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ABSTRACT Event-based vision is a novel perception modality that offers several advantages, such as high

dynamic range and robustness to motion blur. In order to process events in batches and utilize modern

computer vision deep-learning architectures, an intermediate representation is required. Nevertheless,

constructing an effective batch representation is non-trivial. In this paper, we propose a novel representation

for event-based vision, called the compact spatio-temporal representation (CSTR). The CSTR encodes an

event batch’s spatial, temporal, and polarity information in a 3-channel image-like format. It achieves this by

calculating the mean of the events’ timestamps in combination with the event count at each spatial position

in the frame. This representation shows robustness to motion-overlapping, high event density, and varying

event-batch durations. Due to its compact 3-channel form, the CSTR is directly compatible with modern

computer vision architectures, serving as an excellent choice for deploying event-based solutions. In addition,

we complement the CSTR with an augmentation framework that introduces randomized training variations

to the spatial, temporal, and polarity characteristics of event data. Experimentation over different object and

action recognition datasets shows that the CSTR outperforms other representations of similar complexity

under a consistent baseline. Further, the CSTR is made more robust and significantly benefits from the

proposed augmentation framework, considerably addressing the sparseness in event-based datasets.

INDEX TERMS Event-based vision, event representation, object recognition, data augmentation.

I. INTRODUCTION

Perception plays a crucial role in real-time robotic applica-

tions, enabling their operation in dynamic and unpredictable

environments [1], [2]. These applications often operate under

challenging lighting conditions, including high dynamic

range (HDR) or high-speed motion scenes. Ensuring accurate

perception and prompt responses under such conditions is

vital for their success, especially in safety- or time-critical

applications like autonomous vehicles [1] and industrial

automation [2]. For instance, in an HDR scene such as

when emerging from a tunnel in broad daylight, the failure

to detect objects like vehicles or traffic signs can have

severe consequences [3]. To address the challenges of robust

operation in challenging lighting conditions (e.g., HDR
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or high-speed motion scenes) and in potentially dynamic

and unpredictable environments, many researchers have

increasingly turned to event-based vision [4], [5] as a

promising alternative visual sensing modality.

Event-based sensors, such as the Dynamic Vision Sensor

(DVS) [6] or the Asynchronous Time-Based Image Sensor

(ATIS) [7], operate by capturing per-pixel brightness changes

asynchronously and at very high temporal resolutions [6],

[7]. This results in a spatially sparse yet temporally dense

output that effectively represents all visual changes in a

scene over a specified time interval. In contrast, traditional

cameras capture intensity images at a fixed rate, such as

24 frames per second [8]. This fixed rate can possibly lead

to oversampling of static scenes, resulting in redundant data;

or undersampling of scenes with high-speedmotion, resulting

in motion blur [5]. Overall, event-based vision offers several

distinct properties that address dynamic range, response
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FIGURE 1. Overview of the general framework of this paper. Sparse and asynchronous events, representing brightness changes at each pixel, are
captured using an event-based sensor. To utilize this spatio-temporal event data, an intermediate representation is required to leverage modern
deep-learning solutions when processing events in batches. In this work, we propose the Compact Spatio-Temporal Representation (CSTR) that encodes
spatial, temporal, and polarity information of event data in a 3-channel image-like format. Accordingly, the CSTR is directly compatible with off-the-shelf
pre-trained computer vision architectures.

time, and motion blur issues. These properties include an

HDR of >120 dB, microsecond-level temporal resolution,

low output latency in the order of microseconds, and low

power consumption averaging a few milliwatts [5], [6].

Consequently, these characteristics make event-based vision

particularly well-suited for real-time robotic applications [9],

[10]. Such applications require accurate perception and

prompt response to visual changes, especially in challenging

scenarios such as HDR scenes [11], low-light conditions [12],

or high-speed motion environments [13]. In comparison,

traditional cameras often struggle to perform effectively in

such scenarios [3], [10].

While the properties of event-based vision are very

compelling, effectively utilizing event data in various appli-

cations presents a challenge. The generated event stream

is asynchronous and sparse, necessitating its transformation

into a compatible format for established algorithmic method-

ologies. For instance, most traditional object detectors and

classifiers employ a three-channel input designed for RGB

imagery [14], [15]. However, the independence and sparsity

of events make it non-trivial to establish batch relationships,

often leading to the creation of hand-crafted representations

tailored to specific applications [16], [17]. This inherent

problem hampers generalization, as traditional frame-based

cameras benefit from standardized formats that facilitate the

canonical transfer learning of dataset weights across tasks.

In contrast, event-based algorithms, are highly sensitive to the

specific type of open-source data and its representation. This

further exacerbates the data sparsity issue. As a result, the data

needs to be closely associated with the particular task at hand,

adversely impacting generalization and posing challenges for

training convergence.

Accordingly, most works resort to using image-like rep-

resentations in order to leverage pre-trained computer vision

models. One common representation is the Event Frame [18],

[19], chosen for its simplicity. This representation keeps track

of whether any event has occurred at each pixel within a

given time period (where the time period is a variable that

can be adjusted per task). By doing so, the batch of events is

effectively transformed into a single-channel image (or can

be replicated to form a 3-channel image) that can be utilized

with existing algorithms. While convenient, this approach

has some limitations. Notably, it binarizes the behavior

for the specified sampling period, losing temporal and

polarity information (brightness changes), and is generally

outperformed by more sophisticated approaches [20], [21],

[22], [23]. Alternatively, more advanced representations have

been explored to capture temporal and polarity contexts [20],

[21], [22], [23]. These representations demonstrate better

performance, but they come with either the trade-off of

notable pre-processing overhead [20], [21] or are not directly

compatible with pre-trained computer vision architectures

that require a 3-channel input [22], [23].

To address these challenges, we propose a novel repre-

sentation for event data called the Compact Spatio-Temporal

Representation (CSTR). The CSTR efficiently encodes the

spatial, temporal, polarity, and event count information of

a given event batch while requiring minimal processing

overhead. This is achieved by calculating the mean times-

tamps of the events per polarity type (positive or negative)

and the normalized event counts at every spatial position

in the resulting representation frame. This results in a

3-channel image-like format that is directly compatible with

existing state-of-the-art networks [14], [15], allowing for

seamless integration without the need for additional modi-

fications. We visualize the general framework of this paper

in Fig. 1.

We demonstrate the effectiveness of the CSTR through

a comprehensive series of well-established event-based

recognition benchmarks. This benchmarking includes

six well-known representations that are similarly com-

patible with off-the-shelf networks over the following

datasets: N-MNIST [24], N-CARS [25], N-Caltech101 [24],

CIFAR10-DVS [26], ASL-DVS [27], and DVS-Gesture [28].

The CSTR is consistently an excellent performer, achieving

the highest overall classification accuracy. Furthermore, the

CSTR is stable when applying random augmentations; these

are demonstrated to notably enhance classification accuracy,

validating that the CSTR is a robust approach for encoding

event data.
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We summarize the contributions of this work as follows:

• We introduce the compact spatio-temporal representa-

tion (CSTR) for event-based vision, which efficiently

encodes the spatio-temporal information of events in a

3-channel image-like format, directly compatible with

modern computer vision architectures.

• We provide a comprehensive evaluation of the CSTR

against foundational event representations of similar

complexity using six event-based recognition datasets.

• We propose an augmentation framework for event data,

significantly improving the performance of the CSTR

and other spatio-temporal representations.

• We demonstrate the effectiveness of the CSTR and the

data augmentation framework when combined with off-

the-shelf pre-trained classifiers.

Our source code is available at: https://github.com/Zelshair/

cstr-event-vision.

II. RELATED WORK

Event-based vision has recently seen significant advance-

ments that leverage its unique characteristics for various

applications [5], [10], [12], [13], [23]. There are two

general approaches to effectively utilize the asynchronous

and sparse event data. These include event-by-event and

batch processing. In this section, we provide an overview

of the relevant methods of each approach, highlighting their

strengths and identifying their limitations. Next, we provide

an overview of augmentation methods explored in the

literature for enhancing event data. Finally, we introduce the

proposed CSTR alongwith a new augmentation in the context

of these limitations, noting how they address some of the

remaining challenges.

A. EVENT-BY-EVENT PROCESSING

Event-by-event processing methods directly utilize events as

they are received [29], [30], [31], [32]. This approach is

intuitive and minimizes processing delays. The most promi-

nent methods are spiking-neural-networks (SNNs) [32], [33],

[34], [35], [36]. An SNN is a bio-inspired version of

artificial neural networks comprising interconnected neurons.

SNNs operate by integrating incoming spikes (events at the

input layer) over time. An output spike is generated when

the membrane potential of a neuron surpasses a certain

threshold causing it to reset. The generated output spikes

propagate information to other neurons in deeper layers,

connected hierarchically. This neuron-activation threshold

enables SNNs to be computationally efficient [35], [36], [37].

Despite the computational efficiency and minimal latency

of event-by-event algorithms, they suffer from some limita-

tions. Processing events individually inherently lacks tem-

poral context, necessitating tailored solutions to compensate

for the lack of event history [29], [30], [31]. Ironically,

this approach can become computationally expensive during

periods of high event density. Scenes with significant motion

and texture can generate a substantial amount of events

per second, requiring a proportional number of operations.

As event-based sensors continue to improve their frame

resolutions [8], [38], this computational challenge will

only intensify. While SNNs somewhat address the latter

with their energy-efficient design, they are non-trivial to

set up and implement [32], [33], [34]. Moreover, SNNs

require specialized hardware, which limits their widespread

adoption, posing additional barriers to deployment.

B. BATCH PROCESSING

Batch processing methods accumulate, encode, and clas-

sify the events generated in a given time period. These

approaches add temporal context with the capability to

provide synchronous responses (i.e., a classification per each

batch period). By applying an intermediate encoding method,

they have the key benefit of being able to employ modern

computer-vision networks. This is directly germane to the

problem statement of being able to leverage existing state-

of-the-art networks (and corresponding training weights).

Hence, we focus this survey on event-batch representations

that are compatible with frame-based networks.

1) IMAGE-LIKE REPRESENTATIONS

Many opt to represent event batches in a simple image-

like format. These representations encode spatial, temporal,

and/or polarity information into traditional one, two, or three-

channel images. Such approaches are popular because they

enable rapid prototyping and demonstrate strong perfor-

mance across various perception tasks [18], [19], [39].

For example, the Event Frame encodes the event’s spatial

information (i.e. the existence of any events per spatial

position) [18], while the Event Count (also known as

Event Histograms) [39], [40], [41] indicates the number

of events recorded, instead. More advanced versions of

these representations incorporate polarity information as

well [19], [39], [41]. These representations, however, are

inherently limited as they do not capture the temporal

information of the event data. To address this limitation,

more comprehensive representations have been developed

to incorporate spatio-temporal information in an image-like

format. One popular representation is Timestamp Images

[42], also referred to as Time Surfaces [17]. Timestamp

Images encode the timestamp information of the latest event

at each spatial index [42], often represented using a separate

channel per polarity type resulting in a 2-channel representa-

tion [42]. Recent advancements related to Timestamp Images

have explored sophisticated techniques to enhance robustness

against noise [25], [43]. For instance, DiST [43] incorporates

temporal discounting by considering the Ä spatio-temporally

neighboring events at each spatial position. Thus, discounting

the timestamps of the latest events using a normalized time

range of the neighboring pixels.

One challenge encountered in temporal representations

is motion overwriting. While timestamp images excel in

retaining contour information, the recent timestamps can
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be overwritten. This can happen when using long batch

periods or in highly textured scenes. Accordingly, various

representations have emerged that incorporate both the

temporal and count information of events in different forms

[44], [45], [46], [47]. For instance, a 4-channel representation,

known as Event Image [45], [46], incorporates recent

timestamps and event count per polarity. Another work by

Bai et al. [47] proposes a more compact 3D representation

that includes the temporal information of both polarities as

well as the event count in separate channels. This forms a

spatio-temporal image-like representation that encompasses

vital information about the event data. The authors also

investigate the advantages of this approach in the context of

event-based object recognition.

Overall, the limitation of most spatio-temporal image-

like representations can be distilled to overlapping events.

A high number of overlapping events often results when

using long batch periods or when operating in highly textured

scenes. This can result in the overwriting of recent events

causing a loss of information. Shortening the batch period

can potentially limit this issue [45], however, this reduces

temporal context and increases processing frequency.

As an alternative, image reconstruction from events is

an effective approach that results in intensity images that

enable the direct use of modern frame-based computer vision

architectures [48]. However, generating images from events

is a very processing-heavy task, making it not very suitable

for real-time systems.

2) ADVANCED 4D GRID-LIKE REPRESENTATIONS

Advanced grid-like representations have been proposed to

overcome the issue of event overlapping, thus, retaining

more information [22], [23]. For example, TORE volumes

[23] utilizes a first-in-first-out buffer at each spatial position

to retain the temporal information of the last K events,

for both polarity types, where K > 1. This results in a

4D representation with a resolution of 2×K×H×W , where

H and W are the frame’s height and width, respectively.

By doing so, TORE volumes [23] limit the problem of

event-overwriting which is often encountered in image-like

representations.

Another notable representation is Event Spike Tensors

(EST) [22]. EST employs an end-to-end learning approach to

derive event representations from input data. This is achieved

by applying convolutional operations on a batch of events

with a learned kernel comprising a multi-layer perceptron

with two hidden layers. Then, the resulting convolutions

are discretized, yielding a 4D grid-like representation with

dimensions of 2×B×H×W , where B is the pre-selected

number of temporal bins.

Although these representations demonstrate remarkable

performance in a multitude of tasks [22], [23], it is

important to note that the choice of compatible deep

learning architectures is somewhat limited. Consequently,

an additional quantization step is often required to convert

the 4D representation into a 3D format [22]. An alternative

approach involves splitting the 4D grid along the polarity

dimension (first dimension) and employing multiple deep

learning models in parallel to process the resulting outputs,

or modifying the input layers of a deep learning model to

accommodate the higher-dimensional input. However, both

approaches may lead to higher memory and computational

requirements due to the increased dimensionality of the

inputs.

3) VOXEL GRIDS

Voxel grids offer a precise means of capturing the spatial

and temporal characteristics of events. A voxel represents

a 3D point, traditionally denoting the height, width, and

depth coordinates in a 3D model. Combining these voxels

creates a 3D structure known as a voxel grid. Voxel grids

are widely used in 3D computer vision, especially for

representing a LiDAR-generated point cloud [49]. Similarly,

it can be also used to handle sparse event data. Voxel grids

are applied to event batches by converting the depth axis

to a temporal axis using B temporal bins per event batch.

This conversion is typically achieved through spatio-temporal

quantization employing a designed sampling kernel. The

resulting voxel grid has dimensions of B×H×W , allowing it

to retain the essential spatio-temporal relationships within the

event batches [16], [21], [50]. Accordingly, researchers have

explored the application of voxel grids in various computer

vision tasks, including optical flow estimation [16], [21],

HDR video reconstruction [50], and object recognition [51].

Despite their advantages, the use of voxel grids poses

two primary challenges. Firstly, generating voxel grids can

be computationally demanding, especially when utilizing

sophisticated sampling kernels. Secondly, the adoption of

voxel grids may lead to high memory requirements due to

the resulting increased input dimensionality, similar to the

challenges with 4D representations discussed earlier. This

issue becomes particularly prominent with high-resolution

grids (i.e., a large number of bins B) and long batch periods.

4) GRAPH-BASED REPRESENTATIONS

Alternative to voxel-grids, events can be represented as

graphs [20], [27], [52]. Here, each sampled event in an

event batch is treated as a vertex vi. These vertices v (also

referred to as nodes) are then connected to each other using

edges ε, based on a pre-defined spatio-temporal distance

metric, forming the graphG. This approach similarly captures

the temporal relationships within the event batch and offers

compatibility with existing graph-convolutional networks

(GCNs) [20], [27]. Graph-based solutions provide flexibility

in the processing of the event data, allowing for a natural

way to incorporate their spatial and temporal information

[20], [27], [52]. Compared to traditional CNNs, GCNs exhibit

significantly lower inference computational complexity [52].

Nevertheless, generating the graphs can be computation-

ally demanding. This is particularly true when dealing with
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high-density event streams, resulting in a large number of

vertices and edges [53]. Consequently, it is often necessary

to sample a subset of events from the batch to reduce storage

and computational costs [20], [52]. Moreover, unlike CNNs

in traditional computer vision, there is limited availability

of GCN models pre-trained on large-scale datasets. This

hampers the ability to leverage transfer learning. As a result,

researchers often develop their own GCN architectures to

accommodate the generated graphs [20], [27], [52].

C. AUGMENTATION METHODS FOR EVENT-BASED VISION

Data augmentation techniques play a crucial role in enhanc-

ing the performance and generalization of deep learning

models. Given the limited availability of labeled event-based

datasets, augmentation methods offer an effective approach

to expand the training data and improve model robustness.

In this subsection, we provide an overview of the different

augmentation methods proposed for event data.

Li et al. [54] propose several randomized geometric aug-

mentations for training SNNs. These include common

techniques such as horizontal flip, translation, and rotation;

as well as other unique techniques such as cutout, shear,

and CutMix. These transformations introduce variations and

enhance model performance. Gu et al. [55] introduce Event-

Drop, an augmentation framework for randomly dropping

events within an event batch. It explores various event-

dropping techniques, including dropping events within a

random time period, pixel area, or a random portion of the

sampled events. EventDrop improves robustness and has been

evaluated for event-based object recognition. The authors

also explore the use of EventDrop on different combina-

tions of event representations and pre-trained classification

models. EventMix [56] presents an advanced augmentation

framework that uses a random 3D mask to mix different

event-batch samples and their labels. This mixing technique

enhances the diversity of the training data and has been

evaluated on a set of event-based recognition benchmarks as

well. Naeini et al. [57] propose spatial, noise, and time-series

augmentations to improve contact-force estimation. Spatial

augmentations include rotations and resizing. Noise augmen-

tations add sequences of noise to the dataset, which are gener-

ated by recording similar sequences without any movement.

Time-series augmentations include frame-shifting, which

shifts all generated batch-representation frames within a

given sequence; and temporal event shifting, where a fraction

of events are randomly selected and removed from one frame

and appended to an adjacent frame. For both types of time-

series augmentations, the authors explore a fixed index-shift

range of +3 to −3. These augmentation methods, along with

others proposed in the literature, contribute to addressing

the dataset scarcity issue in event-based vision. By applying

these techniques, models can better handle variations in event

data and improve their generalization capabilities. However,

despite their importance, event data augmentation techniques

are still not thoroughly explored in the literature.

D. LITERATURE CONTRIBUTION

In this paper, we present the CSTR, an alternative image-

like representation for event-based vision. The CSTR offers

a comprehensive representation of sparse event data when

processed in batches while requiring minimal memory

resources. It provides a choice that eliminates the need for

manual parameter tuning and can be generated in an online

manner. It is important to note that the CSTR is not meant

to replace advanced or more sophisticated representations.

Rather, it serves as an excellent representation choice for

initial proof-of-concept and facilitates the rapid deployment

of event-based solutions. This is due to the compact 3-channel

image-like format of the CSTR, which enables the direct

utilization of state-of-the-art computer vision architectures.

To validate the effectiveness of the CSTR, we conduct

several experiments on various event-based recognition

benchmarks comparing it to other image-like representations

of similar complexity using various pre-trained classification

networks. Additionally, we supplement our representation

with several randomized augmentation methods that impact

different components of events, including spatial, temporal,

and polarity. These augmentation techniques further con-

tribute to improving the performance and the generalization

capabilities of event-based vision models.

III. METHODOLOGY

In this section, we present our proposed event-based rep-

resentation. First, we provide a detailed overview of how

events are generated. Then, we define the common and

foundational image-like representations that form the basis

of our work. These representations fundamentally encode

the spatial and/or temporal components of events within

the event batch. By analyzing the characteristics of these

representations, we derive a more advanced spatio-temporal

representation that enhances performance.We visualize these

representations on the evaluation datasets in Fig. 2 (see: next

page). Given that our approach aims to improve temporal

context, we also introduce a novel temporal augmentation

technique to address the sparseness of training data.

A. EVENT GENERATION MODEL

In contrast to traditional cameras, event-based sensors

capture per-pixel brightness changes, asynchronously [6].

At a given pixel (x, y), an event e is generated whenever

the logarithmic change in brightness intensity exceeds a

predefined contrast threshold C . This can be expressed as

follows:

|log(I (x, y, t)) − log(I (x, y, t − 1t))| g C, (1)

where I (x, y, t) represents the intensity measurement at

spatial position (x, y) at time t , and 1t represents the time

duration since the last generated event at the same spatial

position. The polarity p of an event is determined by the

sign of the brightness change. A brightness increase (on

event) is assigned p = +1, while a brightness decrease

(off event) is assigned p = −1. Thus, p ∈ {+1, −1}.
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FIGURE 2. Visualizations of the CSTR as well as the foundational event representations investigated in this work using various object and action
recognition datasets. To enable visualization, we normalize the Binary and Polarized Event Count representations. Further, due to the significant event
noise present in the N-Caltech101 [24] samples, we amplify the event count channels by a factor of 20 to improve visualization. This is shown in the 3rd
row, columns 3, 4, 6, and 8.

Event-based sensors report each captured event ei as a

combination of a microsecond timestamp ti, a polarity pi,

and a two-dimensional spatial coordinate (xi, yi). In general,

an event stream ε composed of n sequential events can be

denoted as:

ε → {(t1, x1, y1, p1), (t2, x2, y2, p2), . . . , (tn, xn, yn, pn)}.

(2)

Events can be grouped into batches either based on a

specified batch-sampling period 1T or a fixed number of

events. In this work, we focus on event batches accumulated

using predefined batch periods to enable a synchronous

response.

The event generation process outlined above captures the

spatio-temporal dynamics of the scene. This is done by

detecting changes in brightness intensity and encoding them

as events with corresponding timestamps, spatial coordinates,

and polarities.

B. FOUNDATIONAL EVENT REPRESENTATIONS

To represent a batch of events ε captured during a sampling

period1T , several image-like representations can be formed.

We identify five foundational approaches identified in the

literature: Binary Event Frame, Polarized Event Frame,

Binary Event Count, Polarized Event Count, and Times-

tamp Image. While these representations are not typically

referred to as Binary or Polarized, we use these terms to

distinguish between them clearly. We detail these approaches

next.

1) BINARY EVENT FRAME

The Binary Event Frame binarizes whether any events are

detected at a given spatial location. Each pixel position in

the resulting two-dimensional H×W representation can be

encoded as follows:

Fbin(x, y) =

{

1, if x = xi & y = yi

0, otherwise,
(3)
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where xi and yi are the spatial coordinates of each event ei
in the batch ε. We encode the presence of an event as 1 and

the absence of any as 0. This representation is visualized in

Fig. 2, column one. Note how this approach is very simplistic

and has low contrast; this is because it is highly sensitive

to motion-overlapping, where multiple events occur at the

same spatial location, as well as noise captured by the event

camera. Accordingly, this representation suffers from frame

saturation which results under almost any batch-sampling

duration, as shown in Fig. 2.

2) POLARIZED EVENT FRAME

The Binary Event Frame can be extended to include polarity

information. The Polarized Event Frame incorporates this in

a 2×H×W 3D matrix. The event batches are defined by:

F(x, y, p) =

{

1, if x = xi & y = yi & p = pi

0, otherwise,
(4)

where xi and yi are the spatial coordinates and pi is the

polarity of each event ei. We similarly encode detected

events by 1 and the absence of events as 0, but for

each polarity. This representation is visualized in Fig. 2

(second column), showing a notable contrast improvement.

Similar to the Binary Event Frame, this representation also

suffers from frame saturation. Accordingly, both Event Frame

representations are more effective when generating batches

based on a constant number of events (ideally a low number)

instead of a fixed sampling duration [19].

3) BINARY EVENT COUNT

Alternative to the Binary Event Frame, the Binary Event

Count representation captures the number of events at each

spatial position. We encode this with the following equation:

Cbin(x, y) =

n
∑

i=1

[x = xi & y = yi], (5)

where n is the number of events. The Iverson bracket here

would be equal to 1 if the expression is true, which is

whenever an event has the same spatial location as the pixel

(x, y). This representation retains more information about the

scene at each spatial location. Moreover, as visualized in

Fig. 2 (third column), this representation shows high temporal

precision, albeit at the cost of less sharp contour details.

4) POLARIZED EVENT COUNT

Analogous to the Polarized Event Frame, the Binary Event

Count can be extended to include event-polarity context.

We similarly represent this with a 2 × H × W matrix as

follows:

C(x, y, p) =

n
∑

i=1

[x = xi & y = yi & p = pi], (6)

where n is the number of events, xi and yi are the spatial

coordinates and pi is the polarity of each event ei. This is

visualized in Fig. 2 (fourth column), improving the contour

details (though still not as sharp as the Polarized Event

Frame). In contrast to the Event Frame representations, the

Binary and Polarized Event Count representations do not

suffer from frame saturation. Instead, they are robust to long

batch-sampling durations, as shown in Fig. 2. Nevertheless,

both Event Count representations require significant motion

overlap and high event-density streams to yield a meaningful

signal.

5) TIMESTAMP IMAGE

An alternative approach to tracking the number of events is to

identify the most recent timestamp instead. This is achieved

using the Timestamp Image representation [42], which is a 3D

matrix of size 2×H×W . Assuming that the batch’s events are

sorted in chronological order (i.e., from oldest to newest) we

obtain this representation as follows:

Ts(x, y, p) =







ti − ts

1T
, if x = xi & y = yi & p = pi

0, otherwise,

(7)

where ts is the raw time offset representing the start of

the event batch with temporal duration 1T , and ti is the

timestamp of the event ei. In (7), Ts(x, y, p) represents the

normalized timestamp (in the range of [0, 1]) of the latest

event occurring at the pixel location (x, y) and polarity

p. The subtraction of ts removes the time offset from

each event’s timestamp. This representation is visualized in

Fig. 2 (fifth column), where the normalized recent timestamp

further improves contour details over the naive Event Frame

representations. Note, however, that this improved contrast

diminishes under high-density event streams with long

batch periods. Additionally, the Timestamp Image is also

susceptible to noise in more recent events.

6) COMBINING TIMESTAMP IMAGE AND EVENT COUNT

Given the inherent limitations of the Timestamp Image

and the Event Count representations, combining them can

enhance their robustness [47]. To achieve this, we concatenate

the two-channel Timestamp Image Ts, defined in (7), with the

normalized one-channel Binary Event Count. The normalized

Binary Event Count Ĉbin is defined as follows:

Ĉbin(x, y) =
Cbin(x, y)

max(Cbin)
, (8)

where max(Cbin) is the maximum event count in the frame.

This combination results in a 3 × H × W 3D matrix,

as visualized in Fig. 2 (sixth column). While the addition of

the event-count information improves the contour details, the

contrast of the recent timestamp channels is still affected by

long batch periods with high event density.

C. COMPACT SPATIO-TEMPORAL REPRESENTATION

The combined Timestamp Image and Event Count repre-

sentation is generally robust but can lose temporal context

with motion-overlapping. A recent timestamp is most useful
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when the event data is temporally sparse; however, can lose

general temporal context when there are many overlapping

events. This bias can happen frequently when subjected to

highly textured scenes or long batch periods. To address

this, we introduce the compact spatio-temporal representation

(CSTR).

The CSTR improves the timestamp information by utiliz-

ing the mean timestamp instead to better capture temporal

context. Thus, we initially accumulate the normalized

timestamp values of all events at each spatial position as

follows:

S(x, y, p) =

n
∑

i=1







ti − ts

1T
if x = xi & y = yi & p = pi

0, otherwise,

(9)

where S(x, y, p) represents the sum of the normalized event

timestamps at position (x, y, p). Then, we calculate the mean

of events’ timestamps by dividing (9) over (6) as follows:

T̄s(x, y, p) =







S(x, y, p)

C(x, y, p)
, if C(x, y, p) ̸= 0

0, otherwise,

(10)

where T̄s(x, y, p) represents the mean timestamp at position

(x, y, p). This is visualized in Fig. 2 (seventh column).

Nevertheless, mean timestamps on their own can be insuf-

ficient to represent the event data. Incorporating the event

count can provide vital event-overlap context. Therefore,

we concatenate the 2-channel mean timestamp T̄s, defined in

(10), with the normalized Binary Event Count Ĉbin, defined

in (8). This yields a 3-channel representation. We visualize

the CSTR in Fig 2 (last column), showing that it retains

strong temporal context and contour sharpness. Hence, the

CSTR approach adds robustness to motion-overlapping while

retaining direct compatibility with existing computer-vision

networks.

D. EVENT-BASED DATA AUGMENTATION FRAMEWORK

Randomized data augmentations can improve the generaliza-

tion of deep learning models. Further, they can complement

the spatio-temporal representations in event-based solutions.

Accordingly, we propose a simple framework for randomized

event-data augmentations that affect the spatial, temporal, and

polarity information of event data. These augmentations can

be combined and applied when training an event-based deep

learning model with a spatio-temporal representation.

1) SPATIAL AUGMENTATIONS

Spatial augmentations are a common solution for introducing

variations across the spatial dimension. In our framework,

we explore a combination of rotations, rescalings, crops, and

horizontal flips, each with its own parameters to set. For opti-

mal computational efficiency, we apply spatial augmentations

to the generated image-like event-batch representations.

FIGURE 3. Illustration of the proposed temporal augmentation method.
Spatio-temporal events within a given batch are uniformly time-shifted
by a randomized value λ multiplied by 1T . Events that fall outside the
original temporal range [0, 1T ] are subsequently removed. The maximum
temporal shift ¹t that is demonstrated here is ±50% of the batch
duration 1T .

2) TEMPORAL AUGMENTATIONS

Rich temporal information is a major component of event

data. Temporal augmentations can help enhance a model’s

ability to handle temporal dynamics. This is vital for

representations that incorporate temporal information (e.g.,

Timestamp Image [42]). As illustrated in Fig. 3, events are

shifted based on a randomized value λ within the range

of [−1,+1], which is generated per event batch sample ε.

This dynamic but consistent temporal shifting allows the

model to learn from different temporal perspectives and

improves its robustness to varying temporal dynamics. The

temporal shift for each event ei in the event batch ε can be

expressed as:

t ′i = ti + ¹t (λ1T ), (11)

where t ′i is the shifted timestamp of event ei, ¹t is the max

temporal shift threshold (¹t ∈ (0, 1)), and 1T is the batch-

sampling period. A balanced value for the max temporal shift

threshold ¹t is 0.5, which indicates that the batch’s events can

be only shifted by a max of 1T
2

in either direction (shown

in Fig. 3). Then, we filter out any events that fall outside

the original batch’s temporal range of [0, 1T ]. Note that the

proposed temporal augmentations are applied to a given event

batch ε before generating an image-like representation.

3) POLARITY AUGMENTATIONS

Polarity augmentations introduce variations across the polar-

ity domain, enabling the model to learn from varying

polarity correlations of events. In our framework, we adopt

a simple approach of inverting all the polarities in an event

batch prior to frame transformation. This polarity inversion

typically implies the reversal of the direction of motion

and can introduce robustness to variations in lighting and

motion. Hence, for each event ei in an event batch ε, the

polarity pi is inverted to p̄i if the threshold ¹p is met. The

threshold ¹p is ideally set to 0.5, indicating a 50% chance

of inverting the polarities of a given event batch ε. Similar

to the proposed temporal augmentation method, the polarity

augmentations are applied before generating the image-like

representation.
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TABLE 1. Statistics of the event-based object and action recognition datasets used in our experiments. The symbol † indicates that the referenced dataset
does not have an official test split, while ‡ denotes that the dataset’s original sequences were divided into samples of 500 ms with a 250 ms step size
(following [58]).

IV. EXPERIMENT SETUP

In this section, we evaluate the proposed event-based

representation for object and action recognition. Our primary

comparison is evaluating our proposed event representation,

the CSTR, against the foundational representations defined

in the methodology (Section III-B). We do this over a series

of well-known datasets to demonstrate our improvements

in recognition tasks. Next, we take the best-performing

spatio-temporal representations and do a second comparison

while employing our proposed augmentation framework.

Our experimental setup, including the network structures,

datasets, augmentations, and training parameters are intro-

duced next.

A. EXP I: BASELINE REPRESENTATION EVALUATION

In the baseline experiment, we compare the CSTR against

the six foundational event representations presented in

Section III-B. Recall that the Event Frame representations are

traditionally encoded as either 0 or 1, while the foundational

Event Count representations are encoded as the number of

events (without scaling). However, the Event Count channel

associated with the combined Timestamp Image & Event

Count and the CSTR is normalized. This is done by dividing

each event-count value by the maximum number of events

in the frame as defined in (8). We apply this because the

temporal representations are already scaled to be in the [0, 1]

range.

We add rigor by exploring three-channel configurations

for the one- and two-channel representations. We do this to

enable direct compatibility with the classification networks’

input structures and better leverage their pre-trained weights.

In the case of the one-channel Binary Event Frame and

Binary Event Count, we replicate the resulting channel three

times. In the case of the Polarized Event Count, Timestamp

Image, and the CSTRwith mean timestamps only, we append

an empty channel of zeros of the same spatial dimensions.

Lastly, for the two-channel Polarized Event Frame, we first

convert to an intermediary one-channel representation, where

positive and negative events are denoted by values of

+1 and −1 (following the approach proposed in [18]).

We then replicate this three times instead of padding with

a channel of zeros. These configurations are determined

through experimentation to yield optimal results for each

representation.

1) EVENT-BASED RECOGNITION DATASETS

Several event-based object and action recognition datasets are

available in the literature. In this work, we utilize four com-

monly used event-based datasets to evaluate our proposed

methods for object recognition: N-MNIST [24], N-Cars [25],

N-Caltech101 [24], and CIFAR10-DVS [26]. Additionally,

we evaluate our methods on two action recognition datasets,

namely ASL-DVS [27] and DVS-Gesture [28]. In Table 1,

we provide an overview of the main details and statistics of

the selected recognition datasets.

For object recognition, all datasets except N-Cars [25]

are effectively event-based versions of their frame-based

counterparts commonly used in conventional computer

vision. These datasets are generated using an event-based

sensor, such as the DVS-128 [6] or the ATIS [7], mounted on

a platform that moves in parallel to a screen displaying image

samples of each dataset. The platform is programmed tomove

at various velocities and motions to simulate events similar

to real-world sensor data. N-Cars [25], on the other hand,

was generated using an event camera mounted on a moving

vehicle driving on real-world roads. The dataset consists of

events captured by the event camera as the vehicle encounters

different objects, including cars and pedestrians, in various

driving scenarios.

For action recognition, ASL-DVS [27] consists of 24 hand

shapes resembling different letters from the American

Sign Language. These shapes were recorded in an office

environment with constant illumination using DAVIS240c

[8]. For each letter, 4200 samples were collected at a sampling

duration of 100 ms. Meanwhile, DVS-Gesture [28] consists

of 1342 event-data sequence recordings of 11 different

gestures. These sequences were captured under three lighting

conditions and performed by 29 individuals. Due to the
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considerable length of the dataset’s sequences (∼100 seconds

on average), we divide each into shorter samples of a fixed

batch-sampling period. Initially, each sequence is split into

a subsequence per gesture. Then, the resulting subsequences

are further divided into 500 ms samples with a 250 ms step

size, following a similar approach used in previous works

[20], [51], [58]. The resulting number of samples is presented

in Table 1.

Except for DVS-Gesture [28], we use the provided samples

with pre-defined batch periods 1T from each dataset,

as outlined in Table 1. The sampling periods range from

100 ms (N-Cars [25] and ASL-DVS [27]) to roughly

1300ms (CIFAR10-DVS [26]). This enables us to analyze the

robustness of different event representations to various batch-

sampling periods.

Furthermore, Table 1 demonstrates an uneven distribution

in the average number of samples per class across the

datasets. N-MNIST [24], N-Cars [25], ASL-DVS [27], and

DVS-Gesture [28] exhibit a substantial number of samples

per class facilitating effective training and fine-tuning

of classifiers. In contrast, CIFAR10-DVS [26] and N-

Caltech101 [24] have significantly fewer average numbers

of samples per class of 1000 and 81, respectively. While

the samples of CIFAR10-DVS [26] are uniformly distributed

among classes, the samples N-Caltech101 [24] are highly

unbalanced, ranging from 31 to 800 samples per class, posing

a challenge for object recognition tasks.

For datasets without an official test split (N-Caltech101

[24], CIFAR10-DVS [26], and ASL-DVS [27]), we adopt

the 80%-20% training-testing dataset-split strategy employed

in similar works [20], [25], [51]. These splits are generated

once and utilized consistently throughout the experiments

of this work to ensure consistent benchmarking and fair

comparisons. In addition, to address the imbalance in the

sample distribution within N-Caltech101 [24], we apply the

same split ratios to each class’s samples. This approach

avoids imbalanced splits and maintains a fair and consistent

benchmarking process across the different methods evaluated

in this work.

2) CLASSIFICATION MODELS

We evaluate each event representation using six popular

pre-trained CNN image classifiers. We do this both for

completeness and to represent real-world use. These classi-

fiers include: ResNet18 [15], ResNet50 [15], MobileNetV2

[59], both Small and Large variants of MobileNetV3 [60],

and InceptionV3 [61] (limited to 3-channel representations

only). We initialize all networks with weights pre-trained on

ImageNet [62]. Then, we replace the final fully connected

layer with a corresponding layer that matches the number of

output classes in the utilized dataset. For representations with

1 or 2 channels, we replace the initial input convolutional

layers of each CNN classifier with randomized weights

to accommodate the desired number of input channels.

Subsequently, we fine-tune these networks on the evaluation

datasets. Throughout our experiments, we observed that uti-

lizing the frame-based architectures as-is (i.e., for 3-channel

representations) yields better results due to more effective

fine-tuning. Consequently, whenever possible, we present

either a replicated or an extended 3-channel version of all

tested representations.

3) TRAINING PARAMETERS

For all models trained in this work, we use the cross-entropy

loss with the ADAM [63] optimizer (without weight decay),

for up to 50 epochs. We utilize an initial learning rate of 1 ×

10−3 for N-MNIST [24], N-Cars [25], and ASL-DVS [27];

and 3 × 10−4 for the more challenging N-Caltech101 [24],

CIFAR10-DVS [26], and DVS-Gesture [28]. While more

advanced learning rate schedulers can be employed, we avoid

them to limit the number of hyper-parameters and simplify

the comparison.

During training, each batch-representation sample is

initially generated with a resolution matching the spatial

dimensions of the utilized dataset (as shown in Table 1).

The resulting 3D representations are then scaled to 224 ×

224 for all classifiers, except for InceptionV3 [61] which

requires a 3-channel input with the spatial dimensions of

299 × 299. After rescaling, we apply standardization to the

resulting 3Dmatrices using normalization parameters derived

from ImageNet [62] (i.e., mean and standard deviation).

Our experiments (using the CSTR with the object recog-

nition datasets) consistently show an average classification

accuracy improvement of approximately 5% when utilizing

ImageNet normalization parameters. This improvement is

observed compared to using each dataset’s distribution

parameters or when not applying normalization. It can be

attributed to the suitability of ImageNet parameters for

generalizing image-like representations. This is particularly

important given the relatively low number of samples of the

event-based datasets used in our experiments, compared to

ImageNet [62], making them less optimal for removing input

bias through standardization.

Furthermore, we randomly split the training set by 75%

for training and 25% for validation. In addition, to ensure

proper convergence and robust generalization, the samples

of the validation split are randomly selected per each class’s

number of samples. This ensures a more balanced and

well-representing validation set. For all models trained in

the baseline experiment, we use early stopping to prevent

overfitting. Specifically, we monitor the validation loss

during training, and if it does not improve for 10 consecutive

epochs, we stop the training early to avoid further overfitting.

Afterward, we choose the model with the lowest validation

loss that results during training. We follow the same

procedure when not utilizing early stopping as well. Finally,

we use a batch size of 64 for all the models we train

throughout this work.
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TABLE 2. Average test classification accuracy results for the foundational event representations and the CSTR across different recognition datasets. Each
result is the average of up to 6 classification models as specified in Section IV-A2. Note that the 1 and 2-channel representations are additionally
transformed into 3-channel representations as specified in Section IV-A, and indicated by the ∗. The best and second-best results are highlighted in bold
and underlined, respectively.

B. EXP II: RANDOMIZED EVENT AUGMENTATIONS

With a baseline established, our next experiment aims to

leverage the randomized augmentation framework introduced

in Section III-D. Augmentations are a popular method

for addressing data sparsity as they introduce variance

in the spatial, temporal, and/or polarity characteristics.

We believe these effects can also be used to further investigate

batch-representation stability and explore how well the per-

formance of spatio-temporal representations scales with the

proposed randomized event-based augmentation framework.

In this experiment, we explore different settings for

each type of randomized augmentation (spatial, temporal,

and polarity). For spatial augmentations, we apply crops,

rotations, and translations to the generated image-like

representations. Initially, we randomly take crops of 90-100%

of the spatial frame size with aspect ratios ranging from 3:4

to 4:3. We also apply translations of up to 10% in the x and

y axis (up to 5% for N-Cars [25]) and rotations of up to

±10◦ (up to ±30◦ for N-MNIST [24]). Additionally, random

horizontal flips are used with CIFAR10-DVS [26] (applied

prior to the other spatial transformations) with a threshold of

0.5. For both temporal and polarity augmentations, we utilize

a balanced value of 0.5 for both the maximum temporal shift

¹t and the polarity inversion thresholds ¹p. We note that all of

the proposed randomized augmentations are only applied to

the training splits (i.e., excluding validation splits).

Furthermore, we explore different combinations of the

proposed augmentation methods. Spatial augmentations can

be highly beneficial as spatial dependencies are typically

the most informative, especially when identifying the edges

or contours of an object. However, when utilizing event

data, they require careful manual tuning. On the other hand,

the proposed temporal and polarity augmentations have

minimal parameters to tune and can naturally complement

the training of any event-based solution. Therefore, we focus

on the temporal-polarity augmentation combination as

an alternative that requires no tuning when using their

default threshold values. Finally, for a more comprehensive

approach, we explore a combination that incorporates all

three event-based augmentation methods.

We perform this experiment only on the spatio-temporal

representations presented in this work. This includes the

proposed 3-channel variants of the CSTR and the Timestamp

Image. These representations are selected because the pro-

posed framework primarily affects the temporal and polarity

information of event data, making them optimal for spatio-

temporal representations. Additionally, we only utilize the

three best classifiers found during the baseline experiment:

ResNet18 [15], ResNet50 [15], and InceptionV3 [61]. The

ASL-DVS [27] dataset is excluded from this experiment as its

performance is already effectively saturated without the use

of augmentations. Finally, we provide sufficient training time

to ensure reaching an optimal global minimum, by training

each model for 50 epochs without early stopping. We use

an initial learning rate of 1 × 10−4 instead while keeping

all the other evaluation parameters identical to the initial

experiment.

V. EVALUATION RESULTS

In this section, we present our experimental results. We first

do a baseline evaluation of the CSTR and six founda-

tional representations across popular event-based recognition

datasets. We then identify the best performers and re-evaluate

them when using the proposed augmentation framework.

These experiments help show that the proposed CSTR is a

robust means of representing event batches, including ones

with long temporal durations and high event density. Finally,

we present a comparison with other works in the literature.

A. EXP I: BASELINE EVALUATION RESULTS

We present the baseline evaluation results in Table 2. This

table shows the average performance of the representations

with all six classification networks detailed in the Exper-

imentation Setup (see: Section IV-A2). For space reasons,
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TABLE 3. The effects of the proposed event-based augmentation framework on the average test classification performance of the different
spatio-temporal representations explored in this work. Each result represents the average classification accuracy of the top three classifiers only
(ResNet18, ResNet50, and InceptionV3) due to the complexity of training with augmentations. The first row represents the baseline results obtained
without any augmentation, serving as a reference point for each representation. The subsequent rows demonstrate the performance improvements
achieved when using the respective augmentation configurations. Notably, only the augmented three-channel representations are considered, as outlined
in Section IV-A and indicated by the ∗. The best-performing baseline representation is indicated by the †, while the representations yielding the best and
second-best performance with augmentations are highlighted in bold and underlined, respectively.

we provide a full breakdown of each network’s performance

in Table 5 of the Appendix A. We note a few basic obser-

vations. First, including polarity improves generalization.

We see this mainly in the Event Frame representations,

as well as the Event Count representations but to a lesser

extent. This aligns with the methodology expectations.

Second, there is a benefit to maintaining the classification

networks’ native input structure. In all cases, transforming

a one or two-channel representation into three channels (by

either padding or replicating data) consistently improves

classification accuracy. This reinforces the value of transfer-

learning frame-based networks for event-based applications.

Lastly, our representation, the CSTR, has the highest average

classification accuracy and is the best overall in four of the

six datasets.

The strength of the CSTR is in addressing motion-

overlapping. We can see that of the foundational event

representations, the simple Binary Event Count is rather

robust. This implies that the number of events per batch

is strongly correlated with the classification task, where

adding polarity helps better describe the type of motion.

Intuitively, this implies that better describing the event’s

temporal distribution should improve performance. While

the Timestamp Image does this via recent timestamps, this

approach can be biased for longer temporal periods. The

CSTR addresses this by representing the aggregate behavior

with the mean timestamp and generalizes very well across

datasets, including those with long temporal durations and

high event density.

We note the results get particularly interesting with the

CIFAR10-DVS [26] dataset. In general, all classification

networks for all representations notably overfit. This over-

fitting concern is verified by the simple Binary Event Count

having the highest dataset classification accuracy, remaining

in line with its accuracy on other datasets. We believe this

overfitting is partially due to the dataset being generated by

repeated back-and-forth motions (frequent direction change),

causing very significant motion overlap [26]. Furthermore,

the CIFAR10-DVS [26] data collectionmethodology uses up-

scaled 32 × 32 RGB images that appear rather blurry [26].

This blurriness reduces the edge features the events depend

on and inherently increases sensitivity to sensor noise. With

this said the CSTR still does relatively well, but incrementally

worse than the Timestamp Image representations.We hypoth-

esize here that the timestamp recency better correlates with

back-and-forth motions versus the timestamp mean.

Lastly, we observe that the optimal classification network

can vary across representations and datasets. Intuitively, clas-

sification network accuracy should correlate with ImageNet

accuracy; however, the expanded results given in Appendix A

(Table 5) show that this is not always the case. We conjecture

that this can be a function of dataset density and intra-class

variance. When the variance is particularly high, such as in

the CIFAR10-DVS [26] dataset, the smaller networks tend

to generalize better. This is likely a result of overfitting,

where the smaller parameter spaces inherently regularize

themselves. However, we also note the large InceptionV3 [61]

network is still the top performer for some representations.
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TABLE 4. Comparison with the self-reported state-of-the-art works. Our proposed representation, the CSTR, yields very competitive results when
compared with state-of-the-art event-based object and action recognition on the utilized datasets. For datasets without an official split, the † symbol
denotes that the referenced result was based on a 90%-10% split, compared to the typical 80%-20% split. The best and second-best results are
highlighted in bold and underlined, respectively.

This implies picking the optimal network may ultimately

require experimentation. We recommend that the developer

assess various networks and select the one that best fits their

accuracy and run-time requirements.

B. EXP II: RANDOMIZED AUGMENTATIONS RESULTS

We present the results of the augmentation evaluation in

Table 3. Starting with the baseline results, we observe that

the CSTR consistently outperforms other representations

when considering the top-3 classifiers (ResNet18, ResNet50,

InceptionV3) on most datasets. This emphasizes the robust-

ness of the CSTR in capturing spatio-temporal information

across varying batch periods. The slight underperformance of

the CSTR on the N-Cars dataset compared to the Timestamp

Image representation can be attributed to the dataset’s low

event density and short batch periods. This causes larger

classification networks to underfit with more complex repre-

sentations.We observe this with DVS-Gesture as well. Never-

theless, the introduction of the proposed augmentations high-

lights the limitations of the Timestamp Image. Specifically,

the CSTR demonstrates superior results on N-Cars when uti-

lizing either the temporal-polarity augmentation combination

or combining all three augmentationmethods. This highlights

the CSTR’s ability to encode spatio-temporal information

optimally when provided with sufficient training variations.

Overall, the augmentation framework shows significant

performance improvements across all benchmarks. When

using a single augmentation method, the proposed temporal

augmentation method can match and even exceed the

performance of hand-crafted spatial augmentations. This

is evident in the highest average performance achieved

by a single augmentation method (i.e., 91.2% when using

the CSTR). We find that the CSTR benefits the most

from the temporal augmentations due to its effectiveness at

encoding temporal information. On the other hand, spatial

augmentations, while generally reliable, have limitations

on datasets with challenging spatial characteristics like N-

Caltech101 [24]. Furthermore, spatial augmentations require

manual tuning for optimal results. In contrast, the proposed

temporal and polarity augmentations serve as a promis-

ing alternative, requiring minimal tuning and consistently

outperforming spatial augmentations on average across all

evaluated representations. This makes them particularly

advantageous for optimizing deep learning models in event-

based applications.

Interestingly, we find that combining all augmentation

methods (spatial, temporal, and polarity) does not consis-

tently yield the best performance. The significant variations

introduced by this combination can lead to underfitting,

considering the utilized regularization approach. Therefore,

we suggest exploring an alternative approach of randomly

selecting one of the augmentation methods per event-batch

sample during training. Additionally, we observe that spatial

augmentations underperform polarity and temporal aug-

mentations on the N-Caltech101 [24] dataset. This can be

attributed to the dataset’s imbalance, where typical spatial

augmentations are insufficient to improve generalization.

In conclusion, our findings demonstrate the strength

of the CSTR and its ability to leverage the proposed

augmentation framework. The temporal augmentations prove

to be the most advantageous on average for the CSTR,

showcasing the CSTR’s effectiveness in capturing temporal

information. Moreover, combining multiple augmentation

methods can enhance generalization performance. However,
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further exploration and optimization of the augmentation

methods are necessary to maximize performance and address

limitations.

C. COMPARISON WITH THE STATE-OF-THE-ART

In this section, we compare the performance of the CSTR

with other approaches that utilize the same recognition

datasets. Although each approach utilizes different methods

and training configurations, our aim here is to highlight the

efficacy of the CSTR when combined with off-the-shelf pre-

trained classification networks. Furthermore, we emphasize

how the performance can be further improved by leveraging

the proposed augmentation framework for event data.

We present the performance comparison in Table 4. While

most works report results for an 80-20% split, we provide the

results of our framework on a 90-10% split for CIFAR10-

DVS [26] as well to establish a fair comparison with those

that utilize such a split. For our results on DVS-Gesture

[28], we adopt a simple moving-majority filter to handle the

long-term temporal dependencies, as applied in [23], [58].

This filter outputs the most frequent gesture classification out

of the last 5 (i.e., 1250 ms moving window). If there is more

than one gesture with the same number of classifications (or

none), the filter simply returns the classification result for the

current event batch. It is worth noting that all the referenced

works also utilize a 500 ms sampling period for splitting the

event sequences of the DVS-Gesture [28] dataset.

Overall, the results show that the CSTR performs excel-

lently across the employed benchmark datasets. In terms

of the baseline performance (excluding augmentations), the

CSTR notably achieves state-of-the-art results on CIFAR10-

DVS [26] and consistently ranks as the second-best on ASL-

DVS [27]. This demonstrates the robustness and versatility of

the CSTR which requires minimal configuration and enables

a direct and effective deployment for event-based solutions.

To demonstrate the impact of the proposed augmentation

framework, we compare the results with other works that

incorporate different augmentation techniques for event data.

One such work utilizes EventMix [56] augmentations in com-

bination with the Polarized Event Count representation. This

work splits the provided batch samples of the N-Caltech101

and CIFAR10-DVS datasets into 10 slices of equal temporal

duration. This effectively yields 10 times the original number

of samples of each dataset. In contrast, we utilize the

provided batch samples of each dataset as-is. Despite this, the

CSTRwith the randomized Temporal-Polarity augmentations

proves to be highly competitive, even without splitting

the datasets’ samples. Accordingly, the CSTR demonstrates

significant robustness to varying batch periods. Furthermore,

we show that the CSTR, in combination with the proposed

temporal and polarity augmentations, can achieve stronger

results on N-Caltech101 [24] even with less training data.

Lastly, the addition of the augmentation framework signif-

icantly improves the performance of the CSTR, surpassing

more advanced representations such as EST [22] with the

EventDrop [55] augmentation framework.

Our findings highlight the strength of the CSTR rep-

resentation when combined with off-the-shelf pre-trained

classifiers. They showcase the effectiveness of the CSTR in

capturing temporal information and leveraging the robustness

of pre-trained networks without any modification to the

input layers. Thus, the CSTR retains a compact input

dimensionality and effectively leverages transfer learning.

Furthermore, the proposed augmentation framework offers

a promising alternative for enhancing generalization per-

formance without the need for significant manual tuning.

Finally, we note that the results presented utilize a simple

training framework. Therefore, various training optimization

and batch-sampling techniques can be explored to further

improve robustness.

VI. CONCLUSION

In this work, we introduce the compact spatio-temporal

representation (CSTR) for event-based vision. When dealing

with asynchronous event data, it is common to accumulate

events in batches to generate a synchronous response. In order

to do so, an intermediate representation is needed, especially

when utilizing modern computer vision architectures. Thus,

encoding the data into a representation compatible with

existing classification networks is crucial for leveraging

transfer learning and avoiding the complexity of designing

custom deep-learning architectures. Foundational event rep-

resentations typically encode either the number of events or

the most recent event’s timestamp per spatial location (based

on polarity). These approaches are convenient and relatively

robust but can be sensitive tomotion-overlapping (common in

long sampling duration) and possibly deficient for high event-

density streams.

The CSTR improves upon the foundational event rep-

resentations by better describing the temporal behavior

of the asynchronous event data while retaining similar

computational complexity. This is done by calculating the

average of the normalized timestamps per each event polarity,

combined with the polarity-agnostic number of events at

each spatial index of the frame. Besides, the CSTR imposes

minimal processing overhead given that each event is only

processed once and that each spatial position is updated

independently (i.e., without the need to maintain any spatial

dependencies), as indicated in the methodology. Accordingly,

the CSTR generates a compact image-like representation that

is more robust to high-motion scenes and long temporal

durations. We validate this hypothesis through rigorous

benchmarking against similar representations.

Combining the CSTR with off-the-shelf pre-trained clas-

sifiers demonstrates its ability to effectively leverage the

power of transfer learning without modifying the input layers,

thereby retaining its compact input dimensionality. We also

propose a simple yet effective augmentation framework for

event data, significantly improving the performance and

generalization capabilities of the CSTR. This framework

highlights the potential of augmentations in event-based

recognition without the need for extensive manual tuning.
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Experimental validation confirms that the CSTR outper-

forms foundational event representations in popular event-

based applications. Benchmarking the CSTR against six

foundational representations and six common recognition

datasets (using six popular classification networks) consis-

tently shows its superior performance. Additionally, incorpo-

rating random augmentations during training, including our

proposed temporal augmentation, further enhances results

on all representations, with the CSTR generally benefiting

the most from the proposed augmentation framework. This

overall improvement validates the CSTR’s ability to robustly

encode temporal information.

The CSTR achieves our goal of providing a robust

event-batch representation that is directly compatible with

existing computer vision architectures, maintaining similar

inference complexity. As a result, the CSTR is an excellent

choice for developing event-based solutions. The combina-

tion of the CSTR with the proposed augmentation frame-

work further enhances its performance and generalization

capabilities, requiring minimal tuning and enabling direct

deployment.

While the CSTR excels as a versatile representation,

it does not directly address certain prominent challenges in

event-based vision, such as sensor noise [43]. To mitigate

these issues effectively, additional techniques may be

necessary.

Future work involves exploring the use of the CSTR

in other perception tasks, such as object detection, and

investigating additional optimization techniques to enhance

robustness. Additionally, evaluating the suitability of the

CSTR for real-time applications, where latency is a primary

concern, would be an interesting avenue to explore.

APPENDIX A SUPPLEMENTARY TABLES

In Table 5, we provide a full breakdown of the first

experiment’s results (presented in Table 2). This experiment

rigorously compares the CSTR against different foundational

representations using the event-based object and action

recognition datasets utilized in this work. Accordingly, the

result of each of the six pre-trained classification net-

works, specified in Section IV-A2, are shown. Additionally,

in Table 6, we provide a full breakdown of the second

experiment’s results (presented in Table 3). This experiment

evaluates the effects of the proposed event-based augmenta-

tion framework on the CSTR and the other spatio-temporal

representations explored in this work. The results are shown

for each of the three-best classification networks utilized in

this work (ResNet18 [15], ResNet50 [15], InceptionV3 [61]).

TABLE 5. A full breakdown of the test classification accuracy results that are presented in Table 2 for the event-based recognition datasets. The results of
each evaluated representation configuration are demonstrated for 6 different pre-trained classification networks which are fine-tuned on each dataset.
The best values are highlighted in bold per dataset and number of input channels.
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TABLE 6. A full breakdown of the test classification accuracy results that are presented in Table 3 for the event-based recognition datasets. The results of
each evaluated spatio-temporal representation are demonstrated for the top-3 pre-trained classification networks which are fine-tuned on each dataset.
The best values are highlighted in bold per dataset.
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