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Cross-modal recipe retrieval has gained prominence due to its ability to retrieve
a text representation given an image representation and vice versa. Clustering
these recipe representations based on similarity is essential to retrieve relevant
information about unknown food images. Existing studies cluster similar recipe
representations in the latent space based on class names. Due to inter-class
similarity and intraclass variation, associating a recipe with a class name does
not provide sufficient knowledge about recipes to determine similarity. However,
recipe title, ingredients, and cooking actions provide detailed knowledge about
recipes and are a better determinant of similar recipes. In this study, we utilized
this additional knowledge of recipes, such as ingredients and recipe title, to
identify similar recipes, emphasizing attention especially on rare ingredients.
To incorporate this knowledge, we propose a knowledge-infused multimodal
cooking representation learning network, Ki-Cook, built on the procedural
attribute of the cooking process. To the best of our knowledge, this is the first study
to adopt a comprehensive recipe similarity determinant to identify and cluster
similar recipe representations. The proposed network also incorporates ingredient
images to learn multimodal cooking representation. Since the motivation for
clustering similar recipes is to retrieve relevant information for an unknown food
image, we evaluated the ingredient retrieval task. We performed an empirical
analysis to establish that our proposed model improves the Coverage of Ground
Truth by 12% and the Intersection Over Union by 10% compared to the baseline
models. On average, the representations learned by our model contain an
additional 15.33% of rare ingredients compared to the baseline models. Owing to
this difference, our qualitative evaluation shows a 39% improvement in clustering
similar recipes in the latent space compared to the baseline models, with an
inter-annotator agreement of the Fleiss kappa score of 0.35.

KEYWORDS

cooking process modeling, cross-modal retrieval, ingredient prediction, knowledge-
infused learning, multimodal learning, representation learning, clustering

1. Introduction

Over the recent few years, people have become more aware of their food choices due to its
impact on their health and chronic diseases. Consequently, the usage of dietary assessment
systems has increased, most of which predict calorie information from food images. Various
such dietary assessment systems have shown promising results in nudging users toward
healthy eating habits (Jospe et al., 2015; Wang et al.,, 2016). Furthermore, recent studies
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(Salvador et al., 2017, 2021; Carvalho et al., 2018; Wang et al.,
2019, 2021; Zhu et al., 2019; Fu et al., 2020; Zan et al., 2020;
Guerrero et al., 2021; Papadopoulos et al., 2022) have established
the benefits of cross-modal representation learning in which the
relevant information such as ingredients and cooking methods can
be determined from a food image using an image-to-recipe retrieval
task.

Existing models (Guerrero et al., 2021; Salvador et al., 2021;
Papadopoulos et al., 2022) have achieved state-of-the-art results in
retrieving text representation’, given a food image representation
and vice versa in the presence of their respective ground truth
representationz. However, for an unknown food image, the nearest
text representation must be retrieved to obtain cooking instructions
and ingredients as the ground truth will not be known. For this
reason, the nearest text embedding should be from a recipe® similar
to the recipe of the unknown food image. Hence, clustering learned
representations of similar recipes and distinguishing learned
representations of different recipes in the latent space are essential.
Most of the existing studies (Salvador et al., 2017; Carvalho et al,,
2018; Wang et al., 2021) have clustered recipes in the latent space
based on class names. However, a recipe may not be associated with
a single class label, as shown in Figure 1. Figure 1 also illustrates
an example of the prevalent problems in the food domain known
as inter-class variations, where recipes from different classes are
similar, and intraclass variations, where recipes from the same
class are different (sub-categories of a class). The burger buns and
bagel buns have a difference of ~100 calories (Nutritionix, 2023),
and hence, positioning the recipes in the right cluster is essential.
Several studies (George and Floerkemeier, 2014; Silva et al., 2020;
Zhao et al., 2020) have explored food classification as a multi-label
problem that will require extensive manual annotations of food
class labels. This problem requires additional knowledge about the
recipes besides class names to identify similar recipes.

Two recipes are said to be similar if they share the same
title, same set of ingredients, and same cooking actions. The
recipe titles, ingredients, and cooking methods provide detailed
knowledge about recipes. Rare ingredients and cooking methods
play a particularly vital role in determining similar recipes. For
example, two recipes can be told apart based on a rare ingredient,
such as an eggplant, but not based on common ingredients, such
as salt or oil, which are present in almost all recipes. Furthermore,
common ingredients such as salt, sugar, and oil are not sufficient
for analyzing a given recipe in the context of an allergy, a particular
diet, or a health condition.

In this work, we propose a novel recipe similarity determinant
that utilizes additional knowledge about recipes such as titles
and ingredients, with emphasis on rarely-used ingredients.
To incorporate such knowledge, we propose a knowledge-
infused learning network, Ki-Cook, that clusters multimodal
representations of recipes based on this similarity determinant.

1 Text representation refers to the learned representation generated for
cooking instructions and ingredients of a given food image.

2 Ground truth representation refers to the corresponding text
representation of a food image representation and vice versa.

3 Recipes collectively refers to the text representation and food image

representation.
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FIGURE 1

The image on the right is a burger. The image on the left could be
perceived as a type of burger made with bagel buns or a bagel with
stuffed vegetables. Based on our interpretation of the food item on
the left, the class name can be a bagel or a burger. This is also an
example of inter-class similarity where recipes from different classes
can be similar (bagel or burger for the image on the left). In general,
burgers also experience intraclass variation, that is, multiple
sub-categories of burger (hamburger, beef burger, and so on).

Knowledge-infused learning is an approach to integrate knowledge
into training machine and deep learning models to improve
their predictive capabilities (Valiant, 2006; Sheth et al, 2019
Garcez and Lamb, 2020). As this approach uses additional
knowledge to identify similar recipes, it resolves the problem of
intraclass variation and inter-class similarity described in Figure 1,
introduced due to class names. To the best of our knowledge, this is
the first study to utilize comprehensive knowledge about the recipes
to identify similar recipe representations and cluster them in the
latent space through a knowledge-infused learning approach.

Ki-Cook models the procedural attribute of the cooking process
and incorporates a visual representation of ingredients to learn
multimodal cooking representation. The procedural attribute of
the cooking process, modeled as a sequence of states, captures the
cooking actions performed with each ingredient. For this study,
we also extended the largest multimodal recipe dataset RecipelM
(Salvador et al, 2017) to include 500 images per ingredient
category, constituting 8 million ingredient images, and utilized
them for representation learning. This is the first study to include
images of 16 K ingredient categories to learn multimodal cooking
representation. We plan to release our dataset to promote further
research.

To cluster learned representations of similar recipes in the
latent space, we have summarized the specific contributions of
this article as follows: (i) a comprehensive similarity calculation
approach that utilizes additional knowledge about recipes such as
title and ingredients, adding attention to rarely used ingredients
(ii) procedural modeling of the cooking process to learn
cooking representations, (iii) incorporating visual information of
ingredients in multi-modal cooking representation learning, and
(iv) evaluate on ingredient retrieval task to demonstrate the ability
of our similarity determinant to cluster similar recipes to retrieve
relevant information for an unknown food image.

Furthermore, we also performed qualitative evaluations to
analyze the clustering of similar recipes in the latent space
compared to baseline models. Through experiments, we have
demonstrated that our proposed knowledge-infused multimodal
representation learning network identifies similar recipes better
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than baseline models and clusters them. Compared to baseline
models, the ingredients retrieved by our learned representations are
more relevant to unknown food images.

2. Related works

The recent growth of dietary assessment systems has led to a
variety of research in food computation models varying from food
image classification to food perception (Min et al., 2019). Cross-
modal recipe retrieval learning is a widely researched area as the
representations can be utilized for various downstream tasks.

2.1. Learning cross-modal recipe
representations

Salvador et al. (2017) proposed a deep learning network
for cross-modal recipe retrieval using the RecipelM dataset.
Building on this research, Carvalho et al. (2018) used a triplet
loss-based objective function to improve the retrieval results.
Zhu et al. (2019) designed a GAN-based architecture for
recipe representation learning. Authors of various studies (Wang
et al, 2019, 2021; Fu et al, 2020; Zan et al, 2020) have
proposed the attention mechanism-based architecture to enhance
the cross-modal alignment in the latent space. Salvador et al.
(2021) and Guerrero et al. (2021) used hierarchical transformer-
based architecture for cross-modal recipe retrieval. Papadopoulos
et al. (2022) generated program representation for the cooking
procedure. Various existing works (Salvador et al., 2017; Carvalho
et al,, 2018; Zhu et al., 2019) clustered representations of similar
recipes in the latent space based on class names. Using a class
name as a recipe similarity determinant would not be sufficient as
recipes may not be associated with a class name (Figure 1). The
existing works focus on cross-modal retrieval in the presence of
ground truth representation. However, in a real-world scenario, the
ground truth cooking representation is not known for an unknown
food image. For this reason, our work focuses on clustering similar
recipes in the latent space using additional knowledge about the
recipes besides class names. Further, we evaluate on ingredient
retrieval from the learned representations in the absence of ground
truth representations.

2.2. Knowledge-infused learning

With  promising results, knowledge-infused learning
approaches (Dash et al., 2022) are making advances in various
research flelds such as autonomous driving (Wickramarachchi
et al,, 2021), conversational agents (Gaur et al, 2021), medical
imaging (Tan et al., 2019; Zhang et al., 2020), and generative models
(Lan et al, 2019). Using RecipelM dataset, various knowledge
graphs for different purposes have been introduced (Haussmann
et al., 2019; Chen et al., 2021; Seneviratne et al., 2021; Shirai et al.,
2021). RECIPTOR (Li and Zaki, 2020) used FoodKG (Haussmann
et al, 2019) to mine triplets for their objective function and
evaluated the representations for the cuisine prediction task.

However, the infusion of domain knowledge into training the deep
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learning models for cooking representations remains unexplored.
In this study, we have explored the use of domain knowledge
to identify similar recipes and cluster them to improve relevant
information retrieval of an unknown food image.

2.3. Ingredient analysis

Identifying ingredients from food images is challenging as their
visibility and shape are transformed due to the cooking process.
Chen and Ngo (2016) and (Chen et al., 2020) employed a multi-
task multi-relational GCN for zero-shot ingredient recognition.
However, detecting invisble ingredients is not possible through this
approach. Salvador et al. (2019) focused on generating cooking
instructions and ingredients from food images using generative
models. Li et al. (2019) proposed techniques for predicting the
amount of relative food ingredients from food images using the
RecipelM dataset, only focusing on the top 4 k frequent ingredients
that were further reduced to 1.4 k ingredient categories. Li et al.
(2021) proposed a picture-to-amount deep learning architecture
model called PITA to predict 1.4 K ingredients and estimate the
relative amount of ingredients using cross-modal representations.
The approach proposed by PITA (Li et al., 2019) can predict the
ingredients that are invisible and deformed. The study attempts
to predict only the most frequently used ingredients. However,
frequently occurring ingredients such as salt, sugar, and oil do
not provide sufficient information to analyze the recipe in the
context of an allergy, diet, or health condition. In our work,
we investigate the retrieval of visible, invisible, and deformed
ingredients that may be used frequently or rarely for an unknown
food image. We also illustrate the significance of rarely-used
ingredients in enhancing the clustering learned representation
of similar recipes, thereby improving ingredient retrieval for
unknown food images.

3. Methodology

3.1. Definitions and notations

The network aims to cluster the representations of food images
and the respective cooking procedures of similar recipes in the
latent space. To achieve this clustering, the common latent space
is learned for food images and cooking procedures where they are
clustered. Formally, a given recipe r = {D, S}, where D is a dish
image and S is a sequence of states ranging from s; to s,, where n is
the final state of the recipe. The sequence of states can be viewed as
a sequence of actions performed on the ingredients to complete a
recipe. The dish image D corresponds to the appearance of the food
image obtained after completing the cooking procedure’s final step
sn. Each state s; = {c;, t;, vi}, where ¢; corresponds to the cooking
instruction in the text, f; corresponds to the ingredient name and
volume in the text, and v; corresponds to the ingredient image
present in the cooking instruction. Henceforth, the ingredient
name and volume in text t; would be referred to as ingredient text
for brevity.
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3.2. Data collection and pre-processing

3.2.1. Dataset extension

For this study, we extended the RecipelM dataset (Salvador
et al., 2017), which consists of more than one million recipes,
to include ingredient images. The RecipelM dataset consists of
dish images, recipe title, ingredient text, and instruction text for a
given recipe. The dataset has 9 million ingredients, meaningfully
reduced to 16 K ingredients by Salvador et al. (2017). For the 16 k
ingredients, we used the ingredient name as the query and extracted
the top-500 results from Google Images, which resulted in 8 million
ingredient images. For the scope of this research, we did not filter
the images based on their quality or relevance and regard them as
noise in the training data. Instead, we have presented the quality
assessment of ingredient images in Section 4.4.

3.2.2. Instruction pre-processing

Our proposed approach models the cooking procedure as a
sequence of states, therefore, we processed the cooking instructions
to have one ingredient per instruction. We employed the spaCy
NLP parser (Honnibal and Montani, 2017) to extract the noun
phrases from a given cooking instruction. Each recipe in the
RecipelM dataset consists of a set of preprocessed ingredients ING
={ing, ing, .., ing, } in a textual format. We observed variations in
ingredient names present in the list of noun phrases [ ¢ ] extracted
by spaCy compared to the ingredient names present in the ING set.
For example, Philadelphia cream cheese in the ingredient set ING
is present as cream cheese in the cooking instruction. Hence, to
address this challenge, we computed the Intersection Over Union
(IOU) of word tokens over each item in the extracted noun phrases
[ ¢ ] with each ingredient in the set ING. For a noun phrase present
in [ t ], we considered the ingredient with the highest IOU in the
set ING as a match. Then, we used the ingredients from the list of
noun phrases [ ¢ ] as an end-of-sentence marker to split the cooking
instruction.

3.3. Model architecture

In this section, we have described our proposed model
architecture shown in Figure 2. To demonstrate that using the same
models used by Salvador et al. (2017) but modeling procedural
attributes of the cooking process and infusing knowledge can
improve relevant information retrieval for an unknown food image,
we only used the same model as that used by Salvador et al.
(2017) and evaluated our model against theirs. The proposed
model architecture comprises three primary encoders, i.e., a states
encoder, a cooking encoder, and a dish image encoder, which have
been discussed below.

3.3.1. States encoder

The states encoder generates representations for each state in
the recipe (Figure 3). Each state in the recipe consists of a cooking
instruction, the ingredient name and volume, and an ingredient
image to capture actions performed on an ingredient at a given
time step. A recipe consists of n states from s; to s, and its
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corresponding state representation x; to x, is generated by the
states encoder. The representation of the ith state x; was obtained
by concatenating ith representations of cooking instruction xI,
ing—text ing—img
i i

in Equation (refeq:concatenation)

ingredient text x ,and ingredient image x ,as described

_ r.ins ing—text ing—img
Xi = [xi > X » X ] > (1)

The states encoder consists of a cooking instruction encoder,
an ingredient text encoder, and an ingredient image encoder, as

discussed below.

3.3.1.1. Cooking instruction encoder

The cooking instruction encoder generates a representation for
a given cooking instruction. It consists of a learnable embedding
layer, which is followed by a bidirectional long short-term memory
networks (LSTM). The learnable embedding layer was set to 300
dimensions and generates encoding for words. The bidirectional
LSTM utilized the learned word embeddings to generate a
representation xf"s for the cooking instruction ¢; in state s;. The
hidden LSTM layer was set to 300 dimensions. We concatenated
the output from the last hidden layer of both directions to get the
representation for the cooking instruction.

3.3.1.2. Ingredient text encoder

Curating a dataset for all forms of an ingredient, such as
diced and pureed tomatoes, is a tedious task. Thus, we used
the ingredient text that represents the form and volume of the
ingredient along with the ingredient image. Similar to the cooking
instruction encoder, the ingredient text encoder consists of a
learnable embedding layer and bi-directional LSTM to obtain
the representation x;ngftm for the ingredient text #; in state s;.
The embedding layer and the bidirectional LSTM of the cooking

encoder and ingredient text encoder share their weights.

3.3.1.3. Ingredient image encoder

The final dish image of the recipe resulted from the ingredients
changing appearance due to a sequence of cooking actions.
Hence, we incorporated ingredient images to acquire a visual
representation of ingredients. We use ResNet-18 to encode the
ingredient images, and the final softmax layer was removed.
The output from the last average pooling layer was fed to a
ing—img
1
of 512 dimensions for the ingredient image v; present in
state s;.

fully connected layer to generate the representation x|

3.3.2. Cooking encoder

The cooking encoder consists of a bidirectional LSTM to
capture the global temporal dependency of the cooking procedure.
It was established that normalizing hidden layers can stabilize
the training process. Hence, similar to Wang et al. (2021),
we introduced a normalization layer described by Ba et al.
(2016) to normalize the state representations [x1, X2,.., Xu]
before passing it to the bidirectional LSTM. The LSTM takes
a sequence of normalized state representations [H;, Hj,..., Hy]
as its input and generates a representation for the cooking
procedure. Each state representation is a 1,12 dimensional vector.
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Add the basil and remove
from the heat.

2 1bsp basil

4
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3
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When hot, add the onion
and saute 5 to 6 minutes,
or until soft.

Puree the tomatoes to a
creamy consistency in
a food processor.

Heat the olive oil over
medium-high
heat in a large saucepan.

DY
% red onion , diced

2 tbsp exira virgin olive oil 28 oz peeled tomatoes
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COOKING ENCODER (Bi-LSTM)

Clustering Similar Recipes

DISH IMAGE ENCODER (ResNet-50)
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FIGURE 2

2 3 n
The overall network architecture of the proposed approach is illustrated in this figure with an example recipe, red sauce pasta. The state encoder
takes each state of a recipe as the input in sequential order to produce a learned representation for each state. The cooking encoder takes the
learned state representations in sequential order to generate a final learned representation for the cooking procedure. The learned cooking
representation and dish image representation are clustered in the latent space based on the knowledge infused through the similarity determinant.

STATES ENCODER
Puree the tomatoes processor
' ' ' Bi-LSTM N
s,
COOKING INSTRUCTION ENCODER i
Puree the tomatoes to a
C creamy consistency in S ecisd tomatoce
»
@ food processor e
ti 28 oz peeled tomatoes > ' i I BILSTM
V.
! ingrtext
INGREDIENT TEXT ENCODER ' N
4 §
RESNET-18
xing-img
INGREDIENT IMAGE ENCODER i

FIGURE 3

The state S;={c;, t;, v;} where ¢; corresponds to the ith cooking instruction in the text, t; and v; correspond to the ingredient text and ingredient image,
respectively, present in the ith cooking instruction. The three learned representations x”*, x/"~**, and x/"9"™9 are concatenated to form the state
representation x; for ith state.

3.3.3. Dish image encoder

We adopted the ResNet-50 model to extract the visual features
from dish images D. We removed the final softmax layer to
obtain a representation of 2,048 dimension from the last average
pooling layer. The learned representation was then passed to a fully

Correspondingly, the hidden layer of bidirectional LSTM was set
to 1,712 dimensions. Finally, we concatenated the output from
the last hidden layer of both directions and passed it to a fully
connected layer of 1,024 dimensions to obtain the final cooking
representation.
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connected layer of 1,024 dimensions to obtain the final dish image
representation.

3.4. Objective function

Inspired by prior studies from Carvalho et al. (2018); Zan et al.
(2020); Wang et al. (2021), which obtained promising results, we
used triplet loss as an objective function to learn the common latent
space for dish image and multimodal cooking representations. For
the proposed model, we used multiple negative samples and one
positive sample mined from a given batch. The triplet loss for a
given data sample was calculated as described in Equation (2).

5 5
Lripiet = Y _[d(Iay Kp) — dlTa, Kyl + Y _[d(Koy Ty) — d(Kay I )]
k=1 k=1

2)

where a, p, and n represent the anchor, positive and negative
samples; k represents the number of negative samples; K is the
cooking representation; I is the dish image representation; and o
is the margin parameter of triplet loss (Balntas et al., 2016).

3.5. Recipe similarity determinant

In this section, we have discussed our recipe similarity
determinant that utilizes titles and ingredients of a recipe to
compute a semantic similarity score to cluster similar recipe
representations in the latent space. We plan to incorporate cooking
methods in the similarity determinant in the future. The semantic
similarity score in Equation (3) provides a degree of similarity
between any two given recipe pairs (r;, 7;) and we computed the
score as

n m
(:D(rj, 7:7) — Zl:l:l XX + thl(n:ﬁ) X X ,

3)

where 7 is the sum of words in the titles of r; and 7; after
removing stop words; m is the sum of ingredients present in r; and
rjs wi is the weight of each word in the title; f; is the frequency of
each ingredient computed over the recipes in the training, testing,
and validation datasets; and x is 1 if the word or ingredient is
present in both the recipes but 0 otherwise. The inverse frequency
of ingredients in Equation (3) adds attention to the rarely used
ingredients. The weight w; is 1 for any word in the title and 2 if it is
a class label such as pasta, burger, and so on. We utilized the class
labels published by Salvador et al. (2017). We empirically chose the
weight for words present in the class label and assigned weights to
the class labels hypothesizing that the recipes under a given class
should be closer than two similar recipes of different classes. The
evaluations are presented both with and without adding weights for
class weights.
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3.5.1. Knowledge infusion

Using the semantic similarity score, we computed semantic
similarity loss to cluster recipes in the latent space based on
their similarities instead of clustering based on just class names.
We concatenated the dish image representation I and cooking
representation K to form 2,048 dimensional representation, called
recipe, representation e; = [Kj, I;], where i denotes the ith
representation in the batch. For a given data sample in a batch, we
calculated the semantic similarity loss as

N-1
o Z ‘ ®(ri,rjji) — o\ [ cos(ei, &) — Heos )
sem = - oo Oeo >

(4)

where N is the batch size; ;1o and o are the mean and standard
deviations of the semantic similarity scores; and jicos and oo are
the mean and standard deviations of the cosine similarity scores.
Equation (4) enforces the distribution of cosine similarity scores to
follow the distribution of semantic similarity scores. As the cosine
similarity scores followed the distribution of the semantic similarity
scores, the learned recipe representations can be clustered in the
latent space based on their similarities computed using the semantic
similarity scores. We calculated the total loss for a given data sample
as
Loss = ltriplet + Msem > (5)
where A is the trade-off parameter. For a given batch, we
computed the loss for each data sample and averaged them.

4. Experiments
4.1. Dataset

The extended RecipelM dataset (described in Section 3.2) was
used for the training and evaluation of our model. Similar to the
study of Salvador et al. (2017), we used 340 k unique recipes for this
study. Of the 340 k recipes, 13 k have more than one ingredient
but only one instruction for the entire recipe, such as “Mix all
the ingredients and serve” as the states encoder takes only one
ingredient per instruction. After removing the 13 k recipes, the
dataset comprises 229,317 recipes for training, 49,294 for testing,
and 49,075 for validation. We only included recipes with at least
one dish image present.

4.2. Implementation details

We initialized both the ResNet (mentioned in Section 3.3)
models with pretrained weights from the ImageNet dataset (Deng
etal., 2009). We freezed the weights of the ingredient image encoder
except for the fully connected layer at the end of ResNet-18. We
initialized the rest of the network with random weights for training.
We randomly sampled an image from our extended dataset for
the dish images and an image from the top-100 results returned
by Google Images for the ingredient images. For the states without
any ingredient in the cooking instruction, we input “none” for the
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TABLE 1 Recall and IOU of the ingredient prediction task for 10,000 samples.

K=1 K=5 K =10
CVG (0.38) IOU (0.19) CVG (0.46) 10U (0.27) CVG (0.48) IOU (0.28)
JE 0.0685 0.0376 0.06407 0.03541 0.05628 0.03086
JE + SR 0.0717 0.0389 0.07037 0.0365 0.0702 0.0363
Ki-Cook 0.0730 0.0387 0.07135 0.0381 0.0705 0.03650
Ki-Cook + SSWC 0.07475 0.0405 0.0701 0.0376 0.0709 0.0369
Ki-Cook + SSWOC 0.0777 0.0393 0.0728 0.0385 0.0719 0.0359

As the ground truth was removed, the upper bound (maximum possible accuracy) for each run is as mentioned within the parentheses.

The bold values represent the highest CVG and IOU for a given column.

ingredient text and a white image for the ingredient image. We
used Adam optimizer (Kingma and Ba, 2014) with a learning rate
of 107>, The trade-off parameter A was set to 1, and the number
of negative samples k in the triplet loss function was set to 5. We
empirically chose the hyperparameter values. We trained the end-
to-end network with a batch size of 64. We employed early stopping
to prevent the model from overfitting and trained it for several
epochs until it converges.

4.3. Evaluation protocols

As the goal of clustering was to retrieve relevant information
about an unknown food image, we performed a quantitative
evaluation on the ingredient retrieval task. Since this is the first
study to perform ingredient retrieval from learned representations
by clustering them, we created our baseline based on Salvador
et al. (2017). Since Salvador et al. (2017) performed evaluations
on cross-modal recipe retrieval in the presence of ground truth
and not ingredient retrieval in the absence of ground truth, we
performed ingredient retrieval evaluation on their model. We
trained both models to the same cross-modal median retrieval
rank to effectively demonstrate the difference in the quality of
representations generated by both approaches. Furthermore, we
performed a qualitative evaluation to analyze the clustering of
recipes in the latent space based on similarity.

4.3.1. Quantitative evaluation

For a given dish image representation I, we retrieved the k-
nearest cooking representation K using cosine similarity to predict
the ingredients present in the dish image. We present the results
with varying k values to evaluate the clustering of similar recipes.
In a real-world scenario, we do not have access to the ground truth
cooking representation to retrieve ingredients for an unknown
food image. Hence, we removed the corresponding cooking
representation (ground truth) of a food image representation
before finding the closest cooking representation. We used the
following metrics as reported by Li et al. (2021) for quantitative
results:

e Coverage of Ground Truth (CVG):

Cc ~
—r— > ¢=) yNy ,
Zf\il}’i Z

CVG = (6)
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where y is the ground truth ingredient set, 7 is the
predicted ingredient set, and M is the total number of
ingredients in the ground truth ingredient set.
o Intersection Over Union (I0U):

c
(Zf\il yi+ Zf\ilfl) —c

where M is the total number of ingredients in the predicted

I0U = , (7)

set.

Since there are no established methods to evaluate the
relevant information retrieval of an unknown food image using
learned representations, we adapted and constructed an evaluation
procedure based on the procedures introduced by Salvador et al.
(2017) and Li et al. (2021). We randomly sampled a subset of
1,000 dish image and cooking representation pairs from the test
set. We retrieved the k-nearest cooking representation using cosine
similarity for each dish image representation to compute CVG
and IOU. Evaluations were performed on the k-nearest cooking
representation to demonstrate the efficiency of our approach to
cluster similar recipes. We repeated the experiment 10 times for
each k and reported the mean result in Tables 1, 2. We repeated
the same procedure by randomly sampling 10,000 dish image and
cooking representation pairs. The models used in the quantitative
evaluation are as follows:

e JE: The method proposed by Salvador et al. (2017) without a
semantic regularizer

e JE+SR: The method proposed by Salvador et al. (2017) with a
semantic regularizer

e Ki-Cook: Our model trained only on triplet loss and without
semantic similarity loss

e Ki-Cook + SSWC: Our model trained on both triplet loss and
semantic similarity loss. In this model, the weight of the recipe
title words that belong to the class label was set to 2, as shown
in Equation (3), that is, w; = 2 if the word w; belongs to a
class label. For example, in the recipe name Red Sauce Pasta,
Pasta is considered the class name, as described in the study by
Salvador et al. (2017).

e Ki-Cook + SSWOC: Our model trained on both triplet loss
and semantic similarity loss. In this model, the weight for the
recipe title words that belong to the class label was set to 1, as
shown in Equation (3) (i.e., w; = 1 always).
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TABLE 2 Recall and IOU of the ingredient prediction task for 10,000 samples.

K=1 K=5 K =10
CVG (0.47) IOU (0.28) CVG (0.56) 10U (0.38) CVG (0.59) IOU (0.40)

JE 0.0679 0.0367 0.0622 0.0311 0.0591 0.0308
JE + SR 0.0763 0.0371 0.0721 0.0365 0.0695 0.0362
Ki-Cook 0.0743 0.0399 0.0736 0.0368 0.0700 0.0359
Ki-Cook + SSWC 0.0783 0.0406 0.0742 0.0377 0.0709 0.0365
Ki-Cook + SSWOC 0.0793 0.0414 0.0747 0.0386 0.0743 0.0383

As the ground truth is removed, the upper bound (maximum possible accuracy) for each run is as mentioned within the parentheses.

The bold values represent the highest CVG and IOU for a given column.

TABLE 3 Percentage increase in detecting low-frequency ingredients of our model compared to the baseline (JE + SR), with k = 1.
Models <1,000 <2,000 <3,000 <4,000 <5,000
Ki-Cook 9.09% 18.27% 14.44% 11.79% 13.87%
Ki-Cook + SSWC 13.79% 14.45% 13.75% 14.02% 13.96%
Ki-Cook + SSWOC 13.79% 23.96% 21.11% 16.36% 17.41%

4.3.2. Qualitative evaluation

For the qualitative evaluations, we used the JE + SR and
Ki-Cook + SSWOC models to retrieve the respective nearest
cooking representation for all dish image representations in the
test set. Similar to quantitative evaluations, we excluded the
corresponding cooking ground truth representation of dish images
before retrieving the nearest cooking representation. We use JE +
SR and Ki-Cook + SSWOC for this evaluation as they are the best
performing models in quantitative analysis. Henceforth, we used
the term anchor recipe to refer to the recipe whose dish image was
used to retrieve the nearest cooking representation by both models.

The task was to evaluate whether the recipe of the cooking
representation retrieved by JE + SR or Ki-Cook + SSWOC is similar
to the anchor recipe. The annotators chose to answer neither. We
randomly sampled 200 data points and distributed them among 12
annotators aged between 21 and 33 years who are graduate students
from the Computer Science Department. The annotators belong
to diverse ethnic groups. For each recipe, we present the recipe
title and its dish image randomly sampled from the dataset to the
annotators for qualitative evaluation.

5. Result and discussion

5.1. Quantitative results

From Tables 1, 2, we observed that our Ki-Cook + SSWOC
model improves the CVG of the baseline models by 12% and the
IOU by 10% in the ingredient retrieval task. Since the ground truth
representation was removed before the evaluation, the upper bound
for each evaluation is as mentioned in Tables 1, 2. Overall, the Ki-
Cook + SSWOC model achieves better performance compared to
other models. The results also demonstrate that not adding weights
to recipe title words that belong to the class labels (Ki-Cook +
SSWOC) improves the performance compared to when the weights
are added (ki-Cook + SSWC). Furthermore, our knowledge-infused
models (Ki-Cook + SSWC and Ki-Cook + SSWOC) performed
significantly better when k = 5 and k = 10. As the k was increased,

Frontiersin Big Data

the number of similar recipes in the k cooking representations
was reduced for the baseline model compared to our proposed
approach. Similarly, when evaluated with 10,000 samples, we noted
improved CVG and IOU as the number of similar recipes in the
sample increased. This shows that the recipe similarity determinant
is beneficial to the enhanced clustering of similar recipes in the
latent space. The Ki-Cook-3 presented in Table 5 utilizes the same
dataset (without ingredient images) for training as JE + SR and
Ki-Cook - 1 utilizes the same dataset as JE. In both cases, Ki-
Cook performs significantly better for k = 1. This shows that the
modeling procedural attributes of the cooking process and the
proposed similarity determinant improves the ingredient retrieval
for an unknown food image.

Further, we performed a comparative analysis of the models
on detecting rarely used ingredients and the results are presented
in Table 3. The significant role played by rarely used ingredients
in clustering similar recipes in the latent space is discussed in
Section 5.2. As similar recipes are clustered, it enables the retrieval
of a cooking representation from a recipe similar to the recipe
of an unknown food image, improving the results of ingredient
information retrieval of an unknown food image. The results
demonstrated that all our models detected a significantly higher
percentage of rarely used ingredients as compared to JE + SR
(the best performing baseline model from Tables 1, 2). On average,
Ki-Cook + SSWOC detects 16.7% more rarely used ingredients
as compared to JE+SR. Furthermore, adding weights to class
labels (Ki-Cook + SSWC) to cluster based on class names, as in
existing studies, lowers the model’s ability to detect rarely used
ingredients, thereby diminishing its ability to cluster similar recipe
representations.

5.2. Qualitative results

In our qualitative evaluation, the annotators agreed with 0.35
inter-annotator agreement of the Fleiss kappa score that our model
retrieves similar recipes for 59% of the 200 anchor recipes and that
JE + SR retrieves similar recipes for 20% of the 200 anchor recipes.
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FIGURE 4

Result of qualitative evaluation. This figure consists of the
percentage of similar recipes retrieved by each model. Of the 200
samples, the annotators agreed with the 0.35 inter-annotator
agreement of the Fleiss kappa score that Ki-Cook + SSWOC
identified similar recipes for 59% of the cases. Contrarily, JE + SR
identified similar recipes for 20% of the recipes. Finally, for 21% of
the recipes, neither of the models retrieved a similar recipe.

For 21% of the anchor recipes, neither of the models retrieved
a similar recipe (Figure 4), which shows that Ki-Cook clustered
the learned representation of similar recipes compared to the
JE+SR model. As mentioned earlier, rarely used ingredients such as
eggplant or cornstarch can determine similar or dissimilar recipes
as compared to common ingredients such as salt or oil, which are
used in almost all the recipes. Our model, Ki-Cook + SSWOC,
predicts 15.3% more of the rarely used ingredients, as presented in
Table 3. Consequently, our model demonstrated improved ability
to determine similar and dissimilar recipes, clustering similar
recipes in the latent space, demonstrated in Figure 5, as compared
to JE + SR. This resulted in a 39% improvement in our model to
return a cooking representation from a relatively similar recipe to
the recipe of an unknown food image compared to JE + SR.

We illustrated the importance of rarely used ingredients in
improving the clustering using the examples presented in Table 4.
Specifically, we chose examples where our best performing model’s
(Ki-Cook + SSWOC) CVG and IOU are higher, the same, and
lower than JE + SR. In all three examples, the recipe retrieved by
our model is similar to the anchor recipe. In example 1, while
our model's CVG is marginally better than that of JE + SR, it
retrieved a similar recipe by predicting eggplant, which is relatively
less frequent (13,202 occurrences) than eggs (82,217 occurrences)
predicted by JE+SR. Similarly, in example 2, our model predicts
shredded cheddar cheese, which has the second least frequency
(15,961 occurrences) in the anchor recipe. Even though both
models have the same CVG in example 2, our model retrieves the
most similar recipe by identifying relatively rarely used ingredients.
In example 3, the CVG of our model is less than that of JE + SR.
Nonetheless, our model retrieves a similar recipe by predicting a
rarely used ingredient, cornstarch (26,921 occurrences), compared
to common ingredients such as brown sugar and butter predicted
by JE+SR. These results showed that, irrespective of whether the
CVGis higher, lower, or comparable, our Ki-Cook + SSWOC model
retrieves relatively the most similar recipe compared to JE + SR
owing to its ability to identify rarely used ingredients.
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FIGURE 5
Visualization of learned representations of recipes used in our
qualitative analysis. Best viewed in color. (A) Learned representations
generated by Ki-Cook + SSWOC. The figure consists of multiple
clusters clustered together in the zoomed-out view, which appear
as one big cluster. (B) Learned representations generated by JE + SR.

When the detected ingredients were analyzed for the 200
recipes used in the qualitative evaluation, 9.5% of the ingredients
detected by our model have a frequency of <5,000, while
4.5% of the ingredients detected by JE+SR have a frequency of
<5,000. Furthermore, the ingredients retrieved by our model
for the unknown food image include dominant ingredients
(present in the title of the recipe) such as eggplant and shredded
cheddar cheese. Therefore, the rarely used ingredients played a
vital role in determining similar and dissimilar recipes, thereby
clustering similar recipes in the latent space. This resulted in
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TABLE 4 Examples to explain the qualitative results.

10.3389/fdata.2023.1200840

Example Anchor Recipe JE + SR Recipe Ki-Cook + SSWOC Recipe
1 Fried Eggplant Dilly Cheese Muffins Low Carb Eggplant (Aubergine) Parmesan
parmesan cheese (62,979), half and half milk baking mix (1,040), Swiss cheese (9,744), egg eggplant (13,202), no—added—sugar low
(44), flour (113,250), eggplant (13,202), oil (82,217), milk (112,134), vegetable oil carb spaghetti sauce (1), parmesan cheese
(41,631), seasoned bread crumbs (1,304), and (89,771), fresh dill (5,860), dry mustard (62,979), mozzarella cheese (26,202), Italian
egg (82,217) (5,929), paper baking cups (180), and seasoning (5,776), dried oregano (11,744),
vegetable oil cooking spray (2,312) and dried basil (6,131)
Predicted: egg Predicted: parmesan cheese, eggplant
CVG: 0.14 CVG:0.28
2 Cheddar and Chive Biscuits Cora’s World Famous Chocolate Chip Peppery Cheese and Chive Biscuits
Cookies!
baking powder (85,249), salt (303,175), sugar baking powder (85,249), sugar (224,883), baking powder (85,249), fat-free
(224,883), shredded cheddar cheese (15,961), all-purpose flour (131,121), butter (283,192), half-and-half (948), fresh coarse ground black
dried chives (269), butter (283,192), vegetable vanilla (41,563), eggs (206,544), baking soda pepper (2,745), all-purpose flour (131,121),
oil (89,771), and whole milk (18,482) (65,375), nuts (7,885), and semi-sweet butter (283,192), stone ground mustard
chocolate chips (15,530) (270), fresh chives (6,172), shredded cheddar
cheese (15,961), and onion powder (6,399)
Predicted: baking powder, butter, sugar, Predicted: baking powder, butter, shredded
all-purpose flour cheddar cheese, all-purpose flour
CVG: 0.44 CVG: 0.44
3 Sweet and Sour Chicken With Rice Banoffee Pie Chicken Stir Fry Oriental
salt (303,175), pineapple chunks (2,456), hot bananas (19,758), water (197,699), brown vegetable oil (89,771), frozen oriental - style
chicken stock (348), rice (13,752), cooked sugar (66,372), caramels (2,785), lemon juice vegetables (34), soy sauce (49,151), ground
chicken (6,850), brown sugar (66,372), (45,714), and butter (283,192) ginger (8,879), cornstarch (26,921), boneless
vinegar (8,272), dried onion flakes (743), chicken breasts (8,150), cooking sherry (420),
pineapple juice (4,131), cornstarch (26,921), and sugar (224,883)
and butter (283,192)
Predicted: brown sugar, butter Predicted: cornstarch
CVG: 0.181 CVG: 0.09

Three examples were chosen, where the CVG of our model is higher, lower, and equal to the CVG of the JE + SR model. The ingredient frequency was denoted within the parentheses next to

each ingredient.

TABLE 5 Ablation study to study the effectiveness of ING-IMG and SSL.

Models CVG [0]V]
Ki-Cook-1 (without ING-IMG and SSL) 0.0714 0.0379
Ki-Cook-2 (with ING-IMG and without SSL) 0.0730 0.0387
Ki-Cook-3 (without ING-IMG and with SSL) 0.0745 0.0388
Ki-Cook-4 (with ING-IMG and SSL) 0.0777 0.0393

The experiments are conducted without ground truth for 1,000 samples and k = 1.

retrieving a cooking representation from a recipe similar to
the recipe of an unknown food image, improving the results
of ingredient information retrieval. The retrieved ingredient
images for the examples presented in Table 3 are included as
Supplementary material.

The improvement in our quantitative evaluations is not as
significant as the improvement in our qualitative evaluations
because JE+SR achieves its CVG and IOU by predicting commonly
used ingredients. It is worth noting that the top 4k ingredients with
the highest frequency account for an average coverage of 95% (Li
etal., 2019).
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5.3. Ablation study

We conducted an ablation study with four versions of our
model to evaluate the effectiveness of ingredient images (ING-
IMG) and semantic similarity loss (SSL). The four versions are
(i) Ki-Cook-1(without ING-IMG and SSL), (ii) Ki-Cook-2 (with
ING-IMG and without SSL), (iii) Ki-Cook-3 (without ING-IMG
and with SSL), and (iv) Ki-Cook-4 (with ING-IMG and SSL).
We observed from Table 5 an 8.8% improvement in the CVG
and a 3.6% improvement in the IOU for Ki-Cook-4 compared
to Ki-Cook-1, which neither uses ING-IMG nor SSL. We also
studied the importance of ING-IMG and SSL in isolation through
Ki-Cook-2 and Ki-Cook-3. The CVG and IOU of Ki-Cook-4
are higher than that of Ki-Cook-2 and Ki-Cook-3. The results
in Table 5 indicated the significance of ingredient images and
semantic similarity loss in improving our proposed model’s overall
performance. Additionally, the Ki-Cook-1 in Table 5 utilized the
same data (ingredient text, cooking instruction, and dish image)
as JE and JE + SR in Table 1. Therefore, the CVG and IOU
improvement of Ki-Cook-1 compared to JE and JE+SR also
validates the effectiveness of procedural modeling of the cooking
process.

frontiersin.org



https://doi.org/10.3389/fdata.2023.1200840
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org

Venkataramanan et al.

5.4. Ingredient image analysis

We performed evaluations to assess the quality of ingredient
images. While collecting ingredient images from Google Images,
we saved the images in the order in which Google Images returned
the results. Then, we removed non-jpeg, non-png, and corrupted
files. For quantitative assessment of noise, we randomly sampled
5 images from the top-10, top-100, and top-500 images for
randomly sampled 50 ingredients. We then evaluated whether the
five images are relevant to the ingredient name. The assessment
showed that 68% of images are relevant from the top-10, 67%
are relevant from the top-100, and 54% are relevant from the
top-500 images. We found that most of the noise was due to
entity ambiguation, such as apple fruit vs. Apple company. We
did not observe a significant difference in noise for the top-10
and top-100 images. This is because categories such as mango
pulp and beef have very few irrelevant images among the top-
100 images, whereas liquid rennin has no relevant images overall.
Hence, the number of relevant images remains almost the same
for the top-10 and top-100 images. Nonetheless, we released all
the 500 images to promote further research, such as visual queries
using ingredient images and research related to tackling noise
in the real-world. Sample ingredient images are included in the
Supplementary material.

6. Conclusion and future research

To cluster similar recipe representations, we introduced a
novel recipe similarity determinant that uses additional knowledge
about recipes, such as titles and ingredients, while paying attention
to rarely used ingredients. To incorporate this knowledge, we
proposed a knowledge-infused learning network, Ki-Cook, to learn
a multimodal cooking representation and cluster similar recipes
in the latent space. Our experimental results demonstrated that
clustering recipes through our similarity determinant retrieved
relevant ingredients for an unknown food image compared to the
base models. We also performed a qualitative analysis to illustrate
the importance of rarely used ingredients in determining similar
recipes to cluster them. We modeled the procedural attribute of
the cooking process and incorporated a visual representation of
ingredients to learn the multimodal cooking representation. For
this purpose, we also extended the RecipelM (Salvador et al., 2017)
dataset with ingredient images constituting 8 million ingredient
images in total and released the dataset to promote further research.
Furthermore, our results demonstrated that infusing the knowledge
and using the same deep learning models used in the base model
(Salvador etal., 2017) can improve the results of ingredient retrieval
for an unknown food image. In the future, we plan to include
cooking methods in our similarity determinant and evaluate it
for other downstream tasks such as predicting cooking methods,
generating recipes, and meal recommendations.
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