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Abstract
This is a study of the sequences of Betti numbers of finitely generated modules over a
complete intersection local ring, R. The subsequences (βR

i (M))with even, respectively, odd
i are known to be eventually given by polynomials in i with equal leading terms. We show
that these polynomials coincide if I!, the ideal generated by the quadratic relations of the
associated graded ring of R, satisfies height I! ≥ codim R−1, and that the converse holds if
R is homogeneous or codim R ≤ 4. Subsequently Avramov, Packauskas, andWalker proved
that the terms of degree j > codim R− height I! of the even and odd Betti polynomials are
equal. We give a new proof of that result, based on an intrinsic characterization of residue
rings of c.i. local rings of minimal multiplicity obtained in this paper. We also show that that
bound is optimal.
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1 Introduction

This paper is concerned with free resolutions of finitely generated modules M over a com-
mutative noetherian ring R with unique maximal ideal, m. Each such module has a unique
up to isomorphism minimal free resolution. The rank βR

i (M) of the i th module in such a
resolution is called the i th Betti number of M .

The asymptotic patterns ofBetti sequences (βR
i (M)) reflect and affect the singularity of R.

This dynamic is best understood when the ring R is complete intersection, abbreviated to
c.i.; that is, when the m-adic completion R̂ is isomorphic to the residue ring of some regular
local ring modulo an ideal generated by a regular set; the smallest cardinality of such a set is
equal to codim R, the codimension of R.

Gulliksen [24] proved that if R is c.i., then for every M there exist Betti polynomials,
βR,M
0 and βR,M

1 ∈ Q[x] with deg(βR,M
j ) < codim R (where deg(0) := −1, by convention)

such that βR
i (M) = βR,M

j (i) for i ≫ 0 and i ≡ j (mod 2). The hypothesis on R cannot be
relaxed, as βR

i (k) ≤ b(i)with k := R/m and b ∈ R[x] implies R is c.i. (Gulliksen, [25]), nor
can the conclusion on βR,M

j be tightened, for βR,k
even = βR,k

odd and deg(βR,k
even) = codim R − 1

hold when R is c.i. (Tate [40]).
Eisenbud [18] showed that if R is c.i. and codim R ≤ 1, then (βR

i (M)) is eventually
constant for everyM ; this was an early sign of possible connections between βR,M

even and βR,M
odd .

The general property is that these polynomials have equal degrees and leading coefficients
over every c.i. ring; see Avramov [3]. The present work is a study of the discrepancy between
βR,M
even and βR,M

odd as measured by a number,

gnR(M) := deg
(
βR,M
even − βR,M

odd

)
+ 1,

that we call the granularity of M over R. The least value, gnR(M) = 0, is attained when
(βR

i (M)) is eventually polynomial; that is, when βR,M
even = βR,M

odd .
Our main results link the granularities of R-modules and the structure of R. Let Rg

denote the associated graded ring of R and π : Symk(R
g
1 ) ! Rg the canonical map. We

write codim R! for the height of the ideal generated by the quadratic forms in Ker(π) and
call that number the quadratic codimension of R.

Theorem 1.1 (Theorem 4.1) Every module M over a c.i. local ring R satisfies

gnR(M) ≤ max{codim R − codim R! − 1, 0}.

This theorem subsumes a number of contributions, related in time and content as follows. It
was proved in [5] for local ringswith codim R = codim R!.When R andM arehomogeneous
(that is, localizations of Rg and of a graded Rg-module at the maximal ideal (Rg

1)) and
codim R = codim R! + 1 = 2, it was obtained by Avramov and Zheng [13] using methods
not available in other cases. Theorem 1.1 was proved for all c.i. rings R with codim R =
codim R!+1 in unpublished joint work of the authors of this paper. Motivated by that result,
Avramov et al. ([11], to appear) subsequently proved the full theorem by different techniques.

The proof of Theorem 1.1, given below, extends our original approach. It relies on the
following structure theorem for rings of given quadratic codimension.

Theorem 1.2 (Part of Theorem 3.7)A local ring R with infinite residue field has codim R! =
q if and only if R̂ is a homomorphic image of some c.i. local ring Q with codim Q = q,
multiplicity 2q , and edim Q = edim R.
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Polynomial growth of Betti sequences over local rings

This result is of independent interest, as every local c.i. ring of codimension q has multi-
plicity at least 2q , and those of minimal multiplicity are to regular local rings what complete
intersections of quadrics are to polynomial rings.

In the second half of the paper we explore possibilities of relaxing the hypothesis or
tightening the conclusion of Theorem 1.1, and completely settle the second issue:

Theorem 1.3 (Abstracted from Theorem 5.2) The upper bound in the inequality in Theorem
1.1 is optimal: For every pair (c, q) of integers with c ≥ q ≥ 0 there exist a c.i. local ring R
and a cyclic R-module S that satisfy

(codim R, codim R!) = (c, q) and gnR(S) = max{c − q − 1, 0}.

In order to probe the tightness of the hypotheses of Theorem 1.1 we search for partial
converses to its statement. Below we focus on those rings over which all finite modules have
granularity zero and obtain the following result:

Theorem 1.4 (Contained in Theorems 6.1 and 6.2) Let (R,m, k) be a c.i. local ring such that
the Betti sequence of each finite R-module is eventually polynomial.

If R is homogeneous, or codim R ≤ 4 and k is algebraically closed, then one has

codim R ≤ codim R! + 1.

The proofs of Theorems 1.3 and 1.4 hinge upon identifying and constructing families of
residue rings S of R, where the import of invariants of the rings R and S on the values of
gnR(S) can be traced explicitly. The relevant arguments involve hard computations that draw
on a number of different techniques.

The results in this work and in [11] open up a new narrative concerning the patterns of
Betti sequences of modules over a given c.i. ring. The methods of proof in these papers
suggest possible approaches and specific questions. Here is a sample.

Question 1.5 Let R be a c.i. local ring R and set n := codim R − codim R!.
Does R have modules with non-polynomial Betti sequences if n ≥ 2 ?
Do R-modules of maximal granularity, equal to n − 1, always exist?

We thank Nicholas Packauskas and Mark Walker for numerous useful discussions.

2 Complexity and granularity

We first overview notation, constructions, and results that will be used throughout the main
text of the paper. The statement that (R,m, k) is a local ring here means that R is a com-
mutative noetherian ring with unique maximal ideal m and k is the residue field R/m. As
usual, dim R denotes the (Krull) dimension of R and edim R its embedding dimension (that
is, the minimal number of generators of m); the (embedding) codimension of R is the num-
ber codim R := edim R − dim R, and the number codepth R := edim R − depth R is its
(embedding) codepth.

When (R′,m′, k′) is a local ring, a ring homomorphism ϕ : R → R′ is local if ϕ(m) lies
inm′. The map ϕ is faithfully flat if and only if it is flat and local. Surjective homomorphisms
are assumed to induce the identity map on the residue fields.

For our purposes, it is often convenient to introduce invariants through non-canonical
presentations of modifications of R, or of its m-adic completion, R̂.
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2.1. A regular presentation of R is a surjective ring map R " P :ρ with P local and regular;
we use the same name for an isomorphism R ∼= P/I , with P as above.

Every regular presentation ρ factors through one that is minimal, meaning edim P =
edim R or, equivalently, I ⊆ p2, where p is the maximal ideal of P . Indeed, one has I/(I ∩
p2) ∼= Ker(p/p2 → m/m2). Lifting a k-basis of this kernel to a subset t of I yields a minimal
presentation R ∼= P/I , with P := P/P t; the ring P is regular because t extends to a regular
system of parameters of P .

By Cohen’s Structure Theorem, regular presentations R̂ ∼= P/I exist, and such Cohen
presentations also produce minimal ones. Minimal Cohen presentation need not be isomor-
phic, but rankk(I/pI ) is the same for all of them (see 2.2 below); we let rel R denote that
common value and call it the number of relations of R.

Throughout the paper, M denotes a finite, that is, finitely generated R-module. We review
somenumerical invariants ofminimal free resolutions ofmodules over local rings. For general
information on free resolutions we refer to [6].

2.2. The i th Betti number βR
i (M) of M is the rank of the i th module in a(ny) minimal free

R-resolution F of M . It can be computed in different ways:

βR
i (M) = rankk(F ⊗R k) = rankk TorRi (M, k) = rankk ExtiR(M, k).

One measure of the growth of the Betti sequence (βR
i (M)) is given by the number

cxR(M) := inf{n ∈ N0 | βR
i (M) ≤ ain−1 for i ≫ 0 and some a > 0},

called the complexity of M over R. Thus cxR(M) = 0 means that proj dimR M is finite and
cxR(M) = ∞ that i .→ βR

i (M) cannot be bounded above by a polynomial.
The Betti numbers of M are handily packed into its Poincaré series, given by

PR
M :=

∑

i!0

βR
i (M)zi ∈ Z[[z]].

If R̂ ∼= P/I is a minimal Cohen presentation, then the series PP
I lies in N0[z] and it is an

invariant of R; in particular, so is the number rankk(I/pI ); see [6, 4.1.3].
We study the asymptotic behavior of a Betti sequence in terms of its Poincaré series,

complexity, and granularity—a new invariant that we introduce next.

2.3. The sequence (βR
i (M)) is linearly recursive if and only if the series PR

M is rational; that
is, if and only if p · PR

M lies in Z[z] for some nonzero p ∈ Z[z].
If PR

M is rational and cxR(M) is finite, then the poles of PR
M are at roots of unity, that of

highest non-negative order is at 1, and its order equals cxR(M); see [2, 2.4].
We say that M has granularity g and write gnR(M) = g if PR

M is rational and has a
pole of order g ≥ 0 at −1. Formulas involving granularity are stated or used with the tacit
assumption that the relevant modules have rational Poincaré series.

The definitions of complexity and granularity given in 2.3 and those used in the introduc-
tion will soon be reconciled; see 2.5.

2.4. The properties of Poincaré series and of complexity, listed below, hold without restric-
tions; the formulas for granularity follow from those for Poincaré series.

(1) If N is an nth syzygy module of M over R, then one has

PR
M − zn PR

N ∈ Z[z], cxR(M) = cxR(N ), and gnR(M) = gnR(N ).

123



Polynomial growth of Betti sequences over local rings

(2) If R → (R′,m′, k′) is a local ring homomorphism, M ′ denotes the R′-module R′ ⊗R M ,
and TorRi (R

′,M) = 0 holds for i ≥ 1, then one has

PR
M = PR′

M ′ , cxR(M) = cxR′(M ′), and gnR(M) = gnR′(M ′).

This is the case, in particular, if R′ is flat over R, or if R′ = R/Rg for some R-regular
set g that is also M-regular.

(3) A (codimension n) deformation of R to Q is an isomorphism R ∼= Q/Q f , with (Q, q, k)
local and f a Q-regular set (of n elements); it is embedded if f ⊆ q2. We use the same
name(s) also for the canonical homomorphism R " Q.

Betti sequences whose asymptotic patterns are (almost) completely determined by com-
plexity and granularity admit several descriptions:

2.5. Let R be a local ring and M a nonzero R-module.
The following conditions on an integer c ≥ 0 are equivalent.

(i) There is an inclusion (1 − z2)c · PR
M ∈ Z[z].

(ii) There exists a unique pRM ∈ Z[z] with pRM (1) > 0 such that

PR
M = pRM

(1+ z)gnR(M)(1 − z)cxR(M)
and 0 ≤ gnR(M) < cxR(M) ≤ c.

(iii) There exist unique polynomials βR,M
j ∈ Q[x] for j = 0, 1 that satisfying the following

conditions, where the convention deg(0) = −1 is used:

βR
i (M) = βR,M

j (i) for i ≫ 0 when i ≡ j (mod 2), and

gnR(M) = deg
(
βR,M
0 − βR,M

1

)
+ 1 < deg

(
βR,M
j

)
+ 1 = cxR(M) ≤ c.

Indeed, it is shown in [3, Proof of Theorem 4.1] that (i) implies (ii). Partial fraction
decomposition yields the implications (ii) /⇒ (iii) /⇒ (i).

2.6. A collection of known results illustrates the conditions in 2.5.

(1) If proj dimQ(M̂) is finite for some codimension c deformation R̂ ∼= Q/Q f , then 2.5(i)
holds; see [24, 4.2(i)]; this is a major source of modules whose Poincaré series have poles
only at ±1. However, R-modules M with PR

M = 2/(1 − z) may exist over rings R that
admit no non-trivial deformations; see [9].

(2) The ring R is said to be complete intersection, or c.i., if R̂ admits a deformation to some
regular local ring. When R̂ ∼= P/I is a minimal Cohen presentation, R is c.i. if and only
if I can be minimally generated by some P-regular set, if and only if rel R = codim R
(i.e., I can be generated by codim R elements, see 2.1).

(3) The following conditions are equivalent: (i) R is c.i.; (ii) (1− z2)c · PR
M ∈ Z[z] for every

R-module M ; (iii) PR
k = (1+ t)dim R/(1 − t)codim R ; (iv) cxR(k) < ∞.

See (1) for (i) /⇒ (ii), [40, Theorem 6] for (i) /⇒ (iii), and [25, 2.3] for (iv) /⇒ (i).

2.7. Maps of local rings (R,m, k) → (R′,m′, k′) that are flat with mR′ = m′ will be called
adjustments of R; for every R-module M and M ′ := R′ ⊗R M one has

HM ′ = HM , dimR′ M ′ = dimR M, and edim R′ = edim R′.

Any adjustment R → (R′,m′, k′), composed with the completion map R′ → R̂′ and
some minimal Cohen presentation R̂′ ∼= P/I yields an adjustment R → P/I with (P, p, k′)
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regular and edim P = edim R. In adjustments R → P/I with P regular, the presentation
P/I " P is minimal if and only if edim P = edim R.

Grothendieck [23, 10.3.1] proved that every field extension k ⊆ l occurs as the extension
of residue fields induced by adjustments of R, called inflations.

3 Associated quadratic rings

Recall that (R,m, k) denotes a local ring and M a finite R-module.
In this section we introduce and study invariants of R that are defined in terms of its

associated graded ring and appear in themain results of the paper.We first record terminology
and notation used when dealing with associated graded objects; for general background on
graded rings and their modules; see 7.1.

3.1. Set Mg
j = m j M/m j+1M for j ∈ Z, and Mg = ⊕

j∈Z Mg
j . Thus, R

g is the associated
graded ring of R and Mg the associated graded Rg-module of M . For x ∈ M ! {0} set
v(x) = max{ j | x ∈ m j }. The image of x in Mg

v(x) is called the initial form of x and is
denoted by x∗; in addition, we set 0∗ = 0.

We write HM for
∑

j!0 rankk M
g
j (z). Since Rg is generated by Rg

1 over Rg
0 = k, the

Hilbert-Serre Theorem yields hR
M ∈ Z[z], with hR

M (1) ̸= 0, such that

HM = hR
M · (1 − z)− dim R .

The integer hR
M (1), called the multiplicity of M over R, is denoted by eR(M); one has

eR(M) ≥ 0, with equality if and only if dim M < dim R; set e(R) = eR(R).

3.2. Let R̂ " P ρ be aminimalCohen presentation; see 2.1. It induces k-linear isomorphisms
p/p2 ∼= p̂/̂p2 ∼= m̂/m̂2 ∼= m/m2 that we use to identify these vector spaces, and hence their
symmetric k-algebras. Thus we view Pg (cf. 3.1) as the symmetric k-algebra of m/m2 and
we have a canonical surjection Rg " Pg ρg. Set I ∗ := Ker(ρg) and call the isomorphism
Rg ∼= Pg/I ∗ the canonical presentation of Rg; if a minimal regular presentation ρ (see 2.7)
is at hand, then I ∗ is equal to the ideal of Pg generated by the set of leading forms { f ∗} f ∈I .

As P is regular and dim P = edim R, the following relations hold:

height I ∗ = codim Rg = codim R = height I ≤ rel R ≤ rel Rg. (3.2.1)

3.3. We define the associated quadratic ring of R to be the graded k-algebra

R! := Pg/I!, where I! := Pg I ∗
2 . (3.3.1)

It is an invariant of R, as is the commutative diagram with exact rows

0 I! Pg R! 0

0 I ∗ Pg ρg

Rg 0

(3.3.2)

By definition, the ideal I! is minimally generated by rel R! quadrics.
If R ∼= P/I is a minimal regular presentation, it yields surjective homomorphisms

I ! I/pI ! I/(p3 ∩ I ) ∼= (I + p3)/p3 = I ∗
2 = I!

2 . (3.3.3)
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Letting f denote the class of f ∈ I in I/pI and f ! its class in (I + p3)/p3 = I!
2 , one gets

a k-linear surjection f .→ f ! with f ! = f ∗ for f /∈ p3 and f ! = 0 otherwise.
For ease of reference, we spell out a few formal properties of that construction.

Lemma 3.4 The ring R! and the ideal I! from (3.3.1) satisfy the relations below.

codim R! = edim R − dim R! = height I! ≤ rel R! ≤ rel R . (3.4.1)

codim R! − codim R = dim R − dim R! = height I! − height I ∗ ≤ 0 . (3.4.2)

If 3.2 and R → (R′,m′, k′) is an adjustment (see 2.7), then

codim R! = codim R′! and rel R! = rel R′!. (3.4.3)

I f R " (Q, q, k) is a surjective ring homomorphism with kernel in q2, then

codim R! ≥ codim Q! and rel R! ≥ rel Q!. (3.4.4)

Proof In (3.4.1) the equalities hold because Pg is a polynomial ring; in (3.4.2) they follow
from (3.4.1) and (3.2.1). The Principal Ideal Theorem, the surjection (3.3.3), and I! ⊆ I ∗

yield the inequalities in (3.4.1) and (3.4.2).
Let P ′g denote the symmetric k′-algebra ofm′/m′2; since R → R′ induces isomorphisms

Rg ⊗k k′ ∼= R′g and Pg ⊗k k′ ∼= P ′g of graded k′-algebras, (? ⊗k k′) turns (3.3.2) into the
corresponding diagram for R′, and (3.4.3) follows.

In particular, for (3.4.4) wemay assume that R is complete. Aminimal Cohen presentation
Q̂ ∼= P/J then yields such a presentation R ∼= P/I . As Pg ! Rg factors through Pg ! Qg,
we get I ∗ ⊇ J ∗, whence I! ⊇ J!, and (3.4.4) follows. ⊓⊔

The largest value of codim R! allowed by (3.4.1) is edim R: it is reached if and only if
I! = 0; that is, if and only if I lies in p3. We have no similar description of the rings with
codim R! = codim R, the largest value allowed by (3.4.2), except if R is c.i.; see Proposition
3.6; we record a few facts used in its proof, and later on.

3.5. Let (P, p, k) be a local ring and Q := P/(g1, . . . , gs) with gi ∈ pni for 1 ≤ i ≤ s.

(1) The set {g∗
1 , . . . , g

∗
s } is Pg-regular if and only if it generates Ker(Pg → Qg) and

{g1, . . . , gs} is P-regular; see Valabrega and Valla [41, 2.7 and 1.1].
(2) When {g1, . . . , gs} is part of a system of parameters, there is an inequality

e(Q) ≥ n1 · · · ns · e(P);
equality holds if {g∗

1 , . . . , g
∗
s } is Pg-regular; see [14, VIII, §7, Proposition 4].

(3) Assume Pg is Cohen-Macaulay. The set {g∗
1 , . . . , g

∗
s } is Pg-regular if and only if

{g1, . . . , gs} is P-regular and equality holds in (2) above; such an equivalence is proved
by Rossi and Valla [36, 1.8] under the additional hypothesis that {g1, . . . , gs} is regular,
which is superfluous in one direction, due to (1) above.

(4) When Q is c.i. and Q̂ " P is a minimal Cohen presentation, (2) above yields

e(Q) = e(Q̂) ≥ v(g1) · · · v(gs) · e(P) ≥ 2codim Q̂ = 2codim Q .

When e(Q) = 2codim Q holds the ring Q is said to be c.i. of minimal multiplicity.
(5) The ring Q is c.i. (of minimal multiplicity), if some, and only if all of its adjustments

have the corresponding property. Indeed, the invariants used to define these notions do
not change when Q is replaced by an adjustment; see 3.1.
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Next we collect various characterizations of local c.i. rings of minimal multiplicity. They
are used in upcoming proofs to produce and/or to recognize such rings. For notions and
notation concerning graded rings we refer to Sect. 7.

Proposition 3.6 The following conditions on a local ring Q are equivalent.

(i) Q is c.i. of minimal multiplicity (see 3.5(5)).
(ii) Q is c.i. and codim Q = codim Q!.
(iii) Q is c.i. and Qg ∼= Q! as graded k-algebras.
(iv) Q is c.i. and the graded k-algebra Qg is Koszul (see 7.1(2)).
(v) Qg is a graded complete intersection of quadrics (see 7.1(3)).
(vi) If Q̂ ∼= P/J is a minimal Cohen presentation and {g1, . . . , gs} minimally generates J ,

then {g!
1 , . . . , g!

s } minimally generates J ∗ and is Pg-regular.

Proof We set d := edim Q and assume, as we may (see 3.5(4)) that Q is complete.
(i) /⇒ (vi). With ni := v(gi ) for 1 ≤ i ≤ s in 3.5(4), we get ni = 2, and hence g∗

i = g!
i .

Thus {g!
1 , . . . , g!

s } is Pg-regular by 3.5(3) and generates J ∗ by 3.5(1).
(vi) /⇒ (v). This implication follows from the hypothesis, as Qg = Pg/J ∗.
(v) /⇒ (iv). The ring Q is c.i., by 3.5(1). From PQg

k = (1 + yz)e/(1 − y2z2)s (see

7.1(3)), we get βQg

i, j (k) = 0 for j ̸= i ; therefore Qg is a Koszul algebra.

(iv) /⇒ (i). As Qg is Koszul,
∑

j β
Qg

i, j (k) = β
Q
i (k) holds for every integer i ; see Şega

[37, 2.3]. With s := codim Q, this result yields the third equality in the string

1
HQg(−z)

= Hk(−z)
(−z)0HQg(−z)

= PQg

k (1, z) = PQ
k (z) = (1+ z)dim Q

(1 − z)s
.

The second one comes from 7.2(1), and the fourth from 2.6(3). Thus we get equalities
HQ(y) = HQg(y) = (1+ y)s/(1 − y)dim Q , whence e(Q) = 2codim Q .

(vi) /⇒ (iii). This implication is given by 3.5(1).
(iii) /⇒ (ii). This implication holds because codim Q = codim Qg.
(ii) /⇒ (i). The hypothesis and Formulas (3.2.1) and (3.4.1) yield (in)equalities

codim Qg = codim Q = codim Q! ≤ rel Q! ≤ rel Q = codim Q

that force equalities throughout. In particular, Q! is a graded complete intersection of s :=
codim Q quadrics; from the surjection Q! ! Qg and 3.5(5), we obtain

2codim Q = 2s = e(Q!) ≥ e(Qg) = e(Q) ≥ 2codim Q .
⊓⊔

We are ready for the main results in this section, which concern general local rings. In
the special case when k = k′ and R′ = R′′ = R̂, the first theorem below yields a structure
theorem for local rings with prescribed quadratic codimension, stated in the introduction
as Theorem 1.2. The second theorem provides, under manageable additional hypotheses,
families of local rings with prescribed quadratic codimension parametrized by dense subsets
of affine spaces.

Theorem 3.7 Let (R,m, k) be a local ring, and set r := rel R and q := codim R!.

(1) For each field extension k ↪→ k′ with k′ infinite there exists an adjustment R → P/I
with (P, p, k′) regular, I = ( f1, . . . , fr ), and Q := P/( f1, . . . , fq) c.i. of minimal
multiplicity; every such adjustment satisfies edim P = edim R.
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(2) If R → R′ is an adjustment, R′ " R′′ " Q are surjective ring maps, and Q is local
c.i. of minimal multiplicity with codim Q = q and edim Q = edim R, then

codim R! = codim R′′! = codim Q! = codim Q.

Proof (1) Referring to 2.7, choose an adjustment R → R′ = P/I with k ↪→ k′ the induced
residue field extension and P ! P/I a minimal regular presentation. Due to the equalities
height I! = codim R′! = codim R! = q and rel R′! = rel R = r (see 3.4.1 and 3.4.3),
the ideal I! is minimally generated by r elements and contains Pg-regular sets of q forms.
As I! is generated by quadrics and k′ is infinite, I!

2 contains a Pg-regular set of q elements.
In view of (3.3.3), it can be chosen in the form { f !

1 , . . . , f !
q } with fi ∈ I ; by (vi) /⇒ (i) in

Proposition 3.6, the ring P/( f1, . . . , fq) is c.i. of minimal multiplicity. Since { f !
1 , . . . , f !

q }
is k-independent, { f1, . . . , fq} can be extended to a minimal set of generators of I .

(2) The hypothesis provides the equalities that bookend the following string:

q = codim R! = codim R′! ≥ codim R′′! ≥ codim Q! = codim Q = q.

For the rest, use (3.4.3), (3.4.4), and (i) /⇒ (ii) in Proposition 3.6. ⊓⊔
Theorem 3.8 Let (P, p, k) be a local ring; let a denote the image in k of a ∈ P. Given
( f1, . . . , fr ) ∈ (p2)r and a := (a1, . . . , ar−1) ∈ Pr−1 set f ai := fi −ai fr for 1 ≤ i ≤ r−1.
Put a := (a1, . . . , ar−1), where a is the image of a in k.

If k is algebraically closed, { f1, . . . , fq , fr } is P-regular for some q < r , and
{ f !

1 , . . . , f !
q } is Pg-regular, then the following set is Zariski-open and not empty:

U := {a ∈ Ar−1
k | P/( f a1 , . . . , f aq ) is c.i. of minimal multiplicity }.

Proof Let k[x] be the polynomial ring with indeterminates x1, . . . , xq .
The ring P/( f a1 , . . . , f

a
q ) is c.i. of minimal multiplicity if and only if the set f !

a :=
{ f !

1 − a1 f !
r , . . . , f !

q − aq f !
r } is Pg-regular; see (i) ⇐⇒ (vi) in Proposition 3.6. The set

f !
a is regular if and only if dim Pg

a ≤ d − q holds with Pg
a := Pg/Pg f !

a and d := dim P .
The algebra Pg

a is the fiber of the canonical map

k[x] → (k[x] ⊗k Pg)/(1 ⊗ f !
1 − x1 ⊗ f !

r , . . . , 1 ⊗ f !
q − xq ⊗ f !

r )

at the maximal ideal na := (x1 − a1, . . . , xq − aq). Since fiber dimension is upper semicon-
tinuous (see [19, 14.8.b]), V := {a ∈ Aq

k | dim(Pa) > d − q} is closed in Aq
k . Thus the set

U is open, as it equals Aq
k \ V , and U contains 0 by hypothesis. ⊓⊔

Free resolutions over c.i. rings of minimal multiplicity are known to have special proper-
ties. We note two, which will be promptly applied in the next section.
3.9. If Q is a local c.i. ring of minimal multiplicity and N a Q-module, then one has PQ

N =
pQN (z) · (1 − z)− cxQ(N ) with pQN (z) ∈ Z[z] and pQN (1) ̸= 0; see [5, 2.3].

Proposition 3.10 With notation as in 3.9, dim N < dim Q implies pQN (−1) = 0.

Proof As Qg is Koszul (see Proposition 3.6), the module N has finite linearity defect; see
Herzog and Iyengar, [27, 5.10]. Thus Şega’ s result [38, 6.2] applies and, in view of the
expression for PQ

N in 3.9, it yields the first equality in the string

pQN (−1)e(Q) = (1 − (−1))cxQ(N )eQ(N ) = 2cxQ(N )eQ(N ).

Since dim N < dim Q means eQ(N ) = 0, we obtain pQN (−1) = 0, as desired. ⊓⊔
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4 An upper bound on granularity

Here our goal is to give a concise proof of Theorem 1.1.

Theorem 4.1 Every finite module M over a c.i. local ring (R,m, k) satisfies

gnR(M) ≤
{
codim R − codim R! − 1 if codim R ≥ codim R! + 2;
0 if codim R ≤ codim R! + 1.

(4.1.1)

As noted in the introduction, a different proof Theorem 4.1 was obtained in [11]. Our
argument, presented in 4.8, proceeds by induction on n := codim R−codim R!; see (3.4.2).
For this we need yet another way of factoring embedded deformations through deformations
with specified properties, provided by the next result.

Theorem 4.2 Let (P, p, k) be a local ring, f := { f1, . . . , fc} a P-regular set contained in
p2, and put R := P/P f . For every a := (a1, . . . , ac−1) ∈ Pc−1, set f aj := f j − a j fc for
1 ≤ j ≤ c − 1 and put f a := ( f a1 , . . . , f

a
c−1) and Ra := P/P f a.

Let N be an nth R-syzygy module of a finite R-module M that satisfies

proj dimP (M) < ∞ = proj dimR(M).

There exist an integer cr degR(M) ≥ −1 and a finite set Z(M) of linear varieties inAc−1
k ,

defined in (4.6.2), such that the following conditions are equivalent:

(i) PR
N = PRa

N · (1 − z2)−1.
(ii) n > cr degR(M) and a /∈ ⋃

V∈Z(M) V , where a is the image of a in Ac−1
k .

If k is infinite, then
⋃

V∈Z(M) V ̸= Ac−1
k .

Remark 4.3 The prototype of Theorem 4.2 is [18, Theorem 3.1], and both proofs utilize
rings of cohomology operators defined by the deformation R " Q. Such a structure was
introduced by Gulliksen [24], and theories with similar properties were produced in [3, 8,
10, 12, 18, 33] from a priori incomparable constructions.

We present the proof in detail because the argument for [18, 3.1] is incomplete and
references to several sources are needed to fill in the gaps. The facts that we use are listed
below, along with pointers to the earliest published proof.

4.4. The hypotheses in the opening sentence of Theorem 4.2 are in force.
Let X denote the k-vector space P f /m f and f its basis { f 1, . . . , f c}, consisting of

the images of f j for j = 1, . . . , c. Let {χ1, . . . ,χc} be the dual basis of the vector space
X := Homk(X , k) and let R be the symmetric algebra of the graded vector space that has
X in degree 2 and 0 in all other degrees. We identify R and the graded polynomial ring
k[χ1, . . . ,χc] with indeterminates of degree 2.

The graded vector space ExtR(M, k) := ⊕
i!0 Ext

i
R(M, k) supports a structure of graded

left R-modules that has the following properties:

(1) The assignment ? # ExtR(?, k) is a contravariant additive functor from the category of
R-modules to that of graded R-modules; see [24, Theorem 3.1(i)].

(2) The connecting maps in cohomology sequences induced by short exact sequences of
R-modules commute with the actions of R; this holds as [12, Theorem, p. 700] shows
that the action of R factors through Yoneda products.
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(3) For R′ := P/( f1, . . . , fc−1) and for every i ∈ Z there is an exact sequence

Exti−2
R (M, k)

χc−→ ExtiR(M, k) → ExtiR′(M, k) → Exti−1
R (M, k)

χc−→ Exti+1
R (M, k)

See [3, Theorem 2.3]; it is implicit in [24, Formula (8) on p. 178].
(4 The R-module ExtR(M, k) is finitely generated if the R-module M is finite with

proj dimP M < ∞; see [24, Theorem 3.1(ii)]. The proof of [18, Theorem 3.1] is flawed:
it uses [18, Proposition 1.6] whose proof is invalid; see [12, Remark 4.2].

The properties of R-modules described above can be used concurrently because the results
in [12, Section 4] show that the sets of operators produced by the constructions in [3, 8, 10,
12, 18, 33] differ at most by some sign.

At a final stop before the proof in 4.6 we introduce notation to describe Z(M).

4.5. Let k be a field, X a k-vector space, and {χ j }1" j"c a basis of X .
Let V ⊆ X be a subspace of rank d . If V ̸= 0 let

{∑c
j=1 al, jχ j

}
1"l"d with al, j ∈ k be

a basis of V; let k[x] := k[x1, . . . , xc−1] be a polynomial ring, put

A(x) :=

⎛

⎜⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,d x1
a2,1 a2,2 . . . a2,d x2
...

...
. . .

...
...

ac−1,1 ac−1,2 . . . ac−1,d xc−1
ac,1 ac,2 . . . ac,d 1

⎞

⎟⎟⎟⎟⎟⎠

and letV⊥ be the zero set inAc−1
k of themaximalminors of A(x) that contain the last column;

also, set 0⊥ := ∅. For u := (u1, . . . , uc−1) ∈ Ac−1
k , one has:

[ c−1∑

j=1

uiχ j + χc ∈ V
]

⇐⇒
[
rankk A(u) = d

]
⇐⇒

[
u ∈ V⊥]. (4.5.1)

If these conditions hold, then V⊥ is a linear subvariety of Ac−1
k .

4.6. Proof of Theorem 4.2. We keep the notation in the statement of the theorem.
A minimal free resolution F of M yields an exact sequence of R-modules

0 → N → Fn−1 → · · · → F0 → M → 0 (4.6.1)

finite free Fi ’s. Thus N satisfies proj dimR(N ) = ∞ > proj dimP (N ), and hence

M :=
⊕

i∈Z
ExtiR(M, k) and N :=

⊕

i∈Z
ExtiR(N , k)

are finitely generated graded left R-modules; see 4.4(4). As f a ∪ { fc} minimally generates
P f , the set { f a1 , . . . , f ac−1}∪ { fc} is a k-basis of the vector space X defined in 4.4. The dual
basis of the space Homk(X , k) = R2 is the set {χ a

1 , . . . ,χ
a
c } of the X := R2 has χ a

j = χ j

for j ≤ i ≤ c − 1 and χ a
c = ∑c−1

j=1 a jχ j + χc.
Put Ra := P/P f a . From 4.4(3) we get an exact sequences of k-vector spaces

0 → Ki−2 → Exti−2
R (N , k) → ExtiR(N , k) → ExtiRa

(N , k) → Ki−1 → 0

with Ki := {ν ∈ ExtiR(N , k) | χ a
c ν = 0} for i ∈ Z. The resulting equality

(1 − z2)PR
N = PRa

N − (1+ z)
∑

i!0

rankk Ki zi
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shows that condition (i) in the theorem is equivalent to the following condition:

(i′) χ a
c = ∑c−1

j=1 a jχ j + χc is N -regular.

The iterated connectingmaps ExtiR(N , k) → Exti+n
R (M, k) defined by the exact sequence

(4.6.1) are bijective. In view of 4.4(2) they coalesce into an isomorphism N ∼= M!n(n) of
graded R-modules. Put Ass◦R(M) := AssR(M)\{R>0}, and also

cr degR(M) := sup{i ∈ Z | AnnR(µ) = R>0 for some µ ∈ Mi };
Z(M) := {(P2)

⊥ ⊆ Ac−1
k | P ∈ Ass◦R(M)} with ?⊥ defined in 4.5.

(4.6.2)

We complete the proof of the theorem by showing that (i′) is equivalent to (ii).
The number t := cr degR(M) is an integer because (0 :M R>0) is a homogeneous

subspace of R and has finite k-rank. The following statements are equivalent:
[
AssR(M!n) = Ass◦R(M)

]
⇐⇒

[
R>0 /∈ AssR(M!n)

]
⇐⇒

[
n > t

]
. (4.6.3)

Indeed, we have AssR(M!n) ⊆ AssR(M) ⊆ AssR(M!n) ∪ {R>0} as M/M!n is of
finite length; the implication ⇐ on the left follows, the rest hold by definition.

As M/M<t is not zero, we have Z := Z(M) ̸= ∅. Condition (i′) is equivalent to
χ a /∈ ⋃

P∈AssR(M"n)
P , and hence to n > t and χ a /∈ ⋃

P∈Z P , due to (4.6.2). The

last exclusion is equivalent to χ a /∈ ⋃
P∈Z P2 (as each P is homogeneous), which can be

rewritten as a /∈ ⋃
P∈Z (P2)

⊥, by (4.5.1). Finally, recall that affine spaces over infinite fields
are not unions of finitely many proper linear subvarieties. ⊓⊔
Remark 4.7 A critical degree is defined in [10, 7.1] for every nonzero finite module over any
local ring in terms of chain endomorphisms of its minimal free resolutions; in the context of
Theorem 4.2 it is equal to the integer in (4.6.2); see [10, 7.2(1)].

A priori estimates for the critical degree are known in case proj dimQ M is finite for some
deformation R " Q; they involve the number g := depth R − depthR M :

• cr degR(M) = g if cxR M ≤ 0, by the Auslander-Buchsbaum Equality.
• cr degR(M) ≤ g if cxR M = 1; see [18, 5.3 and 6.1] and [10, 7.3(1)].
• cr degR(M) ≤ g +max{2βR

g − 2, 2βR
g+1 − 1} if cxR M = 2; see [8, 7.6]).

The last assertion of Theorem 4.2 may fail when k is finite; see [3, 6.7].

4.8. Proof of Theorem 4.1. Set c := codim R, q := codim R!, and n := c − q .
We argue by induction on n. When n = 0 the ring R has minimal multiplicity (see

Proposition 3.6), and then 3.9 yields gnR M = 0; this is the desired result.
Now we assume n ≥ 1 and set out to prove gnR(M) < n. The invariants in play do

not change under adjustments of R; see 2.4(2) and (3.4.3). Due to Theorem 3.7(1) we may
assume k algebraically closed and R = P/P f for some regular local ring (P, p, k) and
P-regular sequence f := ( f1, . . . , fc) contained in p2 such that Q := P/( f1, . . . , fq) is a
c.i. ring of minimal multiplicity and codim Q! = q < c.

For every a := (a1, . . . , ac−1) ∈ Pc−1 and 1 ≤ i ≤ c − 1, put f ai := fi − ai fc. The
deformation R " P factors as a composition of deformations

R " Ra := P/( f a1 , . . . , f
a
c−1) " Qa := P/( f a1 , . . . , f

a
q ) " P.

Let a be the image of a in Ac−1
k . Theorem 4.2 yields an R-syzygy module N of M and a

non-empty Zariski-open set U1 of Ac−1
k such that a ∈ U1 implies

PR
N = PRa

N · (1 − z2)−1. (4.8.1)
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Theorem 3.8 produces a non-empty Zariski-open set U2 ̸= ∅ of Ac−1
k such that for each

a ∈ U2 the ring Qa is c.i. of codimension q and minimal multiplicity. Note that U1 ∩ U2 is
not empty and choose a with a ∈ U1 ∩ U2.

If n = 1, then Ra = Qa and dim N < dim Ra hold and we obtain

PR
N = PRa

N

(1 − z2)
= (1+ z) · p(z)

(1 − z)cxRa (N ) · (1 − z2)
= p(z)

(1 − z)cxR(N )+1

from (4.8.1) and Proposition 3.10. This gives gnR N = 0, and hence gnR M = 0 (see 2.4(1));
thus (4.1.1) holds for n = 1. When n ≥ 2 we may suppose, by induction, that (4.1.1) holds
for local rings S with codim S − codim S! < n. Referring to 2.4(1), (4.8.1), the induction
hypothesis, and Theorem 3.7(2) we get

gnR M = gnR N ≤ gnRa
N + 1 < codim Ra − codim (Ra)

! + 1 = c − q .

The induction step is complete, and with it the proof of (4.1.1). ⊓⊔

5 The upper bound is optimal

In this section we prove that the upper bound on granularity, established in Theorem 4.1,
cannot be tightened in general; see Theorem 5.2 below.

5.1. Let ϕ : (R,m, k) ! (S, n, k) be a surjective homomorphism of local rings. Choose
a minimal Cohen presentation ρ : (P, p, k) ! R̂. Put I := Ker(ρ) and J̃ := Ker(ϕ̂ρ),
and choose a subset t of J̃ that is mapped bijectively onto some k-basis of J̃/ J̃ ∩ p2. Put
(Q, q, k) := (P/P t, p/P t, k) and choose in p a subset that is is mapped bijectively onto
some minimal set of generators q. The exact sequence

0 → J̃/ J̃ ∩ p2 → p/p2 → q/q2 → 0

of k-vector spaces shows that t ⊔ u minimally generates p. Thus Ŝ ∼= Q/J with J := P/I
is a minimal Cohen presentation. As PQ

J is an invariant of S (cf. 2.2), so is the first integer
defined below; the second one is an invariant of ϕ (see [7]):

m(S) := max{n ∈ N0 : (1+ z)n | (z2PQ
J − 1)} and a(ϕ) := rankk(I/I ∩ p J̃ ),

Theorem 5.2 If d, c, q, a are integers that satisfy d ≥ c ≥ q, a ≥ 0, then there exist a c.i.
local ring (R,m, k) and a residue ring S of R with m3S = 0 such that

(edim R, codim R, codim R!, a(ϕ)) = (d, c, q, a) and (5.2.1)

gnR(S) = max{c − q − 1, 0}. (5.2.2)

As a consequence, the upper bound in Theorem 4.1 is optimal.

The proof of the theorem, presented in 5.5, has two crucial ingredients. The first one is a
closed formula for the Poincaré series of Golod residue rings of c.i. rings.

5.3. We assign nicknames to invariants of R, S, and ϕ defined in 2.1, 2.2, and 5.1:

d := edim R, c := codim R, q := codim R!, r := rel R;
e := edim S, m := m(S); a := a(ϕ).

(5.3.1)

These numbers compare as follows:

0 ≤ q ≤ c ≤ d ≥ e ≥ m ≥ 0 ≤ a ≤ r ≥ c and r = c ⇐⇒ R is c.i. (5.3.2)
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Recall that the ring S is said to be Golod if it satisfies the relation

PS
k = (1+ z)e/(1 − z2PQ

J )

for some (and hence, for every – see 2.2) minimal Cohen presentation Ŝ ∼= Q/J .
If R is c.i. and S is Golod, then the following equality holds; see [7]:

PR
S = (1+ z)a+1(1 − z)a + z2PQ

J − 1
z(1+ z)c−d+e(1 − z)c

. (5.3.3)

The very special case S = R/m2 of this result first appeared as [5, Theorem 2.1].
The second ingredient is the next theorem, where we identify families of Golod residue

rings S of an arbitrary c.i. ring R and express their granularities in terms of the numbers
in (5.3.1). The construction of the rings S and the computation of their invariants utilize a
different set of techniques; they are deferred to Sect. 7.

Theorem 5.4 Let (Q, q, k) be a regular local ring of dimension e ≥ 1, u a regular system
of parameters, U a 2 × (h + 1) matrix with h ≥ 1 and entries in u ∪ {0}, I2(U ) the ideal
generated by the 2× 2 minors of U, and J := I2(U )+ q3. Put S := Q/J , let ϕ : R ! S be
a surjective ring map, and let d, c, a,m be as in (5.3.1).

If U is adequate for u (see 7.4), then h ≤ e holds and S is Golod. If, furthermore, R is
c.i., then gnR(S) depends on the position of a respective to h and e, as follows:

(a) h = e; this is equivalent to S = Q/q2 and it implies m = e and

gnR(S) =
{
max{c − d + e − a − 1, 0} if a ≤ e − 2;
0 if a ≥ e − 1.

(5.4.1)

(b) h ≤ e − 1; this implies m = h + 1 and

gnR(S) =
{
max{c − d + e − a − 1, 0} if a ≤ h − 1;
max{c − d + e − h − 1, 0} if a ≥ h.

(5.4.2)

Proof The case s = 2 of Theorem 7.9(2) shows that S is Golod, h ≤ e holds, and h = e is
equivalent to J = q2; in addition, it yields an equality

z2PQ
J − 1 = (1+ z)e

z

(
1 − ez + (e + h + 1)(e − h)

2
z2
)
+ (1+ z)h+1

z
(hz − 1).

To compute gnR(S) we feed the above expression into Formula (5.3.1), write PR
S as a

rational function, evaluate the order of its pole at −1, and refer to 2.5(ii).
(a) When h = e holds, we get z2PQ

J − 1 = (1+ z)e(ez − 1), whence m = e and

PR
S = (1+ z)a+1(1 − z)a + (1+ z)e(ez − 1)

z(1+ z)c−d+e(1 − z)c
.

If a ≤ e− 2 the highest power of (1+ z) that divides the numerator is a+ 1; this verifies the
order of the pole of PR

S at −1 announced in (5.4.1). If a ≥ e − 1, then that highest power is
e + 1 when (a, e) = (2, 3), and e otherwise; in neither case does PR

S have a pole at −1, as
c − d ≤ 0 holds. Now the proof of (5.4.1) is complete.

(b) When h ≤ e − 1 holds, we have z2PQ
J − 1 = (1+ z)h+1 · p(z) with

p(z) := (1+ z)e−h−1

z

(
1 − ez + (e + h + 1)(e − h)

2
z2
)
+ 1

z
(hz − 1).
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The equalities p(−1) = h + 1 if h ≤ e − 2 and p(−1) = −(h + 2) if h = e − 1 show that
m = h + 1 holds in both cases. Therefore (5.3.3) takes the form

PR
S =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − z)a + (1+ z)h−a · p(z)
z(1+ z)c−d+e−a−1(1 − z)c

if a ≤ h − 1;

(1+ z)a−h(1 − z)a + p(z)
z(1+ z)c−d+e−h−1(1 − z)c

if a ≥ h.

Evaluating the numerators of PR
S at z = −1 yields 2a if a ≤ h − 1 and p(−1) ̸= 0 if a > h;

therefore (5.4.2) holds when a ̸= h. When a = h the formula above becomes

PR
S = (1 − z)h + p(z)

z(1+ z)c−d+e−h−1(1 − z)c
.

At z = −1 the numerator equals 2h + h + 1 if h ≤ e − 2 and 2h − h − 2 if h = e − 1; this
settles (5.4.2) except if (h, e) = (2, 3), where (1 − z)2 + p(z) = z(z + 1) yields

gnR(S) = max{c − d − 1, 0} = 0 = max{c − d + e − h − 1, 0}. ⊓⊔

Appropriate choices, in that order, of a matrix U and of a ring R in Theorem 5.4 provide
the setup for proving that the upper bound in (4.1.1) is optimal.

5.5. Proof of Theorem 5.2. Let (P, p, k) be a d-dimensional regular local ring, e an integer
satisfying 0 ≤ e ≤ d , and {t1, . . . , td−e}⊔ {u1, . . . , ue} a regular system of parameters for P .
Thus Q := P/(t1, . . . , td−e) is regular and the canonical map P ! Q sends {u1, . . . , ue}
bijectively onto a minimal set of generators of q := pQ.

If q > a the hypothesis yields d ≥ c ≥ q > a ≥ 0, and hence the number e := d −q+ a
satisfies d − e = q − a > 0; define residue rings of P by setting

R := P/I with I := (t21 , . . . , t
2
q−a)+ (u21, . . . , u

2
a)+ (u4q+1, . . . , u

4
c);

S := P/ J̃ with J̃ := (t1, . . . , tq−a)+ (u1, . . . , uq)2 + (u1, . . . , ue)3.

If q ≤ a holds, then the line-up is d ≥ c ≥ a ≥ q ≥ 0. Choose e = d and set

R := P/I with I := (u21, . . . , u
2
q)+ (u3q+1, . . . , u

3
a)+ (u4a+1, . . . , u

4
c) ;

S := P/ J̃ with J̃ := (u1, . . . , uq)2 + (u1, . . . , ud)3 .

It is clear that R is c.i with (edim R, codim R, codim R!) = (d, c, q). Choose ϕ : R ! S
to be the homomorphism defined by I ⊆ J̃ ; in both cases it is easy to see that {u1, . . . , ua}
is a k-basis of I/I ∩ p J̃ , and this yields a(ϕ∗) = a. The ideal

J̃ = I2(U )+ q3 with U :=
[
u1 u2 . . . uq 0
0 u1 . . . uq−1 uq

]

of Q satisfies J̃ := J Q and Q/ J̃ = S. Applying Theorem 5.4 with h = q yields

gnR(S) =
{
max{c − d + (d − q + a) − a − 1, 0} = max{c − q − 1, 0} if a ≤ q − 1;

max{c − d + d − q − 1, 0} = max{c − q − 1, 0} if a ≥ q.

The proof of Theorem 5.2 is complete. ⊓⊔
As another application of Theorem 5.4, we show that the existence of residue rings S with

n2 = 0 and gnR(S) = 0 imposes upper bounds on codim R.
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Proposition 5.6 Let (R,m, k) be a c.i. local ring, R̂ ∼= P/I a minimal Cohen presentation,
p the maximal ideal of P, and L a proper ideal of P satisfying L∗

2 ⊇ I!
2 .

If S := P/(L + p2) has gnR(S) = 0, then the following inequalities hold:

codim R − 1 ≤ rankk L∗
1 + rankk

(
I!
2 /(I!

2 ∩ Pg
1 L

∗
1)
)
. (5.6.1)

codim R − 1 ≤ rel R! if L ⊆ p2 . (5.6.2)

Proof Choose a subset t of L that is mapped bijectively onto some k-basis of L/L ∩ p2. The
ideal J̃ := P t + p2 satisfies J̃ = L + p2, J̃ ∗

1 = L∗
1, and

I!
2

I!
2 ∩ Pg

1 J
∗
1

∼= I!
2 + Pg

1 J
∗
1

Pg
1 J

∗
1

∼= (I + p(P t + p2))/p3

p(P t + p2)/p3
∼= I + pJ

pJ
∼= I

I ∩ pJ
.

With notation from 5.3, we get rankk(I!
2 /I!

2 ∩ Pg
1 J

∗
1 ) = a, and hence the right-hand side

of (5.6.1) equals d − e + a. As q2S = 0, Theorem 5.4(a) applies to R ! S, and (5.4.1)
yields c − 1 ≤ d − e + a when a ≤ e − 2. On the other hand, when a ≥ e − 1 we get
c − 1 ≤ d − 1 ≤ d − e + a from the relation c ≤ d; see (5.3.2). Now Formula (5.6.1) has
been proved. Formula (5.6.2) records the special case L∗

1 = 0. ⊓⊔
The proposition yields a stronger and sharper version of [5, Theorem B].

Corollary 5.7 If (R,m, k) is a local ring with cxR(m2) < ∞ and gnR(m
2) = 0, then R is

c.i. and codim R ≤ rel R! + 1 holds.

Proof Put L := R/m2. From 2.4(1) and [4, Theorem 4 and Proposition 2], one gets cxR(k) =
cxR(L) = cxR(m2) < ∞; thus R is c.i. and gnR(L) = gnR(m

2) = 0 holds; see 2.6(3) and
2.4(1). Now Formula (5.6.2) yields codim R ≤ rel R! + 1. ⊓⊔

6 Eventually polynomial Betti sequences

Recall that (R,m, k) denotes a local ring and M a finite R-module.
We say that the Betti sequence (βR

i (M)) is eventually polynomial if there exists βR,M ∈
Q[z] such that βR

i (M) = βR,M (i) holds for i ≫ 0. In this section we look for conditions
on the structure of R that imply or follow from the property that the Betti sequence of every
finite R-module is eventually polynomial.

The next result yields the homogeneous case inTheorem1.4 in the introduction; it answers,
in the positive, a question raised at the end of the introduction of [5].

Theorem 6.1 If A is a standard graded k-algebra and R is its localization at the maximal
ideal (A1), then the following conditions are equivalent.

(i) The Betti sequence of R/m2 is eventually polynomial.
(ii) The Betti sequence of each finite R-module is eventually polynomial.
(iii) The ring R is c.i. and satisfies codim R ≤ codim R! + 1.
(iv) The graded algebra Rg is c.i. and has at most one non-quadratic relation.

Proof Letπ : Symk(A1) ! A be the canonicalmap of graded k-algebras. Localizingπ at the
maximal ideal (A1) yields a minimal regular presentation R ∼= P/I with I = Ker(π)P and
isomorphisms Rg ∼= A ∼= Pg/I ∗ of graded k-algebras; cf. 3.2. They induces isomorphisms
R! ∼= Pg/I ∗

2 of graded algebras and I/pI ∼= I ∗/Pg
1 I

∗ of k-vector spaces, where p is the
maximal ideal of P .
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(i) /⇒ (iv). In view of Corollary 5.7, R is c.i. with codim R − rel R! ≤ 1. Choose
f1, . . . , fr ∈ I such that { f ∗

1 , . . . , f
∗
r } minimally generates I ∗ and { f ∗

1 , . . . , f
∗
b } is a k-

basis of I ∗
2 . From I/pI ∼= I ∗/Pg

1 I
∗ we get r = codim R and I = ( f1, . . . , fr ), and

hence { f1, . . . , fr } is P-regular; therefore { f ∗
1 , . . . , f

∗
r } is Pg-regular; see 3.5(1). From

R! ∼= Pg/I ∗
2 we get rel R! = rankk I ∗

2 = b, whence r − b ≤ 1, as desired.
(iv) /⇒ (iii). Choose f1, . . . , fc ∈ I such that { f ∗

1 , . . . , f
∗
c } is Pg-regular, generates I ∗,

and deg( f ∗
j ) = 2 for 1 ≤ j ≤ c − 1. As R is isomorphic to the localization of Rg at (P∗)

(due to A ∼= Pg/I ∗), the image of { f ∗
1 , . . . , f

∗
c } in P is a regular set that generates I , and

{ f ∗
1 , . . . , f

∗
c−1} is k-independent in (I2 + (P1)2)/(P1)3 ∼= I ∗

2 .
(iii) /⇒ (ii). This implication follows from Theorem 4.1.
(ii) /⇒ (i). This implication is a tautology. ⊓⊔

The part of Theorem 1.4 concerning c.i. rings of low codimension comes from

Theorem 6.2 When (R,m, k) is a local ring whose cyclic modules S withm j S = 0 for some
j ≥ 1 have eventually polynomial Betti sequences, then R is c.i., and

codim R − codim R! ≤ max{codim R − i, 1} (6.2.1)

holds for i ≤ 2 if j = 2, and also for i = 3 if j = 3 and k is algebraically closed.

This theorem is proved in 6.4. The argument draws upon a classical description of the
homogeneous prime ideals of codimension two and minimal multiplicity in polynomial rings
over algebraically closed fields; Huneke,Mantero,McCullough, and Seceleanu [31] used it to
bound the projective dimensions of those ideals. We review the relevant parts, using notation
that will facilitate the references in 6.4.

6.3. Let k be an algebraically closed field, Pg a polynomial ring over k with variables
{u∗

1, . . . , u
∗
d} of degree one, and D a homogeneous prime ideal of Pg. The ideal D is said

to be degenerate if D1 ̸= 0, and non-degenerate otherwise; in the latter case, a well known
inequality involves the multiplicity of Pg/D (see [20, Proposition 0]):

e(Pg/D) ≥ height D + 1. (6.3.1)

Homogeneous prime ideals of height two admit explicit descriptions, possibly after some
change of variables. The ideal D is degenerate if and only if D = (u∗

1, g
∗
2) with g∗

2 an
irreducible form in k[u∗

2, . . . , u
∗
d ]; in this case, e(Pg/D) = deg(g∗

2).
Non-degenerate D belong to one of two types. If e(Pg/D) = 3, then D is the ideal

generated by the 2 × 2 minors of one of the matrices U∗, displayed below:
[
u∗
1 u∗

2 u∗
3

u∗
4 u∗

1 u∗
2

]
, or

[
u∗
1 u∗

2 u∗
3

u∗
4 u∗

5 u∗
2

]
, or

[
u∗
1 u∗

2 u∗
3

u∗
4 u∗

5 u∗
6

]
. (6.3.2)

If e(Pg/D) ̸= 3, then D = (g∗
1 , g

∗
2) for some Pg-regular set {g∗

1 , g
∗
2} of forms and

e(Pg/D) = deg(g∗
1) deg(g

∗
2). This classification was obtained in [42] and [39, Theorem

3] (see also [20, Theorem 1]); it is described as above in [21, p. 63].

6.4. Proof of Theorem 6.2. The Betti sequence of k is eventually polynomial, by assumption,
and therefore R is c.i.; see 2.6(3). Replacing R with R̂ does not change the hypothesis of the
theorem (as both rings have the samemodules of prescribed Loewy length), nor its conclusion
(see (3.4.3)). Thus we may assume R = P/I with (P, p, k) a regular local and I generated
by a regular sequence in p2.
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Put c := codim R and q := codim R!, and hence q = height I!; see (3.4.1). We show
by (a very short!) induction on i that if certain cyclic R-modules have eventually polynomial
Betti sequences, then c ≥ i + 1 implies q ≥ i for 0 ≤ i ≤ 3.

There is nothing to prove when i = 0. Suppose that the cyclic R-modules S withm2S = 0
have gnR(S) = 0. If i = 1, then from Corollary 5.7 we get rel R! ≥ c − 1 ≥ 1, whence
I! ̸= 0, and hence q ≥ 1. When i = 2, the claim is that I! ̸= 0 and c ≥ 3 implies q ≥ 2.
Indeed, q = 1 means that I! is contained in Pgg∗ for some g ∈ p with deg(g∗) = 1 or
deg(g∗) = 2, and then Formula (5.6.1) applied with L := Pg yields 2 ≤ c − 1 ≤ 1, which
is absurd.

Now assume that k is algebraically closed and the cyclic R-modules S annihilated by
m3 have gnR(S) = 0. We claim that I! ̸= 0 and c ≥ 4 implies q ≥ 3. For the sake of
contradiction, suppose q = 2; then Pg has prime ideals of height 2 that contain I , and they are
homogeneous; let D be one of them.As k is infinite, there exist f1, f2 ∈ I such that { f !

1 , f !
2 }

is Pg-regular. The surjective ring homomorphisms Pg/( f !
1 , f !

2 ) ! Pg/I! ! Pg/D yield
inequalities of multiplicities, to wit

4 = e(Pg/( f !
1 , f !

2 )) ≥ e(Pg/I!) ≥ e(Pg/D) ≥ 1.

We rule out every admissible value of e(Pg/D) by using the classification in 6.3.
When e(Pg/D) ̸= 3, one has D = (g∗

1 , g
∗
2) for some regular set {g∗

1 , g
∗
2} of forms with

ni := deg(g∗
i ) satisfying 1 ≤ n1 ≤ n2 ≤ 2. We prove that the existence of such a set implies

c ≤ 3, which is ruled out by our hypothesis. Indeed, D equals L∗ for L := (g1, g2) ⊂ P; see
3.5(1). If n2 = 1, then Pg

1 L
∗
1 = L∗

2 ⊇ I!
2 holds and (5.6.1) yields c− 1 ≤ 2+ 0. If n1 < n2,

then we have L∗
1 = kg∗

1 and L∗
2 = Pg

1g
∗
1 ⊕ kg∗

2 ; as I!
2 contains a Pg-regular set of two

elements, we get I!
2 " Pg

1g
∗
1 , whence P

g
1g

∗
1+ I!

2 = L∗
2, and hence I

!
2 /(I!

2 ∩Pg
1L

∗
1)

∼= kg∗
2 ;

now (5.6.1) gives c − 1 ≤ 1+ 1. Finally, n1 = 2 implies c − 1 ≤ 0+ 2, again by (5.6.1).
If e(Pg/D) = 3, then D = (y1, y2, y3), where the y j s are the 2 × 2 minors of a 2 × 3

matrix U∗ in Formula (6.3.2) and u∗
i is the initial form of ui , where u := {u1, . . . , ud} of p

is a minimal generating set. LetU be the matrix obtained fromU∗ by replacing each u∗
i with

ui , and let g j be the minor of U that corresponds to y j . As g∗
j = y j holds for j = 1, 2, 3,

the ideal L := (g1, g2, g3) of P has L∗
1 = 0 and L∗

2 = D2; also, I lies in J̃ := L + p3, as
seen from the relations

I + p3

p3
= I!

2 ⊆ D2 = L!
2 = L + p3

p3
= J̃

p3
.

Put Q := P and S := P/ J̃ , and let d, c, a, e be the numbers assigned in 5.3 to the canonical
map R ! S. The matrix U is adequate for u (cf. 7.4), so Theorem 5.4 applies. Here we
have e = d and h = 2, and therefore the granularity of S is given by Formula (5.4.2). When
gnR(S) = 0 this formula yields c − a − 1 ≤ 0 if a ≤ 1, and c − 3 ≤ 0 if a ≥ 2. We end up
with 4 ≤ c ≤ 3 and therefore q ≥ 3 holds. ⊓⊔

7 A family of Golod homomorphisms

This section does not rely on material in earlier parts of the paper. The goal is Theorem 7.9,
which contains results crucial to the proofs in Sects. 5 and 6.

7.1. In this section k denotes a field, x a finite set of indeterminates of degree one, and A a
k algebra isomorphic to k[x]/I , where I is a homogeneous ideal in (x)2. Furthermore, N
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denotes a graded A-module; we set inf N := inf{ j ∈ Z | N j ̸= 0} if N ̸= 0 and inf 0 = ∞;
abusing notation, we write k for A/(A1).

A blanket hypothesis is that all A-modules are graded and finitely generated, their sub-
modules are homogeneous, and their homomorphisms preserve degrees.

Natural gradings TorAi (N , k) = ⊕
j∈Z TorAi (N , k) j are inherited from resolutions by

free graded A-modules. The graded Betti numbers β A
i, j (N ) := rankk TorAi (N , k) j satisfy the

conditions β A
i, j (N ) = 0 for i /∈ [0, proj dimA N ], j < i + inf N , and j ≫ i .

We write PA
N (y, z), or P

A
N , for the graded Poincaré series of N , defined to be

PA
N (y, z) :=

∑

i!0

∑

j∈Z
β A
i, j (N )y j zi ∈ Z[y±1][[z]].

(1) Localization at (A1), denoted here by ? #?ℓ, is a faithfully exact functor from graded
A-modules to Aℓ-modules; it preserves freeness and minimality, whence

PAℓ

N ℓ (z) = PA
N (1, z).

Three relevant properties of graded algebras are defined in terms of PA
k .

(2) The algebra A is said to be Koszul if it satisfies the condition

HA(−yz) · PA
k (y, z) = 1;

see also 7.2(1). In particular, k[x] is Koszul and Pk[x]
k (y, z) = (1+ yz)|x|.

(3) The algebra A is said to be a graded complete intersection if I = k[x] g for some
k[x]-regular set of forms, g; by a graded version of 2.6(3), this is equivalent to

PA
k (y, z) ·

∏

g∈g

(1 − ydeg(g)z2) = (1+ yz)|x|.

(4) The algebra A is said to be Golod if it satisfies the condition

PA
k (y, z) ·

(
1 − z2Pk[x]

I (y, z)
)
= (1+ yz)|x|.

(Note: This equality differs from that in [28], where Formula (2.2) is incorrect.)

In view of 7.1(1), the algebra A is c.i., respectively, Golod if and only if the local ring Aℓ

has the corresponding property; cf. 2.6, respectively, 5.3.
The focus in this section is on specific properties of polynomial ideals.

7.2. Let B := k[x] be a polynomial ring, I an ideal of B, and t an integer.
We say that I is t-linear (or, I has an t-linear resolution) ifβB

i, j (I ) = 0 holds for j ̸= i+t ;
for instance, (x) is 1-linear. The ideal I is linear if it is t-linear for some t ; when I is linear,
it is (inf I )-linear if I ̸= 0, and t-linear for each t ∈ Z if I = 0.

FollowingHerzog andHibi [26], we say I is componentwise linear if the ideal I⟨ j⟩ := BI j
is j-linear for each j ∈ Z. We list a few relevant properties.

(1) If I is t-linear, then the following equality holds:

(−z)t P B
I (y, z) = (1+ yz)|x|HI (−yz) .

(2) If I is linear, then it is componentwise linear.
(3) If I is componentwise linear, then the following equality holds:

βB
i, j (I ) =

∑

h∈Z
βi,h(I⟨ j⟩) −

∑

h∈Z
βi,h(B1 I⟨ j−1⟩) for i, j ∈ Z.
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Part (1) can be read off Polishchuk and Positselski [35, Proof of Proposition 2.2]. (2) is
well known; e.g., [35, 1.1] or [28, Lemma 1]. Part (3) is proved in [26, 1.3].

We reduce computation of Poincaré series of componentwise linear ideals to a potentially
simpler task—computing Hilbert series of finitely many residue rings.

Proposition 7.3 Let B := k[x] be a polynomial ring, I an ideal of B, and put

e := |x|, n j := rankk I j , J := { j ∈ Z | I j ̸= B1 I j−1}, and t := max J. (7.3.1)

If I is componentwise linear, then PB
I (z, y) is given by the following formula:

PB
I (y, z) = (1+ yz)e

∑

j∈J
(−z)− j (HB/I⟨ j−1⟩(−yz) − HB/I⟨ j⟩(−yz)

)

+ (1+ yz)e
∑

j∈J
(−z)− j n j−1(−yz) j−1.

(7.3.2)

Proof Both I⟨ j⟩ and B1 I⟨ j−1⟩ are j-linear, by the assumption on I and by 7.2(2), respectively;
thus, the formula in 7.2(3) is shorthand for a family of equalities:

βB
i, j (I ) =

{
βB
i,i+ j (I⟨ j⟩) − βB

i,i+ j (B1 I⟨ j−1⟩) for j ∈ J;
0 otherwise.

Multiply the i th equality by yi+ j zi and sum up over i ∈ Z; the result is

∑

i∈Z
βB
i, j (I )y

i+ j zi =
{
PB
I⟨ j⟩ − PB

B1 I⟨ j−1⟩ for j ∈ J;
0 otherwise.

Now multiply each power series by (−z)t , and aggregate the products:

(−z)t P B
I = (−z)t

∑

i, j

βB
i, j (I )y

i+ j zi =
∑

j∈J
(−z)t− j ((−z) j P B

I⟨ j⟩ − (−z) j P B
B1 I⟨ j−1⟩

)
.

Multiply the last equality by HB(−yz) and invoke 7.2(1) to get

(−z)t HB(−yz)PB
I =

∑

j∈J
(−z)t− j ((−z) j HB(−yz)PB

I⟨ j⟩ − (−z) j HB(−yz)PB
B1 I⟨ j−1⟩

)

=
∑

j∈J
(−z)t− j (HI⟨ j⟩(−yz) − HB1 I⟨ j−1⟩(−yz))

=
∑

j∈J
(−z)t− j (HI⟨ j⟩(−yz) − (HI⟨ j−1⟩(−yz) − n j−1(−yz) j−1)

)

=
∑

j∈J
(−z)t− j (HB/I⟨ j−1⟩(−yz) − HB/I⟨ j⟩(−yz)+ n j−1(−yz) j−1)

The preceding equalities, multiplied by (−z)−t (1+ yz)e, yield (7.3.2); see 7.1(2). ⊓⊔

7.4. Let Q be a noetherian ring and L a nonzero Q-module. The maximal length of Q-
regular sequences in AnnQ(L) is called the grade of L; it is denoted by grade L and satisfies
grade L ≤ proj dimQ L . If equality holds (and grade L = g), then L is said to be perfect (of
grade g). When Q is regular, grade L = height AnnQ(L) holds, and L is perfect of grade g
if and only if L is Cohen-Macaulay and dim L = dim B − g.
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Let x := {x1, . . . , xe}be a set of nonzero elements of Q. Let X =
[
xi, j

]
be an s×(s+h−1)

matrix with entries from x ∪ {0}, and put

x′ := {x1, . . . , xh}, )X
n := {xi, j } j−i+1=n for n ∈ [1, h], and )X :=

h⋃

n=1

)X
n .

We say that X is adequate for x if the following conditions are satisfied:

)X ⊆ x; xl ∈ )X
n ⇐⇒ l = n ∈ [1, h];

∣∣{ (i, j) : xi, j = xn ∈ x \ x′}∣∣ ≤ 1.

Let I (X , Q) denote the ideal of Q generated by the s × s minors of X .
Eagon and Northcott [16, Theorem 2] proved that I (X) is perfect of grade h if the entries

of X are distinct indeterminates. In the results that follow we describe families of ideals with
similar properties that are parametrized by fewer variables.

Lemma 7.5 Let k be a field, x := {x1, . . . , xe} a set of indeterminates, and put B := k[x].
Let X be an s × (s + h − 1) matrix that is adequate for x (see 7.4).

The module A(X) := B/I (X) is perfect of grade h, the ideal I (X) is s-linear, and

(−z)s P B
I (X)(−yz) = 1 − (1+ yz)h

s−1∑

i=0

(
h − 1+ i

i

)
(−yz)i . (7.5.1)

In the special case h = e one has I (X) = (x)s .

Proof Put A(X) := k[x]/I (X). For eachn ∈ [1, h] choose i ∈ [1, s] such that xi,i+n−1 = xn .
Let σ : k[x] → k[x] be the k-algebra map that swaps x1,i+n−1 and x1,n for i ∈ [1, h] and
fixes the rest of x. As σ induces an isomorphism of k-algebras A(X) ∼= A(σ (X)), we may
suppose that x1,n = xn holds for n ∈ [1, h].

LetY =
[
yi, j

]
be an s×(s+h−1)matrixwith distinct entries from a set y of s×(s+h−1)

indeterminates such that y ∩ x = ∅; put y′ := {y1,1, . . . , y1,h} and C := k[ y′]. The module
A(Y ) is perfect of grade h, the following is A(Y )-regular

zY := {yi,i+n−1 − y1,n}i ̸=1,n∈[1,h] ∪ {yi, j /∈ )Y },
and A(Y )/zY A(Y ) ∼= C/(C1)

s holds; see Eagon [15, Proof of Theorem 1].
Let κ : k[ y] → k[x] = B be the k-algebra map with yi, j .→ xi, j . Since x is adequate for

X , the ideal Ker(κ) is generated by the following set of linear forms:

zX := { yi,i+n−1 − y1,n | xi,i+n−1 = xn }i ̸=1,n∈[1,h] ∪ { yi, j | xi, j = 0 }
The set zX is A(Y )-regular (as it is a part of zY ) and A(X) ∼= A(Y )/zX A(Y ) holds; thus A(X)
is perfect of grade h. In addition, the set of linear forms z := κ(zY \zX ) is A(X)-regular with
A(X)/zA(X) ∼= C/(C1)

s . Therefore A(X) is perfect of grade h and PB
A(X) = PC

C/(C1)s
holds.

This implies PB
I (X) = PC

(C1)s
; in particular, I (X) is B-linear, by 7.2(2). Setting y′′ := y \ y′

and applying (7.3.2) with J = {s} yields
(−z)−s P B

I (y, z) = (1+ yz)e
(
Hk[ y](−yz) − Hk[ y′′](−yz)HC/(C1)s (−yz)

)
.

It remains to plug in the well known expressions of the Hilbert series involved. ⊓⊔

7.6. Let x = {x1, . . . , ee} be a set of indeterminates, D := Z[x], I a homogeneous ideal, and
g := grade D/I . When Q is a noetherian ring and u = {u1, . . . , ue} ⊂ Q, put I (u, Q) :=
Qφ(I ), where φ : D → Q is the ring map with φ(xi ) = ui for i ∈ [1, e].
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(1) When D/I is Z-free the following conditions are equivalent: (i) D/I is perfect of
grade g; (ii) K [x]/I (x, K [x]) is perfect of grade g for every finite prime field K ; (iii)
K [x]/I (x, K [x]) is perfect of grade g for every noetherian ring K .

The ideal I called generically perfect of grade g if it satisfies the conditions in (1). In case
it does and I (u, Q) ̸= Q holds, Q/I (u, Q) has the following properties:

(2) grade Q/I (u, Q) ≤ g, and Q/I is perfect if equality holds.
(3) If (Q, q, k) is a local ring, u ⊂ q, and grade Q/I (u, Q) ≥ g holds, then one has

PQ
Q/I (u,Q)(z) = PBℓ

Bℓ/I (x,B)ℓ(z) = PB
B/I (x,B)(1, z) with B := k[x].

See Hochster [29, Theorem 1], complemented by [30, Proposition 20] for Part (1); [17,
Proposition 4] for Part (2); [1, Proof of Theorem 6.2] and 7.1(1) for Part (3).

Corollary 7.7 Let x be a set of indeterminates, X an s × (s + h − 1) matrix that is adequate
for x (see (7.4)), and put D := Z[x].
(1) The ideal I := I (X , D) is generically perfect of grade h (see 7.6).
(2) The ideal J := I (X , D)+ (x)t+1 is generically perfect of grade e.

Proof (1) One has k ⊗Z I = I (X , k[x]) for every field k. From Lemma 7.5 we know that
I (X , k[x]) is perfect of grade g and that that Hk[x]/I (X ,k[x])(y) does not depend on k; thus
for each j ∈ Z and every prime number p the Z/pZ-rank of (D/I ) j/p(D/I ) j equals the
Q-rank of (D/I ) j ⊗Z Q. Therefore D/I is Z-free.

(2) As (D/J ) j = (D/I ) j for j ≤ s and (D/J ) j = 0 for j > s, Part (1) shows that D/J
is Z-free. It is clear that k[x]/(I (X , k[x])+ (x)s+1) is perfect of grade e. ⊓⊔

7.8. Recall that a ring homorphism Q ! Q/J is said to be Golod if J ⊆ q2 and PQ/J
k (z) =

PQ
k (z)/(1− z2PQ

J ) holds; see Levin [32]. Thus a local ring S is Golod if and only a minimal
Cohen presentation Q ! Ŝ is a Golod homomorphism; cf. 5.3.

Theorem 7.9 Let (Q, q, k) be a local ring, u = {u1, . . . , ue} a Q-regular subset of Q, and
U an s × (s + h − 1) matrix with entries in {u} ∪ {0} that is adequate for u; see 7.4. Let
I (U ) be the ideal of Q generated by the s × s minors of U.

(1) The ideal I := I (U ) is perfect of grade h, and PQ
I (z) = PB

I (X)(1, z); see (7.5.1).
(2) The ideal J := I (U )+ (u)s+1 is perfect of grade e, and

z2PQ
J = 1

(−z)s−2 + (1+ z)h+1

(−z)s−1

(
s−1∑

i=0

(
h − 1+ i

i

)
(−z)i

)

− (1+ z)e

(−z)s−1

(
s∑

i=0

(
e − 1+ i

i

)
(−z)i −

(
h − 1+ s

s

)
(−z)s

)

.

(3) When s ≥ 2 the canonical maps Q/I " Q ! Q/J are Golod homomorphisms.

Proof (1) Let S denote the associated graded ring of the ideal (u) and a∗ the initial form
of a ∈ Q. Note that u∗ := {u∗

1, . . . , u
∗
e } is algebraically independent over the subring

K := Q/(u1, . . . , ue); we identify S and K [x], write X for the matrix U∗ =
[
u∗
i, j
]
,

and do not distinguish between I (U∗, S) and I (X , K [x]), see 7.4. It is clear that X is
adequate for x; then I (x,Z[x]) is generically perfect, by Corollary 7.7(1), and hence
I (X , K [x]) is perfect of grade h, by 7.6(1). Therefore so is I (U ) (see Northcott, [34,
Proposition 3]), and 7.6(3) yields PQ

I (z) = PB
I (X)(1, z).
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(2) The ideal J is perfect of grade e, by Corollary 7.7(2) and 7.6(2), so we have
PQ
J = Pk[x]

J (x,k[x])(1, z), by 7.6(3). The ideal J (x, k[x]) is componentwise linear, with
J (x, k[x])⟨s⟩ = I (X) and J (x, k[x])⟨s+1⟩ = (x)s+1. Applying Proposition 7.3 with
J = {s, s + 1} and substituting the expressions for Pk[x]

k[x/I (x) and Pk[x]
k[x]/(x)s+1(y, z), from

Lemma 7.5, into Formula (7.3.2) yields Pk[x]
J (x,k[x])(y, z). Now refer to 7.1(1).

(3) The map Q ! Q/J is Golod if and only if the ring (k[x]/J (x, k[x]))ℓ is Golod (see [1,
Theorem 6.2]), if and only if the algebra k[x]/J (x, k[x]) is Golod (see 7.8); this algebra
is Golod because the ideal J (x, k[x]) is componentwise linear; therefore Herzog, Reiner,
and Welker, [28, Theorem 4] applies. ⊓⊔

References

1. Avramov, L.L.: Small homomorphisms of local rings. J. Algebra 50, 400–453 (1978)
2. Avramov, L.L.: Homological asymptotics of modules over local rings. In: Commutative Algebra. Math.

Sci. Res. Inst. Publ., 15, pp. 33–62. Springer, New York (1987)
3. Avramov, L.L.: Modules of finite virtual projective dimension. Invent. Math. 96, 71–101 (1989)
4. Avramov, L.L.: Modules with extremal resolutions. Math. Res. Lett. 3, 319–328 (1993)
5. Avramov, L.L.: Local rings over which all modules have rational Poincaré series. J. Pure Appl. Algebra

91, 29–48 (1994)
6. Avramov, L.L.: Infinite free resolutions, Six lectures on commutative algebra (Bellaterra,: Progr. Math.

166), pp. 1–118. Birkhäuser, Basel (1996)
7. Avramov, L.L.: Betti numbers of Golod residue rings (in preparation)
8. Avramov, L.L., Buchweitz, R.-O.: Homological algebra modulo a regular sequence with special attention

to codimension two. J. Algebra 230, 24–67 (2000)
9. Avramov, L.L., Gasharov, V.N., Peeva, I.N.: A periodic module of infinite virtual projective dimension.

J. Pure Appl. Algebra 62, 1–5 (1989)
10. Avramov, L.L., Gasharov, V.N., Peeva, I.N.: Complete intersection dimension. Publ. Math. IHES 86,

67–114 (1997)
11. Avramov, L.L., Packauskas, N.,Walker,M.E.: Quasi-polynomial growth of Betti sequences over complete

intersection rings (in preparation)
12. Avramov, L.L., Sun, L.-C.: Cohomology operators defined by a deformation. J. Algebra 204, 684–710

(1998)
13. Avramov, L.L., Yang, Z.: Betti sequences over standard graded commutative algebras with two relations,

Homological and computational methods in commutative algebra, INdAM Series. vol. 20, pp. 1–31.
Springer, Cham (2017)

14. Bourbaki, N.: Algèbre commutative. Chapitres 8 et 9. Springer, Berlin (2006)
15. Eagon, J.A.: Examples of Cohen-Macaulay rings that are not Gorenstein. Math. Z. 109, 109–111 (1962)
16. Eagon, J.A., Northcott, D.J.: Ideals defined by matrices and a certain complex associated with them. Proc.

Roy. Soc. Ser. A 269, 188–204 (1962)
17. Eagon, J.A., Northcott, D.J.: Generically acyclic complexes and generically perfect ideals. Proc. Roy.

Soc. Ser. A 299, 147–172 (1967)
18. Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representa-

tions. Trans. Am. Math. Soc. 260, 35–64 (1980)
19. Eisenbud, D.: Commutative algebra. In: With a View Toward Algebraic Geometry, Graduate Texts in

Mathematics, vol. 150. Springer, New York (1995)
20. Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account). In: Algebraic Geometry,

Proceedings of Symposia in Pure Mathematics, Bowdoin, vol. 46, pp. 3–13. American Mathematical
Society, Providence (1985)

21. Engheta, B.: A bound on the projective dimension of three cubics. J. Symb. Comput. 45(1), 60–73 (2010)
22. Golod, E.S.: On the homologies of certain local rings, Soviet Math. Doklady 3, 745–448 (1962)
23. Grothendieck, A.: Éléments de Géometrie Algèbrique. Chapitre 0III, Publ. Math. IHES 11 , 349–423

(1961)
24. Gulliksen, T.H.: A change of ring theorem with applications to Poincaré series and intersection multi-

plicity. Math. Scand. 34, 167–183 (1974)
25. Gulliksen, T.H.: On the deviations of a local ring. Math. Scand. 47, 5–20 (1980)

123



L. L. Avramov et al.

26. Herzog, J., Hibi, T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)
27. Herzog, J., Iyengar, S.: Koszul modules. J. Pure Appl. Algebra 201, 154–188 (2005)
28. Herzog, J., Reiner, V., Welker, V.: Componentwise linear ideals and Golod rings. Michigan Math. J. 46,

211–223 (1999)
29. Hochster, M.: Generically perfect modules are strongly generically perfect. Proc. Lond. Math. Soc. (3)

23, 477–88 (1971)
30. Hochster, M., Eagon, J.: Cohen-Macaulay rings, invariant theory, and the generic perfection of determi-

nantal loci. Am. J. Math. 93, 1020–1058 (1971)
31. Huneke, C., Mantero, P., McCullough, J., Seceleanu, A.: The projective dimension of codimension two

algebras presented by quadrics. J. Algebra 393, 170–186 (2013)
32. Levin, G.: Local rings and Golod homomorphisms. J. Algebra 37, 266–289 (1975)
33. Mehta, V.: Endomorphisms of complexes and modules over Golod rings, Ph.D. Thesis, University of

California, Berkeley (1976)
34. Northcott, D.J.: Some remarks on the theory of ideals defined by matrices. Quart. J. Math. Oxford (2) 14,

193–204 (1963)
35. Polishchuk, A., Positselski, L.: Quadratic Algebras, University Lecture Series, 37. AmericanMathematics

Soceity, Providence (2005)
36. Rossi, M.E., Valla, G.: Multiplicity and t-isomultiple ideals. Nagoya Math. J. 64, 93–101 (1980)
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