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Abstract

With the rise of prolific ChatGPT, the risk
and consequences of Al-generated text has in-
creased alarmingly. This triggered a series of
events, including an open letter (Marcus, 2023),
signed by thousands of researchers and tech
leaders in March 2023, demanding a six-month
moratorium on the training of Al systems more
sophisticated than GPT-4. To address the in-
evitable question of ownership attribution for
Al-generated artifacts, the US Copyright Office
(Copyright-Office, 2023) released a statement
stating that “If a work’s traditional elements of
authorship were produced by a machine, the
work lacks human authorship and the Office
will not register it”. Furthermore, both the US
(White-House, 2023) and the EU (European-
Parliament, 2023) governments have recently
drafted their initial proposals regarding the reg-
ulatory framework for AL Given this cynosural
spotlight on generative Al, Al-generated text
detection (AGTD) has emerged as a topic that
has already received immediate attention in re-
search, with some initial methods having been
proposed, soon followed by emergence of tech-
niques to bypass detection. This paper intro-
duces the Counter Turing Test ( CT?), a bench-
mark consisting of techniques aiming to offer
a comprehensive evaluation of the robustness
of existing AGTD techniques. Our empirical
findings unequivocally highlight the fragility
of the proposed AGTD methods under scrutiny.
Amidst the extensive deliberations on policy-
making for regulating Al development, it is
of utmost importance to assess the detectabil-
ity of content generated by LLMs. Thus, to

TWork does not relate to position at Amazon.

establish a quantifiable spectrum facilitating
the evaluation and ranking of LLMs according
to their detectability levels, we propose the Al
Detectability Index (ADI). We conduct a thor-
ough examination of 15 contemporary LLMs,
empirically demonstrating that larger LLMs
tend to have a higher ADI, indicating they are
less detectable compared to smaller LLMs. We
firmly believe that ADI holds significant value
as a tool for the wider NLP community, with
the potential to serve as a rubric in Al-related
policy-making.

1 Proposed AI-Generated Text Detection
Techniques (AGTD) — A Review

Recently, six methods and their combinations have
been proposed for AGTD: (i) watermarking, (ii)
perplexity estimation, (iii) burstiness estimation,
(iv) negative log-likelihood curvature, (v) stylomet-
ric variation, and (vi) classifier-based approaches.
This paper focuses on critiquing their robustness
and presents empirical evidence demonstrating
their brittleness.

Watermarking: Watermarking Al-generated text,
first proposed by Wiggers (2022), entails the incor-
poration of an imperceptible signal to establish the
authorship of a specific text with a high degree of
certainty. This approach is analogous to encryption
and decryption. Kirchenbauer et al. (2023a) (w,)
were the first to present operational watermark-
ing models for LLMs, but their initial proposal
faced criticism. Sadasivan et al. (2023) shared
their initial studies suggesting that paraphrasing
can efficiently eliminate watermarks. In a subse-
quent paper (Kirchenbauer et al., 2023b) (w,,), the
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authors put forth evidently more resilient water-
marking techniques, asserting that paraphrasing
does not significantly disrupt watermark signals
in this iteration of their research. By conducting
extensive experiments (detailed in Section 3), our
study provides a thorough investigation of the de-
watermarking techniques w,; and w,;, demonstrat-
ing that the watermarked texts generated by both
methods can be circumvented, albeit with a slight
decrease in de-watermarking accuracy observed
with wy,. These results further strengthen our con-
tention that text watermarking is fragile and lacks
reliability for real-life applications.

Perplexity Estimation: The hypothesis related
to perplexity-based AGTD methods is that hu-
mans exhibit significant variation in linguistic
constraints, syntax, vocabulary, and other fac-
tors (aka perplexity) from one sentence to an-
other. In contrast, LLMs display a higher degree
of consistency in their linguistic style and struc-
ture. Employing this hypothesis, GPTZero (Tian,
2023) devised an AGTD tool that posited the over-
all perplexity human-generated text should sur-
pass that of Al-generated text, as in the equation:
logpe (hiext) — logpe(Alew) > 0 (Appendix C).
Furthermore, GPTZero assumes that the varia-
tions in perplexity across sentences would also
be lower for Al-generated text. This phenomenon
could potentially be quantified by estimating the
entropy for sentence-wise perplexity, as depicted in
the equation: Ep,, = logpe[Zp_, (|sk —sy1|)] —
logpe Xi_, (|sk; — ski'|)] > 0; where st and s,
represent k" sentences of human and Al-written
text respectively.

Burstiness Estimation: Burstiness refers to the
patterns observed in word choice and vocabulary
size. GPTZero (Tian, 2023) was the first to intro-
duce burstiness estimation for AGTD. In this con-
text, the hypothesis suggests that Al-generated text
displays a higher frequency of clusters or bursts of
similar words or phrases within shorter sections of
the text. In contrast, humans exhibit a broader vari-
ation in their lexical choices, showcasing a more
extensive range of vocabulary. Let o; denote the
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Figure 1: (Top) The negative log-curvature hypothesis pro-
posed by Mitchell et al. (2023). According to their claim, any
perturbations made to the Al-generated text should predom-
inantly fall within a region of negative curvature. (Bottom)
Our experiments using 15 LLMs with 20 perturbations indi-
cate that the text generated by GPT 3.0 and variants do not
align with this hypothesis. Moreover, for the other LLMs, the
variance in the negative log-curvature was so minimal that
it had to be disregarded as a reliable indication. @ and @
represent fake and real sample respectively, whereas @ and
O depict perturbed fake and real sample.

standard deviation of the language spans and m
the mean of the language spans. Burstiness (b) is
calculated as b = (gz%:r} ) and is bounded within
the interval [-1, 1]. Therefore the hypothesis is
by — ba; > 0, where by is the mean burstiness
of human writers and b4, is the mean burstiness
of Al aka a particular LLM. Corpora with anti-
bursty, periodic dispersions of switch points take
on burstiness values closer to -1. In contrast, cor-
pora with less predictable patterns of switching
take on values closer to 1. It is worth noting that
burstiness could also be calculated sentence-wise
and/or text fragment-wise and then their entropy
could be defined as: Ep, = logppg[Z_, (|s/’§ =
shial) —logpg[Zi_, (sk, — sy )] > 0. Neverthe-
less, our comprehensive experiments involving 15
LLMs indicate that this hypothesis does not consis-
tently provide a discernible signal. Furthermore, re-
cent LLMs like GPT-3.5/4, MPT (OpenAl, 2023a;
Team, 2023) have demonstrated the utilization of
a wide range of vocabulary, challenging the hy-
pothesis. Section 4 discusses our experiments on
perplexity and burstiness estimation.
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Negative Log-Curvature (NLC): DetectGPT
(Mitchell et al., 2023) introduced the concept
of Negative Log-Curvature (NLC) to detect Al-
generated text. The hypothesis is that text gener-
ated by the the model tends to lie in the negative
curvature areas of the model’s log probability, i.e.
a text generated by a source LLM pg typically lies
in the areas of negative curvature of the log prob-
ability function of pg, unlike human-written text.
In other words, we apply small perturbations to
a passage x ~ pg, producing . Defining Pg’LC as
the quantity logpe(x) — logpe (%), PYC should be
larger on average for Al-generated samples than
human-written text (see an example in Table 1 and
the visual intuition of the hypothesis in Fig. 1). Ex-
pressed mathematically: Pf\V,LC — P/LIVLC >0. Itis
important to note that DetectGPT’s findings were
derived from text-snippet analysis, but there is po-
tential to reevaluate this approach by examining
smaller fragments, such as sentences. This would
enable the calculation of averages or entropies,
akin to how perplexity and burstiness are measured.
Finally, the limited number of perturbation patterns
per sentence in (Mitchell et al., 2023) affect the
reliability of results (cf. Section 5 for details).

Input Type Sentence
Original

Perturbed

This sentence is generated by an Al or human

This \writing is |created. by an Al or [person

Table 1: An example perturbation as proposed in DetectGPT
(Mitchell et al., 2023).

Stylometric variation: Stylometry is dedicated to
analyzing the linguistic style of text in order to dif-
ferentiate between various writers. Kumarage et al.
(2023) investigated the examination of stylistic fea-
tures of Al-generated text in order to distinguish it
from human-written text. The authors reported im-
pressive results for text detection generated from
RoBERTa. However, we observe limitations in
applying such methods to newer advanced models
(cf. Section 6).

Classification-based approach: This problem for-
mulation involves training classifiers to differen-
tiate between Al-written and human-written text,

and is relatively straightforward. OpenAl initially
developed its own text classifier (OpenAl, 2023b),
which reported an accuracy of only 26% on true
positives. Due to its weaker performance among
the proposed methods, we did not further investi-
gate this strategy.

S: A Counter Turing Test

(CT?) and Al Detectability Index (ADI).

i |ntroducing the Counter Turing Test (CT?), a bench-
mark consisting of techniques aiming to offer a com-
prehensive evaluation of the robustness of prevalent
AGTD techniques.

% Empirically showing that the popular AGTD methods
are brittle and relatively easy to circumvent.

- Introducing Al Detectability Index (ADI) as a mea-
sure for LLMs to infer whether their generations are
detectable as Al-generated or not.

% Conducting a thorough examination of 15 contempo-
rary LLMs to establish the aforementioned points.

i Both benchmarks — CT? and ADI — will be published
as open-source leaderboards.

m® Curated datasets will be made publicly available.

2 Design Choices for CT? and ADI Study

This section discusses our selected LLMs and elab-
orates on our data generation methods. More de-
tails in Appendix A.

2.1 LLMs: Rationale and Coverage

We chose a wide gamut of 15 LLMs that have
exhibited exceptional results on a wide range of
NLP tasks. They are: (i) GPT 4 (OpenAl, 2023a);
(i1) GPT 3.5 (Chen et al., 2023); (iii) GPT 3 (Brown
et al., 2020); (iv) GPT 2 (Radford et al., 2019);
(v) MPT (Team, 2023); (vi) OPT (Zhang et al.,
2022); (vii) LLaMA (Touvron et al., 2023); (viii)
BLOOM (Scao et al., 2022); (ix) Alpaca (Maeng
et al., 2017); (x) Vicuna (Zhu et al., 2023); (xi)
Dolly (Wang et al., 2022); (xii) StableLM (Tow
et al.); (xiii) XLNet (Yang et al., 2019); (xiv) T5
(Raffel et al., 2020); (xv) TO (Sanh et al., 2021).
Given that the field is ever-evolving, we admit
that this process will never be complete but rather
continue to expand. Hence, we plan to keep the
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CT? benchmark leaderboard open to researchers,
allowing for continuous updates and contributions.

2.2 Datasets: Generation and Statistics

To develop CT? and ADI, we utilize parallel data
comprising both human-written and Al-generated
text on the same topic. We select The New York
Times (NYT) Twitter handle as our prompt source
for the following reasons. Firstly, the handle com-
prises approximately 393K tweets that cover a va-
riety of topics. For our work, we chose a sub-
set of 100K tweets. Secondly, NYT is renowned
for its reliability and credibility. The tweets from
NYT exhibit a high level of word-craftsmanship
by experienced journalists, devoid of grammat-
ical mistakes. Thirdly, all the tweets from this
source include URLs that lead to the correspond-
ing human-written news articles. These tweets
serve as prompts for the 15 LLMs, after eliminat-
ing hashtags and mentions during pre-processing.
Appendix G offers the generated texts from 15 cho-
sen LLLMs when given the prompt "Al generated
text detection is not easy."

3 De-Watermarking: Discovering its
Ease and Efficiency

In the realm of philosophy, watermarking is typi-
cally regarded as a source-side activity. It is highly
plausible that organizations engaged in the develop-
ment and deployment of LLMs will progressively
adopt this practice in the future. Additionally, reg-
ulatory mandates may necessitate the implemen-
tation of watermarking as an obligatory measure.
The question that remains unanswered is the level
of difficulty in circumventing watermarking, i.e.,
de-watermarking, when dealing with watermarked
Al-generated text. In this section, we present our
rigorous experiments that employ three methods
capable of de-watermarking an Al-generated text
that has been watermarked: (i) spotting high en-
tropy words and replacing them, (i) paraphrasing,
(iii) paraphrasing + replacing high-entropy words
Table 2 showcases an instance of de-watermarking
utilizing two techniques for OPT as target LLM.

3.1 De-watermarking by Spotting and
Replacing High Entropy Words (DeW))

The central concept behind the text watermark-
ing proposed by Kirchenbauer et al. (2023a) is to
identify high entropy words and replace them with
alternative words that are contextually plausible.
The replacement is chosen by an algorithm (anal-
ogous to an encryption key) known only to the
LLM’s creator. Hence, if watermarking has been
implemented, it has specifically focused on those
words. High entropy words are the content words
in a linguistic construct. In contrast, low entropy
words, such as function words, contribute to the
linguistic structure and grammatical coherence of
a given text. Replacing low entropy words can
disrupt the quality of text generation. Appendix B
provides more details on high entropy vs. low en-
tropy words.

Challenges of detecting high entropy words:
High entropy words aid in discerning ambiguity
in LLM’s as observed through the probability dif-
ferences among predicted candidate words. While
detecting high entropy words may seem techni-
cally feasible, there are two challenges in doing
so: (i) many modern LLLMs are not open-source.
This restricts access to the LLLM’s probability dis-
tribution over the vocabulary; (ii) assuming a text
snippet is Al-generated, in real-world scenarios,
the specific LLM that generated it is challenging to
determine unless explicitly stated. This lack of in-
formation makes it difficult to ascertain the origin
and underlying generation process of a text.

Spotting high-entropy words: Closed-source
LLMs conceal the log probabilities of generated
text, thus rendering one of the most prevalent
AGTD methods intractable. To address this, we
utilize open-source LLMs to identify high-entropy
words in a given text. As each LLM is trained on
a distinct corpus, the specific high-entropy words
identified may vary across different LLMs. To mit-
igate this, we adopt a comparative approach by
employing multiple open-source LLMs.

Replacing high-entropy words: We can employ

2209


https://twitter.com/nytimes
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z-score p-value

Prompt Will the next great writer be a robot?
Watermarked I’'m very skeptical that the next "great writer" is going to be a robot, or that they’ll be much more effective at | 4.24 1.1x107°
text expressing the subtleties and depths of human thought than a human is. However, what is most interesting is the

role that the Internet could play in bringing these "robot" writers into the public eye. If I could (and I'm very excited
by this possibility), I would pay a small monthly fee to read well-written ...
I'm _ skeptical that the next "great writer" is going to be a robot, - that they’ll be - more effective | 1.76 0.039

De-Watermarked

text by replacing | at _ subtleties and depths of philosophical thought than a robot is. However, what is (58.5% 1) (3.5x10°%1)
high-entropy interesting is the role that the Internet - play in bringing new great writers into the public eye. If I did (and I'm

De-Watermarked | Ihave _ about the possibility of a robot becoming the next _ and _ -0.542 0.706

text by para- | in expressing the nuances and profoundness of human thoughts. Nevertheless, what - me the most is the | (1128% 1) (6.4 10°% 1)

phrasing potential impact of the _ these "robot" writers to the general public. The idea of being able to pay

a _ subscription fee to access _ and carefully refined works - thrills me...

Table 2: An illustration of de-watermarking by replacing high-entropy words and paraphrasing. p-value is the probability
under the assumption of null hypothesis. The z-score indicates the normalized log probability of the original text obtained by
subtracting the mean log probability of perturbed texts and dividing by the standard deviation of log probabilities of perturbed
texts. DetectGPT (Mitchell et al., 2023) classifies text to be generated by GPT-2 if the z-score is greater than 4.

Dewatermarking models albert-large-v2 bert-base-uncased distilroberta-base x1m-roberta-large

N
Masking models | DeW; DeW, DeW; DeW, DeWy DeW, DeW; DeW,

Wyl Wy2 Wyl W2 Wil W2 Wyl Wi Wyl Wy2 Wyl Wy2 Wil W2 Wyl Wy
albert-large-v2 51.8 68 47 71 758 70 62.5 59
bert-base-uncased [N 33 31 31 305 33
distilroberta-base ~ 45.1 70 46.1 72 49.8 68 37.8 56

x1lm-roberta-large

Table 3: The performance evaluation encompassed 16 combinations for de-watermarking OPT generated watermarked text.
The accuracy scores for successfully de-watermarked text using the entropy-based word replacement technique are presented in
the DeW| columns. It is worth highlighting that the accuracy scores in the DeW, columns reflect the application of automatic
paraphrasing after entropy-based word replacement. The techniques proposed in Kirchenbauer et al. (2023a) are denoted as w,,

while the techniques proposed in their subsequent work Kirchenbauer et al. (2023b) are represented as w;.

any LLM to replace the previously identified high-
entropy words, resulting in a de-watermarked text.
To achieve this, we tried various LLLMs and found
that BERT-based models are best performing to
generate replacements for the masked text.

Winning combination: The results of experiments
on detecting and replacing high entropy words
are presented in Table 3 for OPT. The findings
indicate that ALBERT (albert-large-v2) (Lan
et al., 2020) and DistilRoBERTa (distilroberta-
base) perform exceptionally well in identifying
high entropy words in text generated by the
OPT model for both versions, vl and v2. On
the other hand, DistilRoBERTa (distilroberta-
base) (Sanh et al., 2019) and BERT (bert-base-
uncased) (Devlin et al., 2019) demonstrate supe-
rior performance in substituting the high entropy
words for versions v1 and v2 of the experiments.
Therefore, the optimal combination for Kirchen-
bauer et al. (2023a) (w,) is (albert-large-v2,

distilroberta-base), achieving a 75% accuracy
in removing watermarks, while (distilroberta-
base, bert-base-uncased) performs best for
(Kirchenbauer et al., 2023b) (w,,), attaining 72%
accuracy in de-watermarking. The results for the
remaining 14 LLMs are reported in Appendix B.

3.2 De-watermarking by Paraphrasing (DeW,)
We have used paraphrasing as yet another tech-
nique to remove watermarking from LLMs. Idea
1) Feed textual input to a paraphraser model such
as Pegasus, T5, GPT-3.5 and evaluate watermark-
ing for the paraphrased text. Idea 2) Replace the
high entropy words, which are likely to be the wa-
termarked tokens, and then paraphrase the text to
ensure that we have eliminated the watermarks.
We perform a comprehensive analysis of both
qualitative and quantitative aspects of automatic
paraphrasing for the purpose of de-watermarking.
We chose three SoTA paraphrase models: (a) Pe-
gasus (Zhang et al., 2020), (b) T5 (Flan-t5-xx1
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LLMs Perplexity Burstiness NLC Paraphrasing Acc.
Human Al Enty Enty « Human Al Enty Enty « Human Al o Models Wyl Wi

OPT u 46.839  43.495 4276 3.777 0.519 -0.3001 0.3645 6.119 5.890 0.5052 4.160 4.175 0.505

G 68541 65178 026164 03156 0336 0.654 Pegasus 7932 67.12
GPT-2 pu  143.198 76.296 5362 4770 0.516 -0.3001 -0.2159 6.333 5.843 0.5006 3.436 3.778 0.507 T5-LaIge 80.86 72.00

o 60866 67.315 0.26164  0.2947 0.829 0.394 GPT-3.5 90.32 70.35
XLNet pu 106776 104.091 8378 9.712 0.532 -0.2992 -0.0153 6.380 4.563 0.4936 4.297 4.185 0.498

o 57.091 62.152 0.2416  0.0032 0.338 0.535

Table 4: Perplexity, burstiness, and NLC values for 3 LLMs across the ADI spectrum along with

statistical measures.

Model Coverage Correctness Diversity
Pegasus 32.46 94.38% 3.76
TS 30.26 83.84% 3.17
GPT-3.5 35.51 88.16% 7.72

Table 6: Experimental results of automatic paraphrasing mod-
els based on three factors: (i) coverage, (ii) correctness and
(iii) diversity; GPT-3.5 (gpt-3.5-turbo-0301) can be seen
as the most performant.

variant) (Chung et al., 2022), and (c) GPT-3.5
(gpt-3.5-turbo-0301 variant) (Brown et al.,
2020). We seek answers to the following ques-
tions: (i) What is the accuracy of the paraphrases
generated? (ii) How do they distort the origi-
nal content? (iii) Are all the possible candidates
generated by the paraphrase models successfully
de-watermarked? (iv) Which paraphrase module
has a greater impact on the de-watermarking pro-
cess? To address these questions, we evaluate
the paraphrase modules based on three key dimen-
sions: (i) Coverage: number of considerable para-
phrase generations, (ii) Correctness: correctness
of the generations, (iii) Diversity: linguistic diver-
sity in the generations. Our experiments showed
that GPT-3.5 (gpt-3.5-turbo-0301 variant) is
the most suitable paraphraser (Fig. 2). Please see
details of experiments in Appendix B.3.

For a given text input, we generate multiple para-
phrases using various SOTA models. In the pro-
cess of choosing the appropriate paraphrase model
based on a list of available models, the primary
question we asked is how to make sure the gen-
erated paraphrases are rich in diversity while still
being linguistically correct. We delineate the pro-
cess followed to achieve this as follows. Let’s say
we have a claim c. We generate n paraphrases us-

Table 5: De-watermarking
acc. of paraphrasing on
OPT.

1T —— GPT 3.5 - turbo -0301 >P

PEGASUS
T5 - Large

2 71
"
2 6
[a) 5.38

54

.4
41 3.49 2
. 33 343
3 LA e —— Lo
..... X
pl p2 p3 p4 p5

Increasing number of paraphrases

Figure 2: A higher diversity score depicts an increase in the
number of generated paraphrases and linguistic variations in
those generated paraphrases.

ing a paraphrasing model. This yields a set of pf{,
..., p%. Next, we make pair-wise comparisons of
these paraphrases with ¢, resulting in ¢ — p{, ...,
and ¢ — p¢. At this step, we identify the examples
which are entailed, and only those are chosen. For
the entailment task, we have utilized RoOBERTa
Large (Liu et al., 2019) — a SoTA model trained on
the SNLI task (Bowman et al., 2015).

Key Findings from De-Watermarking Exper-
iments: As shown in Table 3 and Table 5, our
experiments provide empirical evidence suggest-
ing that the watermarking applied to Al-generated
text can be readily circumvented (cf. Appendix B).

4 Reliability of Perplexity and Burstiness
as AGTD Signals

In this section, we extensively investigate the reli-
ability of perplexity and burstiness as AGTD sig-
nals. Based on our empirical findings, it is evident
that the text produced by newer LLMs is nearly
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indistinguishable from human-written text from a
statistical perspective.

The hypothesis assumes that Al-generated text
displays a higher frequency of clusters or bursts
of similar words or phrases within shorter sections
of the text. In contrast, humans exhibit a broader
variation in their lexical choices, showcasing a
more extensive range of vocabulary. Moreover,
sentence-wise human shows more variety in terms
of length, and structure in comparison with Al-
generated text. To measure this we have utilized
entropy. The entropy p;logp; of a random variable
is the average level of surprise, or uncertainty.

4.1 Estimating Perplexity — Human vs. Al

Perplexity is a metric utilized for computing the
probability of a given sequence of words in natu-
ral language. It is computed as e*%ﬂ:llog?‘”(wl’),
where N represents the length of the word se-
quence, and p(w;) denotes the probability of
the individual word w;. As discussed previ-
ously, GPTZero (Tian, 2023) assumes that human-
generated text exhibits more variations in both
overall perplexity and sentence-wise perplexity as
compared to Al-generated text. To evaluate the
strength of this proposition, we compare text sam-
ples generated by 15 LLMs with corresponding
human-generated text on the same topic. Our em-
pirical findings indicate that larger LLMs, such as
GPT-3+, closely resemble human-generated text
and exhibit minimal distinctiveness. However, rela-
tively smaller models such as XLLNet, BLOOM, etc.
are easily distinguishable from human-generated
text. Fig. 3 demonstrates a side-by-side compari-
son of the overall perplexity of GPT4 and T5. We
report results for 3 LLMs in Table 4 (cf. Table 22
in Appendix C for results over all 15 LLMs).

density

avg perplexity ' :';rvgrﬂi)ergte;;tym -

Figure 3: Perplexity estimation for GPT4/T5 (left/right).

4.2 Estimating Burstiness — Human vs. Al

In Section 1, we discussed the hypothesis that ex-
plores the contrasting burstiness patterns between
human-written text and Al-generated text. Previous
studies that have developed AGTD techniques based
on burstiness include (Rychly, 2011) and (Cummins,
2017). Table 4 shows that there is less distinction in
the standard deviation of burstiness scores between
Al-generated and human text for OPT. However,
when it comes to XLNet, the difference becomes
more pronounced. From several such examples,
we infer that larger and more complex LL.Ms gave
similar burstiness scores as humans. Hence, we
conclude that as the size or complexity of the mod-
els increases, the deviation in burstiness scores di-
minishes. This, in turn, reinforces our claim that
perplexity or burstiness estimations cannot be con-
sidered as reliable for AGTD (cf. Appendix C).

5 Negative Log-Curvature (NLC)

In Section 1, we discussed the NLC-based AGTD
hypothesis (Mitchell et al., 2023). Our experimen-
tal results, depicted in Fig. 1, demonstrate that we
are unable to corroborate the same NLC pattern for
GPT4. To ensure the reliability of our experiments,
we performed 20 perturbations per sentence. Fig. 1
(bottom) presents a comparative analysis of 20 per-
turbation patterns observed in 2000 samples of OPT-
generated text and human-written text on the same
topic. Regrettably, we do not see any discernible
pattern. To fortify our conclusions, we compute the
standard deviation, mean, and entropy, and conduct
a statistical validity test using bootstrapping, which
is more appropriate for non-Gaussian distributions
(Kim, 2015; Boos and Brownie, 1989). Table 22
documents the results (cf. Appendix C). Based on
our experimental results, we argue that NLC is not
a robust method for AGTD.

6 Stylometric Variation

Stylometry analysis is a well-studied subject
(Lagutina et al., 2019; Neal et al., 2018) where schol-
ars have proposed a comprehensive range of lexical,
syntactic, semantic, and structural characteristics for
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the purpose of authorship attribution. Our investiga-
tion, which differs from the study conducted by Ku-
marage et al. (2023), represents the first attempt to
explore the stylometric variations between human-
written text and Al-generated text. Specifically, we
assign 15 LLMs as distinct authors, whereas text
composed by humans is presumed to originate from
a hypothetical 16™ author. Our task involves identi-
fying stylometric variations among these 16 authors.
After examining other alternatives put forth in pre-
vious studies such as (Tulchinskii et al., 2023), we
encountered difficulties in drawing meaningful con-
clusions regarding the suitability of these methods
for AGTD. Therefore, we focus our investigations
on a specific approach that involves using perplexity
(as a syntactic feature) and burstiness (as a lexical
choice feature) as density functions to identify a
specific LLM. By examining the range of values
produced by these functions, we aim to pinpoint a
specific LLM associated with a given text. Prob-
ability density such as Li* =y; |Pr(st,) - el

and L0 =y | ‘Pr(S’Ijmy) - % are calculated us-
ing Le Cam’s lemma (Cam, 1986-2012), which
gives the total variation distance between the sum of
independent Bernoulli variables and a Poisson ran-
dom variable with the same mean. Where Pr(S;;lx)

is the perplexity and Pr(S’ljmy
the of k™ sentence respectively. In particular, it
tells us that the sum is approximately Poisson in a
specific sense (see more in Appendix E). Our exper-
iment suggests stylistic feature estimation may not
be very distinctive, with only broad ranges to group
LLMs: (i) Detectable (80%+): TO and TS, (ii) Hard
to detect (70%+): XLNet, StableL.M, and Dolly, and
(iii) Impossible to detect (<50%): LLaMA, OPT,

GPT, and variations.

) is the brustiness of

Our experiment yielded intriguing results. Given
that our stylometric analysis is solely based on den-
sity functions, we posed the question: what would
happen if we learned the search density for one
LLM and applied it to another LLM? To explore
this, we generated a relational matrix, as depicted
in Fig. 7. As previously described and illustrated

in Fig. 5, the LLMs can be classified into three
groups: (i) easily detectable, (ii) hard to detect, and
(iii) not detectable. Fig. 7 demonstrates that Le
Cam’s lemma learned for one LLM is only appli-
cable to other LLMs within the same group. For
instance, the lemma learned from GPT 4 can be
successfully applied to GPT-3.5, OPT, and GPT-3,
but not beyond that. Similarly, Vicuna, StableL.M,
and LLaMA form the second group. Fig. 4 offers a
visual summary.

7 Al Detectability Index (ADI)

As new LLMs continue to emerge at an accelerated
pace, the usability of prevailing AGTD techniques
might not endure indefinitely. To align with the
ever-changing landscape of LLMs, we introduce
the Al Detectability Index (ADI), which identifies
the discernable range for LLMs based on SoTA
AGTD techniques. The hypothesis behind this pro-
posal is that both LLMs and AGTD techniques’
SoTA benchmarks can be regularly updated to
adapt to the evolving landscape. Additionally, ADI
serves as a litmus test to gauge whether contempo-
rary LLMs have surpassed the ADI benchmark and
are thereby rendering themselves impervious to de-
tection, or whether new methods for Al-generated
text detection will require the ADI standard to be
reset and re-calibrated.

Among the various paradigms of AGTD, we se-
lect perplexity and burstiness as the foundation for
quantifying the ADI. We contend that NLC is a
derivative function of basic perplexity and bursti-
ness, and if there are distinguishable patterns in
NLC within Al-generated text, they should be well
captured by perplexity and burstiness. We present
a summary in Fig. 4 that illustrates the detectable
and non-detectable sets of LLMs based on ADI
scores obtained using stylometry and classification
methods. It is evident that the detectable LLM set
is relatively small for both paradigms, while the
combination of perplexity and burstiness consis-
tently provides a stable ADI spectrum. Further-
more, we argue that both stylistic features and clas-
sification are also derived functions of basic per-
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LLM Size  ADI (0-100)

Human

GPT 4 1.7T  92-
GPT 3.5 1.3B 86-
OPT 125M 72 -
GPT3 175B 65 -

Vicuna 7B 61 -
StableLM 3B 56 -
MPT 7B 51-
LLaMA 7B 48 -
Alpaca 7B 47 -

Classification
Stylometry.

NLC

{9, GPT2 1.5B  45-
;gg Dolly 2B 39-
{22 BLOOM 175B 35-
Ha ] 11B 32-
! XLNet 110M 28 -
TS5 3B 27 - Machine

Figure 4: ADI gamut for a diverse set of 15 LLMs.

plexity and burstiness. ADI serves to encapsulate
the overall distinguishability between Al-written
and human-written text, employing the formula:

(P, —L,':,’")
7l

Dl = 2 (X {8100+ () + 00 (('f:)) ey
and

where, P =+ {X, (logp!, — logpif™)}
By = AXY, (1ogply T — pogp{[ TRy

When confronted with a random input text, it
is difficult to predict its resemblance to human-
written text on the specific subject. Therefore,
to calculate ADI we employ the mean perplex-
ity (ub™) and burstiness (u2™) derived from
human-written text. Furthermore, to enhance the
comparison between the current text and human
text, Le Cam’s lemma has been applied using pre-
calculated values (L}’{lx and LZSW ) as discussed in
Section 6. To assess the overall contrast a summa-
tion has been used over all the 100K data points as
depicted here by U. Lastly, comparative measures
are needed to rank LLMs based on their detectabil-
ity. This is achieved using multiplicative damp-
ing factors, 9;(x) and 0, (x), which are calculated
based on U + rank, x . Initially, we calculate
the ADI for all 15 LLMs, considering &; (x) and
02(x) as 0.5. With these initial ADIs, we obtain
the mean (() and standard deviation (o), allowing
us to recalculate the ADIs for all the LLMs. The
resulting ADIs are then ranked and scaled provid-
ing a comparative spectrum as presented in Fig. 4.
This scaling process is similar to Z-Score Normal-
ization and/or Min-max normalization (Wikipedia,

2019). However, having damping factors is an
easier option for exponential smoothing while we
have a handful of data points. Finally, for better
human readability ADI is scaled between 0 — 100.

From the methods we considered, it is unlikely
that any of them would be effective for models with
high ADI, as shown by our experiments and results.
As LLMs get more advanced, we assume that the
current AGTD methods would become even more
unreliable. With that in mind, ADI will remain a
spectrum to judge which LLM is detectable and vs.
which is not. Please refer to Appendix F for more
discussion.

The ADI spectrum reveals the presence of
three distinct groups. TO and TS5 are situated
within the realm of detectable range, while XLNet,
StableLM, Dolly, and Vicuna reside within the
difficult-to-detect range. The remaining LLMs are
deemed virtually impervious to detection through
the utilization of prevailing SoTA AGTD tech-
niques. It is conceivable that forthcoming advance-
ments may lead to improved AGTD techniques
and/or LLMs imbued with heightened human-like
attributes that render them impossible to detect.
Regardless of the unfolding future, ADI shall per-
sist in serving the broader Al community and con-
tribute to Al-related policy-making by identifying
non-detectable LLMs that necessitate monitoring
through policy control measures.

8 Conclusion

Our proposition is that SOTA AGTD techniques
exhibit fragility. We provide empirical evidence
to substantiate this argument by conducting exper-
iments on 15 different LLMs. We proposed Al
Detectability Index (ADI), a quantifiable spectrum
facilitating the evaluation and ranking of LLMs
according to their detectability levels. The excite-
ment and success of LLMs have resulted in their
extensive proliferation, and this trend is anticipated
to persist regardless of the future course they take.
In light of this, the CT? benchmark and the ADI
will continue to play a vital role in catering to the
scientific community.
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9 Ethical Considerations

Our experiments show the limitations of AGTD
methods and how to bypass them. We develop
ADI with the hope that it could be used for guiding
further research and policies. However, it can be
misused by bad actors for creating Al-generated
text, particularly fake news, that cannot be dis-
tinguished from human-written text. We strongly
advise against such use of our work.

10 Limitations

Discussion: On June 14", 2023, the European
Parliament successfully passed its version of the
EU AI Act (European-Parliament, 2023). Sub-
sequently, a team of researchers from the Stan-
ford Institute for Human-Centered Artificial Intel-
ligence (HAI) embarked on investigating the extent
to which Foundation Model Providers comply with
the EU AI Act. Their initial findings are presented
in the publication by (Bommasani et al., 2023). In
this study, the authors put forward a grading system
consisting of 12 aspects for evaluating Language
Models (LLMs). These aspects include (i) data
sources, (ii) data governance, (iii) copyrighted
data, (iv) compute, (v) energy, (vi) capabilities &
limitations, (vii) risk & mitigations, (viii) evalua-
tion, (ix) testing, (x) machine-generated content,
(xi) member states, and (xii) downstream documen-
tation. The overall grading of each LLM can be
observed in Fig. 5. While this study is commend-
able, it appears to be inherently incomplete due to
the ever-evolving nature of LLMs. Since all scores
are assigned manually, any future changes will re-
quire a reassessment of this rubric, while ADI is
auto-computable. Furthermore, we propose that
ADI should be considered the most suitable metric
for assessing risk and mitigations.

10.1 Addressing Opposing Views by
Chakraborty et al. (2023)

It is important to note that a recent study
(Chakraborty et al., 2023) contradicts our findings
and claims otherwise. The study postulates that
given enough sample points, whether the output

was derived from a human vs an LLLM is detectable,
irrespective of the LLM used for Al-generated text.
The sample size of this dataset is a function of the
difference in the distribution of human text vs Al-
text, with a smaller sample size enabling detection
if the distributions show significant differences.
However, the study does not provide empirical ev-
idence or specify the required sample size, thus
leaving the claim as a hypothesis at this stage.

Furthermore, the authors propose that employ-
ing techniques such as watermarking can change
the distributions of Al text, making it more sep-
arable from human-text distribution and thus de-
tectable. However, the main drawback of this argu-
ment is that given a single text snippet (say, an on-
line article or a written essay), detecting whether it
is Al-generated is not possible. Also, the proposed
technique may not be cost-efficient compute-wise,
especially as new LLMs emerge. However, the
authors did not provide any empirical evidence to
support this hypothesis.

Limitations: This paper delves into the dis-
cussion of six primary methods for AGTD and
their potential combinations. These methods in-
clude (i) watermarking, (ii) perplexity estima-
tion, (iii) burstiness estimation, (iv) negative log-
likelihood curvature, (v) stylometric variation, and
(vi) classifier-based approaches.

Our empirical research strongly indicates that
the proposed methods are vulnerable to tamper-
ing or manipulation in various ways. We provide
extensive empirical evidence to support this argu-
ment. However, it is important to acknowledge
that there may still exist potential deficiencies in
our experiments. In this section, we explore and
discuss further avenues for investigation in order
to address these potential shortcomings. In the
subsequent paragraph, we outline the potential lim-
itations associated with each of the methods we
have previously investigated.

10.2 Watermarking

Although Kirchenbauer et al. (2023a) was the pi-
oneering paper to introduce watermarking for Al-
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Grading Foundation Model Providers' Compliance with the Draft EU Al Act

Source: Stanford Center for Research on Foundation Models (CRFM), Institute for Human-Centered Artificial Intelligence (HAI)
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Figure 5: Grading of current LLMs as proposed by a report entitled Do Foundation Model Providers Comply with the EU Al

Act? from Stanford University (Bommasani et al., 2023).

generated text, this research has encountered nu-
merous criticisms since its inception. A major
concern raised by several fellow researchers (Sada-
sivan et al., 2023) is that watermarking can be eas-
ily circumvented through machine-generated para-
phrasing. In our experiment, we have presented
two potential de-watermarking techniques. Subse-
quently, the same group of researchers published
a follow-up paper (Kirchenbauer et al., 2023b) in
which they asserted the development of a more
advanced and robust watermarking technique. We
assessed this claim as well and discovered that
de-watermarking remains feasible. However, al-
though the overall accuracy of de-watermarking
has decreased, it still retains considerable strength.
As the paper was published on June 9%, 2023, we
will include the complete experiment details in the
final version of our report.

In their work, Kirchenbauer et al. (2023b) put
forward improved watermarking techniques by en-
hancing the hashing mechanism for selecting wa-
termarking keys and introducing more effective
watermark detection techniques. They conducted

extensive testing on de-watermarking possibilities,
considering both machine-generated paraphrasing
and human paraphrasing, and observed dilution in
the strength of the watermark, which aligns with
their findings.

Although paraphrasing is a powerful technique
for attacking watermark text, we argue that high-
entropy-based word replacement offers a superior
approach. When using high-entropy word replace-
ments, it becomes exceedingly difficult for water-
mark detection modules to identify the newly gen-
erated text, even after paraphrasing. We will now
elaborate on our rationale. In their work, Kirchen-
bauer et al. (2023b) identify content words such
as nouns, verbs, adjectives, and adverbs as suit-
able candidates for replacement. However, any ad-
vanced techniques employed to select replacement
watermark keys for these positions will result in
high-entropy words. Consequently, these replace-
ments will always remain detectable, regardless of
the strength of the hashing mechanism.
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10.3 Perplexity and Burstiness Estimation

Liang et al. (2023) and Chakraborty et al. (2023)
among others have shown perplexity and bursti-
ness are often not reliable indicators of human
written text. The fallibility of these metrics be-
come especially prominent in academic writing
or text generated in a low-resource language. Our
experiments have also pointed towards similar find-
ings. Moreover, in our experiments, we computed
perplexity and burstiness metrics both at the overall
text level and the sentence level. It is also feasible
to calculate perplexity at smaller fragment levels.
Since each language model has a unique attention
mechanism and span, these characteristics can po-
tentially manifest in the generated text, making
them detectable. However, determining the precise
fragment size for a language model necessitates
extensive experimentation, which we have not yet
conducted.

10.4 Negative Log Curvature

Although we discussed earlier, it is crucial to re-
emphasize the significant limitations of DetectGPT
(Mitchell et al., 2023). One of its major limitations
is that it relies on access to the log probabilities
of the texts, which necessitates the use of a spe-
cific LLM. However, it is unlikely that we would
know in advance which LLM was employed to
generate a particular text, and the log-likelihood
calculated by different LLMs for the same text
would yield significantly different results. In real-
ity, one would need to compare the results with all
available LLMs in existence, which would require
a computationally expensive brute-force search.
In our experiments, we empirically demonstrate
that the hypothesis of log-probability #2 < log-
probability #1 can be easily manipulated using
simple [MASK]-based post-fixing techniques.

10.5 Stylometric Variation

In this experiment, we made a simplifying assump-
tion that all the human-written text was authored
by a single individual, which is certainly not re-

flective of reality. Furthermore, texts composed
by different authors inevitably leave behind their
unique traces and characteristics. Furthermore, a
recent paper by Tulchinskii et al. (2023) introduced
the concept of intrinsic dimensionality estimation,
which can be described as a stylometric analysis.
However, this paper is currently available only on
arXiv and lacks an implemented solution. We are
currently working on replicating the theory and
evaluating the robustness of the approach.

10.6 Classifier-based Approaches

Numerous classifiers have been proposed in the
literature (Zellers et al., 2020; Gehrmann et al.,
2019; Solaiman et al., 2019). However, the ma-
jority of these classifiers are specifically created
to identify instances generated by individual mod-
els. They achieve this by either utilizing the model
itself (as demonstrated by Mitchell et al. (2023))
or by training on a dataset consisting of the gen-
erated samples from that particular model. For
example, RoOBERTa-Large-Detector developed by
OpenAl (OpenAl, 2023b) is trained or fine-tuned
specifically for binary classification tasks. These
detectors are trained using datasets that consist
of both human-generated and Al-generated texts.
Consequently, their ability to effectively classify
data from new models and unfamiliar domains is
severely limited.
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Frequently Asked Questions (FAQs)

* How do we envision ADI being used to influence LLM development, policy making, etc.?

w The LLM has achieved the status of the holy grail in the field of Al Its widespread adoption
has been influenced by the success stories of ChatGPT, reaching various domains. As new LLMs
continue to emerge regularly, there is a strong belief that future iterations will be even more powerful.
Consequently, advanced AGTD techniques will be proposed to address these advancements. Regard-
less of the future landscape, the ADI will persist as a crucial tool for the scientific community and
policymakers to assess the detectability of LLMs within their range.

* For de-watermarking, Why do you use a brute force algorithm to choose a winning pair?
Isn’t it inefficient?
m QOur objective was to demonstrate the successful de-watermarking capability of a combination of
open-source models. Currently, the combination of albert-large-v2 and distilroberta-base
has shown the most promising performance among all the LLMs. However, determining the most
suitable combination for a text encountered in real-world scenarios poses a challenge. Exploring more

efficient and scalable approaches to identify the optimal pair in such cases is an area that requires
further investigation in future work.

%k For Stylometric analysis, the entire human-generated corpus was treated as if written
by a single author. Won’'t that lead to noisy analysis?

w Indeed, we made an easy presumption, but it opened up further possibilities.

% Why did you compare only six methods?

m We covered some of the most popular methods. It is possible but highly unlikely that there would
be other contemporary methods which we did not try and are also very effective in AGTD.

*¢ Do you think your findings will generalize to other languages?

w We have designed all the experiments and ADI in a way that is fairly applicable to any language.
For example, de-watermarking techniques that we have discussed are based on “entropy" calculation,
which is language agnostic. We have defined ADI primarily based on perplexity and burstiness, which
could be applied for any language. Additionally, to expand the scope of our claim, we are already
working on other languages, such as Spanish and Hindi, which we hope to publish soon.
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Appendix

This section provides supplementary material in the form of additional examples, implementation details,
etc. to bolster the reader’s understanding of the concepts presented in this work.

A LLM Selection Criteria

Beyond the primary criteria for choosing performant LL.Ms, our selection was meant to cover a wide
gamut of LLMs that utilize a repertoire of recent techniques under the hood that have enabled their
exceptional capabilities, namely: FlashAttention (Dao et al., 2022) for memory-efficient exact attention,
Multi-Query Attention (Shazeer, 2019) for memory bandwidth efficiency, SwiGLU (Shazeer, 2020) as
the activation function instead of ReLLU (Agarap, 2019), ALiBi (Press et al., 2022) for larger context
width, RMSNorm (Zhang and Sennrich, 2019) for per-normalization, RoPE (Su et al., 2021) to improve
the expressivity of positional embeddings, etc.

B De-Watermarking

As also shown by Krishna et al. (2023), watermarked texts can be relatively easily de-watermarked. Even
with the implementation of the newer, more robust watermarking scheme presented by Kirchenbauer et al.
(2023b), we were still able to circumvent the watermarks to a significant extent. Here we discuss the
methods in detail, concluding with Table 21 showing de-watermarking accuracies across 15 LL.Ms after
paraphrasing.

B.1 De-watermarking by spotting high entropy words and replacing them

The pivotal proposal made by the watermarking paper is to spot high entropy words and replace them
with a random word from the vocabulary, so it is evident that if watermarking has been done, it has been
done on those words.

What are high entropy words? High entropy words refer to words that are less predictable and occur
less frequently in a corpus. These words have a higher degree of randomness and uncertainty and thus,
pose a challenge for LLMs because they require a greater amount of training for accurate prediction. High
entropy words can include domain-specific jargon or technical terms. Based on the observed patterns
and frequencies of the training data, language models assign probabilities to words. Words with a high
entropy tend to have lower probabilities because they are less common or have a more diverse contextual
usage. These words are frequently uncommon or specialized terms, uncommon proper nouns, or words
that are highly topic- or domain-specific. An example of such a high entropy word used in a sentence is
as follows: "The adventurous child clambered up the gnarled tree, seeking the thrill of climbing to its
lofty branches." In this sentence, the word "gnarled" is a high entropy word. It describes something that
is twisted, rough, or knotted, typically referring to tree branches or old, weathered objects. In different
language models, alternative words that might occur instead of "gnarled" could be "twisted," "knotty," or
"weathered." These alternatives convey a similar meaning with more commonly used vocabulary. For
instance, consider a masked input sentence: "Paris is the [MASK] of France." In this scenario, an LLM
might predict candidate words with corresponding probabilities as follows: (i) “capital” [0.99], (ii)
“city” [0.0], (iii) “metropolis” [0.0]. Here, the LLM demonstrates a high level of certainty regarding
the word “capital” to fill the mask. Now, consider another sentence: "I saw a [MASK] last night."
The LLM’s predicted candidate words and their corresponding probabilities are: (i) “ghost™ [0.096],
(i1) “UF0” [0.083], (iii) “vampire” [0.045]. In this case, the LL.M exhibits uncertainty in choosing the
appropriate candidate word.
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B.2 Dewatemarking on 14 LLMs

Here we present performance evaluation of all the models’ combination for the rest of the 14 LLMs.
The "Pre" column shows the accuracy scores for the text that was successfully de-watermarked without
any paraphrasing techniques. The "Post" column shows the accuracy scores for a text that was not
successfully de-watermarked in the initial attempt but was able to be de-watermarked more successfully

after paraphrasing methods were applied.

Dewatermarking models — albert-large-v2

bert-base-uncased

distilroberta-base

x1lm-roberta-large

Masking models | DeW, DeW, DeW, DeW, DeW, DeW, DeW, DeW,
Wyl Wy Wil Wi Wyl Wig Wyl W Wi Wi Wyl Wig Wyl Wi Wy Wy
albert-large-v2 87.8 [9197 90
bert-base-uncased 67.8  79.1 66.7 86 89.2 61.1 814 86.2 60 779 87.8
distilroberta-base 80 884 75.6  89.5 82.2 722 884
x1lm-roberta-large 50 767 82 855 478 779 763 90 489 709 89 90 40 779 87.6

Table 7: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking LLaMA generated

watermarked text.

Dewatermarking models — albert-large-v2

bert-base-uncased

distilroberta-base

x1lm-roberta-large

DeW, DeW,

DeW,

DeW,

DeW;

DeW,

DeW,;

DeW,

Masking models |

Wy2

Wyl

Wy2

albert-large-v2
bert-base-uncased 66.2 784
distilroberta-base 90
x1m-roberta-large 53.7 | 85.1

88 90 73.8

86.3

78.9 90

79.7

537 824 795

45

67.5 | 784
86.3 892

81.1

69.8

Table 8: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Alpaca generated

watermarked text.

Dewatermarking models — albert-large-v2

bert-base-uncased

distilroberta-base

x1m-roberta-large

Masking models | DeW; DeW, DeW; DeW, DeW, DeW, DeW, DeW,
Wyl Wya Wyl Wi Wyl Wy WL Wi Wyl Wy WL Wi Wyl W Wy Wy
albert-large-v2 64.6 [ 737 90 56.6 (9751 88 788 828 768 848
bert-base-uncased 82N 57.6 529 784 364 50 605 364 515 555 313 505 835 90
distilroberta-base 64.6 707 90 505 855 80 626 7718 709 90 626 646 89 87
xIm-roberta-large 364 586 56.6 | 717 343 529 60 343 515 634 809 303 505 50 805

Table 9: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking BLOOM generated

watermarked text.

Dewatermarking models — albert-large-v2

bert-base-uncased

distilroberta-base

x1m-roberta-large

Masking models | DeW, DeW,

DeW,;

DeW,

DeW,

DeW,

DeW,

DeW,

Wyl Wy2 Wyl Wy2 Wyl

Wy2

Wy2 Wyl Wy2

Wy

Wyl

Wi

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large

Table 10: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking StableLM generated

watermarked text.
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albert-large-v2 bert-base-uncased distilroberta-base x1m-roberta-large

Dewatermarking models —
Masking models | DeW, DeW, DeW, DeW, DeW; DeW, DeW; DeW,
Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2
albert-large-v2 61.1 63.3 62.2 60
bert-base-uncased 41.1 674 41.1 674 46.7 69.8 40 61.6
distilroberta-base 51.1 56.7 53.3 51.1
x1m-roberta-large 333 569 58 40 558 422 523 4.4 477

Table 11: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Dolly generated

watermarked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1lm-roberta-large
Masking models | DeW, DeW, DeW, DeW, DeW, DeW, DeW, DeW,
Wyl Wy2 Wyl W2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2
albert-large-v2 69.2
bert-base-uncased 57.7
distilroberta-base 65.4
55.8

x1m-roberta-large

Table 12: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking TS generated water-

marked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1lm-roberta-large

DeW, DeW, DeW, DeW, DeW, DeW, DeW, DeW,

Masking models |

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large

Table 13: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Vicuna generated

watermarked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1m-roberta-large
Masking models | DeW,; DeW, DeW, DeW, DeW, DeW, - DeW, DeW,
vl

67.1
51.4
61.4
47.1

albert-large-v2
bert-base-uncased
distilroberta-base
x1lm-roberta-large

Table 14: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking T0 generated water-

marked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1lm-roberta-large
. DeW, DeW; DeW, DeW; DeW, DeW- DeW, DeW-
Masking models | i e e aie i e aid] e

Wyl W2 Wyl W2 Wyl Wy2 Wyl W2 Wyl Wy2 Wyl W2 Wyl Wy2 Wyl W2

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large

Table 15: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking XLNet generated

watermarked text.
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Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1lm-roberta-large
. D D. D D. D, D. D. D
Maskmg models i er eWz er eW2 EW] eWz er eW2
Wyl Wy2 Wyt Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyt Wy2

albert-large-v2

bert-base-uncased

distilroberta-base

x1m-roberta-large 66 66 63

Table 16: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking MPT generated

watermarked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1m-roberta-large
. D D D D DeW, D DeW, D,
Masking models |, Wi W2 Wi W eWi eWs Wi eW,
Wyl Wi Wyl W2 Wyl Wiy Wi Wi Wyl Wi WL Wi WL Wi Wyl Wi

64.5

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large 5 56.6 504 60

Table 17: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT2 generated

watermarked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1lm-roberta-large
Masking models | DeW, DeW, DeW, DeW, DeW, DeW, DeW, DeW,
Wyl W2 Wyl W2 Wyl Wy2 Wyl W2 Wyl Wy2 Wyl W2 Wyl Wy2 Wyl W2
69.2

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large

S
65.4
55.8

Table 18: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT3 generated

watermarked text.

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base x1m-roberta-large
Masking models i DeW1 DEWZ Der DEWZ Der DeWz Der DeWz
Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2 Wyl Wy2
albert-large-v2 62.2 64.5 62.2 60
bert-base-uncased 41.1 674 41.1 674 46.7 69.8 46 61.6
distilroberta-base 51.1 56.7 53.3 51.1
x1m-roberta-large 333 569 39 40 56.8 422 523 474 477

Table 19: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT3.5 generated

watermarked text.

x1m-roberta-large
DeW, DeW,

Dewatermarking models — albert-large-v2 bert-base-uncased distilroberta-base

DeW, DeW, DeW, DeW, DeW, DeW,

Masking models |

albert-large-v2
bert-base-uncased
distilroberta-base
x1m-roberta-large

Table 20: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT4 generated

watermarked text.
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B.3 De-watermarking by paraphrasing

A recent paper (Krishna et al., 2023) talks about the DIPPER paraphrasing technique and how it can
easily bypass the watermarking technique. However, their de-watermarking strategy can reduce the
detection accuracy of the watermark detector tool to a certain extent. It can’t fully de-watermark all the
texts.

Another paper (Sadasivan et al., 2023) also uses the DIPPER paraphrasing technique but a slightly
modified version in which they use parallel paraphrasing of multiple sentences. However, in this paper,
they came up with how to bypass the paraphrasing technique so that even after paraphrasing, the detector
can tell if the text is in fact Al-generated. This bypassing technique was named Retrieval and it uses the
semantic sequence to detect Al-generated text even after paraphrasing (Krishna et al., 2023).

Both these papers also talk about the negative log-likelihood and perplexity score and they have tried
on GPT and OPT models.

Based on empirical observations, we concluded that GPT-3.5 outperformed all the other models. To
offer transparency around our experiment process, we detail the aforementioned evaluation dimensions
as follows.

Coverage - number of considerable paraphrase generations: We intend to generate up to 5
paraphrases per given claim. Given all the generated claims, we perform a minimum edit distance (MED)
(Wagner and Fischer, 1974) - units are words instead of alphabets). If MED is greater than £2 for any
given paraphrase candidate (for e.g., ¢ — p{) with the claim, then we further consider that paraphrase,
otherwise discarded. We evaluated all three models based on this setup that what model is generating the
maximum number of considerable paraphrases.

Correctness - correctness in those genera-

Paraphrase tions: After the first level of filtration we have
Models _GPT-3.5-Turbo Pegasus Flan-T5-XXL performed pairwise entailment and kept only
Wil Wv2 Wil W2 Wl W2 those paraphrase candidates, are marked as en-

GPT 4 88% 73% 79% 69% 78% 68% . .
GPT35 89%  72%  78%  68%  79%  69% tailed by the (Liu et al., 2019) (Roberta Large),

OPT 20%  70% 9%  61% 80%  T2% SoTA trained on SNLI (Bowman et al., 2015).

GpT3 9%  70% 8% 68% 81% 3% Diversity - linguistic diversity in those gen-

Vicuna  93%  74%  85% 0%  82%  75% tions: W . din choosine
StableLM  95.0% 98.0% 96.4% 87.0% 83.0% 4250  €rations: Wwe were interested in choosing that

MPT 96.0% 99.0% 88.5% 90.1% 85.0% 68.7% model can produce linguistically more diverse
LLaMA  95.0% 98.7% 89.3% 99.1% 98.0% 98.9%  paraphrases. Therefore we are interested in the

Alpaca 95.0% 99.0% 95.5% 99.0% 70.5% 66.7% e er e
GPT 2 703% OL0% 89.0% T95% 68.0% 99.0% dissimilarities check between generated para

Dolly  98.0% 96.0% 95.6% 91.6% 98.0% 709%  Phraseclaims. Fore.g.,c—pj, p{—pp. P5—Ph
BLOOM  97.0% 97.0% 872% 92.9% 855% 76.8% ..., P4 — Py, and repeat this process for all the
TO 98.0% 99.0% 96.8% 96.0% 83.9% 80.0% other paraphrases and average out the dissimi-
XLNet  91.3% 88.0% 983% 89.7% 63.3% 63.0%

larity score. There is no such metric to measure
dissimilarity, therefore we use the inverse of the
] BLEU score (Papineni et al., 2002). This gives
Table 21: A summary of the effectiveness of the three paraphras- ; . TS .
ing methods - a) Pegasus (Zhang et al., 2020), (b) Flan-t5-xx] U an understanding of how linguistic diversity

(Chung et al., 2022), and (c) GPT-3.5 (gpt-3.5-turbo-e301 is produced by a given model. Based on these ex-
variant) (Ye et al., 2023) for de-watermarking. periments, we found that gpt-3.5-turbo-0301

performed the best. The results of the experi-
ment are reported in the following table. Furthermore, we were more interested to choose a model that

T5 977% 99.1% 99.0% 98.4% 98.9% 99.2%
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can maximize the linguistic variations, and gpt-3.5-turbo-03@1 performs on this parameter of choice
as well. A plot on diversity vs. all the chosen models is reported in Fig. 2.

Table 21 provides a summary of the effectiveness of the three paraphrasing methods for de-
watermarking. Among them, the GPT3.5 based method demonstrated the highest performance. Addition-
ally, it is worth noting that the de-watermarking accuracy for w,,, the watermarking technique proposed
in (Kirchenbauer et al., 2023b), showed a slight decrease compared to w,, the watermarking technique
proposed in (Kirchenbauer et al., 2023a).
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C Perplexity and Burstiness Estimation

We have conducted an analysis to determine the perplexity and burstiness of an LLM, as well as calculate
sentence-wise entropy. In order to evaluate the statistical significance of our findings, we employed the
bootstrap method. Results of these experiments on all 15 models are reported in Table 22.

Brief on bootstrap method: Bootstrapping
is a statistical procedure that resamples a sin-
gle dataset to create many simulated samples,

0.61

g9
illustrated in Fig. 6. This process allows for '
the calculation of standard errors, confidence in- 0l — 8j§
tervals, and hypothesis testing. A bootstrapping ‘5 'y
approach is an extremely useful alternative to the 8 — 07
traditional method of hypothesis testing as it is 02 — 05
1

fairly simple and it mitigates some of the pitfalls
encountered within the traditional approach. As ool
with the traditional approach, a sample of size 2 3 3 4 6 1 3
n is drawn from the population within the boot- Observations
strapping approach. Let us call this sample S.
Then, rather than using theory to determine all
possible estimates, the sampling distribution is
created by resampling observations with replace-
ment from §, m times, with each resampled set having n observations. Now, if sampled appropriately,
S should be representative of the population. Therefore, by resampling S m times with replacement, it
would be as if m samples were drawn from the original population, and the estimates derived would
be representative of the theoretical distribution under the traditional approach. It must be noted that
increasing the number of resamples, m, will not increase the amount of information in the data. That is,
resampling the original set 100,000 times is not more useful than only resampling it 1,000 times. The
amount of information within the set is dependent on the sample size, n, which will remain constant
throughout each resample. The benefit of more resamples, then, is to derive a better estimate of the
sampling distribution. The traditional procedure requires one to have a test statistic that satisfies particular
assumptions in order to achieve valid results, and this is largely dependent on the experimental design.
The traditional approach also uses theory to tell what the sampling distribution should look like, but the
results fall apart if the assumptions of the theory are not met. The bootstrapping method, on the other
hand, takes the original sample data and then resamples it to create many [simulated] samples. This
approach does not rely on the theory since the sampling distribution can simply be observed, and one
does not have to worry about any assumptions. This technique allows for accurate estimates of statistics,
which is crucial when using data to make decisions.

f

w
N
3]
[}

Figure 6: An illustration of Bootstrapping method — how it
creates simulated samples.
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C.1 Reliability of Perplexity, Burstiness and NLC as AGT Signals for all LLMs
Here we present the complete table showing results after performing experiments on Perplexity estimation
(Section 4.1), Burstiness estimation (Section 4.2) and NLC (Section 5) over all 15 LLMs.

LLMs Perplexity Burstiness NLC
Human Al Enty Enty; a Human Al Enty; Enty; [04 Human Al o

GPT 4 (OpenAl, 2023a) U 38.073 35465 4222 3.881 0492 -04010 0.3920 6.152 5.893 0.5004 2.123  1.966 0.503
o 86411 80.836 026164 0.3421 0.535 0.934

GPT 3.5 (Chen et al., 2023) u 43.198  39.897 3423 3.195 0505 -0.2798 0.5509 6.144 5923 0.5029 4492 4302 0.504
o 46866 42341 0.2966  0.3387 0332 0514

OPT (Zhang et al., 2022) U 46839 43495 4276 3.777 0519 -0.3001 03645 6.119 5.890 0.5052 4.160 4.175 0.505
o 68541  65.178 0.26164 0.3156 0.336  0.654

GPT 3 (Brown et al., 2020) u o 48.839 46980 4.205 3.933 0515 -0.3001 03171 6.119 5.880 0.5104 4.160 4302 0.503
o 82541  79.224 0.26164  0.2420 0.336  0.465

Vicuna (Zhu et al., 2023) u o 51839  50.728 4276 3.676 0.511 -0.3001 03122 6.119 5763 0.5009 4.160 4.491 0.507
o 58541  50.740 0.26164  0.3066 0.336 0427

StableLM (Tow et al.) U 62839  56.558 4205 3.564 0.506 -0.3001 0.1213 6901 5.841 04945 4.160 4.386 0.499
o 58.104  50.002 0.26164  0.3434 0.336  0.551

MPT (Team, 2023) u o 78.839 72495 4263 3406 0.505 -0.3001 0.1958 6.213 5.571 0.5041 4.160 4260 0.486
o 76541  66.634 0.26164  0.3834 0.336  0.626

LLaMA (Touvron et al., 2023) u  83.839 75358 4.662 3.299 0.497 -0.3001 0.2635 6.009 5.623 0.5017 4.160 4.428 0.502
o 83541  75.802 026164 0.2741 0.336  0.369

Alpaca (Maeng et al., 2017) uo 122839  76.105 5276 4.644 0512 -0.3001 0.3829 6294 5.603 04969 4.160 3.774 0.501
o 58541  86.554 0.26164  0.4033 0.336  0.698

GPT 2 (Radford et al., 2019) u o 143198 76296 5362 4770 0.516 -0.3001 -0.2159 6.333 5.843 0.5006 3436 3.778 0.507
o 60866 67.315 0.26164  0.2947 0.829  0.39%4

Dolly (Wang et al., 2022) uo 122839 91.789 5760 4.437 0512 -0.3001 0.3507 7.209 6.323 0.5057 4.160 4215 0.561
o 58541  66.629 0.26164 0.3717 0.336  0.618

BLOOM (Scao et al., 2022) uo 122839 92566 57700 4.558 0.509 -0.3001 0.9088 6.902 5.801 0.5083 4.160 3.917 0.506
o 58541  66.077 0.26164  0.2927 0.336  0.639

TO (Sanh et al., 2021) uo 122839  93.321 7.264 8.693 0.514 -0.3001 04578 6221 4.435 0.496 4.160 3.979 0.504
o 58541 56919 0.26164  0.5261 0.336  0.534

XLNet (Yang et al., 2019) u 106776 104.091 8378 9.712 0.532 -0.2992 -0.0153 6.380 4.563 0.4936 4297 4.185 0.498
o 57.091 62.152 0.2416  0.0032 0.338  0.535

T5 (Raffel et al., 2020) u 122.839 110386 7.884 8.760 0.532 -0.3001 -0.0216 6.921 4.830 0.4939 4.160 3.945 0.498
o 58541  96.893 0.26164  0.3187 0.336  0.735

Table 22: Comprehensive table for all 15 LLMs with statistical measures for Perplexity, Burstiness, and NLC, along with
bootstrap p values (o = 0.05), indicating non-significance for b values greater than the chosen alpha level.
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C.2 Plots for 15 LLMs across the ADI spectrum

Here we present the histogram plots and negative log-curvature line plots for all 15 LLMs. Arranged as
per the ADI spectrum, it is evident that higher ADI models come much closer to generating text similar
to humans that models that fall lower on the spectrum.
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Continued on next page
Table 23: Histogram and Line plots for perplexity estimation and NLC.
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Table 23: Histogram and Line plots for perplexity estimation and NLC. (Continued)
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Histogram and Line plots for perplexity estimation and NLC. (Continued)
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Table 23: Histogram and Line plots for perplexity estimation and NLC. (Continued)
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D Negative Log-Curvature (NLC)

DetectGPT (Mitchell et al., 2023) utilizes the generation of log-probabilities for textual analysis. It
leverages the difference in perturbation discrepancies between machine-generated and human-written
text to detect the origin of a given piece of text. When a language model produces text, each individual
token is assigned a conditional probability based on the preceding tokens. These conditional probabilities
are then multiplied together to derive the joint probability for the entire text. To determine the origin
of the text, DetectGPT introduces perturbations. If the probability of the perturbed text significantly
decreases compared to the original text, it is deemed to be Al-generated. Conversely, if the probability
remains roughly the same, the text is considered to be human-generated.

The hypothesis put forward by Mitchell et al. (2023) suggests that the perturbation patterns of Al-
written text should align with the negative log-likelihood region. However, this observation is not
supported by the results presented here. To strengthen our conclusions, we calculated the standard
deviation, mean, and entropy, and performed a statistical validity test in the form of a p-test. The findings
are reported in Table 22.

E Stylometric variation

The field of stylometry analysis has been extensively researched, with scholars proposing a wide range of
lexical, syntactic, semantic, and structural features for authorship attribution. In our study, we employed
Le Cam’s lemma (Cam, 1986-2012) as a perplexity density estimation method. However, there are several
alternative approaches that can be suggested, such as kernel density estimation (Wikipedia_KDE), mean
integrated squared error (Wikipedia_MISE), kernel embedding of distributions (Wikipedia_KED), and
spectral density estimation (Wikipedia_SDE). While we have not extensively explored these variations in
our current study, we express interest in investigating them in future research.

Tested on
GPT 4_GPT 3.5 OPT GPT 3 Vicuna StableLM MPT LLaMA Alpaca GPT 2 Dolly BLOOM T0O XLNet T5

GPT4 (95 8 85 85\| 53 32 34 59 39 57 53 44 49F35
92 46 33

GPT35 | 88 92 8 & 4 49 49 57 51 55 58 49 50
OPT | 82 80 |9 79 , 53 42 56 53 s B0 45 49 53 46 57
GPT3 | 79 78 79 —36 _ _ 58_ 3. 47 45 45 | 35 54 50 56 53
c| Vicuna Ts; T T3 T ?3‘%@ 82 77_ 48 49 41 53 [35 48 56
_g StableLM 132 45 36 54 |88 9 72, 36 51 48 | 38 54 58| 36 38
MPT 47 32 46 82 79 88 , 33 50_ _49_|.33 _ 46_ _52 _53
2| LLama 44 E o YWEE C TR 2 77 72 1 70 76 69 %
©| Alpaca 44 53 |33 4% | 30 il 8 91 70 71 67 69 65 62
Hl GpT2 g 47 42 42 43 33l 79 69 88 66 69 71 70 66
Dolly 45 55 50 41 75 66 68 [ 90 56 59 56 52
BLOOM 34 48 43 37 48 43 451 69 62 62 58 86 64 59 62
TO 39 36 |29 34l 66 58 57 60 55 84 56 61
XLNet 44 34 45 39 55 46! 65 52 55 61 49 48 82 57
T5 27y so 52 39 50 54 ‘\ 59 50 52 52 51 50 49 (80,

Figure 7: Given that our stylometric analysis is solely based on density functions, we posed the question: what would happen if
we learned the search density for one LLM and applied it to another LLM? To explore this, we generated a relational matrix.
This figure demonstrates that Le Cam’s lemma learned for one LLM is only applicable to other LLMs within the same group.
For instance, the lemma learned from GPT-4 can be successfully applied to GPT-3.5, OPT, and GPT-3, but not beyond that.
Similarly, Vicuna, StableLM, and LLaMA form the second group. The red dotted rectangle highlights the LLMs that are
classified as not detectable, while the black dotted rectangle represents the LLMs that are considered hard to detect. On the
other hand, the blue dotted rectangle indicates the LLMs that are categorized as easy to detect.
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F Al Detectability Index (ADI) — other possible variations

In our previous discussions, we have advocated for utilizing perplexity and burstiness as the fundamental
metrics to quantify ADI within the context of various paradigms of AGTD. However, it is important to
acknowledge that alternative features, such as stylistics, can also be employed to calculate the ADI. For
instance, if we consider stylistic features like syntactic variation (L‘g”) and lexicon variations (Ll;x), the
ADI can be reformulated as follows:

ADI = 3%« (£ {81 (x) = W=H ) + (830« P2 @

Ux2 x=1 B (1 ‘ulex)

where, P, = U *{XY_, (logp!,(syn) —logpi/'(syn)) and P, = U #{XY | (logp,(lex) — logpi ! (lex)) Similarly, it is
worth noting that in the future, other potential features such as NLC and any novel features that may be
proposed could also be incorporated within the framework of ADI.
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G Generated Samples

Text generated by each of the 15 LLMs given the same prompt “Al generated text detection is not easy”
are displayed in Table 24.

Prompt Al generated text detection is not easy

GPT 4 Al-generated text detection has become more popular in recent years as technology advances
and the demand for automated text analysis increases. While it offers many benefits, such as
being faster and less error-prone than manual data entry, there are also drawbacks to consider. For
example, Al-generated text detection often requires a large amount of training data to be accurate,
which can be expensive and time consuming to collect. Additionally, Al algorithms may not
always detect the nuances or cultural references within the text that humans might understand

better. Overall, while Al-generated text detection is certainly an important tool in...

GPT-3.5 Al-generated text detection is an intricate challenge that continues to perplex researchers and
developers alike. The rapid advancements in Al language models, such as GPT-3, have ushered in
an era of sophisticated text generation that blurs the line between human and machine-generated
content. Detecting Al-generated text requires a comprehensive understanding of the nuances and
patterns exhibited by these models. It demands an amalgamation of statistical analysis, linguistic
analysis, and machine learning techniques. The dynamic nature of Al models, coupled with
their ability to adapt and improve, poses an ongoing hurdle in creating robust detection systems.
Striving to stay one step ahead, researchers tirelessly explore innovative methodologies, such as
adversarial testing and anomaly detection, to combat the ever-evolving landscape of Al-generated
text. While progress is being made, the road to reliable and foolproof Al-generated text detection

remains a complex and formidable journey.

GPT-3 Al generated text detection is not easy to find. i’ve got a number of messages and text messages
going around here today. you should probably sit down and look at some of them. " he said he

had been listening to the messages of the...

GPT-2 Al generated text detection is a challenging task. While AI algorithms have made great strides
in recent years, there are several factors that make text detection difficult. One of the main
issues is the variability in text itself, both in terms of font and style. Additionally, text may
appear in different orientations and lighting conditions, making it more difficult for algorithms
to accurately detect and identify. Finally, background noise and other visual clutter can further
complicate the task. These challenges require Al developers to continually develop and improve

their algorithms to reliably detect and interpret text.

OPT I’m not sure what the topic is here. What is he trying to say? I think he is saying that it is too
easy to detect Al generated text (as many real Al generated text is very detectable) and so the
text detection is not that good. That’s not really what I was getting at... I'm not trying to say that
it’s too easy to detect Al generated text, I’m trying to say that it’s hard to do. I’'m not trying to

say that it’s not hard to detect Al generated text.

Continued on next page
Table 24: Al generated text for a sample prompt given to all 15 LLMs
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Prompt

Al generated text detection is not easy

LLaMA

There are two ways to tackle the task of detecting whether an article was written by machine or
human. One way would be to use a technique called Natural Language Understanding, which
involves generating some kind of semantic model that can identify the properties and relations
between words in order to determine if one particular word-string is likely to have been produced
by a person or an algorithm. The other approach might involve using something like natural
language generation (see this paper) where you could generate some kind of “reverse” sentence
from a piece of raw data. But while there’s a lot we still don’t know about how our brains work
when it comes to understanding sentences - such as why certain parts of speech seem easier for
us to understand than others - it seems fairly safe to say that the way machines currently learn to
write prose isn’t yet able to match up with what humans do naturally. If I were writing an essay
today, my biggest concern would probably revolve around being understood rather than trying to
write really well. That said, people definitely do care about both things at once; just look at all
those bloggers out there obsess...

BLOOM

I agree that Al generated text detection is not easy, especially given the fact that there are
many tools and resources available on the internet that can be used to generate text. But it’s
not impossible. There are several ways to detect Al generated text, such as using natural
language processing (NLP) techniques, analyzing the writing style and patterns, and checking
for inconsistencies and errors in grammar and syntax. Additionally, it’s important to note that
not all Al generated text is bad or negative, and some can be beneficial and helpful, such as in
the case of chatbots and Al assistants.

MPT

Al-generated content identification can be difficult, as it requires complex algorithms to identify
patterns in large amounts of data and determine whether they are human or machine written.
This process becomes even more challenging when dealing with short texts such as tweets,
which often contain slang words and abbreviations unique to certain communities. Despite these
challenges, researchers have made significant progress towards developing accurate methods for
detecting Al-generated text.

Table 24

Continued on next page

: Al generated text for a sample prompt given to all 15 LLMs (Continued)

2237



Prompt

Al generated text detection is not easy

Alpaca

Al generated text detection is not an easy task. Text detection is the process of identifying
and extracting text from an image, video, or document. It is a challenging task due to the wide
variety of text styles, sizes, colors, and backgrounds that can be found in an image or document.
Additionally, Al generated text detection must be able to accurately detect text even if it is
partially obscured by other elements in the image or document. Al generated text detection must
also be able to accurately detect text even if it is in a different language than the language of
the image or document. Al generated text detection must also be able to accurately detect text
even if it is in a different font or font size than the rest of the text in the image or document. Al
generated text detection must also be able to accurately detect text even if it is in a different color
than the rest of the text in the image or document. Al generated text detection must also be able
to accurately detect text even if it is in a different orientation than the rest of the text in the image
or document. Al generated text detection must also be able to accurately detect text even if it is

in a different shape than the rest...

Vicuna

Detecting Al-generated text can be a challenging task. Unlike human-written content, which
often contains unique phrasing and grammatical errors, Al-generated text is designed to be
flawless. As a result, it can be difficult for humans to differentiate between the two. Additionally,
Al algorithms can produce vast amounts of text quickly, making it increasingly important to
develop reliable detection methods. With advancements in technology and machine learning
techniques, detecting Al-generated text will continue to evolve and become more sophisticated

over time.

Dolly

Generating text in an image is not an easy task. There are several steps that need to be done in
order to generate text from an image. The first step is to pre-process the image so that it can be
better understood by the computer. One of the first steps in this process is to detect the text in the
image. There are many libraries and frameworks that can be used to do this text detection. Some
of these libraries include python-OCR, OpenText, and Tesseract. Once the text has been detected,
the next step is to tokenize the text. Tokenization is the process of splitting the detected text up
into individual words. Some libraries that can be used for tokenization are NLTK and SpaCy.
After the text has been tokenized, you then need to filter out all the stopwords. Stopwords are
common words that are not considered to be part of the text. Once all the stopwords have been
removed, you then need to lemmatize the words that have been removed. Lemmatization is the
process of removing the inflection from words and treating them as if they were roots. The last
step in this process is to sentence piece the tokens that have been created from the tokenization

step.

Continued on next page

Table 24: Al generated text for a sample prompt given to all 15 LLMs (Continued)
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Prompt

Al generated text detection is not easy

StableLM

Detecting Al-generated text is a challenging task that requires deep understanding of the text data
and its characteristics. When dealing with such data, the accuracy of detection is often hampered
by the presence of errors or inconsistencies in the data. Furthermore, the task of accurately
detecting text in natural language is also inherently difficult, as the patterns and structure of
human language are complex and vary across different contexts. As a result, there is a need
for more sophisticated and robust techniques that can identify and analyze the significance of

Al-generated text in a meaningful way.

XLNet

It is not easy to execute a paragraph or paragraph in a particular order. It is most difficult when
a script is loaded. It is particularly difficult to do when the script is selected as a script that
is loaded. It is no easier to do when a file is being loaded as only the following page. When
a file is being loaded as a "predefined" "spec" it has an incompatibility with the file. When
the file is being loaded in the first-string "select" script it has an incompatibility with the file.
On page 5, Instruction 213. Refer to the section "First-string "spec" scripts for a "predefined"
script "spec" script. See the section "Predefined" scripts to describe "predefined" scripts by
"predefined" scripts for "predefined" script "spec". Instruction 212. See the sub-group in the

section "PredefinedScript" for "predefined" script "spec" and "predefined” script...

TS

The text detection is not easy. It’s not easy to detect the Al generated text. It takes a lot of
work. But it is possible. And the results are amazing. The result: a new generation of intelligent

machines...

TO

FXCURE’s modern Al technology detect when a word is being typed or spoken. The software
uses a human-like lexicon of letters, numbers and symbols to identify words. The software then

makes the word text-based inferences.

Table 24: Al generated text for a sample prompt given to all 15 LLMs (Continued)
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