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Causal neurosymbolic AI (NeSyAI) combines the benefits of causality with NeSyAI.
More specifically, it 1) enriches NeSyAI systems with explicit representations of causality,
2) integrates causal knowledge with domain knowledge, and 3) enables the use of
NeSyAI techniques for causal AI tasks. The explicit causal representation yields insights
that predictive models may fail to analyze from observational data. It can also assist
people in decision-making scenarios where discerning the cause of an outcome is
necessary to choose among various interventions.

Causality is a force by which one process, event,
object, or state, known as the cause, impacts
another process, event, object, or state, known

as the effect.
Causality has been studied in philosophy, psychol-

ogy, statistics, economics, medicine, and AI. Since the
early ages, these studies have focused on identifying
causal relations in the world and deducing laws that
govern causality. The features of a system or proce-
dure would be manipulated (through intervention) to
see which other features change or not. At the same
time, the system is observed without manipulation
(through collecting observational data). Famous scien-
tists, like Archimedes, Newton, Galileo, and Pascal,
followed the same process of intervention and obser-
vation to define the laws and principles of physics (see
“Evolution of Causality”).1

In more recent times, causality has been used 1) in
smart manufacturing to detect root causes within the
processing pipeline, (2) in medicine for diagnostic care
and determining the effect of a treatment plan and
treatment intervention, and (3) in autonomous driving
for collision understanding. In general, causality can be
utilized in any domain requiring an in-depth knowledge
of the system’s functioning. Performing every possible

experiment in sensitive domains, such as autonomous
driving and medicine, is not feasible due to cost, time,
and safety concerns regarding putting human life in
danger. These domains solely rely on observation data
and the assumed causal model of the system to infer
causal associations. On the other hand, in disciplines
like neuroscience and biology, causal relations are
often discovered using interventional experiments that
are time-consuming and expensive.

Causal neurosymbolic AI (NeSyAI) offers a pro-
mising avenue for addressing the inquiry posed by
Dr. Judea Pearl: “How can machines (and people)
effectively represent causal knowledge, enabling swift
access to pertinent information, accurate question
answering, and intuitive comprehension akin to a
three-year-old child?”2

Causal AI is a branch of AI systems that infers
causal associations in observation data, as explained
in preceding scenarios. Causal discovery methods are
used to learn causal relations in the data, and causal
inference methods are used to quantify the role of a
cause on its effect. The traditional methods for causal
discovery encounter issues such as missing data (espe-
cially in domains such as health care) and unmeasured
confounding bias. Some causal discovery methods do
not scale well with an increase in the number of varia-
bles due to the combinatorial optimization problem.4

NeSyAI, on the other hand, is a hybrid approach
that utilizes both symbolic and subsymbolic knowledge,
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often using neural networks. NeSyAI combines the
strength of statistical AI, like machine learning, with
symbolic human-like knowledge and reasoning. This
enables the development of robust and reliable AI sys-
tems that can learn, reason, and interact with humans.

However, current NeSyAI systems do not yet under-
stand and support causality. They do not incorporate
causal representations as defined by traditional causal
AI. Incorporating causal-AI-based concepts and repre-
sentations into NeSyAI can enable the ability to per-
form causal AI tasks, such as causal discovery and
inference.

A hybrid causal NeSyAI framework can do the
following:

Integrate heterogeneous domain knowledge from
NeSyAI with causal knowledge, which comple-
ments the missing data and unmeasured data
bias problems often found in causal AI.
Fuse traditional causal representations into
NeSyAI models.
Map causal AI tasks, such as causal discovery,
to NeSyAI tasks, such as knowledge graph (KG)
completion.
Use NeSyAI techniques to solve causal AI tasks,
such as causal discovery in large-scale graphs, by
integrating external knowledge from KGs.

CAUSAL AI
Causal AI is a branch of AI that deals with identifying
and estimating cause-and-effect relations found in the
data. It makes predictions based on the causes rather
than relying on the correlations present in the data.
The techniques used in causal AI help to make models
more robust, explainable, and fair.

Dr. Judea Pearl introduced a taxonomy, the ladder
of causation, to distinguish correlation from causa-
tion.2 The ladder consists of three rungs. The first rung
on the ladder of causation deals with the associations
between observational data measured by conditional
probability. The act of association simply means to
observe the world around us. It uses conditional proba-
bility and conditional expectations to infer associations
from the observed data. It predicts actions, events,
states, and objects based on past observations. Cur-
rent machine learning methods are based on this first
rung. It can answer questions of this type: What does a
symptom tell me about the disease?

The second rung on the ladder of causation is
based on the act of “doing” or “intervening.” It deals
with the interventions in a system and analyzes the
effect of the intervention. It can answer questions of

this type: What if we change a parameter in the sys-
tem?What if I take aspirin for my headache?

The third and topmost rung on the ladder of causa-
tion deals with counterfactuals. It is based on imagining
a world and reasoning about observed phenomena. It
can answer questions of this type: Was it the aspirin that
cured my headache? The counterfactual considers sce-
narios that are absent, unthinkable, and inexpressible at
the first and second rungs of the ladder. It is important
to understand that correlation is not causation, irrespec-
tive of how strong the relation between two variables is.
The strong correlation is not conclusive evidence for a
causal relationship. Climbing up the ladder of causation
leads to detailed and better explainability.

The current state of the art in modeling causality
within the causal AI community revolves around the
use of graphical models, such as causal networks (also
known as causal Bayesian networks), structural causal
models, and do-calculus.3

The structure of a causal network is either learned
from the data using structure learning algorithms or
otherwise determined by domain experts.1 Causal net-
works are often used for causal reasoning, including
intervention and counterfactual reasoning. An inter-
vention on an event leads to a new causal model,
where the value of the event is set to the intervention
value, and the causal effect weights are estimated
using the new model. A causal network evaluates the
effect of an intervention on a given model using do-
calculus.3 Causal AI tasks can be divided into twomajor
categories: causal discovery and causal inference.4,5

Causal Discovery
Causal discovery is the task of inferring new causal
relations from observation data. There are three types
of causal discovery methods: 1) constraint based,
2) score based, and 3) non-Gaussian and nonlinear
based on structural causal models. The discovery of
causal relations from observational data may suffer
from insufficient information about the underlying
causal relations and the vast search space during the
discovery phase. In domains like health care, missing
data are quite prevalent, and causal discovery may
lead to incorrect conclusions.

Causal Inference
Causal inference is the task of measuring the effect a
change in the cause has on the outcome variable.
Causal networks are the foundations for causal infer-
ence. Causal inference quantifies the causal relations
between two variables by intervening on one variable
and observing its effect on another. On the ladder of
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causation, causal inference helps to answer interven-
tion questions at rung two and counterfactual ques-
tions at rung three.

NeSyAI
NeSyAI is a hybrid approach that merges symbolic
knowledge-based methods with neural-network-based
methods, improving the overall performance of AI
systems.6,7,8

The symbolic knowledge in NeSyAI is often repre-
sented using KGs and logic rules. KGs are heteroge-
neous semantic networks of entities and their relations.
They can combine data across multiple domains. Enti-
ties in a KG can be objects, states, processes, or events.
The KG standardizes the representation of knowledge,
facilitating the establishment of inference, integration,
and relations among various data sources. The neural
part of NeSyAI includes the use of machine learning
and neural-network-based approaches for downstream
tasks. While they can learn with vast amounts of data,
they also remain black box due to a lack of explicit rep-
resentation of background knowledge. The combina-
tion of neural networks with symbolic knowledge has
the potential to answer counterfactual questions at the
top rung of the ladder of causation.7

KGs contain domain knowledge, but they often suf-
fer from incompleteness.9 The task of KG completion
aims to discover new knowledge using the existing
knowledge represented in the form of a KG. The new
knowledge can be either new entities or new relations.
The task of discovering new relations or links in the KG
is often implemented using link prediction algorithms.

Link prediction infers new links in a KG using the
existing links, thus completing the graph. The knowl-
edge in the KG is encoded as a triple of the form
<subject, predicate, object>. Given a specified triple
with either the subject or object missing (<?, predicate,
object> or <subject, predicate, ?>), a link prediction
algorithm aims to predict the missing subject or object
in the triple. It has been used in applications such as
question answering, relation extraction, and recom-
mender systems.

CAUSAL NeSyAI
Causal NeSyAI (as shown in Figure 1) is a fusion of cau-
sality with NeSyAI that does the following:

Aims to enhance NeSyAI systems with definite
representations of causality and its concepts.
Integrates causal information (from causal net-
works) with prior domain knowledge to improve
causal AI tasks.

Enables the use of NeSyAI techniques for
causal AI tasks.

To further explain the causal NeSyAI framework,
we map a causal AI task to a NeSyAI task (Figure 2).
The tasks of KG completion in NeSyAI and causal dis-
covery in causal AI both deal with discovering new
information. Causal discovery is focused on discover-
ing new causal relations from observational data, while
KG completion is focused on inferring missing relations
between entities in the KG. We can intuitively map the
task of causal discovery to KG completion. Hence, if
we can represent causal relations within a KG, then we
can use the existing NeSyAI techniques for KG comple-
tion to perform causal discovery of new causal rela-
tions in the KG.

The traditional causal discovery methods in causal
AI suffer from the problems of missing data, unmeas-
ured confounding bias, and the inability to use hetero-
geneous data from different sources. In the case of
insufficient information and missing data during causal
discovery, the relevant domain knowledge from KG can
supplement and boost the causal discovery process.

To overcome the problem of inadequate informa-
tion and missing data, causal NeSyAI combines the
vast knowledge captured in a KG with the concepts in
causal AI. In the case of missing data, the causal dis-
covery can utilize the domain knowledge captured in
KG to infer new causal links. A KGmay have a few sam-
ples of causal links, which may have been either
learned from domain experts or partially learned from
observation data. The task of causal discovery in KG
involves predicting new causal links.

KGs in causal discovery enable the ability to inte-
grate heterogeneous domain knowledge and help with
the issue of unmeasured confounding bias and missing
data.

Causal NeSyAI requires a good representation
of causal knowledge, following the paradigm of
“representation first, acquisition second.”2,10 The
causal ontology serves this purpose by defining and
representing causal AI concepts, such as causal rela-
tion, causal event roles (i.e., treatment, mediator, and
outcome), and causal effects.

The causal ontology is the first known ontology to
1) model concepts from causal AI and 2) integrate sym-
bolic knowledge abstracted from the causal network.12

The causal ontology provides a minimal and intuitive
ontology that captures the essential structure and
semantics of causal relations. This allows compatibility
with current state-of-the-art models and applications
while also adopting best practices and designs from
the ontology community. The nodes in a causal
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network are considered to be events. The role played
by an event in a causal relation is represented using
the causal event role (i.e., the treatment, mediator, and
outcome), and the strength of the causal relation

between events is represented using a causal effect
weight literal value. Since the causal ontology contains
all of the information from a causal network, we can
query a conformant KG for this information. In other
words, the structure of the causal ontology is aligned
as closely as possible with causal networks.

Figure 1 describes the causal NeSyAI architecture.
It comprises three layers: the data layer, symbolic
knowledge layer, and neurosymbolic (subsymbolic
knowledge) layer. The data layer includes observations,
domain data, and expert domain knowledge. A causal
network is learned from the data using traditional
causal discovery methods1 and/or expert knowledge.
Within the symbolic knowledge layer, the learned
causal network is then converted into a causal KG that
is conformant with the causal ontology. The nodes and
causal edges in the causal network are the entities and

FIGURE 2. Types of causal AI methods and their mapping to

NeSyAI methods.

FIGURE 1. Causal NeSyAI architecture. It consists of three layers: 1) the data layer, which includes observations, domain data,

and expert knowledge; 2) the symbolic knowledge layer, which merges the causal KG with the domain KG to create an integrated

causal þ domain KG; 3) the neurosymbolic (subsymbolic knowledge) layer, which converts the integrated causal þ domain KG

into a KG embedding, which can be used to perform downstream causal AI tasks using NeSyAI methods. KG: knowledge graph;

KGE: knowledge graph embedding; NeSyAI: neurosymbolic AI.
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causal relations in the KG. The transformation of the
causal network to KG-based representation is crucial
for using KG completion methods for causal discovery.
The KG link prediction methods can be used to dis-
cover the missing causal relations. The causal KG
is then merged with the domain KG to create an
integrated causal þ domain KG. The neurosymbolic
(subsymbolic knowledge) layer converts the causal þ
domain KG into a KG embedding space (KGE) where
NeSyAI methods are used to discover missing
causal links.

CAUSAL NeSyAI IN SMART
MANUFACTURING

Causal NeSyAI can be used effectively for smart
manufacturing.11 Given a manufacturing production
line to assemble toy rocket (Figure 3), the goal is to
detect the root cause of an anomaly found during the
assembly process from the observation data. An anom-
aly in the assembly process is an event that led to the
rocket’s incomplete assembly. The rocket assembly
line shown in Figure 3 consists of four robots (R01, R02,
R03, and R04), four conveyor belts, a material handling
station, four stoppers, two safety doors, and a toy
rocket with four parts.

The assembly process records measurements of
1) the gripper potentiometer, gripper load, and angle
(L, U, S, R, B, and T angles) for each robot; 2) the tem-
perature and speed for four conveyors; 3) the status
of four stoppers (as Boolean values); 4) the status of

material handling (as a Boolean value); 5) the status of
two safety doors (as Boolean values); and 6) the status
of the HMI stop button (as a Boolean value). The robot
arm is involved in two events: 1) picking up an object
and 2) placing an object. The toy rocket has four parts:
a base, two body parts, and a nose. An anomaly in this
process can occur due to the stopper, conveyor belt,
safety door failure, the robot arm missing picking up or
placing the object, gripper potentiometer or load sen-
sor failure, etc.

A causal network is learned from the data,
described earlier, with the help of domain experts and
traditional causal discovery methods. The causal net-
work is then transformed into a causal KG that is con-
formant with the causal ontology. Next, the causal KG
is integrated with the existing smart manufacturing KG
for this assembly process. The smart manufacturing
KG includes information about the robots, sensors
and their ranges, event abstractions from the sensor
measurements, etc. The integrated causal and smart
manufacturing KG is used to train a KGE model. This
KGE model can support discovering causal relations
among the events, including possible reasons for the
anomaly. Existing NeSyAI KG link prediction methods
are used for causal discovery.

An integration of causality with NeSyAI leads to
more robust and explainable AI systems. While we
have shown a use case of causal discovery using KG
link prediction, there are other synergies to find and
problems to solve using this framework.

FIGURE 3. Smart manufacturing with a production line to assemble toy rockets.
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EVOLUTION OF CAUSALITY

P lato (4427–348 BCE), driven by a profound
intellectual curiosity, sought to understand the

cause of things around us—why each thing comes
into existence, why it goes out of existence, and why it
exists. He believed that the question of why is crucial to
our understanding of the world.

Aristotle (384–322 BCE) said his predecessors
needed a complete understanding of possible causes
and their systematic interrelations. Their use of causality
needed to be supported by an adequate theory of
causality. He believed we have proper knowledge of
things only when we have understood their cause.
The final cause is the most important, as the others
would not have happened without it.

Sir Francis Bacon (1617–1621) was the father of
empiricism; he said that knowledge comes from sensory
experiences. He was also one of the founders of modem
sciences and helped develop scientific methods in
modem science. According to Bacon, if one wants to
investigate the cause of a phenomenon, then one must
list all things in which the phenomenon we are trying to
explain occurs and things in which it does not. Then,
rank the list according to the degree to which the
phenomenon occurs in each one. Using this method, we
can deduce the factors that cause the phenomenon’s
occurrence in one list and do not occur in others.
He gave an example: An army is victorious when
commanded by Essex and unsuccessful when not
commanded by Essex. The success also depends on
Essex’s degree of involvement. Being commanded by
Essex is the cause of the army’s success.

Galileo (1564–1642), a true innovator, approached
causality through controlled experiments involving
numerous control factors. In an experiment, isolate
one factor, manipulate its value while keeping others
constant, observe the effect on the outcome, and
understand what causes the process. Today, this
approach is known as an intervention.

Udeny Yule (1871–1951) investigated causal
questions using techniques like regression. He explored
causal questions in various fields. In England, he
investigated whether putting people on welfare led
to their becoming dependent on the government
or self-reliant and getting back on their feet. This
interdisciplinary approach to studying causality is a
testament to its broad applicability and relevance.

Charles Spearman (1863–1945) was the first to take
statistical evidence seriously to determine the hidden
variables we cannot observe directly. He came up with
general intelligence. He argued that if multiple tests
were given to people on math and reading, and we
looked at the correlation among those tests, we could
observe a pattern of constraints in those correlations,
which would confirm this general intelligence. The
constraint is called a tetrad equation, which says if one
has four variables, then the product of two correlations
permuted all three ways are equal.

Sewall Wright (1889–1988), a prominent biologist
and geneticist, was the first to represent causality
mathematically. He developed a path diagram, a
graphical representation of causal relationships, which
became a precursor to modem causal graphs. His
innovative approach allowed for a more visual and
intuitive understanding of causality.

Ronald Fisher (1890–1962) took Galileo’s approach
further; instead of controlling every factor in the
experiment, randomly assign one of the factors,
and let all of the other factors distribute (as they
will then, at least, probabilistically and statistically).
This can accomplish the same results as Galileo’s
technique and make a statistical inference about
whether or not we are effective with this random
assignment.

Jerzy Neyman (1894–1981) formulated the potential
outcome framework. Suppose we were to give a
treatment to one individual and a control to another.
We are interested in finding what would have happened
had we given a different treatment than we did (the
unmeasured, missing, and unobserved data problem).
This idea was later extensively used by Don Rubin. This
framework is also very widely used in epidemiology and
biology. Potential outcomes are evident and powerful if
one is confident about the underlying model and the
parameters to estimate.

The work of Jamie Robins, Sewall Wright, and Judea
Pearl, leading figures in the field of artificial intelligence,
led to the development of the formal structure of
graphical causal models. These models, called Bayesian
networks, are graphical representations of causal
relationships. They provide a visual and intuitive way to
understand complex causal systems, making them a
valuable tool in causal analysis.
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