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Abstract

Large Language Models (LLMs) have excelled at encoding
and leveraging language patterns in large text-based corpora
for various tasks, including spatiotemporal event-based ques-
tion answering (QA). However, due to encoding a text-based
projection of the world, LLMs have also been shown to lack
a full-bodied understanding of spatiotemporal events, e.g.,
a sense of intuitive physics, and cause-and-effect relation-
ships among events. In this work, we propose using causal
event graphs (CEGs) to enhance language understanding of
spatiotemporal events in language models, using a novel ap-
proach that also provides proofs for the model’s capture of
the CEGs. A CEG consists of events denoted by nodes, and
edges that denote cause-and-effect relationships among the
events. We conduct experiments and evaluations to assess our
approach’s performance in benchmark spatiotemporal QA
tasks. Our findings demonstrate significant effectiveness, sur-
passing state-of-the-art baseline methods in both quantitative
and qualitative measures.

1 Introduction

Large Language Models have emerged as powerful candi-
dates for world models, models that succinctly represent
knowledge about the world and how it works, by demon-
strating excellent performance across several challenging
common-sense understanding benchmark tasks (e.g., the
Winograd challenge) (Levesque, Davis, and Morgenstern
2012). However, they have yet to demonstrate a robust un-
derstanding of some basic physical phenomena, such as af-
fordances (what is possible in a particular physical con-
text, e.g., can you put a coin on a soap bubble?), causality
(what events or effects necessarily need to follow a prior
causal event?) (Susskind et al. 2021; Browning and LeCun
2023). In this work, we tackle the causality challenge and
propose the use of causal event graphs as a mechanism to
inform the model about cause-effect relationships among
events, specifically within the experimental context of spa-
tiotemporal QA. We work with the benchmark spatiotem-
poral QA datasets CLEVRER and CLEVRER-Humans (Yi
et al. 2019; Mao et al. 2022). The datasets are a compila-
tion of synthetically created videos of objects on a tabletop
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that can move around on the tabletop and collide with one
another (see Section 2 and Figure 1 for dataset details), and
the task involves answering questions about spatiotemporal
events in the videos. The datasets also contain enough meta-
data to construct CEGs that capture the cause-effect relation-
ships among the video events.

Prior Work and Gaps on the CLEVRER and
CLEVRER-Humans QA Task

Prior Work

Pattern Recognition-Based Approaches. Prior work on
the CLEVRER dataset has focused on pattern recognition-
based approaches, where either the video and question pat-
terns are compressed into distributed vector-based represen-
tations (e.g., using vision models and language models), and
fed into a model that predicts different answer choices and
their probabilities (Yi et al. 2019).

Toward Utilizing Structured Information The metadata
in the CLEVRER-Humans dataset also consists of human-
curated CEGs pertaining to each video. Consequently,
researchers have since modified the pattern-recognition
pipelines to utilize compressed representations of CEGs,
e.g., using graph neural network-based methods (Wu et al.
2020)).

From Black Boxes to Methods with Proofs However,
due to the black-box nature of pattern recognition methods,
the exact mechanisms behind the model’s functioning leave
unanswered questions about the robustness of its causal-
ity understanding. Therefore researchers have also proposed
neurosymbolic approaches that, instead of directly predict-
ing the answer choices, predict a functional program that
can then be executed on an interpreter to yield the answer.
The program trace then serves as a proof that the model’s
internal structures correlate with explicit mechanisms (the
functional programs) for QA (Mao et al. 2022).

Our main contributions in this paper are to address the
two gaps discussed below.

Gaps

Intrinsic Knowledge Proofs Although prior work has
demonstrated methods that possess both the high perfor-
mance of pattern recognition-based methods and proofs that
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Figure 1: CLEVRER and CLEVRER-Humans dataset - CLEVRER consists of videos with video-based questions and answer
choices for each video. There is also a functional program corresponding to each question which can be executed by an inter-
preter to get the right answer choice. The CLEVRER-Humans dataset is enhanced with CEG representations- the green arrow
depicts the true causal relationship between nodes (events in the video), and the red arrow depicts false ones.

Green arrow: causes
Red line: bidirectional irrelevance

show the model’s internal mechanisms correlate with ex- analysis of convergence of our proposed method that shows
plicit QA mechanisms, they do not provide proof of intrinsic stable model learning and loss convergence in both experi-
knowledge of causality. In this work, we build on the fea- mental settings where the objectives are synergistic, and set-
tures of prior works, namely powerful pattern-recognition tings where they are not (see Section 4 for analysis details).
pipelines for performance, predict functional programs for

proof of QA mechanisms, and add a novel method to show 2 The CLEVRER, CLEVRER-Humans
proof of intrinsic causal knowledge capture. Specifically, the Datasets, CEGs and Training Objectives

model trained using our method not only predicts the func-

tional program that solves the QA task for the video but also CLEVRER and CLEVRER-Humans Datasets

predicts a CEG, which can then be compared to a ground The CLEVRER dataset is a compilation of videos and QA
truth CEG for the video provided in the dataset as proof of sets (questions and answer choices) corresponding to each
causal knowledge capture. This shows that the model’s in- video. The QA is centered around spatiotemporal events in
ternal mechanisms correlate with explicit QA mechanisms, the videos. Furthermore, the dataset also consists of ground
while also encoding information about causal knowledge truth-functional programs for each question that can be exe-
capture, visible through the predicted CEGs (see Section 3 cuted on an interpreter to get the correct answer choice (see
for methodology details). Figure 1 (a)). The CLEVRER-Humans dataset consists of
QA sets along with human-curated CEGs that show cause-
Lack of Framework for Theoretical Analysis Although and-effect relationships among events in the videos. The
prior work has addressed leveraging pattern recognition- events have natural language descriptions (see Figure 1 (b)).
based methods, and neurosymbolic approaches, the objec- Note that the CLEVRER-Humans dataset does not contain
tives (e.g., loss functions) employed during training for both the functional programs, only the answer choices and CEGs.
of these approaches are quite distinctly different from one
another. It is not a guarantee that the objectives are synergis- CEG Enhanced CLEVRER Dataset
tic in nature (the combined loss decreases and converges), Although the CLEVRER dataset does not consist of human-
even if they are demonstrated successfully one two syn- curated CEGs, we use natural language processing and
thetic benchmark datasets. This lack of guarantee is further knowledge engineering techniques to extract CEGs from
compounded by our additional objective that constrains the the metadata provided for each video in the dataset. Fig-
model to predict high-fidelity CEGs (CEGs that closely re- ure 2 shows the extraction process - we construct a knowl-
semble a ground truth). We, therefore, provide a theoretical edge graph, by mapping CLEVRER dataset-specific videos,
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Figure 2: Construction of CEG from CLEVRER dataset videos.

frames, objects, and events to a well-established scene un- (i1) To each node embedding, we augment its embedding by
derstanding ontology (Qasemi, Francis, and Oltramari 2023; adding a representation (embedding) of the question () ob-
Haller et al. 2019; Tiddi, Lécué, and Hitzler 2020); (2) we tained from the last layer of M(Q), 6). Note that we require
design suitable semantic queries to elicit collision events that the embedding sizes remain the same for the embedding
from this knowledge graph, (3) we query this knowledge addition to be valid, and (iii) Using the augmented node em-
graph for object movement directions, and (4) we consoli- beddings, we reconstruct a directed graph by calculating the
date and visualize the results obtained from the query into a sigmoid of the KL divergence between every pair of node
CEG as depicted in the figure. embeddings after correcting for domain errors (e.g., log of 0
or negative numbers). We will denote the steps (i)-(iii) by the

3  Methodology function G(Q, 0), where 6’ denotes the trainable parameters

relevant to steps (i)-(iii) (e.g., the node embedding layer).

We will use the examples in Figure 1(a) and (b) to ex- We minimize the objective function:

plain the methodology. As described in the previous sec- ,
tion, for the example in (a), the CEG similar to the ex- CE(M(Q,0), targets) + a(Q)MSE(G(Q, 0 )’CEth> (1

ample in example (b) is obtained through the process In the above Equation 1, the terms in the first summand CE
illustrated in Figure 2. First, consider the example in and targets, maintain their traditional autoregressive train-
(a). For each question (), and the corresponding func- ing objective definitions, namely the cross-entropy loss and
tional program, e.g., “How many spheres are moving”, and next token, respectively. The terms in the second summand
“Count(FilterMove(FilterShape(Objects,Sphere)))”, we pre- MSE, and CEGg, refer to mean squared error and the adja-
dict the concatenated question and program sequence, e.g., cency matrix for the ground truth CEG, respectively. The
“How many spheres are moving Count FilterMove Filter- intention of the second summand is to minimize the error
Shape ObjectsSphere”, in an autoregressive manner using a between the reconstructed directed graph and the ground
feedforward neural network with a position encoder. We will truth CEG. Since the next token prediction and graph re-
denote this model as M(Q, ), where 6 denotes all train- construction losses may not necessarily be minimizable syn-
able parameters (e.g., the embedding layers, position en- ergistically, we include a question-specific Lagrange multi-
coder layers, and feedforward layers). Next, we perform the plier network. The network is a two-layer feedforward net-
following steps (i) For each node in the CEG, we predefine a work with a ReLU-activated output (because Lagrange mul-
tokenization structure (e.g., the node for event A denoted is tipliers are always positive). The interpretation is that if the
token 0, the node for event B denoted is token 1, and so on ..) value of the multiplier is high, for that ), the token predic-
and embed the node tokens using a node embedding layer, tion and graph reconstruction losses can be synergistically
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minimized.

After a model is trained to minimize Equation 1, recon-
structing the graph using G(Q,0’) serves as the Instrinsic
Knowledge Proof of whether or not the causal event knowl-
edge necessary to answer input question () is being cap-
tured. The proof can be compared to the ground truth CEG
for verification and interpretation.

4 Theoretical Analysis

Here, we will make use of the canonical proofs for gra-
dient descent and stochastic gradient descent to prove that
the objective in Equation 1 will have a minimum always.
For brevity, we will denote CE(M(Q, 6), targets) by f(6),
a(Q) by A, and MSE(G(Q, 6), CEGg) by g(¢').

Theorem 4.1. Proof of Convergence using Gradient De-
scent (GD) for finding a minimizer

0* = argmin f(6) + \g(0") )
0
Proof. First, we write GD formula as follows:
Opr1 — 0
e = =V(£(0) + 2g(9) 3)
t

Here, g is the squared distance between the graph abstraction
(a matrix) and the transitive closure applied on the ground
truth graph (an adjacency matrix), and A is a penalty that
is proportional to this distance. This can be seen as a finite
difference approximation of the derivative of the continuous
function f(6) + Ag(#'), i.e., a discretization of the ordinary
differential equation

Or = =V (f(0r) + Ag(6r)) ()
Equation (4) evaluated at time ¢ yields iterate 6, after some
steps of GD. Let 6* be the minimizer of (f(6;)+Ag(6;)). We
denote f(6;) + Ag(6;) using the short hand F'(6). We make
two assumptions. First, we assume that F' is strongly convex
(locally), i.e., F(z) — F(y) + VE(y)(y — =) > §llz —y| [,
i.e., for any point of F', there is a quadratic function that
bounds its growth. Second, we assume that F' is L-Lipshitz
(strong smoothness), i.e., F(x) — F(y) + VF(y)(y — ) >
Lllz — yl|* < L|lz — y||*>. We can also write this as
F(z) = F(y) + VF(y)(y — z) > 5£[|VF(2) = VF(y)[]*.
These are not restrictive assumptions as it is generally true
(locally - zoomed in at a particular point) for arbitrary neural
networks.

We now define an energy function and show that this en-
ergy is a Lyapunov function. Finally, we bound the energy
and obtain a convergence rate. We define energy as:

1
E(0) = 5110 - 07|
Three out of four properties of a Lyapunov, i.e., (1) E is
continuous, (2) E(f;) = 0 if and only if 6, = 6*, and (3)
E(6;) > 0if and only if 6; # 6* trivially hold. (1) because
E' is a composition of continuous functions, (2) and (3) be-
cause of the definition of a norm (remember that g is also a
squared norm between the graphs). Now we prove the fourth
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property which says that E(6;,1) < E(6;), Vt. After some
algebraic manipulation, we get

E(0141) — E(0:) = 0ul|* + (0141 — 0:) - (6 —67)

®)

|\9t+1
Replacing ;1 — 0, using Equation (3), we get
1
STIVE@IP + (~0,VF(0,)) - (0~ )

We can bound this expression using strong convexity and
smoothness to obtain

E(0i+1) — E(01)
< 67 (F(6:) — F(6%))

(10— 1 + (Y
<<St(§tL—1)< )
0(re0-#0)

Since S 515(6,5[/ — ].) F(Gt) — F(@*)
0

because §; < 1/L and F(6*) < F(6;), Equation (6) reduces
to:

(6)
9*||2

wa

< 0(8:L — —opnE(6y)

is always negative

E(0i+1) — E(0:) < —0:pE(0r)

Since the learning rate d;, the constant i, and F are always
positive, this difference is always negative, proving property
four of the Lyapunov. Thus, we conclude the GD is suit-
able for finding the minimizer 8* in Equation (2). Note that
finding A is a differentiable part of the GD procedure and
therefore does not adversely affect convergence. O

Theorem 4.2. Proof of Convergence using Stochastic Gra-
dient Descent (SGD) for finding a minimizer

0* = argmin f(6) + \g(0") (7
0

Proof. Here the proof is similar to the GD case until Equa-
tion (5). So, we use the same equation and, this time, make
replacements with batch sizes. Thus, we obtain:
1 *
§5§‘|VbF(9t)||2 + (=6: Vo F(0r)) - (0 — 07)
Here V,, denotes batch gradients, i.e., stochastic gradients.
We leverage two properties of batch gradients. First, the ex-
pected value of batch gradients over all batches is the exact
gradient. Second, since the batch gradients are bounded (fi-

nite sums), we can compute their variance across batches.
Thus, we have:

E[VyF(0:)] = VEF(6;)
Var(|[VE(©,)[] = o

To remove batch gradients V; from the equation, we
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Figure 3: Quantitative Results Graphs

will bound the expected value, E[E(0:11) — E(6:)], which
equates to:

1
E 55152‘|VbF(9t)||2 + (=6 Vo F(0r)) - (6 — 07)

1
= 50 (IVFO)I* +02) = (0, VEF(6r) - (0, = 07)
We now use strong convexity twice and get:

LR2(IVF@) + 0%) — (6.VF(8))) - (6, — 67)

—~

2
< SOHM? + 0%) — bypul]6y — 07|

=N

= §5§(M2 + 0'2) — (5t2/,LE(9t)

Here we assume that ||V F'(6;)|| is bounded by M, a natural
assumption for a discrete algorithm. Plugging in the conver-
gence rate we obtain:

E[E(01+1) — E(6,)]

1
< 56,52(M2 +0?) — 6,2uE(0;)
1 1 1 1
<-— = _(M?>+6%) -2
2u2(t+to)2( ) u(t+to)uM37$,z(t+t0)
1

T (i) T

Thus we have proven that E is a Lyapunov function and can
thus conclude that SGD will converge to 0* when finding the
minimizer of Equation (7), and therefore confirm the Equa-
tion 1 will always have a minimum. 0

S Experiments and Discussion
Quantitative Experiments

Baseline Method For a competitive baseline, we first con-
struct an autoregressive model similar to the one described
in the first summand of Equation 1 M(Q,0). Except we
now augment the embedding for (), by adding graph em-
beddings of the ground truth CEGs obtained using state-of-
the-art (SOTA) graph embedding methods, namely TransE,
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DistMult, ComplEx, and HolE (Wang, Qiu, and Wang 2021;
Wang et al. 2014; Yang and Liu 2021; Nickel, Rosasco, and
Poggio 2016; Trouillon et al. 2016; Yang et al. 2014). We
chose this selection as it encompasses different graph ge-
ometries (euclidean, hyperbolic, complex) before minimiz-
ing the cross-entropy loss. We will denote this augmented
embedding for ) as eq. Thus our baseline model denoted
by M’(eq, 3), where (3 are the trainable parameters (e.g.,
embedding layers, feedforward layers, and position embed-
ding layers), minimizes the following objective:

CE(M'(eq, B), targets)

We report the following results, Result 1. - The link pre-
diction results for the different graph embedding methods,
Result 2. - The test set accuracy using the baseline method
for the next token prediction of the functional program for
the CLEVRER dataset (denoted by Base_C), and the nat-
ural language answers for the CLEVRER-Humans dataset
(denoted by Base_CH), and Result 3. both the test set accu-
racy averaged across both the CLEVRER and CLEVRER-
Humans dataset(denoted by Ours_Acc), and the graph recon-
struction accuracy (denoted by Ours_GRA). When measur-
ing graph reconstruction accuracy, we check against the ad-
jacency matrix for the ground truth CEG by thresholding the
reconstructed directed graph entries obtained using G(Q, 8")
(1 if greater than the threshold, and O if not). We report the
results for four different thresholds of 0.87, 0.8, 0.7, and 0.5.
Figure 3 shows the reported results.

Results Summary and Discussion

Results Summary Result 1. shows that the link predic-
tion metric of hits@1 of the SOTA graph embedding meth-
ods is sub-par (< 0.6) across all models, although sub-
stantial improvements are observed when transitioning to
hits@3 and hits@10. Result 2. shows the accuracy of the
baseline method to be quite good ~ 86%. For context,
the current leaderboard for the CLEVRER and CLEVRER-
Humans dataset shows an accuracy of 95.24%. Result 3.
shows that our method achieves accuracy scores of 91.85%,
and the graph reconstruction accuracy is > 98.3% across all
thresholds.
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Figure 4: Qualitative Results

Discussion Therefore, it is evident that our method en-
hances quantitative performance across both the intrinsic ob-
jective of capturing causal knowledge and the QA objective
(predict functional program or answer tokens). While one
might be tempted to assume that explicitly minimizing the
two losses in Equation 1 would invariably lead to improved
outcomes, this is not a given, as the potential for conflict be-
tween the two objectives is not always clear. Additionally,
even when conflicts are apparent, determining the appro-
priate values for the Lagrange multipliers to balance objec-
tives is challenging. In response to this challenge, we have
proposed utilizing an end-to-end trainable Lagrange multi-
plier network. Our findings provide empirical support for the
synergistic nature of these objectives within the experimen-
tal context of this paper. Consequently, our method holds
promise as a robust approach to ensure synergistic capture
of causal knowledge alongside achieving downstream task
objectives if such a synergy exists in other experimental
contexts (i.e., tasks other than CLEVRER and CLEVRER-
Humans QA).

Qualitative Experiments and Discussion

As mentioned earlier, at inference time, the output from the
G(Q,0") part of the trained model, can be visualized based
on the chosen threshold ¢. Green edges indicate those pass-
ing the threshold, while red edges represent those that do
not. Figure 4 illustrates how this visualization aids human
interpretable proof-checking of the model’s captured causal
ordering of events alongside its QA output. (Top CLEVRER
example, and bottom CLEVRER-Humans example).
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6 Conclusion, Future Work, and Broader
Impacts

We introduce a novel method for capturing and evaluating
causal knowledge capture, showcasing its efficacy on bench-
mark datasets through quantitative and qualitative analy-
ses. Our approach holds promise for causal knowledge-
enriched language understanding. Additionally, future work
will involve experiments on real-world datasets (e.g., (Yao
et al. 2020)), and more complex causal relationship graphs
(Blomgvist, Alirezaie, and Santini 2020; Jaimini and Sheth
2022)".

Broader Impacts. The gradual rise in adopting Al-
systems, particularly in safety-critical industries involving
human users (e.g., healthcare and autonomous driving), is
notable. In this context, human-AlI collaboration is increas-
ingly essential, and graphs can serve as a means to articulate
alignment with values encompassing various social dimen-
sions like safety, ethics, social constructs, and legal rules.
We take steps towards developing a systematic approach
to implement checks and balances, and enhance the inter-
pretability of outcomes by end users of such systems (Puro-
hit, Shalin, and Sheth 2020).
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