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Abstract— As people become more aware of their food
choices, food computation models have become increasingly
popular in assisting people in maintaining healthy eating habits.
For example, food recommendation systems analyze recipe
instructions to assess nutritional contents and provide recipe
recommendations. The recent and remarkable successes of
generative AI methods, such as auto-regressive Large Language
Models, can enable robust methods for a more comprehensive
understanding of recipes for healthy food recommendations
beyond surface-level nutrition content assessments. In this
study, we investigate the use of generative AI methods to extend
current food computation models, primarily involving the anal-
ysis of nutrition and ingredients, to also incorporate cooking
actions (e.g., add salt, fry the meat, boil the vegetables, etc.).
Cooking actions are notoriously hard to model using statistical
learning methods due to irregular data patterns - significantly
varying natural language descriptions for the same action (e.g.,
marinate the meat vs. marinate the meat and leave overnight)
and infrequently occurring patterns (e.g., add salt occurs far
more frequently than marinating the meat). The prototypical
approach to handling irregular data patterns is to increase the
volume of data that the model ingests by orders of magnitude.
Unfortunately, in the cooking domain, these problems are
further compounded with larger data volumes presenting a
unique challenge that is not easily handled by simply scaling
up. In this work, we propose novel aggregation-based generative
AI methods, Cook-Gen, that reliably generate cooking actions
from recipes, despite difficulties with irregular data patterns,
while also outperforming Large Language Models and other
strong baselines.

I. INTRODUCTION

Alice Waters once said, ”We are what we eat”, suc-
cinctly summarizing the impact that food can have on
people’s physical and mental well-being. Increased access
to knowledge about the impact of food choices along with
rapid advances in health monitoring technology, has led to
individuals being more aware and cautious about their dietary
choices [1]. There has been a growing trend to utilize AI-
based diet management systems that analyze food recipes
to provide an enhanced food recommendation for users. [2],
[3]. Most of these systems incorporate discriminative models
for the identification of nutritional information in recipes
to encourage healthy eating habits (e.g., ingredients and
their nutritional values). However, these models lack a more
comprehensive understanding of the recipe. For example,
they often do not account for cooking actions when providing
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recommendations [4]. It is vital to include cooking actions
in the decision-making of diet management systems since
they can significantly impact the nutritional value of food [5],
ensure food safety [6], and even produce harmful substances.
For instance, grilling meat at high temperatures produces
cancer-causing compounds [7], [8]. Figure 1 illustrates a
recommendation system that analyzes the effect of cooking
actions and its impact on the final recommendation. Recent
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Fig. 1. The figure illustrates how understanding and modeling the cooking
actions, not just the ingredients and their nutrition values, significantly im-
pacts the final recommendation. Here meat inherently has nothing unhealthy
about it. However, marinating it and grilling at high temperatures causes
changes to its “healthiness” value.

successes in Large Language Models (LLMs) have the poten-
tial to enable a more comprehensive analysis of recipes, such
as calorie count, macro-nutrient content, and ingredient lists.
This information can then be used to identify healthy recipes
and also suggest ingredient substitutions as per the user’s
health condition and food preferences [9]. LLMs can further
be used to identify common cooking actions, ingredients, and
flavor profiles associated with healthy dishes, which can be
used to develop healthy eating recommendations and meal
plans.

However, recipes written in natural language pose unique
challenges with regard to natural language processing (NLP)
that are not observed in traditional NLP tasks. For example,
recipes include highly variable textual descriptions for the
same cooking action (some people write “ marinate the
chicken and leave overnight” whereas others simply write
“marinate the chicken”). Furthermore, recipes consist of
several elements such as ingredients, utensils, temperature,
and cooking actions (e.g., “marinate 1/2 cup of sliced chicken
in a bowl”) and, crucially, the frequency of cooking actions
(“marinate”) relative to ingredients, quantities, and other
information (“1/2, “bowl and chicken”) is low. We refer to
the issues of low-frequency words and variation in lengths
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of cooking action descriptions collectively as irregular data

patterns. Thus, discriminative models struggle due to the lack
of distributional patterns with a high discriminatory value for
expressing complex relationships between different variables
(e.g., the effect of cooking actions).

With the rise of LLMs that have demonstrated remarkable
successes with neural network-enabled generative models, AI
systems can potentially model more complex phenomena,
such as the impacts of cooking actions from the natu-
ral language text in recipes [10]. However, these models
still make a discriminative model-type decision repeatedly
(e.g., continuous next-word prediction), except that they do
it using large neural networks accompanied by enormous
volumes of training data. Therefore, the problems with
irregular data patterns for discriminative modeling persist
and are, in fact, further compounded at larger scales (e.g.,
imbalanced frequencies get more imbalanced). Inspired by
recent innovations in dynamical systems control that utilize
aggregation methods to handle irregular data patterns by (1)
distilling more regular aggregated information from irregular

data patterns and (2) leveraging high capacity function
approximation capabilities of higher-order polynomial fits
to model complex relationships, we propose Cook-Gen, a
novel generative-AI method to generate cooking actions from
recipe texts [11]. We compare Cook-Gen with state-of-the-
art generative and discriminative baseline models and find
that it consistently outperforms these baselines.

II. RELATED WORK
Here we review previous work on modeling cooking ac-

tions from recipes. Papadopoulos et al. represented cooking
recipes using manually specified program abstractions that
include cooking actions, quantities, ingredients, and other
information from the recipes [12]. Recipescape, a cooking
analysis tool, used Stanford’s CoreNLP POS Tagger to
extract verbs from recipes as a proxy for cooking actions
[13]. Walter et al. also used a POS tagger in a similar context
to reconstruct recipes using a workflow diagram of cooking
actions. Shidochi et al. manually extracted cooking actions
from 15 recipes to suggest substitute actions with similar
effects [14]. Silva et al. used an off-the-shelf annotation
tool to annotate recipes for cooking actions as part of an
information retrieval system [15]. A common theme among
the existing works is the manual effort involved in cooking
action modeling, underscoring the challenge of automated
modeling of cooking actions from recipes.

III. DESCRIPTION OF THE DATASET AND TASK,
TRAINING AND EVALUATION METRICS

A. Dataset Construction and Description

We utilize the Recipe1M dataset, which is a comprehen-
sive collection of 1 million high-quality recipes containing
titles, ingredients, cooking instructions, and recipe images
for each entry [16]. We then ask graduate students between
ages 23 and 27 from the University of South Carolina to
identify cooking actions in the recipe data for a randomly
selected sample of 10000 recipe texts. Examples of recipe

texts include, “bring the water to boil”, “saute the vegetables
in the wok”, or “marinate the chicken”. Their corresponding
cooking actions are, “boil”, “saute” and “marinate”.

B. Task Description

As mentioned in Section I, we experiment with both
discriminative and generative baselines. We describe the task
in the discriminative and generative modeling settings.

Discriminative Modeling Setting: Let R be the set of all
recipes. Each recipe r 2 R is written in natural language
using a list of words Wr and also consists of a title Tr, a
list of ingredients Ir, and a list of cooking actions Ar. Let
S = {wm | m {1, . . . ,M}} denote the set of all M words
across the N recipes. Thus we have a recipe set defined as:

R = {(Wr, Tr, Lr, Ar) | Wr ✓ S, Tr ⇢ S, Ir ⇢ S,Ar ⇢ S}
(1)

We define a function f : S ! {0, 1} that predicts whether
a given word wm 2 S is a cooking action or not. Thus we
define the task of predicting cooking actions in a recipe as a
binary classification task, where for each recipe r, we want
to predict a sequence of binary labels yr = {y1, . . . , yM},
where ym = (f(wm) ^ I(wm 2 Wr)). Here I(wm 2 Wr)
is an indicator function that evaluates to 1 if word wm is
present in the recipe r and evaluates to 0 otherwise.

Generative Modeling Setting: Consider the same def-
inition of a set of recipes R as in Eq (1). Let Xr =
{w1, . . . , wL} denote a partially complete natural language
description of the recipe r consisting of L words, i.e., Xr ⇢
Wr Formally, for a recipe r 2 R, given a partial description
Xr, the task is to learn a function f : Xr ! Gr that can
generate the set,

Gr = Xr [Wr \Xr [Ar (2)

C. Training and Evaluation Metrics

The training metrics we consider in our experiments are
cross-entropy (CE) loss and weighted cross-entropy (WCE)
loss. We use the WCE loss as there is a class imbalance
issue, i.e., the number of cooking action words across all
recipes compared to other words is relatively low. In the
discriminative modeling case, the CE and WCE loss reduces
to the binary CE and WCE losses, respectively. In the
generative modeling case, only the CE loss (during word
prediction of the words in the set defined in Eq (2)) is
considered. Since there is a class imbalance in the dataset,
we do not use accuracy and instead use precision and recall
as our evaluation metrics.

Time and Space Efficiency Considerations: Despite the
remarkable progress made by state-of-the-art AI models in
recent years, they are not easily available to the general
public. A key reason for this is their significant resource
requirements, such as long training and inference times and
high memory usage. For an AI system that can assist any
individual in making healthy food choices, it is necessary
for it to be resource-efficient, such as being able to run
on a mobile phone and handle daily queries without over-
burdening the system. Consequently, we also evaluate the
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number of parameters and memory usage of the models used
for experimentation in both discriminative and generative
modeling settings.

IV. METHODS AND EVALUATION

We divide our methods into two categories, (A) methods
that work in the discriminative modeling setting and (B)
methods that work in the generative modeling setting. For
each category of methods, we describe the methods, detail
the experimental setup, and discuss their evaluation metric
scores.

A. Discriminative Modeling Methods and Evaluation

Data Preprocessing: Given the discriminative modeling
task description in Section III-B, our aim is to learn the
binary function f : S ! {0, 1} that decides if a recipe word
wm 2 Wr is a cooking action or not. Since our dataset
annotations consist of the full description of the cooking
actions, e.g., for a recipe consisting of “marinate the meat
and leave overnight”, the annotation would be “marinate”
(see Section III-A). We manually preprocess the annotations
with binary ground truth labels based on if a word wm 2Wr

is a cooking action or not. For example, the annotation
“marinate” is preprocessed as a one-hot-encoded vector of
size M for all the M words in S, with 1 in the places
corresponding to the words “marinate” and 0 for every other
word.

Method Descriptions: We try a rule-based method (R),
where we use a simple lookup from a predefined list of
cooking actions for each word to label the word as a cooking
action or not (the predefined list can be found here). Next, we
use the fine-tuned language models ELECTRA and XLNET
[17], [18]. As mentioned in Section III-C, the discriminative
modeling task suffers a class imbalance issue. The models
XLNET and ELECTRA have specifically been trained to
be robust to class imbalances in the data. Finally, we also
try industry standards that have shown particular success in
“binary tag prediction” due to the discriminative modeling
task essentially boiling down to predicting the tag of a word
as either a cooking action or not a cooking action. We
experiment with Stanford’s NLP tools and explosion AI’s
SpaCy [19], [20].

Experiments and Evaluation:

Model Configurations for the language models: For
ELECTRA, we fine-tuned the electra-base-discriminator
model obtained from hugging face. Early stopping was
employed to prevent the model from overfitting. For XLNET,
we fine-tuned the xlnet-large-cased model from hugging face.
Similar to ELECTRA, early stopping was also implemented
during training to prevent overfitting. For both ELECTRA
and XLNET, the default pytorch implementations for CE
and WCE loss were used. For the WCE loss, the weight
assignment was 0.881 for label 1 and 0.119 for label 0.

Specifics of the SpaCy and Stanford’s NLP model: We
use Stanford’s NER with its default configuration with the
recognized named entities being labeled with 1 (other words

0), and SpaCy’s part-of-speech (POS) tagger model ‘en-core-
web-lg’ to label cooking actions (label 1 if POS is a “verb”
for a word and 0 for other words).
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Fig. 2. Performance results of various discriminative modeling methods to
predict cooking actions. X-CE, E-CE, X-WCE, E-WCE, R, SpaCy, Stanford
represents XLNET with CE loss, ELECTRA with CE loss, XLNET with
WCE loss, ELECTRA with WCE loss, The rule-based system (R), SpaCy’s
POS tagger, and Stanford’s NER model respectively.

The evaluation scores for various discriminative modeling
methods are presented in Figure 2. The rule-based system
(R) exhibits the worst performance, which is unsurprising
given the challenges of creating precise rules for determining
cooking actions from recipes, particularly when the data is
characterized by irregular patterns. Although SpaCy’s POS
tagger and Stanford’s NER model, the two industry stan-
dards, perform somewhat better, they employ Convolutional
Neural Network and Conditional Random Field-based ap-
proximation models that can only capture linear chain struc-
tured contextual dependencies between the recipe words. As
a result, we anticipate that self-attention transformer-based
techniques such as XLNET and ELECTRA will outperform
these models since they can model more complex interac-
tions or dependencies between the recipe words and are also
designed to be robust to irregular data patterns. As expected,
XLNET and ELECTRA demonstrate significant performance
improvements. Nonetheless, employing WCE instead of CE
in the training loss results in decreased precision, indicating
that the model with CE loss may have overfit spurious
data patterns. We conclude from these experiments that
discriminative modeling may not be suitable for cooking
action prediction since discriminatory patterns in the data
are not present with regularity. Generative modeling has been
demonstrated to be highly effective in situations where easily
recognizable discriminatory patterns are absent, with the
most notable example being large self-attention transformer-
based models for language modeling. As a result, we will
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now move on to an experimental analysis in the generative
modeling context.

B. Generative Modeling Methods and Evaluation

Data Preprocessing: Given the generative modeling task
description in Section III-B, our aim is to learn the function
f : Xr ! gr, that generates gr as defined in Eq (2).
Therefore we first tokenize recipe r into a set of words Wr

and randomly sample the subset Xr from Wr. The set of
cooking actions Ar is already part of the annotated dataset.

Method Descriptions: While self-attention transformer-
based generative models have shown impressive success in
various tasks, their high resource usage makes them chal-
lenging for ordinary users. Additionally, scaling up the model
parameters and data does not necessarily solve the problem
of irregular data patterns. To address this issue, aggregation-
based methods can be utilized to enhance the robustness of
the model to such irregularities. These methods handle data
pattern irregularities by learning “aggregate patterns” that
regularly appear in the data. To create small-scale generative
models that can also handle irregular data patterns, we
conducted experiments using two parametric models that
have proven universal approximation capabilities: (1) a two-
layer feedforward neural network with ReLU activations
that aggregates the layer outputs across input words, and
(2) a polynomial approximation-based aggregation method
that raises word representations to higher-order polynomial
powers before aggregating them. We also incorporated a
position embedding layer to provide information about the
sequence of words in the recipes. In general, the proposed
generative method Cook-Gen employs aggregation oper-
ations in a generative modeling setup and allows toggling
between different generative modeling architectures, e.g.,
neural network-based approximators vs. polynomial powers-
based approximators. We will now formally describe the
forward pass of the implemented generative models that can
be used with Cook-Gen to generate the cooking actions for
Ar for a recipe r from a partial natural language description
(set of words) of the recipe Xr.

Cook-Gen-NN using an Aggregated Two-Layer Feed-

forward Neural Network Approximation: Using the same
notation as in Section III-B, denoting Xr as the input to
the forward pass, we can describe the sequence of forward
pass steps as follows:

Er = EXr, E 2 RM⇥d (3)
Hr = Er +PeXr, Pe 2 RL⇥d (4)
Hr = max(Wz

THr, 0), W1 2 RL⇥d1 , Wz 2 Rd1⇥d2 ,

z 2 {1, 2}
(5)

Hr = E(Hr[i, :]), i 2 {1, 2, . . . d1} (6)
Or = Wo

THr +Bo, Wo 2 Rd2⇥M , Bo 2 Rd2⇥M (7)

The final logits (before applying softmax) are obtained by
extracting the last column of M values from Or. Eq (6) in the
forward pass denotes the aggregation operation, i.e., taking

the average (expected value) of all d1 rows of the second
hidden layer output matrix. Here d represents the embedding
dimension, E denotes the embedding matrix, Pe denotes the
position embedding matrix, and the dz corresponds to the
dimensions of the hidden layer weight matrices.

Cook-Gen-PF using an Aggregated Polynomials-

based Function Approximation: Neural networks are popular
because the steps to obtain the hidden layer output matrix
before the application of the aggregation operation in Eq
(6) can be thought of as obtaining a feature map of the
inputs Xr using the neural network. Such a feature map
is adaptive because it is not predefined. Also, functions of
feature maps obtained using neural networks, as described
in Section IV-B (two layers with ReLU activations), have
universal approximation capabilities. However, we also know
that a set of polynomial powers of the input Xr is also
a feature map, functions of which can also have universal
approximation capabilities. But we first need to provide
the function approximator knowledge of embeddings and
positions of words in Xr. Thus we compute aggregates
over polynomial powers of the rows in matrix Hr obtained
just before Eq (5), i.e., Hr obtained after applying the
embedding and position embedding matrix operations to Xr.
The aggregation of polynomial powers of the rows of matrix
Hr is described as follows:

Hr = {E(Hr[i, :]
j), i 2 {1, 2, . . . L} | j 2 {1, 2, . . . , J}}

(8)

We then get a set of J vectors that are compiled into a new
matrix Hr of dimension RJ⇥d. We also need to correspond-
ingly modify the dimensions of weights and biases Wo and
Bo of the output layer to be of dimension Rd⇥M .

Cook-Gen-GPT using ChatGPT: Given that ChatGPT
is a generative model, we aim to incorporate it into the
suggested “Cook-Gen” approach. Despite ChatGPT requir-
ing significant computational resources, it can be made
accessible to the general public through API calls, which
eliminates the need to store the model on their personal
devices. Additionally, by leveraging backend infrastructure,
the API calls can reduce inference times and latency. Figure 3
illustrates how ChatGPT can be utilized to generate cooking
instructions through API calls.

Fig. 3. The figure shows how ChatGPT is prompted to obtain cooking
actions from recipes using OpenAI API calls.

Experiments and Evaluation:

Model Configurations for Cook-Gen-NN, and

Cook-Gen-PF: The Cook-Gen-NN model is trained
using a configuration with d = dz = 200 for z values
of 1 and 2, L = 512, and M = 33000. This results in a

984

Authorized licensed use limited to: University of South Carolina. Downloaded on August 06,2024 at 06:29:22 UTC from IEEE Xplore.  Restrictions apply. 



total of 13.38 million parameters. On the other hand, the
Cook-Gen-PF model is trained with d = 200, L = 512,
J = 3, and M = 33000, resulting in a total of 13.3 million
parameters. Both models have trainable matrices consisting
of E, Pe, Wz for z 2 1, 2, Wo, and Bo. Unlike the
Cook-Gen-NN model, the number of parameters for the
Cook-Gen-PF model does not depend on the polynomial
order J . This means that the Cook-Gen-PF model has
an advantage over the Cook-Gen-NN model in that it
can handle more complex functions without increasing the
parameter count.
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Fig. 4. Performance results of various generative modeling methods used
to generate cooking actions as part of Cook-Gen compared to the best per-
forming discriminative modeling method E-CE (ELECTRA with CE loss).
Cook-Gen-NN, Cook-Gen-PF, Cook-Gen-GPT, represents Cook-Gen
with a two-layer neural network approximation, with a polynomial powers
approximation, and with access to ChatGPT API calls, respectively.

The evaluation scores for the different variants of
Cook-Gen is shown in Figure 4. The figure also shows the
best-performing discriminative modeling method for compar-
ison. We notice that Cook-Gen-PF performs slightly better
than Cook-Gen-NN. Since ChatGPT is very likely trained
on abundantly available online recipe data, we expect it to
perform reasonably well. However, ChatGPT performs rather
poorly. This could be due to the fact that ChatGPT is not
trained for specific tasks. It is worth noting that we do not
have access to the model and are unable to fine-tune it on
our dataset. Fine-tuning ChatGPT could have resulted in
improved performance. Thus, we see that generative mod-
eling using our proposed aggregation methods significantly
outperforms strong baselines, demonstrating the effectiveness
of Cook-Gen for modeling cooking actions despite issues
and challenges caused by irregular data patterns.

C. Time and Space Efficiency Considerations

In Section III-C, we discussed the need for efficient mod-
eling of cooking actions to allow easy access for ordinary
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Fig. 5. The graph displays the usage of GPU memory (in GBs) and
the number of parameters (in millions) for the ELECTRA and XLNET
discriminative model methods in comparison to the Cook-Gen-NN and
Cook-Gen-PF models. The resource consumption of the Cook-Gen
models is considerably lower, indicating that Cook-Gen is highly effective
for low-resource cooking action modeling.

users that do not have access to the resources required to run
large state-of-the-art models such as ChatGPT.

Figure 5 shows the resource consumption in terms of GPU
memory usage (in GBs) and the number of parameters in mil-
lions for the discriminative model methods ELECTRA and
XLNET compared to the Cook-Gen-NN and Cook-Gen-
PF models. The Cook-Gen models consume significantly
fewer resources showing the effectiveness of Cook-Gen for
low-resource cooking action modeling that is accessible to
ordinary users on resource-constrained devices (e.g., mobile
phones).

V. CONCLUSION

In this paper, we introduce Cook-Gen, which performs
generative modeling of cooking actions that has the follow-
ing salient features: (1) Cook-Gen is robust to irregular

data patterns in recipes caused by variations in cooking
action descriptions and imbalanced word frequencies; (2)
Cook-Gen uses significantly lower memory and parameters
for modeling while still outperforming much larger baselines.
Our vision entails leveraging Cook-Gen as an integral
component within a comprehensive automated AI system
designed to support individuals in cultivating and sustaining
healthy eating habits. This system may encompass various
features, including a sophisticated recommendation system
exemplified in Figure 1, where Cook-Gen proves to be
remarkably beneficial.

Code and Data: All the code and data used to produce
the results in the paper will be made available at this link.
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