sequence is split into
a subsequence per gesture. Then, the resulting subsequences
are further divided into 500 ms samples with a 250 ms step
size, following a similar approach used in previous works
[20], [51], [58]. The resulting number of samples is presented
in Table 1.

Except for DVS-Gesture [28], we use the provided samples
with pre-defined batch periods AT from each dataset,
as outlined in Table 1. The sampling periods range from
100 ms (N-Cars [25] and ASL-DVS [27]) to roughly
1300 ms (CIFAR10-DVS [26]). This enables us to analyze the
robustness of different event representations to various batch-
sampling periods.

Furthermore, Table 1 demonstrates an uneven distribution
in the average number of samples per class across the
datasets. N-MNIST [24], N-Cars [25], ASL-DVS [27], and
DVS-Gesture [28] exhibit a substantial number of samples
per class facilitating effective training and fine-tuning
of classifiers. In contrast, CIFAR10-DVS [26] and N-
Caltech101 [24] have significantly fewer average numbers
of samples per class of 1000 and 81, respectively. While
the samples of CIFAR10-DVS [26] are uniformly distributed
among classes, the samples N-Caltech101 [24] are highly
unbalanced, ranging from 31 to 800 samples per class, posing
a challenge for object recognition tasks.

For datasets without an official test split (N-Caltech101
[24], CIFAR10-DVS [26], and ASL-DVS [27]), we adopt
the 80%-20% training-testing dataset-split strategy employed
in similar works [20], [25], [51]. These splits are generated
once and utilized consistently throughout the experiments
of this work to ensure consistent benchmarking and fair
comparisons. In addition, to address the imbalance in the
sample distribution within N-Caltech101 [24], we apply the
same split ratios to each class’s samples. This approach
avoids imbalanced splits and maintains a fair and consistent
benchmarking process across the different methods evaluated
in this work.

2) CLASSIFICATION MODELS

We evaluate each event representation using six popular
pre-trained CNN image classifiers. We do this both for
completeness and to represent real-world use. These classi-
fiers include: ResNetl18 [15], ResNet50 [15], MobileNetV2
[59], both Small and Large variants of MobileNetV3 [60],
and InceptionV3 [61] (limited to 3-channel representations
only). We initialize all networks with weights pre-trained on
ImageNet [62]. Then, we replace the final fully connected
layer with a corresponding layer that matches the number of
output classes in the utilized dataset. For representations with
1 or 2 channels, we replace the initial input convolutional
layers of each CNN classifier with randomized weights
to accommodate the desired number of input channels.
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Subsequently, we fine-tune these networks on the evaluation
datasets. Throughout our experiments, we observed that uti-
lizing the frame-based architectures as-is (i.e., for 3-channel
representations) yields better results due to more effective
fine-tuning. Consequently, whenever possible, we present
either a replicated or an extended 3-channel version of all
tested representations.

3) TRAINING PARAMETERS

For all models trained in this work, we use the cross-entropy
loss with the ADAM [63] optimizer (without weight decay),
for up to 50 epochs. We utilize an initial learning rate of 1 x
1073 for N-MNIST [24], N-Cars [25], and ASL-DVS [27];
and 3 x 10~* for the more challenging N-Caltech101 [24],
CIFAR10-DVS [26], and DVS-Gesture [28]. While more
advanced learning rate schedulers can be employed, we avoid
them to limit the number of hyper-parameters and simplify
the comparison.

During training, each batch-representation sample is
initially generated with a resolution matching the spatial
dimensions of the utilized dataset (as shown in Table 1).
The resulting 3D representations are then scaled to 224 x
224 for all classifiers, except for InceptionV3 [61] which
requires a 3-channel input with the spatial dimensions of
299 x 299. After rescaling, we apply standardization to the
resulting 3D matrices using normalization parameters derived
from ImageNet [62] (i.e., mean and standard deviation).
Our experiments (using the CSTR with the object recog-
nition datasets) consistently show an average classification
accuracy improvement of approximately 5% when utilizing
ImageNet normalization parameters. This improvement is
observed compared to using each dataset’s distribution
parameters or when not applying normalization. It can be
attributed to the suitability of ImageNet parameters for
generalizing image-like representations. This is particularly
important given the relatively low number of samples of the
event-based datasets used in our experiments, compared to
ImageNet [62], making them less optimal for removing input
bias through standardization.

Furthermore, we randomly split the training set by 75%
for training and 25% for validation. In addition, to ensure
proper convergence and robust generalization, the samples
of the validation split are randomly selected per each class’s
number of samples. This ensures a more balanced and
well-representing validation set. For all models trained in
the baseline experiment, we use early stopping to prevent
overfitting. Specifically, we monitor the validation loss
during training, and if it does not improve for 10 consecutive
epochs, we stop the training early to avoid further overfitting.
Afterward, we choose the model with the lowest validation
loss that results during training. We follow the same
procedure when not utilizing early stopping as well. Finally,
we use a batch size of 64 for all the models we train
throughout this work.
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TABLE 2. Average test classification accuracy results for the foundational event representations and the CSTR across different recognition datasets. Each
result is the average of up to 6 classification models as specified in Section IV-A2. Note that the 1 and 2-channel representations are additionally
transformed into 3-channel representations as specified in Section IV-A, and indicated by the *. The best and second-best results are highlighted in bold

and underlined, respectively.

Representation Components

Dataset

Event Representation AVG.
Timestamp  Polarity ~Count  # Channels N-MNIST N-Cars N-Caltechl01 ~ CIFARI0-DVS ~ ASL-DVS  DVS-Gesture

Binary Event Frame % « % 1 95.1% 91.7% 68.5% 50.6% 99.6% 83.2% 81.4%

Yy 3* 95.2% 92.6% 73.5% 52.8% 99.7% 84.2% 83.0%

Polarized Event Frame % v % 2 96.1% 88.4% 69.8% 62.0% 99.7% 90.6% 84.4%

3* 98.9% 93.2% 81.5% 60.7% 99.7% 90.6% 87.4%

Binary Event Count % « v 1 98.6% 91.6% 75.2% 69.2% 45.8% 87.6% 78.0%

Yy 3* 98.5% 91.1% 81.1% 73.7% 78.3% 89.1% 85.3%

. 2 98.9% 91.8% 73.0% 69.9% 41.0% 91.8% 71.7%

Polarized Event Count x v v 3 98.5%  92.8% 81.6% 71.8% 52.0% 90.9% 81.3%

Timestamp Image v v % 2 99.0% 85.5% 74.1% 67.7% 99.5% 91.4% 86.2%

stamp & 3* 99.0% 92.3% 81.3% 68.8% 99.7% 93.2% 89.0%

Timestamp Image & Count v v v 3 98.9% 92.2% 82.5% 72.6% 99.7% 92.9% 89.8%

= 2 98.9% 92.4% 76.9% 63.5% 99.6% 92.8% 87.4%

CSTR (mean T only) v v x 3 99.0%  92.4% 83.9% 67.4% 99.6% 93.6%  893%

CSTR (mean T & Count) v v v 3 99.1% 93.6% 82.9% 71.6% 99.7% 93.6% 90.1%

B. EXP II: RANDOMIZED EVENT AUGMENTATIONS
With a baseline established, our next experiment aims to
leverage the randomized augmentation framework introduced
in Section III-D. Augmentations are a popular method
for addressing data sparsity as they introduce variance
in the spatial, temporal, and/or polarity characteristics.
We believe these effects can also be used to further investigate
batch-representation stability and explore how well the per-
formance of spatio-temporal representations scales with the
proposed randomized event-based augmentation framework.
In this experiment, we explore different settings for
each type of randomized augmentation (spatial, temporal,
and polarity). For spatial augmentations, we apply crops,
rotations, and translations to the generated image-like
representations. Initially, we randomly take crops of 90-100%
of the spatial frame size with aspect ratios ranging from 3:4
to 4:3. We also apply translations of up to 10% in the x and
y axis (up to 5% for N-Cars [25]) and rotations of up to
+10° (up to £30° for N-MNIST [24]). Additionally, random
horizontal flips are used with CIFAR10-DVS [26] (applied
prior to the other spatial transformations) with a threshold of
0.5. For both temporal and polarity augmentations, we utilize
a balanced value of 0.5 for both the maximum temporal shift
6; and the polarity inversion thresholds 6,. We note that all of
the proposed randomized augmentations are only applied to
the training splits (i.e., excluding validation splits).
Furthermore, we explore different combinations of the
proposed augmentation methods. Spatial augmentations can
be highly beneficial as spatial dependencies are typically
the most informative, especially when identifying the edges
or contours of an object. However, when utilizing event
data, they require careful manual tuning. On the other hand,
the proposed temporal and polarity augmentations have
minimal parameters to tune and can naturally complement
the training of any event-based solution. Therefore, we focus
on the temporal-polarity augmentation combination as
an alternative that requires no tuning when using their
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default threshold values. Finally, for a more comprehensive
approach, we explore a combination that incorporates all
three event-based augmentation methods.

We perform this experiment only on the spatio-temporal
representations presented in this work. This includes the
proposed 3-channel variants of the CSTR and the Timestamp
Image. These representations are selected because the pro-
posed framework primarily affects the temporal and polarity
information of event data, making them optimal for spatio-
temporal representations. Additionally, we only utilize the
three best classifiers found during the baseline experiment:
ResNet18 [15], ResNet50 [15], and InceptionV3 [61]. The
ASL-DVS [27] dataset is excluded from this experiment as its
performance is already effectively saturated without the use
of augmentations. Finally, we provide sufficient training time
to ensure reaching an optimal global minimum, by training
each model for 50 epochs without early stopping. We use
an initial learning rate of 1 x 107 instead while keeping
all the other evaluation parameters identical to the initial
experiment.

V. EVALUATION RESULTS

In this section, we present our experimental results. We first
do a baseline evaluation of the CSTR and six founda-
tional representations across popular event-based recognition
datasets. We then identify the best performers and re-evaluate
them when using the proposed augmentation framework.
These experiments help show that the proposed CSTR is a
robust means of representing event batches, including ones
with long temporal durations and high event density. Finally,
we present a comparison with other works in the literature.

A. EXP I: BASELINE EVALUATION RESULTS

We present the baseline evaluation results in Table 2. This
table shows the average performance of the representations
with all six classification networks detailed in the Exper-
imentation Setup (see: Section IV-A2). For space reasons,
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TABLE 3. The effects of the proposed event-based augmentation framework on the average test classification performance of the different
spatio-temporal representations explored in this work. Each result represents the average classification accuracy of the top three classifiers only
(ResNet18, ResNet50, and InceptionV3) due to the complexity of training with augmentations. The first row represents the baseline results obtained
without any augmentation, serving as a reference point for each representation. The subsequent rows demonstrate the performance improvements
achieved when using the respective augmentation configurations. Notably, only the augmented three-channel representations are considered, as outlined
in Section IV-A and indicated by the *. The best-performing baseline representation is indicated by the T, while the representations yielding the best and
second-best performance with augmentations are highlighted in bold and underlined, respectively.

Representation Augmentation Type Dataset AVG.
Spatial ~ Temporal ~ Polarity N-MNIST N-Cars N-Caltech101 CIFAR10-DVS DVS-Gesture
Baseline 99.1% 93.4%" 82.0% 72.1% 93.7%" 88.1%
v 99.3% (+0.2%)  94.5% (+1.1%)  84.4% (+2.4%)  T1.5% (+5.4%)  94.1% (+0.4%)  90.0% (+1.9%)
Timestamp Image™ v 99.2% (+0.1%) 95.7% (+2.3%) 87.1% (+5.1%) 76.1% (+4.0%) 94.3% (+0.6%) 90.5% (+2.4%)
v 99.1% (+0.0%)  95.6% (+2.2%)  86.2% (+4.2%)  71.8% (-0.3%)  93.8% (+0.1%)  89.3% (+1.2%)
v v 99.2% (+0.1%)  95.8% (+2.4%)  86.9% (+4.9%)  163% (+4.2%)  93.9% (+0.2%)  90.4% (+2.3%)
v v v 99.2% (+0.1%)  96.3% (+2.9%)  85.2% (+3.2%)  18.0% (+5.9%)  94.9% (+1.2%)  90.7% (+2.6%)
Baseline 99.1% 93.3% 84.5% 75.5% 93.0% 89.1%
v 99.4% (+0.3%)  95.7% (+2.4%)  84.4% (-0.2%) 80.4% (+4.9%) 94.6% (+1.6%)  90.9% (+1.8%)
Timestamp Image & Count v 99.2% (+0.1%)  95.4% (+2.1%)  87.1% (+2.6%)  T1.2% (+1.7%)  94.6% (+1.6%)  90.7% (+1.6%)
v 99.2% (+0.1%)  96.3% (+3.0%)  86.4% (+1.9%)  73.5% (-2.0%)  93.3% (+0.3%)  89.8% (+0.7%)
v v 99.3% (+0.2%)  95.7% (+2.4%)  81.3% (+2.8%)  18.1% (+2.6%)  94.4% (+1.4%)  91.0% (+1.9%)
v v v 99.3% (+0.2%)  96.3% (+3.0%)  87.1% (+2.6%)  80.2% (+4.7%)  94.4% (+1.4%)  91.5% (+2.4%)
Baseline 99.2%" 92.7% 84.6% 71.5% 93.5% 88.3%
_ v 99.4% (+0.2%)  96.1% (+3.4%)  85.7% (+1.1%)  75.6% (+4.1%)  95.5% (+2.0%)  90.4% (+2.1%)
CSTR (mean T’ only)* v 99.3% (+0.1%)  93.3% (+0.6%)  87.8% (+3.2%)  15.5% (+4.0%)  93.4% (-0.1%)  89.8% (+1.5%)
v 99.4% (+0.2%)  96.2% (+3.5%)  87.5% (+2.9%)  70.8% (-0.7%)  94.8% (+1.3%)  89.7% (+1.4%)
v v 99.2% (+0.0%)  96.9% (+4.2%)  88.3% (+3.7%)  T4.8% (+3.3%)  93.7% (+0.2%)  90.6% (+2.3%)
v v v 99.3% (+0.1%)  96.6% (+3.9%)  86.4% (+1.8%)  182% (+6.7%)  95.0% (+1.5%)  91.1% (+2.8%)
Baseline 99.29%F 93.0% 84.9%1 75.8%F 93.4% 89.2%
_ v 99.4% (+0.2%)  96.3% (+3.3%)  85.0% (+0.1%)  79.3% (+3.5%)  95.7%(+2.3%)  91.1% (+1.9%)
CSTR (mean Ts & Count) v 99.4% (+0.2%)  95.4% (+2.4%)  81.9% (+3.0%)  78.4% (+2.6%)  94.9% (+1.5%)  91.2% (+2.0%)
v 99.3% (+0.1%)  96.1% (+3.1%)  87.0% (+2.1%)  72.2% (-3.6%)  95.1% (+1.7%)  89.9% (+0.7%)
v v 99.4% (+0.2%)  96.6% (+3.6%)  88.4% (+3.5%) 77.9% (+2.1%)  94.4% (+1.0%)  91.3% (+2.1%)
v v v 99.3% (+0.1%)  97.0% (+4.0%)  86.1% (+1.2%)  79.8% (+4.0%)  95.7% (+2.3%)  91.6% (+2.4%)

we provide a full breakdown of each network’s performance
in Table 5 of the Appendix A. We note a few basic obser-
vations. First, including polarity improves generalization.
We see this mainly in the Event Frame representations,
as well as the Event Count representations but to a lesser
extent. This aligns with the methodology expectations.
Second, there is a benefit to maintaining the classification
networks’ native input structure. In all cases, transforming
a one or two-channel representation into three channels (by
either padding or replicating data) consistently improves
classification accuracy. This reinforces the value of transfer-
learning frame-based networks for event-based applications.
Lastly, our representation, the CSTR, has the highest average
classification accuracy and is the best overall in four of the
six datasets.

The strength of the CSTR is in addressing motion-
overlapping. We can see that of the foundational event
representations, the simple Binary Event Count is rather
robust. This implies that the number of events per batch
is strongly correlated with the classification task, where
adding polarity helps better describe the type of motion.
Intuitively, this implies that better describing the event’s
temporal distribution should improve performance. While
the Timestamp Image does this via recent timestamps, this
approach can be biased for longer temporal periods. The
CSTR addresses this by representing the aggregate behavior
with the mean timestamp and generalizes very well across
datasets, including those with long temporal durations and
high event density.
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We note the results get particularly interesting with the
CIFARI10-DVS [26] dataset. In general, all classification
networks for all representations notably overfit. This over-
fitting concern is verified by the simple Binary Event Count
having the highest dataset classification accuracy, remaining
in line with its accuracy on other datasets. We believe this
overfitting is partially due to the dataset being generated by
repeated back-and-forth motions (frequent direction change),
causing very significant motion overlap [26]. Furthermore,
the CIFAR10-DVS [26] data collection methodology uses up-
scaled 32 x 32 RGB images that appear rather blurry [26].
This blurriness reduces the edge features the events depend
on and inherently increases sensitivity to sensor noise. With
this said the CSTR still does relatively well, but incrementally
worse than the Timestamp Image representations. We hypoth-
esize here that the timestamp recency better correlates with
back-and-forth motions versus the timestamp mean.

Lastly, we observe that the optimal classification network
can vary across representations and datasets. Intuitively, clas-
sification network accuracy should correlate with ImageNet
accuracy; however, the expanded results given in Appendix A
(Table 5) show that this is not always the case. We conjecture
that this can be a function of dataset density and intra-class
variance. When the variance is particularly high, such as in
the CIFAR10-DVS [26] dataset, the smaller networks tend
to generalize better. This is likely a result of overfitting,
where the smaller parameter spaces inherently regularize
themselves. However, we also note the large InceptionV3 [61]
network is still the top performer for some representations.
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TABLE 4. Comparison with the self-reported state-of-the-art works. Our proposed representation, the CSTR, yields very competitive results when
compared with state-of-the-art event-based object and action recognition on the utilized datasets. For datasets without an official split, the { symbol
denotes that the referenced result was based on a 90%-10% split, compared to the typical 80%-20% split. The best and second-best results are

highlighted in bold and underlined, respectively.

Event Representation Classifier Architecture = Data Augmentation Dataset
N-MNIST N-Cars  N-Caltech101 CIFAR10-DVS ASL-DVS  DVS-Gesture
HATS [25] SVM X 99.1% 90.2% 64.2% 52.4% - -
Event-by-event [33] SNN X 99.6% - - 69.0% - 96.5%
Graphs [20] Residual-GCN v (spatial) 99.0% 91.4% 65.7% 54.0% 90.10% 97.2%
Graphs [52] GCN X - 94.5% 66.8% - - -
Voxel-grid [51] GCN X 99.5% 93.2% 77.8% 69.0% 98.90% 97.5%
Event Clouds [58] PointNet++ X - - - - - 95.3%
EST [22] CNN (ResNet34) X - 92.5% 81.7% - - -
Timestamp Image & Count [47]  CNN (ResNet34) X 99.6 % 97.3% 89.2% 76.3% - -
TORE Volumes [23] CNN (2xGoogLeNet) X 99.4% 97.7% 83.4% - 99.95% 96.2%
EST [22] CNN (ResNet34) EventDrop [55] - 95.5% 85.2% - - -
Polarized Event Count [56] CNN (ResNet18) EventMix [56] - - 84.7%" 84.4%1 - 89.5%
Polarized Event Count [56] CNN (ResNet34) EventMix [56] - 96.6% 89.2%" 85.6%1 - 91.8%
X 99.1% 93.0% 81.6% 77.8% | 80.6%1 99.88% 95.5%
CNN (ResNet18) TP 99.3% 96.6% 86.7% 77.9% | 81.8%" 99.98 % 95.5%
STP 99.3% 96.9% 84.0% 78.8% | 80.9%1 99.44% 96.9%
CSTR (ours) x 99.2% 92.5% 85.4% 70.6% | 70.4%* 99.94% 97.0%
CNN (ResNet50) TP 99.4% 96.2% 88.6% 75.4% | 77.4%* 99.89% 97.5%
STP 99.5% 96.9% 86.2% 78.7% | 80.9%" 99.84% 96.9%
X 99.2% 93.5% 87.7% 79.0% | 77.2%" 99.89% 95.9%
CNN (InceptionV3) TP 99.4% 96.9% 89.8% 80.4% | 83.1%" 99.93% 96.3%
STP 99.3% 97.2% 88.2% 81.8% | 83.7%" 99.74% 97.5%

This implies picking the optimal network may ultimately
require experimentation. We recommend that the developer
assess various networks and select the one that best fits their
accuracy and run-time requirements.

B. EXP II: RANDOMIZED AUGMENTATIONS RESULTS
We present the results of the augmentation evaluation in
Table 3. Starting with the baseline results, we observe that
the CSTR consistently outperforms other representations
when considering the top-3 classifiers (ResNet18, ResNet50,
InceptionV3) on most datasets. This emphasizes the robust-
ness of the CSTR in capturing spatio-temporal information
across varying batch periods. The slight underperformance of
the CSTR on the N-Cars dataset compared to the Timestamp
Image representation can be attributed to the dataset’s low
event density and short batch periods. This causes larger
classification networks to underfit with more complex repre-
sentations. We observe this with DVS-Gesture as well. Never-
theless, the introduction of the proposed augmentations high-
lights the limitations of the Timestamp Image. Specifically,
the CSTR demonstrates superior results on N-Cars when uti-
lizing either the temporal-polarity augmentation combination
or combining all three augmentation methods. This highlights
the CSTR’s ability to encode spatio-temporal information
optimally when provided with sufficient training variations.
Overall, the augmentation framework shows significant
performance improvements across all benchmarks. When
using a single augmentation method, the proposed temporal
augmentation method can match and even exceed the
performance of hand-crafted spatial augmentations. This
is evident in the highest average performance achieved
by a single augmentation method (i.e., 91.2% when using
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the CSTR). We find that the CSTR benefits the most
from the temporal augmentations due to its effectiveness at
encoding temporal information. On the other hand, spatial
augmentations, while generally reliable, have limitations
on datasets with challenging spatial characteristics like N-
Caltech101 [24]. Furthermore, spatial augmentations require
manual tuning for optimal results. In contrast, the proposed
temporal and polarity augmentations serve as a promis-
ing alternative, requiring minimal tuning and consistently
outperforming spatial augmentations on average across all
evaluated representations. This makes them particularly
advantageous for optimizing deep learning models in event-
based applications.

Interestingly, we find that combining all augmentation
methods (spatial, temporal, and polarity) does not consis-
tently yield the best performance. The significant variations
introduced by this combination can lead to underfitting,
considering the utilized regularization approach. Therefore,
we suggest exploring an alternative approach of randomly
selecting one of the augmentation methods per event-batch
sample during training. Additionally, we observe that spatial
augmentations underperform polarity and temporal aug-
mentations on the N-Caltech101 [24] dataset. This can be
attributed to the dataset’s imbalance, where typical spatial
augmentations are insufficient to improve generalization.

In conclusion, our findings demonstrate the strength
of the CSTR and its ability to leverage the proposed
augmentation framework. The temporal augmentations prove
to be the most advantageous on average for the CSTR,
showcasing the CSTR’s effectiveness in capturing temporal
information. Moreover, combining multiple augmentation
methods can enhance generalization performance. However,
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further exploration and optimization of the augmentation
methods are necessary to maximize performance and address
limitations.

C. COMPARISON WITH THE STATE-OF-THE-ART

In this section, we compare the performance of the CSTR
with other approaches that utilize the same recognition
datasets. Although each approach utilizes different methods
and training configurations, our aim here is to highlight the
efficacy of the CSTR when combined with off-the-shelf pre-
trained classification networks. Furthermore, we emphasize
how the performance can be further improved by leveraging
the proposed augmentation framework for event data.

We present the performance comparison in Table 4. While
most works report results for an 80-20% split, we provide the
results of our framework on a 90-10% split for CIFAR10-
DVS [26] as well to establish a fair comparison with those
that utilize such a split. For our results on DVS-Gesture
[28], we adopt a simple moving-majority filter to handle the
long-term temporal dependencies, as applied in [23], [58].
This filter outputs the most frequent gesture classification out
of the last 5 (i.e., 1250 ms moving window). If there is more
than one gesture with the same number of classifications (or
none), the filter simply returns the classification result for the
current event batch. It is worth noting that all the referenced
works also utilize a 500 ms sampling period for splitting the
event sequences of the DVS-Gesture [28] dataset.

Overall, the results show that the CSTR performs excel-
lently across the employed benchmark datasets. In terms
of the baseline performance (excluding augmentations), the
CSTR notably achieves state-of-the-art results on CIFAR10-
DVS [26] and consistently ranks as the second-best on ASL-
DVS [27]. This demonstrates the robustness and versatility of
the CSTR which requires minimal configuration and enables
a direct and effective deployment for event-based solutions.

To demonstrate the impact of the proposed augmentation
framework, we compare the results with other works that
incorporate different augmentation techniques for event data.
One such work utilizes EventMix [56] augmentations in com-
bination with the Polarized Event Count representation. This
work splits the provided batch samples of the N-Caltech101
and CIFAR10-DVS datasets into 10 slices of equal temporal
duration. This effectively yields 10 times the original number
of samples of each dataset. In contrast, we utilize the
provided batch samples of each dataset as-is. Despite this, the
CSTR with the randomized Temporal-Polarity augmentations
proves to be highly competitive, even without splitting
the datasets’ samples. Accordingly, the CSTR demonstrates
significant robustness to varying batch periods. Furthermore,
we show that the CSTR, in combination with the proposed
temporal and polarity augmentations, can achieve stronger
results on N-Caltech101 [24] even with less training data.
Lastly, the addition of the augmentation framework signif-
icantly improves the performance of the CSTR, surpassing
more advanced representations such as EST [22] with the
EventDrop [55] augmentation framework.
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Our findings highlight the strength of the CSTR rep-
resentation when combined with off-the-shelf pre-trained
classifiers. They showcase the effectiveness of the CSTR in
capturing temporal information and leveraging the robustness
of pre-trained networks without any modification to the
input layers. Thus, the CSTR retains a compact input
dimensionality and effectively leverages transfer learning.
Furthermore, the proposed augmentation framework offers
a promising alternative for enhancing generalization per-
formance without the need for significant manual tuning.
Finally, we note that the results presented utilize a simple
training framework. Therefore, various training optimization
and batch-sampling techniques can be explored to further
improve robustness.

VI. CONCLUSION

In this work, we introduce the compact spatio-temporal
representation (CSTR) for event-based vision. When dealing
with asynchronous event data, it is common to accumulate
events in batches to generate a synchronous response. In order
to do so, an intermediate representation is needed, especially
when utilizing modern computer vision architectures. Thus,
encoding the data into a representation compatible with
existing classification networks is crucial for leveraging
transfer learning and avoiding the complexity of designing
custom deep-learning architectures. Foundational event rep-
resentations typically encode either the number of events or
the most recent event’s timestamp per spatial location (based
on polarity). These approaches are convenient and relatively
robust but can be sensitive to motion-overlapping (common in
long sampling duration) and possibly deficient for high event-
density streams.

The CSTR improves upon the foundational event rep-
resentations by better describing the temporal behavior
of the asynchronous event data while retaining similar
computational complexity. This is done by calculating the
average of the normalized timestamps per each event polarity,
combined with the polarity-agnostic number of events at
each spatial index of the frame. Besides, the CSTR imposes
minimal processing overhead given that each event is only
processed once and that each spatial position is updated
independently (i.e., without the need to maintain any spatial
dependencies), as indicated in the methodology. Accordingly,
the CSTR generates a compact image-like representation that
is more robust to high-motion scenes and long temporal
durations. We validate this hypothesis through rigorous
benchmarking against similar representations.

Combining the CSTR with off-the-shelf pre-trained clas-
sifiers demonstrates its ability to effectively leverage the
power of transfer learning without modifying the input layers,
thereby retaining its compact input dimensionality. We also
propose a simple yet effective augmentation framework for
event data, significantly improving the performance and
generalization capabilities of the CSTR. This framework
highlights the potential of augmentations in event-based
recognition without the need for extensive manual tuning.

VOLUME 11, 2023



Z. A. El Shair et al.: CSTR for Event-Based Vision

IEEE Access

Experimental validation confirms that the CSTR outper-
forms foundational event representations in popular event-
based applications. Benchmarking the CSTR against six
foundational representations and six common recognition
datasets (using six popular classification networks) consis-
tently shows its superior performance. Additionally, incorpo-
rating random augmentations during training, including our
proposed temporal augmentation, further enhances results
on all representations, with the CSTR generally benefiting
the most from the proposed augmentation framework. This
overall improvement validates the CSTR’s ability to robustly
encode temporal information.

The CSTR achieves our goal of providing a robust
event-batch representation that is directly compatible with
existing computer vision architectures, maintaining similar
inference complexity. As a result, the CSTR is an excellent
choice for developing event-based solutions. The combina-
tion of the CSTR with the proposed augmentation frame-
work further enhances its performance and generalization
capabilities, requiring minimal tuning and enabling direct
deployment.

While the CSTR excels as a versatile representation,
it does not directly address certain prominent challenges in
event-based vision, such as sensor noise [43]. To mitigate

these issues effectively, additional techniques may be
necessary.

Future work involves exploring the use of the CSTR
in other perception tasks, such as object detection, and
investigating additional optimization techniques to enhance
robustness. Additionally, evaluating the suitability of the
CSTR for real-time applications, where latency is a primary
concern, would be an interesting avenue to explore.

APPENDIX A SUPPLEMENTARY TABLES

In Table 5, we provide a full breakdown of the first
experiment’s results (presented in Table 2). This experiment
rigorously compares the CSTR against different foundational
representations using the event-based object and action
recognition datasets utilized in this work. Accordingly, the
result of each of the six pre-trained classification net-
works, specified in Section IV-A2, are shown. Additionally,
in Table 6, we provide a full breakdown of the second
experiment’s results (presented in Table 3). This experiment
evaluates the effects of the proposed event-based augmenta-
tion framework on the CSTR and the other spatio-temporal
representations explored in this work. The results are shown
for each of the three-best classification networks utilized in
this work (ResNet18 [15], ResNet50 [15], InceptionV3 [61]).

TABLE 5. A full breakdown of the test classification accuracy results that are presented in Table 2 for the event-based recognition datasets. The results of
each evaluated representation configuration are demonstrated for 6 different pre-trained classification networks which are fine-tuned on each dataset.
The best values are highlighted in bold per dataset and number of input channels.

Dataset (# of channels)

Representation Pre-trained Classifier N-MNIST N-Cars N-Caltech101 CIFAR10-DVS ASL-DVS DVS-Gesture
(¢9) 2) 3) (€3] 2) 3) (0] 2) 3) (03] 2) 3) [¢)] ) 3) [¢)] 2) 3)
ResNet18 955% 950% 950% 926% 917% 93.0% 71.9% 648% 748% 614% 602% G613% 997% 993% 997% 873% 84.1%  854%
ResNet50 95.1% 950% 953% 903% 905% 90.0% 69.1% 619% TAT% S534% 49.6% 527% 995% 997% 999% 81.6% 829%  81.5%
Binary Event Frame MobileNetv2 950% 94.6% 95.6% 921% 943% 944% 673% 683% 712.6% 482% 29.5% 48.6% 994% 99.6% 99.5%  82.5% 863%  84.3%
MobileNetV3-L 950% 952% 953% 93.1%  885% 904% 697% 667% TL1% 43.6% 51.1% 492% 99.6% 98.6% 99.7% 86.0% 847%  84.6%
MobileNetV3-S 949%  952% 95.1% 902% 90.6% 93.1% 64.5% 640% 712% 467% 28.9% 459% 995% 956% 99.7% 78.7% 819%  83.5%
InceptionV3 , Y . o oase - - 68% - o soaw - S 08w - - 858%
ResNetl8 988% 967% 992% 932% 89.6% 94.0% 80.8% 726% 784% 67.8% 724% 683% 997% 999% 999% 904% 916% 91.8%
ResNet50 98.8% 963% 99.0% 88.8% 909% 892% 77.1% 72.6% 845% 604% 644%  58.8% 998% 99.9% 999%  900% 909%  90.1%
Polarised Event Frame MobileNetv2 99.1%  959%  99.0% 926% 930% 940% 760% 69.0% 80.0% 457% 57.0% S54% 997% 99.8% 99.5%  885% 910%  88.5%
¢ MobileNetV3-L 98.6% 963% 982% 950% 7161% 927% 742% 61.6% 807% S587% 59.1% 573% 992% 99.6% 99.6% 893% 887%  91.4%
MobileNetV3-S 988% 952% 99.0% 903% 926% 945% T1.8% 674% 7198% 532% 57.0% S18% 997% 994% 99.4%  883% 908%  90.5%
InceptionV3 - 5 ooam - S esaw - o 854w - - e10% - S 998 - S 913%
ResNetl8 984% 985% 98.5% 893% 930% 913% 794% 769% 8L1% 794% 783% 78.7% 904% 530% 592%  847% 89.0%  86.3%
ResNet50 988% 98.8% 98.7% 92.6% 913% 922% 780% 726% 808% 712.8% 700% 751% 853% S52.6% G61.8%  888% 850%  912%
Binary Event Count MobileNetV2 988% 987% 98.5% 93.0% 93.0% 933% 742% 748% 814% 654% 662% 611%  55%  354% 90.8% 911% 897%  90.2%
MobileNetv3-L 983% 985% 983% 909% 909% 904% 764% 697% 80.1% 64.0% 70.6% 703% 395% 9.5%  763%  $8.6% 883%  90.9%
MobileNetV3-S 98.6% 987% 98.1% 92.0% 938% 878% 67.9% T19% 784% 64.6% 67.2% T1.6%  83%  9.0%  862% 850% 837%  84.1%
InceptionV3 - S % - - 9le% - o s4o% - o195 - T X S 919%
ResNet18 9.1%  989% 925%  929% - 151%  82.0% 715%  793% 171%  8.6% 92.1%  914%
ResNet50 98.9%  97.6% 912%  92.8% 73.0%  822% 734%  727% 289%  55.4% 928%  90.5%
Polarised Event Count MobileNetv2 98.9%  98.9% 924% 941% - T38% 80.7% 641%  66.6% 118%  72.5% 90.6%  922%
MobileNetV3-L 98.9%  98.7% 904%  92.6% 724%  79.5% 664%  652% 677%  548% 92.1%  93.0%
MobileNetV3-S 987%  98.0% - 924% 922% -  104% 79.6% 682% 730% - 497%  63.6% 912%  91.6%
InceptionV3 - 9% - - 4% - - 859% S 7a0% - S 569% O 869%
ResNet18 99.0%  99.0% 869% 918% - 73.1% 823% 747%  764% 998%  99.5% 91.6% 929%
ResNet50 99.1%  99.1% 92.1%  948% 76.8%  804% 618%  67.6% 99.9%  99.9% 89.9%  93.5%
Timestamp Image MobileNetv2 98.9%  99.1% 832%  953% 751%  82.0% 63.5%  65.1% 99.7%  99.9% 923%  92.5%
MobileNetV3-L 99.0%  98.6% 909% 855% - 13.0%  80.5% 674%  623% 99.4%  99.8% 92.8%  928%
MobileNetV3-S 98.9% 987% - T45% 925% 727%  197% 654% 69.1% - 98.5% 993% 904%  92.9%
InceptionV3 3% - Y S 8324 I T 998% S 9a7%
ResNetl8 9.0% - o 0 84.4% 7% - - 998% 93.6%
ResNet50 9.1% - - 926% - 82.7% 6% - S 9999 912%
Timestamp Image & Count  MObIIENerv2 987% - - %% 82.0% 668% - - 99.6% 91.7%
MobileNetV3-L 987% - - 898 - 82.1% 01% - - 97% 92.4%
MobileNetV3-S 98.7% - - 903% 77.4% 3% - - 997% 94.0%
InceptionV3 9.1% - - 9saw - 86.5% 762% - - 9949 943%
ResNetl8 99.3%  99.2% 9%3.1%  927% 80.8%  84.9% 742%  742% 99.9%  99.8% 93.9%  92.6%
ResNet50 992%  99.1% 924%  937% 79.6%  84.0% 638% 673% 99.8%  99.8% 92.5%  93.4%
CSTR (mean T only) MobileNetv2 99.1%  993% 93.6%  92.5% 77.9%  85.0% 595%  61.7% 99.8%  99.9% 942%  94.5%
s MobileNetV3-L 99.0%  98.5% 908%  92.9% 738%  83.0% 63.6% 632% 99.0%  98.8% 91.8%  93.0%
MobileNetV3-S 98.0%  98.9% 920% 907% - 125% 81.6% 567%  64.6% 99.6%  99.4% 91.8%  93.5%
InceptionV3 - 9920 S 07w S 850% S A% - 99.8% S o45%
ResNetl8 1% - 0% - 81.6% 8% - S 99.9% 92.8%
ResNet50 992% - - 92s% 854% 06% - - 999% 942%
MobileNetv2 92% - - s6% - 83.0% 652% - S 998% 94.6%
CSTR (mean T & Count) -y ohijeNetv3-L 98.9% - - 936% 822% 659% - - 99.1% 93.5%
MobileNetV3-S 98.8% - Y A 77.9% 0% - - 97% 93.1%
InceptionV3 9920 - - B3s% - 87.7% 90% - - 9999% 93.3%
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TABLE 6. A full breakdown of the test classification accuracy results that are presented in Table 3 for the event-based recognition datasets. The results of
each evaluated spatio-temporal representation are demonstrated for the top-3 pre-trained classification networks which are fine-tuned on each dataset.
The best values are highlighted in bold per dataset.

Representation Augmentation Type Classifier Dataset
Spatial ~ Temporal N-MNIST  N-Cars  N-Caltech101  CIFAR10-DVS  DVS-Gesture
ResNet18 99.0% 91.8% 82.3% 76.4% 92.9%
Baseline ResNet50 99.1% 94.8% 80.4% 67.6% 93.5%
InceptionV3 99.3% 93.6% 83.2% 72.3% 94.7%
ResNet18 99.4% 94.6% 81.6% 76.4% 94.2%
v ResNet50 99.3% 93.9% 85.8% 76.6% 94.2%
InceptionV3 99.3% 95.1% 85.8% 79.5% 93.9%
ResNet18 99.1% 96.1% 85.3% 74.9% 93.3%
Timestamp Image v ResNelS() 99.3% 93.7% 88.2% 73.0% 95.3%
InceptionV3 99.2% 97.2% 87.7% 80.4% 94.4%
ResNet18 99.2% 96.0% 83.7% 71.9% 92.9%
ResNet50 99.0% 95.5% 85.9% 68.5% 94.5%
InceptionV3 99.2% 95.1% 89.0% 75.2% 94.1%
ResNet18 99.2% 93.9% 83.6% 75.3% 93.0%
v ResNet50 99.2% 96.2% 88.9% 74.8% 94.0%
InceptionV3 99.1% 97.4% 88.1% 78.8% 94.6%
ResNet18 99.3% 95.9% 82.6% 78.0% 94.5%
v v ResNet50 99.1% 96.3% 86.5% 76.5% 95.0%
InceptionV3 99.2% 96.8% 86.5% 79.7% 95.2%
ResNet18 99.0% 92.2% 84.4% 78.7% 93.6%
Baseline ResNet50 99.1% 92.6% 82.7% 71.6% 91.2%
InceptionV3 99.1% 95.1% 86.5% 76.2% 94.3%
ResNet18 99.4% 96.3% 82.2% 80.0% 94.4%
v ResNet50 99.4% 94.7% 84.9% 78.5% 94.3%
InceptionV3 99.4% 96.2% 86.1% 82.6% 95.1%
ResNet18 99.0% 95.5% 84.8% 76.4% 94.6%
. v ResNet50 99.2% 95.5% 87.4% 74.6% 94.6%
Timest: I & Count
fmestamp fmage & t-oun InceptionV3  99.4%  95.1% 89.3% 80.7% 94.6%
ResNet18 99.4% 96.1% 84.2% 74.0% 91.4%
ResNet50 99.0% 95.6% 86.4% 69.7% 93.6%
InceptionV3 99.3% 97.1% 88.8% 76.9% 94.9%
ResNet18 99.2% 95.9% 86.2% 76.9% 94.2%
v ResNet50 99.2% 94.2% 86.3% 76.6% 94.0%
InceptionV3 99.4% 96.9% 89.2% 81.0% 95.0%
ResNet18 99.3% 96.9% 84.3% 79.4% 94.0%
v v ResNet50 99.2% 95.1% 87.5% 78.6% 95.2%
InceptionV3 99.4% 97.1% 87.7% 82.8% 94.1%
ResNet18 99.2% 92.7% 84.9% 74.2% 92.6%
Baseline ResNet50 99.1% 93.7% 84.0% 67.3% 93.4%
InceptionV3 99.2% 91.7% 85.0% 73.1% 94.5%
ResNet18 99.4% 95.7% 83.8% 75.2% 94.5%
v ResNet50 99.3% 95.5% 85.3% 73.6% 96.1%
InceptionV3 99.5% 97.1% 88.0% 78.2% 95.5%
ResNet18 99.3% 95.1% 85.8% 75.9% 92.3%
= v ResNet50 99.4% 96.1% 88.8% 73.8% 94.0%
TR an T’s onl
CSTR (mean 75 only) InceptionV3  99.3%  88.6% 88.1% 76.7% 93.9%
ResNetl18 99.4% 96.3% 86.5% 70.4% 94.5%
ResNet50 99.5% 96.3% 87.9% 66.7% 95.8%
InceptionV3 99.2% 96.1% 89.0% 75.5% 94.1%
ResNetl18 99.3% 97.3% 85.8% 75.4% 93.8%
v ResNet50 99.2% 96.2% 89.0% 73.5% 92.6%
InceptionV3 99.1% 97.1% 90.1% 75.5% 94.8%
ResNetl18 99.3% 96.4% 84.9% 77.4% 93.5%
v v ResNet50 99.4% 96.4% 86.3% 77.5% 96.0%
InceptionV3 99.2% 97.0% 88.1% 79.9% 95.6%
ResNet18 99.1% 93.0% 81.6% 77.8% 92.8%
Baseline ResNet50 99.2% 92.5% 85.4% 70.6% 94.2%
InceptionV3 99.2% 93.5% 87.7% 79.0% 93.3%
ResNetl18 99.4% 95.9% 81.5% 78.6% 94.5%
v ResNet50 99.4% 96.0% 86.6% 78.0% 96.1%
InceptionV3 99.5% 96.9% 86.8% 81.3% 96.5%
ResNet18 99.3% 94.4% 85.6% 78.2% 94.5%
7 v ResNet50 99.4% 96.2% 88.4% 76.6% 94.8%
TR an T’s N

CSTR (mean T & Count) InceptionV3  99.4%  95.5% 89.8% 80.4% 95.3%
ResNet18 99.1% 96.4% 86.1% 73.1% 95.3%
ResNet50 99.4% 94.8% 86.7% 66.8% 95.5%
InceptionV3 99.3% 97.1% 88.4% 76.9% 94.4%
ResNet18 99.3% 96.6% 86.7% 77.9% 93.4%
v ResNet50 99.4% 96.2% 88.6% 75.4% 95.4%
InceptionV3 99.4% 96.9% 89.8% 80.4% 94.5%
ResNet18 99.3% 96.9% 84.0% 78.8% 95.1%
v v ResNet50 99.5% 96.9% 86.2% 78.7% 95.7%
InceptionV3 99.3% 97.2% 88.2% 81.8% 96.3%
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