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1 Introduction

In standard supergravity actions gauginos are massive only if the F and/or D term of
matter fields are non-vanishing [1]. This requires nonvanishing vacuum expectation values
(VEV)s of matter fields which may generate theoretical difficulty. First, they can make a
theory less predictive because it often needs many additional scalars (moduli). Second, the
scalar potential necessary to have both nonvanishing F and D terms and stable moduli is
neither simple nor natural. Finally, the scalar potential required by moduli stabilization
and realistic gaugino masses may be incompatible with the scalar field dynamics that we
wish to study within the theory.

On the other hand, models with vanishing VEVs of matter fields carry their own set
of problems. A serious one is that the lack of experimental evidence for superpartners [2]
requires among other things heavy gauginos, which are difficult to obtain in supergravity
models where the VEVs of matter fields vanish. It is thus natural to ask the question: can
we obtain large gaugino masses together with vanishing VEVs of matter fields and a simple
moduli stabilization mechanism? In this paper we will answer in the affirmative by explicitly
presenting a model with all the required properties.

An action containing the so-called new Fayet-Iliopoulos (FI) terms [3–5], which is specified
by a hidden-sector vector multiplet V , does not contribute to the masses of matter fermions
and gauginos, except for the gaugino of the new-FI vector V , but it can make matter scalars
(or equivalently sfermions) parametrically heavier than observable-sector states. While the
new FI terms do not give mass to gauginos, other terms can be added to the standard
supergravity action that do it. In this paper we will describe in details in section 2 one such
term: a new F-term that couples the gauge vector multiplets to V .

Before embarking in a description of our model, we need to mention that the new FI term
and its generalizations have been applied to models of inflation in [6–9]. Moreover, several
works relevant to the problem of gaugino masses. First, non-universal gaugino masses can be
obtained in non-minimal GUT models [10–16], mirage mediation [17–23], and non-universal
gauge kinetic functions through string compactifications [24]. Other recent developments
in the non-universal gaugino masses were discussed in [25–29]. Second, gaugino masses
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can be obtained by anomaly mediation [30–32] in the heavy sfermion scenario, which are
proportional to the inverse of the corresponding gauge coupling constant g, its beta function
β(g2), and gravitino mass m3/2. In addition, anomaly-mediated gaugino mass can be derived
in the superspace formulation of supergravity with a Wilsonian effective action [33], using
superconformal anomaly [34], and using the anomaly of the Peccei-Quinn (PQ) symmetry
mediated by additional charged matters under SM gauge symmetries [35–38] for KSVZ-type
QCD axion [39, 40]. Furthermore, gaugino masses get corrections as large as the anomalous
one if vector-like matter fields with masses smaller than the gravitino one exist [41–43]. Let
us point out that the common point of all those models for gaugino masses is that moduli
stabilization with non-vanishing VEVs of matter fields is necessary and deeply associated with
generating the gaugino masses, signaling a possible backreaction between the dynamics of
scalar fields and gaugino masses. On the contrary, our model for the gaugino-mass generation
can decouple moduli stabilization from scalar field dynamics while keeping vanishing VEVs
of all matter fields (except the Higgs fields).

This paper describes a mechanism for generating arbitrarily large of gaugino masses
in a simple extension of the supergravity model of inflation with new Fayet-Iliopoulos (FI)
terms [3–5] presented in [44]. In [44] we used the Kähler form of the new FI term given in [4, 5]
to construct a model with slow roll inflation, and realistic spectrum and interactions. Among
other features, our model contained the complete spectrum of the minimal supersymmetric
standard model (MSSM) together with its interactions and terms necessary to give large
masses to almost all the supersymmetric partners of standard model (SM) particles. The
exception was gaugino masses. Eq. (77) of ref. [44] shows that they are proportional to the
F term WGJ = KJW +WJ , where K is the Kähler potential, W is the superpotential and
the indices J are either those of the modulus T or those of the matter scalars zi. Ref. [44]
overlooked the simple fact that the sum KJW + WJ is precisely an F term so incorrectly
assumed that it was of the same order of its two summands KJW and WJ . So it stated
that gaugino masses can be made O(H), with H, the Hubble parameter during slow-roll
inflation. The gaugino masses are instead zero unless there is an F-term supersymmetry
breaking. A nonzero F-term would spoil the most appealing feature of the model; namely that
a parametrically large mass splitting between standard model fermions and supersymmetric
scalar partners can be achieved even with a pure D-term supersymmetry breaking, where all
F terms vanish at the post-inflationary minimum (T = 1/2, zi ∼ 0). It would also require
significantly more convoluted superpotentials than those given in [44], which could spoil
good properties of the model such as the possibility of slow roll inflation, and in any case
would only produce gaugino masses much smaller than those of the other superpartners. The
solution we present here is different: we add a new gaugino mass (GM) term that, much like
the new FI terms, becomes singular when supersymmetry is unbroken. It is an F term of
conformal weight 3 whose schematic form in the standard superfield notations is∫

d2θWα(U)Wα(U)Wβ(V )W β(V )S−3
0 W (z, T )−1, (1.1)

where V is the U(1) vector superfield associated to the new FI term of refs. [4, 5], U are the
vector superfields of the observable sector, W is as before the superpotential and S0 is the
conformal compensator. The detailed construction of the GM term using superconformal
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tensor calculus is given in section 2. The explicit form of the gaugino masses and an analysis
of the range of masses allowed by the GM term, together with their relation to the cutoff
and to the Hubble scale in inflation is given in section 3. Section 4 contains a detailed
analysis of the effect of the GM term on the cutoff of the effective field theory. Since this
new term contains inverse powers of F terms, it could in principle lower the cutoff below
the inflationary Hubble scale H. This would make the effective theory useless to describe
inflation. Section 3 finds the range of the free parameters contained in the GM term that
keeps the effective theory cutoff Λ larger than H.

2 Gaugino masses in supergravity with new Fayet-Iliopoulos terms

In this section, we describe a mechanism for generating arbitrarily large of gaugino masses
in supergravity with new Fayet-Iliopoulos (FI) terms. While the gaugino of the vector
multiplet for the new FI term gets a heavy mass from the new FI term, the gauginos of
the SM gauge vector multiplets will get non-vanishing masses, as heavy as the Hubble scale
via the new GM F term (1.1).

As in ref. [44] we work in Mpl = 1 units and introduce matter chiral multiplets Zi, the
chiral compensator S0, a real multiplet V , and another real multiplet (V )D, whose lowest
component is the auxiliary D term of the real multiplet V . The components of the various
superconformal multiplets are given as follows.

Chiral matter multiplets

Zi = (zi,−i
√

2PLχ
i,−2F i, 0,+iDµz

i, 0, 0) = {zi, PLχ
i, F i}, (2.1)

Z̄ ī = (z̄ ī,+i
√

2PRχ
ī, 0,−2F̄ ī,−iDµz̄

ī, 0, 0) = {z̄ ī, PRχ
ī, F̄ ī}. (2.2)

Conformal compensator multiplet

S0 = (s0,−i
√

2PLχ
0,−2F0, 0,+iDµs0, 0, 0) = {s0, PLχ

0, F0}, (2.3)
S̄0 = (s̄0,+i

√
2PRχ

0, 0,−2F̄0,−iDµs̄0, 0, 0) = {s̄0, PRχ
0, F̄0}. (2.4)

Field strength multiplet for the new FI vector V

V = {0, 0, 0, 0, vµ, λV , DV } in the Wess-Zumino gauge (2.5)
(λ̄PLλ)V = (λ̄V PLλV ,−i

√
2PLΛV , 2D2

−, 0,+iDµ(λ̄V PLλV ), 0, 0)
= {λ̄V PLλV , PLΛV ,−D2

−}, (2.6)
(λ̄PRλ)V = (λ̄V PRλV ,+i

√
2PRΛV , 0, 2D2

+,−iDµ(λ̄V PRλV ), 0, 0)
= {λ̄V PRλV , PRΛV ,−D2

+}, (2.7)

where

PLΛV ≡
√

2PL(−1
2γ ·F̂V +iDV )λV , PRΛV ≡

√
2PR(−1

2γ ·F̂V −iDV )λV , (2.8)

D2
V −≡D2

V −F̂−
V ·F̂−

V −2λ̄V PL��DλV , D2
V + ≡D2

V −F̂+
V ·F̂+

V −2λ̄V PR��DλV , (2.9)

– 3 –



J
H
E
P
0
8
(
2
0
2
4
)
0
1
9

DµλV ≡
(
∂µ−

3
2bµ+ 1

4w
ab
µ γab−

3
2 iγ∗Aµ

)
λV −

(1
4γ

abF̂V ab+ 1
2 iγ∗DV

)
ψµ (2.10)

F̂V ab ≡FV ab+e µ
a e

ν
b ψ̄[µγν]λV , FV ab ≡ e µ

a e
ν

b (2∂[µvν]), (2.11)

F̂±
V µν ≡

1
2(F̂V µν± ˜̂

FV µν), ˜̂
FV µν ≡−1

2 iϵµνρσF̂
ρσ
V . (2.12)

Field strength multiplet for the SM gauge vector U

U = {0, 0, 0, 0, uµ, λU , DU} in the Wess-Zumino gauge (2.13)
(λ̄PLλ)U = (λ̄UPLλU ,−i

√
2PLΛU , 2D2

U−, 0,+iDµ(λ̄UPLλU ), 0, 0)
= {λ̄UPLλU , PLΛU ,−D2

U−}, (2.14)
(λ̄PRλ)U = (λ̄UPRλU ,+i

√
2PRΛU , 0, 2D2

U+,−iDµ(λ̄UPRλU ), 0, 0)
= {λ̄UPRλU , PRΛU ,−D2

U+}, (2.15)

where

PLΛU ≡
√

2PL(−1
2γ ·F̂U +iDU )λU , PRΛU ≡

√
2PR(−1

2γ ·F̂U −iDU )λU , (2.16)

D2
U−≡D2

U −F̂−
U ·F̂−

U −2λ̄UPL��DλU , D2
U+ ≡D2

U −F̂+
U ·F̂+

U −2λ̄UPR��DλU , (2.17)

DµλU ≡
(
∂µ−

3
2bµ+ 1

4w
ab
µ γab−

3
2 iγ∗Aµ

)
λU −

(1
4γ

abF̂Uab+ 1
2 iγ∗DU

)
ψµ (2.18)

F̂Uab ≡FUab+e µ
a e

ν
b ψ̄[µγν]λU , FUab ≡ e µ

a e
ν

b (2∂[µuν]), (2.19)

F̂±
Uµν ≡

1
2(F̂Uµν± ˜̂

FUµν), ˜̂
FUµν ≡−1

2 iϵµνρσF̂
ρσ
U . (2.20)

The GM F-term Lagrangian, written in the notations of superconformal tensor calculus
of [1], is

LGM = [(λ̄PLλ)U(λ̄PLλ)V S
−3
0 W (Z)−1]F + c.c., (2.21)

where W (Z) is the superpotential of our theory, and (λ̄PLλ)U and (λ̄PLλ)V are the composite
multiplets corresponding to each of the two vectors. It is an F-term density of conformal
weight 3 and chiral weight 3, so it is invariant under supersymmetry. The superpotential
multiplet is given by

W (Z) =
{
W (z),WiPLχ

i,WiF
i − 1

2Wijχ̄
iPLχ

j
}
. (2.22)

To compute the Lagrangian (2.21), we can use the following results of superconformal
tensor calculus

W−1(Z) =
{

1
W
,−Wi

W 2PLχ
i,−WiF

i

W 2 +
( Wij

2W 2 + WiWj

W 3

)
χ̄iPLχ

j

}
, (2.23)

S−3
0 =

{
1
s3

0
,− 3

s4
0
PLχ

0,−3F 0

s4
0

}
. (2.24)
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Multiplying the supermultiplets we get

S−3
0 W−1(Z)

=
{ 1
s3

0W
,− 3

s4
0W

PLχ
0 − Wi

s3
0W

2PLχ
i,

−
(

3F 0

s4
0W

+ WiF
i

s3
0W

2

)
+
(

Wij

2s3
0W

2 + WiWj

s3
0W

3

)
χ̄iPLχ

j − 3Wi

s4
0W

2 χ̄
iPLχ

0
}
. (2.25)

The multiplication of the field strength mutliplets of V and U gives

(λ̄PLλ)U(λ̄PLλ)V

=
{(
λ̄UPLλU

)(
λ̄V PLλV

)
,(

λ̄UPLλU

)√
2PL

(
−1

2γ ·F̂V +iDV

)
λV +

(
λ̄V PLλV

)√
2PL

(
−1

2γ ·F̂U +iDU

)
λU ,

−
(
λ̄UPLλU

)(
D2

V −F̂−
V ·F̂−

V −2λ̄V PL��DλV

)
−
(
λ̄V PLλV

)(
D2

U −F̂−
U ·F̂−

U −2λ̄UPL��DλU

)
−2λ̄U

(
−1

2γ ·F̂U +iDU

)
PL

(
−1

2γ ·F̂V +iDV

)
λV

}
. (2.26)

Since the Lagrangian (2.21) is the F term of the two composite multiplets (2.25) and (2.26),
we find

LGM =
[
− 1
s3

0W
(λ̄UPLλU )(D2

V −F̂−
V ·F̂−

V −2λ̄V PL��DλV )

− 1
s3

0W
(λ̄V PLλV )(D2

U −F̂−
U ·F̂−

U −2λ̄UPL��DλU )

−2 1
s3

0W
λ̄U(−1

2γ ·F̂U +iDU )PL(−1
2γ ·F̂V +iDV )λV

−
( 3F 0

s4
0W

+WiF
i

s3
0W

2

)
(λ̄UPLλU )(λ̄V PLλV )

+
( Wij

2s3
0W

2 +WiWj

s3
0W

3

)
χ̄iPLχ

j(λ̄UPLλU )(λ̄V PLλV )

− 3Wi

s4
0W

2 (χ̄iPLχ
0)(λ̄UPLλU )(λ̄V PLλV )

+
( 3
s4

0W
χ̄0PL+ Wi

s3
0W

2 χ̄
iPL

)
(λ̄UPLλU )

√
2PL(−1

2γ ·F̂V +iDV )λV

+
( 3
s4

0W
χ̄0PL+ Wi

s3
0W

2 χ̄
iPL

)
(λ̄V PLλV )

√
2PL(−1

2γ ·F̂U +iDU )λU

]
+c.c. (2.27)

The GM term produces another contribution to the solutions of the equations of motion for
the auxiliary field of the compensator S0, F 0, and for the compensators F j of the physical
chiral multiplets. We write it inside large brackets

F 0 = e2K/3W̄ (z̄) − 1
3e

K/6(λ̄PRλ)V +
[
s∗−4

0 W̄−1(z̄)eK/3(λ̄PRλ)U(λ̄PRλ)V

]
,

F i = −3eK/2Gij̄(W̄j̄ +Kj̄W̄ ) −Gij̄
(
9
Uj̄

U
+ 3Kj̄

)
(λ̄PRλ)V

+
[
9s∗−3

0 W̄j̄(z̄)W̄−2(z̄)(λ̄PRλ)U(λ̄PRλ)V

]
. (2.28)
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Here K is the Kähler potential and the second term in eq. (2.28) comes from the new FI
terms introduced in ref. [44]. Notice that the fermionic component of the composite multiplet
defining the Lagrangian (2.21) contains couplings with three or five fermions only, so the GM
term (2.21) does not alter the original goldstino contribution to the fermion masses when
the gravitino becomes massive. In other words, the GM term contribution to the goldstino
mass term produces only higher-order interactions, not mass terms. Therefore, all the mass
matrices except those of the gaugini remain the same as those of ref. [44].

3 Supermassive gauginos in supergravity inflation with high-scale SUSY
breaking

The contribution of (2.27) to gaugino masses is contained in the terms

L2 fermions ⊃ (λ̄PLλ)V s
−3
0 W (z)−1(−D2

U−) + (λ̄PLλ)Us
−3
0 W (z)−1(−D2

V −)
+2DUDV s

−3
0 W (z)−1λ̄UPLλV + 2DUDV s

−3
0 W (z)−1λ̄V PLλU (3.1)

where z, s0 are complex scalars, and D2
U/V − ≡ D2

U/V − F̂−
U/V · F̂−

U/V − 2(λ̄PL��Dλ)U/V . Notice
that there are off diagonal quadratic terms in the gaugino fermions. The other terms
in (2.27) merely produce matter-fermion couplings and gaugino interactions. In general,
since the Lagrangian (3.1) contains off diagonal quadratic terms, we need to diagonalize
the gaugino mass matrix

MGaugino = 1
W (z)s3

0

(
−D2

U 2DUDV

2DV DU −D2
V .

)
(3.2)

However, the D terms of the SM vector multiplet for SU(3)c vanish, while those for U(1)Y

and SU(2)L are given by DU ∼ O(ga(v2
u − v2

d)), where ga’s are the SM (U(1)Y , SU(2)L) gauge
coupling constant and vu,d are the vacuum expectation values of the two Higgs fields, Hu

and Hd, present in the MSSM. These D terms are much smaller than those of the new FI
term vector V ; therefore, we can neglect them and write the Lagrangian as follows

LGaugino-mass ⊃ − D2
V

W (z)s3
0
(λ̄PLλ)U = − D2

V

W (z)eK/2 (λ̄PLλ)U = − D2
V

m3/2
(λ̄PLλ)U

=⇒ Mgaugino = D2
V

m3/2
∼ H. (3.3)

Here we used the superconformal gauge-fixing condition on the compensator s0 = eK/6, and
the gravitino mass relation m3/2 = W (z)eK/2. Notice that the gaugino masses of the three
SM gauge groups can be as large as the inflationary Hubble scale H, both during and after
inflation, as long as the gravitino mass remains of O(H) during and after slow-roll inflation.

DV ∼ ξ = M2
S ∼ H, m3/2 ∼ H. (3.4)

Here ξ is the mass scale of the inflationary potential and MS is the supersymmetry breaking
scale, both given in Mpl = 1 units.
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More precisely, the gravitino mass m3/2 along the inflationary trajectory is given by

m3/2 = WeK/2 = A(e−aT − c)
(T + T̄ )3/2 = A(e−aX/2 − c)

X3/2

= X−3/2√3H(a−1e−a(X−1)/2 − a−1 − 1/3), (3.5)

where we use the same superpotential W = A(e−aT − c) as in ref. [44], K = −3 ln[T + T̄ ],
X = T + T̄ , T is real along the inflationary trajectory where VEVs of the matter scalars
are vanishing, and

A = a−1ea/2
√

3(M4
I − Λ) ≈ a−1ea/2√3H, c = (1 + a/3)e−a/2, M4

I ≈ H2, (3.6)

with a a so-far-unspecified real-number parameter. Our effective theory describes physics
only up to a finite cutoff in energy, Λcut. The gravitino can be described by this effective
theory only if its mass is below the cutoff (and large enough to be unobservable). To satisfy
both constraints we restrict the range of the gravitino mass to

αH ≲ |m3/2| < Λcut, (3.7)

where 0 < α < 1 is another yet-to-be-constrained real parameter. Extra scalar degrees of
freedom are required to be heavier than the Hubble scale in order to be integrated out in our
single-field inflationary model while fermionic degrees of freedom do not have to be heavier
than the Hubble scale, but they still have to but lighter than the cutoff.

For a very small number a, we have

m3/2 ≈ X−3/2√3H
(
a−1(1 − a(X − 1)/2) − a−1 − 1/3

)
= −X−3/2√3H

(X − 1
2 + 1

3
)

= X−3/2√3H (1 − 3X)
6 , (3.8)

so that the allowed range is

αH ≲

√
3

6 X−3/2|1 − 3X|H < Λcut. (3.9)

The inflationary trajectory starts from around X ∼ 100 at the beginning of the slow roll
epoch and ends at the vacuum X = 1, where the inflaton gets frozen. We are thus interested
in the range 1/3 < X. Then, constraint (3.7) is

αH ≲

√
3

6 X−3/2(3X − 1)H < Λcut. (3.10)

To investigate this constraint, we define a function

F (X,α) ≡
√

3
6 X−3/2(3X − 1) − α, (3.11)

leading to

0 ≲ F (X,α) < Λcut
H

− α. (3.12)

– 7 –
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Figure 1. The behaviors of F (X,α) in the direction of X for different α’s. We can see that the
maximum value of X decreases as α increases. In order to have around 100 e-foldings during slow-roll
inflation, α ∼ 0.086.

We therefore obtain

X ≲
1

4α2 + 3 − 8α2

4α2 3√3(9 − 36α2 + 24α4 + 8α3
√
−3 + 9α2)1/3

+(9 − 36α2 + 24α4 + 8α3√−3 + 9α2)1/3

4α2 3√9
, (3.13)

which we computed using Mathematica. To ensure a sufficient number of e-foldings in the
slow-roll inflation epoch, we set the right side of eq. (3.13) at X = 100. This leads to

α ≈ 0.086, (3.14)

which can also be obtained numerically using Mathematica. In figure 1 we plot F (X,α) vs
X for various values of α to illustrate this bound.

With this value of α, the gravitino mass can remain around the Hubble scale over the
whole inflationary trajectory. Re-introducing the reduced Planck mass Mpl (∼ 2.4×1018 GeV)
and setting H ∼ 10−5Mpl, the gravitino mass bound is given by

0.086H = 8.6 × 10−7Mpl ≲ m3/2 < Λcut ∼
√
HMpl ∼ 10−2.5Mpl (3.15)

or equivalently in GeV

1012 GeV ≲ m3/2 < 1015.5 GeV. (3.16)

Since the gaugino mass is given by MGaugino ∼ H2

m3/2
, we find that

1012 GeV ≲
H2

MGaugino
∼ 108 GeV2

MGaugino
< 1015.5 GeV, (3.17)

– 8 –
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which immediately produces the final result for the gaugino-mass bound

1010.5 GeV < MGaugino ≲ 1014 GeV < Λcut = MS ∼ 1015.5 GeV. (3.18)

Note that the gaugino masses can be very large while still being within the above range.
Next, let us see whether the range we consider is consistent with the inflaton dynamics dur-

ing slow-roll inflation and reheating. Our scalar potential has the following “Starobinsky” form

V = H2 − 1
X2

(
− 2aA2e−aX + 2acA2e−aX/2

)
+ 1

3Xa2A2e−aX , (3.19)

where A2 ≈ 3a−2eaM4
S = 3a−2eaH2 and c = (1 + a/3)e−a/2. The redefinition that makes the

kinetic term of the inflaton canonically normalized is X = e
√

2/3ϕ. We re-write V

V = H2
(

1 − 1
X2

(
− 2ae−aX + 2a(1 + a/3)e−a/2e−aX/2

)
3a−2ea + 1

X
e−a(X−1)

)
(3.20)

and note that its minimum is located at X = 1. For the scalar potential at large X during
inflation we have V ∼ H2M2

pl. On the contrary, around the point X = 1/3 (which is NOT
a minimum), we have

V = H2
(

1 + −54ea/3 − 18aea/3 + 54e2a/3 + 3ae2a/3

a

)
. (3.21)

If we assume that a ≪ 1, after a short calculation and after expanding the exponential
terms up to linear order in a we obtain

V ≈ 4H2(1 − a) ∼ 4H2. (3.22)

This implies that during the reheating era after inflation, the inflaton can fluctuate around
the vacuum at X = 1 without reaching the point X = 1/3, since V (X = 1/3) ∼ 4H2M2

pl is
greater than V (X ≫ 1) ∼ H2M2

pl, which is the potential at the beginning of slow-roll inflation
(and the Hubble friction dissipates energy). Thus, it is consistent to restrict the range of the
inflaton’s motion to 1/3 < X ≲ 100 along the inflationary trajectory –whose minimum at
X = 1, as shown in figure 2. In particular, within this range, the upper bound in eq. (3.10)
is always satisfied, because we have H ∼ O(10−5) while, in Mpl = 1 units, Λcut ∼ O(10−2.5).

4 Consistency check on the UV cutoff

To study the scale at which nonrenormalizable interactions appear we follow the method
used in [44–47]. We analyze nonrenormalizable terms that come from either the new-FI D
term or the new GM F term. We can generalize the strategy introduced in ref. [44] in the
following way. Let us write the Lagrangian density of the new FI and GM terms as

L = 1
2D

2 − ΞD +
∑

n≥0,m≥0
D−nM−m

P l O
2n+m+4
newFI + LGM (4.1)

where Ξ is the new-FI-term constant and O2n+m+4
newFI are nonrenormalizable local operators of

scaling dimension 2n + m + 4. All terms with m > 0 vanish in the global supersymmetry
limit Mpl → ∞ and D ∼ Ξ fixed. This shows that the strongest constraint on the UV cutoff
comes either from the term with m = 0 or from LGM. The m = 0 terms gives

Λ2
cut ≲ D ∼ Ξ ∼ HMpl ∼M2

S =⇒ Λcut ≲
√
HMpl, ; (4.2)

– 9 –
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Figure 2. The scalar potentials of Starobinsky inflation for different values of a in eq. (3.20), whose
minimum is located at X = 1. Note that during inflation and reheating the potential energy is much
smaller than at X = 1/3.

this is the same bound obtained in [44]. Moreover, in the limit of Mpl → ∞ and in the
superconformal gauge (s0 = s̄0 = Mple

K/6M2
pl), the LGM term in the Lagrangian reduces to

LGM

= − 1
W

(
λ̄UPLλU

) (
D2

V − F̂−
V · F̂−

V − 2λ̄V PL��DλV

)
− 1
W

(
λ̄V PLλV

) (
D2

U − F̂−
U · F̂−

U − 2λ̄UPL��DλU

)
− 2 1

W
λ̄U

(
−1

2γ · F̂U + iDU

)
PL

(
−1

2γ · F̂V + iDV

)
λV

−
(
WiF

i

W 2

)(
λ̄UPLλU

) (
λ̄V PLλV

)
+
(
Wij

2W 2 + WiWj

W 3

)
χ̄iPLχ

j
(
λ̄UPLλU

) (
λ̄V PLλV

)
+
(
Wi

W 2 χ̄
iPL

)(
λ̄UPLλU

)√
2PL

(
−1

2γ · F̂V + iDV

)
λV

+
(
Wi

W 2 χ̄
iPL

)(
λ̄V PLλV

)√
2PL

(
−1

2γ · F̂U + iDU

)
λU . (4.3)

This equation includes both renormalizable and nonrenormalizable terms. From the latter
we find new constraints on the cutoff scale Λcut. They are found to be

1⃝ 1
W

≲ Λ−3
cut, 2⃝ DV

W
≲ Λ−1

cut, 3⃝ WiF
i

W 2 ≲ Λ−2
cut,

4⃝
( Wij

2W 2 + WiWj

W 3

)
≲ Λ−5

cut, 5⃝ Wi

W 2 ≲ Λ−4
cut, 6⃝ WiDV

W 2 ≲ Λ−2
cut. (4.4)

– 10 –
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Let us examine each of them separately. The constraint 1⃝ reduces to

1⃝ Λcut ≲W 1/3. (4.5)

From 1⃝ and 2⃝, we find

2⃝ DV ≲ Λ2
cut. (4.6)

From 5⃝ and 3⃝, we find

3⃝ F i ≲ Λ2
cut. (4.7)

From 1⃝ and 4⃝, we find

4⃝ Wij

2 + WiWj

W
≲ Λcut =⇒ Wij

2 ≲ Λcut and WiWj

W
≲ Λcut. (4.8)

From 1⃝ and 5⃝, we find

5⃝ Wi ≲ Λ2
cut. (4.9)

Using 5⃝ and 6⃝, we find that the contraint 6⃝ in eq. (4.4) reduces to the constraint 2⃝
in (4.6). Notice that eqs. (4.2) and (4.6) bound the value of the cutoff scale as follows

DV ∼ Λ2
cut ∼M2

S ∼ HMpl =⇒ Λcut ∼MS ∼
√
HMpl. (4.10)

This is essential for the bounds coming from the new FI term and the gaugino mass to be
compatible with each other. With this result, the constraints 1⃝, 3⃝, 4⃝, and 5⃝ show that

M3
S ≲W, F i ≲M2

S , Wij ≲MS , Wi ≲M2
S , (4.11)

or equivalently

HMpl

√
HMpl ≲W, F i ≲ HMpl, Wij ≲

√
HMpl, Wi ≲ HMpl, (4.12)

which can be satisfied for the values F i ≲ HMpl and W ≲ O(HM2
pl) that we used in our

supergravity model of inflation with the new FI terms. Summing all up we find that the
constraints in eqs. (4.5) through eq. (4.9), which arise from the gaugino mass Lagrangian (2.21),
can be satisfied while also satisfying eq. (4.2).

Let’s study in detail the constraints following from eq. (4.11). We begin with looking
at the first one by writing the superpotential considered in ref. [44]

W (T, zi) = W0 +Ae−aT︸ ︷︷ ︸
hidden sector

+ WMSSM(zi)︸ ︷︷ ︸
observable sector

, (4.13)

where W0 = −cA and c = (1 + a/3)e−a/2. From ref. [44], we see that M4
S = Λ +

a2A2e−a

3 ≈ (aAe−a/2
√

3 )2. At the minimum (T = 1/2, z ∼ 0), the value of the superpoten-
tial is |W |vac = a

3e
−a/2A = M2

S/
√

3. Therefore, the constraint M3
S ≲ W is satisfied at

the post-inflation vacuum as long as MS < Mpl = 1. For large T along the inflationary

– 11 –
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plateau, the superpotential reduces to |W0| = Ae−a/2 + aAe−a/2/3 =
√

3M2
S

a +M2
S/

√
3, which

automatically satisfies the constraint due to the previous condition for the vacuum. The
second condition in (4.11) holds because the scalar part of F i in eq. (2.28) is given by
F i ∼ −3eK/2Gij̄(W̄j̄ +Kj̄W̄ ) ∼ 0 along the inflationary trajectory (i.e. zi ≈ 0). The third
and fourth ones can be easily satisfied due to the fact that the derivatives of the superpotential
with respect to the matter scalars are either of order of a low scale, much smaller than the
supersymmetry breaking one, or vanish along the inflationary trajectory.

5 Conclusion

We presented a simple, predictive model with moduli stabilization without backreaction on
the scalar field dynamics and parametrically large gaugino masses. We saw that the gaugino
masses in our model can be given a value close to the Hubble scale

Mgaugino = ⟨DV ⟩2

m3/2M
2
pl

= M4
S

m3/2M
2
pl

∼ O(H) = O(10−5Mpl), (5.1)

where ⟨DV ⟩ = ξ = M2
S = HMpl, m3/2 ∼ H , and MS is the SUSY-breaking mass scale, which

is of order 10−2.5Mpl. This means that gauginos can be integrated out at energies below the
Hubble scale, and thus are to all effects undetectable. Note that the gaugino masses (5.1) do
not depend on the VEVs of matter fields –which either vanish at the post-inflation vacua
or give negligibly small contributions to the masses.

As a further study, it would be interesting to seek string realization of the gaugino
mass term (2.21) proposed here. The hint for this may come from the four-dimensional
gaugino-mass term in ref. [48], which is obtained by dimensional reduction of a fermionic
space-filling Dp-brane action carrying both RR and NSNS fluxes.
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