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Grounding is a challenging problem, requiring a formal definition and different levels of
abstraction. This article explores grounding from both cognitive science andmachine
learning perspectives. It identifies the subtleties of grounding, its significance for
collaborative agents, and similarities and differences in grounding approaches in both
communities. The article examines the potential of neurosymbolic approaches tailored
for grounding tasks, showcasing how they canmore comprehensively address grounding.
Finally, we discuss areas for further exploration and development in grounding.

Robust communication transcends human–human
communication settings to include human–
machine, machine–machine, and multiagent

human–machine teams. Grounding fosters a common
understanding among agents performing a task—
typically in the real world. With the growing number
of human–AI interactions, grounding is a fundamen-
tally important capability of AI systems, models, and
agents.5,8,11,15 Grounding allows AI systems to bridge
semantic gaps in the real world, team with other
agents in such environments, process inputs from
the environment, and learn from interactions. A suc-
cessful synthetic teammate requires several cognitive
capacities, including situation assessment, task behavior,
language comprehension and generation,3 and knowl-
edge gap resolution processes. Grounding enables
agents with different capabilities to communicate.

Both cognitive scientists and computer scientists
have focused on how to make internal mechanisms
(or representations) of external entities intrinsic to the
agent itself rather than being defined by an external
designer or interpreted by an observer.15 Recent efforts
in natural language processing (NLP), computer vision
(CV), and human–computer interaction (HCI) improve

the grounding of machine agents. However, it remains
a multidimensional challenge, encompassing diverse
contexts, abstractions, and modalities of understand-
ing (see Figure 1). In the absence of a clear definition,
we are unable to determine genuine advances or task-
specific adjustments.

This article sheds light on different aspects of
grounding through the lens of cognitive science and AI,
discusses specific neurosymbolic solutions for ground-
ing, and highlights future work.

COGNITIVE SCIENCE LENS
Identification of the symbol grounding problem in
cognitive science dates to Harnad. Following the intro-
duction of computation with symbols credited to
McCarthy, Searle’s Chinese room problem revealed
how amodal symbol manipulation lacks grounding.
However, symbol manipulation is often the foundation
of contemporary AI systems. Challenges to amodal
symbol manipulation include embodied grounding12

and the recent use of language and simulation to
establish grounding.13 Given this long-standing research
problem, Ziemke15 groups grounding efforts into two
categories: 1) cognitivist or 2) enactivist.

Cognitivism grounds atomic primitives in sensori-
motor invariants.15 Concepts constructed from these
inherit the grounding of their constituents.
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Nevertheless, different agents may reason with differ-
ent abstractions, creating a divergence that requires
repair. A more recent perspective, enactivism values
the role of action, embodiment, and environment.
Robotic agents can potentially obtain grounding by
physically linking to an environment through sensory
input and motor output. Agent functions can be either
engineered or learned. With meticulously engineered
grounding, systems may demonstrate the “correct”
behavior, but their internal mechanisms are not inher-
ent to the system. Alternatively, an agent function can
be acquired by adjusting connection weights instead
of requiring programming. However, the definition of a
correct agent function and the question of how to
evaluate various agent functions remain.

Given our interest in real-world human–AI interac-
tions and multimodal systems, we emphasize enacti-
vist grounding. However, cognitivist grounding remains
essential, as we summarize from Barsalou13:

Mental imagery, cognitive grammar, mental
spaces, and compositional reasoning support
explanations for thought. Neuroimaging shows
that higher cognition is realized in the brain’s
model systems. One theory is that grounding

mechanisms serve as an interface, peripheral to
core cognitive operations.

Barsalou predicts that future cognitive research
will integrate classic symbolic architecture, statistical/
dynamic systems, and grounding cognition. Formal and
computational accounts of grounding will shift from
epiphenomenal to casual. Grounding mechanisms may
potentially replace the amodal mechanisms in cogni-
tive architectures. We believe that advancements in
neurosymbolic AI will be instrumental here. Next, we
describe the grounding problem from a machine learn-
ing (ML) and AI perspective and highlight what is miss-
ing from a cognitive science lens.

AI LENS
Grounding in AI has typically been referred to as con-
necting concepts to other knowledge bases (KBs) or
world models. We first discuss the different grounding
efforts in the AI11 community. We then draw parallels
with the cognitive science community13,15 and identify
some nuanced distinctions.

Chandu et al.11 note the use of static versus
dynamic terminology used in the NLP/CV context, simi-
lar to the cognitivist versus enactivist distinction in

FIGURE 1. Grounding has multiple dimensions and needs knowledge at different levels of abstractions. (This is similar to

the need for linguistic, common sense, world model, and domain knowledge for language understanding; see https://bit.ly/KiLU,

Fig. 3). Grounding may occur at different levels in the task execution process. For example, the drone agent must be able to com-

prehend the instructions in a natural language format. Next, the instruction may require parsing relevant symbols (in the case of

neurosymbolic methods) for reasoning processes. The information extracted must then be grounded to the drone’s capabilities

(common sense grounding). Finally, the instruction must be grounded in the specific navigation task.
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cognitive science (see Figure 2). Static grounding—the
most predominant form—relies on accessible evidence
supporting the common ground to connect concepts
within a given context to the real world.11 For static
grounding, common ground is typically through an

agent (e.g., machine) interacting with a static KB to
frame a response and deliver it back to the other agent
(e.g., human). Both agents may share this common
ground by assuming its universality, i.e., no external
references. The success of grounding ismeasured based

FIGURE 2. Types of grounding. (a) The static and dynamic definitions in neurosymbolic AI loosely mirror cognitivist and enactivist

grounding in cognitive science, respectively, although there are subtle differences. Cognitive scientists tend to focus more on the

specific monitoring and repair processes in the case of different perspectives between interacting agents, whether due to differ-

ences in static knowledge or engagement opportunities with an open world. (b) For an AI or cognitive agent to interact effectively

with its environment, it must understand the language used by external agents, accurately assess the current situation and context,

and identify and address gaps in its knowledge.4 This process involves recognizing when it lacks understanding or has difficulty with

language comprehension and communicating these knowledge gaps to other agents or external sources. By utilizing these pro-

cesses, agents can update their knowledge of the task and environment, avoiding catastrophic errors and allowing for the iterative

and interactive aspects of dynamic grounding. Consider a machine agent, like a drone, working with a human operator to survey a

specific area. The agent can use its background (stored) knowledge to understand themonitored environment and themission’s pur-

pose (static/cognitivist grounding). Suppose the agent comes across something it has not seen before and cannot identify. In that

case, it will interactively and iteratively ask the human operator for assistance in closing this gap (dynamic/enactivist grounding).
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on the agent’s ability to link the query to the available
data. In contrast, dynamic grounding establishes com-
mon ground iteratively, where both agents can commu-
nicate to seek and provide clarifications, typically in a
potentially changing physical environment. This allows
corrections to misunderstandings and involves several
rounds of clarification and acknowledgments.

Static Grounding
According to Harnad, manipulating symbolic represen-
tations without meaning cannot support reasoning. AI
researchers responded with different representations
for different uses. Typically, these frameworks have the
following key components: the designator, denoting
the name or symbol utilized to identify the category;
the epistemological representation, employed to rec-
ognize instances of the category; and the inferential
representation, comprising “encyclopedic” knowledge
about the category and its members. The epistemologi-
cal representations are termed concept descriptions.
In CV, these representations are considered object
models.5

This form of grounding is typically established using
deductive learning. It is consistent with cognitivist
grounding, with little to no active or online supervision
from the environment or an external agent. ML efforts
for static grounding include using entity slot filling,
adversarial references to grounding visual referring
expressions, visual semantic role labeling, and disam-
biguation of concepts and entities.11 Additionally, meth-
ods designed for manipulating representations include
fusion and concatenation, representation alignment,
and projection of representations into a shared space.
Finally, the ML community has designed different
learning objectives to address the grounding problem,
including multitasking and joint training, the design of
new loss functions, and adversarial learning methods.

Dynamic Grounding
Dynamic efforts in ML are typically designed for situa-
tions where an entity in an environment is matched
with an epistemological representation that activates
a larger knowledge structure containing the composite
concept representation. Such systems learn to ground
their own experience dynamically in the environment,
creating more robust capabilities not dependent on
preprogrammed representations.5 Grounding frame-
works, such as learning from example and learning by
conversation, are consistent with enactivist grounding
in cognitive science. Efforts in the ML community for
dynamic grounding include grounding embodied agents;
natural interactions with human-in-the-loop feedback;

and, more recently, grounding large language model-
based agents (https://rb.gy/2pfq1g). Nevertheless, ground-
ing in mainstreamML exploits deductive learning.5

Limitations
One notable omission in ML is grounding with sensors
or environmental data.1 Furthermore, the study of
latent pragmatics is also missing from the work of
Chandu et al.11 Pragmatic analysis, pioneered by Austin,
Grice, and Searle and extended by others, such as
Sperber, focuses on understanding functional inten-
tions and implications based on variations in linguistic
content across different contexts.

The lack of a consistent definition of grounding cre-
ates considerable ambiguity regarding how to ground,
what to ground, and where to ground. To bridge this
gap, Chandu et al.11 outline the following grounding
stages: stage 1, localization; stage 2, external knowl-
edge; stage 3, common sense; and stage 4, personal-
ized consensus. However, these stages are insufficient.
Consider a challenging example of grounding a drone
(with an AI-based decision-making model) to ensure
safety concerns.

Localization requires that the drone accurately
determine its position relative to its surroundings.
Next, grounding with external knowledge introduces
additional information, such as weather and airspace
regulations, that inform subsequent action. However,
which external knowledge sources should be used and
prioritized in the decision making? Stage 3, common
sense, could include avoiding obstacles in its flight
path and taking proactive measures to avoid risks or
mitigate potential harm. However, it is not easy to
quantify and measure this grounding stage. Stage 4,
personalized consensus, can help ground decisions to
the drone’s perception of the environment and prior
experiences. However, it is unclear whether the drone
must adhere to its prior experiences when they conflict
with human instructions that reflect a broader under-
standing of the situation.

While a helpful initial attempt, these stages are not
sufficiently specific to standardize how grounding occurs
and at what abstraction levels. The lack of definition
allows for creative interpretation of the problem and,
therefore, new tasks, datasets, and methods. However,
in the future, the community will benefit from a stan-
dardized, comprehensive definition.

NEUROSYMBOLIC GROUNDING
Neurosymbolic methods can benefit grounding by inte-
grating traditional symbolic reasoning approaches with
the generalization capabilities of neural networks.
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Neurosymbolic systems integrate the statistical learning
capabilities of neural networks with the structured, sym-
bolic representations used in classical AI. Neurosym-
bolic AI seeks to benefit from the synergy of symbolic
and neural methods. Traditional symbolic reasoning
methods use formal languages (e.g., Planning Domain
Definition Language) for reasoning over knowledge
stored in a structured format and represented by
“symbols.” These reasoning methods manipulate and
infer from structured symbolic representations, such
as logic-based rules, knowledge graphs, or ontologies.

The symbolic representations provide a transparent
and interpretable framework for knowledge represen-
tations and logical reasoning, but these systems are
brittle and often cannot be generalized. However, com-
bined with neural methods, traditional methods leverage
advancements in deep learning to acquire knowledge
representations and enhanced generalization capabili-
ties effectively.10 Neural networks consist of intercon-
nected layers of artificial neurons that use weighted
connections, enabling them to learn complex mappings
between inputs and outputs. These networks are instru-
mental in pattern recognition, classification, regression,
and sequence prediction. Therefore, neurosymbolic
methods leverage the strengths of each paradigm.

As noted earlier, many of the grounding efforts in
ML rely on deductive learning and lack active or online
supervision from the environment or an external agent.
Neurosymbolic methods for grounding can offer sev-
eral advantages, including compositional reasoning
and situational awareness.

One particular asset of neurosymbolic methods is
the use of functional modules. Natural language texts
(i.e., instructions or queries) are mapped to functional
modules that carry out atomic actions. These func-
tional modules can be user defined or learned. This
allows agent functions grounded in symbolic represen-
tations to complete specific actions or generate
responses. Additionally, the compositional nature of
these functional programs allows for generalization to
new combinations of parsed instructions or queries.
The functional modules can be used for both dynamic
and static grounding, as the modules can operate
over KBs (including knowledge graphs). This aspect of
neurosymbolic methods can help establish common
ground, enabling agents to interpret and execute
instructions in a manner that aligns with symbolic
human reasoning. For example, Mao et al.,14 designed a
new neurosymbolic concept learner that can learn
embeddings for symbolic visual inputs. Learning these
mappings allows for continual learning and adaptation
of new environmental variables while preserving an
agent’s task behavior. In this manner, neurosymbolic

approaches can allow for the grounding of new con-
cepts in an environment and facilitate knowledge
gap detection, identification, and resolution processes,
leading to adaptive and robust models.

CONCLUDING REMARKS
We have focused on explicit notions of grounding. We
conclude with remarks on implicit forms of grounding.
Recently, the use of digital twins has emerged to
augment the performance of ML systems in domains
ranging from autonomous transportation6 to next-
generation wireless communication.7 Digital twins can
provide a high-fidelity representation of physical enti-
ties by accurately modeling the structure, behavior,
and characteristics of a real-world system (world
model) governed by physical laws. Such ideas can
expand the training dataset (out of distribution), allow-
ing models to be generalized. This implicit grounding
in physical laws can prevent nonfactual generation,
reduce hallucinations, and anchor model responses to
specific information, facilitating harmonization with
the corresponding world model. We note, regarding
using digital twins for grounding parallels, the conten-
tion of Pickering and Garrod8: that interlocutors implic-
itly comprehend each other by aligning their models of
the discussed situation at various levels of cognitive
and linguistic representation. Such implicit alignment
processes between agents (akin to digital twins) inspire
computational grounding processes.

Finally, we advocate for more knowledge-infused
neurosymbolic learning and reasoning systems that
naturally integrate linguistic, common sense, general
(world model), and domain-specific processes and
knowledge to facilitate static grounding. We expect
fundamental progress on the synergistic use of neural
networks and structured semantics to advance from
content processing to content understanding and
reasoning with the infusion of symbolic knowledge
(https://rb.gy/67wgx3). Thesemethods require dynamic
knowledge-elicitation strategies integrating multimodal
pragmatic context and interactions with domain experts
in the loop to achieve dynamic grounding and alignment
with user intent. A version of this article with additional
references is available in the IEEE Computer Society
Digital Library at https://arxiv.org/abs/2402.13290.
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