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Abstract— Soft robots have immense potential given their
safer contact with environments, but challenges in soft actuator
forces and design constraints have limited scaling up soft robots
to larger sizes. Electrothermal shape memory alloy (SMA)
artificial muscles have the potential to create these large forces
and high displacements, but consistently using these muscles
under a well-defined model, in-situ in a soft robot, remains an
open challenge. This article provides a system for maintaining
the highest-possible consistent SMA forces, over long lifetimes,
by combining a fatigue testing protocol with a supervisory
control system for the muscles’ internal temperature state. We
introduce a soft limb with swappable SMA muscles, and deploy
the limb in a blocked-force test to quantify the maximum
applied force at different temperatures over different cyclic
fatigue lifetimes. Then, by applying an invariance-based control
system to maintain temperatures under our proposed long-
life limit, we demonstrate consistent high forces in a practical
task over hundreds of cycles. The method we developed allows
for practical implementation of SMAs in soft robots through
characterizing and controlling their behavior in-situ, and pro-
vides a method to impose limits that maximize their consistent,
repeatable behavior.

I. INTRODUCTION

Many of the most commonly-claimed benefits of soft
robots revolve around their potential for human interaction
[1], [2]. However, as of yet, soft robots have generally been
limited to size scales and forces much smaller than humans
– often by the limitations of soft materials and actuators.
Larger soft robots either do not transmit meaningful envi-
ronmental forces [3], [4] or have design limitations for mass,
speed, and control effort [5]–[7]. Similarly, higher-force soft
robot limbs typically require another mechanism to generate
pressure [8], [9]. In contrast, soft actuators with higher work
density and mass efficiency could overcome many of these
challenges, particularly shape memory materials like Nitinol
wires [10]. Yet these actuators suffer from other challenges,
particularly the difficulty of modeling that prompts precision
testing only [11]–[13], difficult-to-sense states [14], [15], and
inconsistent stimulus-response due to functional fatigue [16].

This article proposes a method to generate consistent, high
forces from shape memory alloy (SMA) artificial muscle
actuators, in-situ in a soft robot limb. Our approach combines
a design that can swap the actuators and their sensors within
the limb between each fatigue test, a testing procedure to
determine the actuators’ cycle life, and a feedback controller
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Fig. 1: Example comparison of force output, in a practical
task lifting a 50g mass, after 150 cycles. The SMA whose
states (temperature) are controlled within the proposed long-
life limit temperature T ∗

max generates more force and dis-
placement than another actuated past this limit.

to maintain the actuators’ critical states below a fatigue limit.
This framework takes a significant step toward deployment of
SMA actuators in their promising soft robotics applications
with high force [17], fast speeds [18], and large deflections
[19], [20], now adding the possibility of long lifetimes with
predictable behavior at the highest possible forces (Fig. 1).

Degradation of actuators is a persistent problem in
soft robotics, which has mostly been addressed with be-
spoke mechanism designs [21]–[23], empirically limiting the
robot’s outputs [24], or hard stops in feedback [25]. SMA
actuation in particular has relied upon fixed input limits [26]–
[28], which do not directly capture fatigue or degradation:
since SMAs are electrothermally-actuated via electric current
and Joule heating, their degradation arises from a complex
interaction of thermal and mechanical cycling [29]–[31].

Recent work has instead developed a simple sensing
architecture for temperature states in SMAs, in-situ [15],
which can be used to constrain the actuators’ temperature
under predictive feedback control [32], [33]. However, it was
unknown if this approach did prevent fatigue, nor did it pro-
vide guidance on practical application. This article proposes
a comprehensive answer via a generalized procedure.

Previous work quantifying degradation and fatigue in
SMA actuators has been difficult to translate to soft robotics
applications. Approaches that use constitutive models of
SMAs can predict fatigue [34], [35], but only in specialized
test setups with precision instruments, up to and including
microstructure measurements [36] that are impractical in



most soft robots. Similarly, grey-box models require parame-
ter tuning [37] that can break once the actuator is assembled
into a soft robot. Numerical simulations are computationally
intensive [38], and do not provide concise solutions that map
to measurable states in hardware. Even then, most of these
techniques approximate the loading conditions in soft robots,
either thermal actuation [39] or electrothermal coupling, in
multiple loading-unloading cycles [40]. This article addresses
the gap by proposing a practical, hardware-driven framework
that has been empirically validated in a soft robot in realistic
conditions.

A. Contribution, Novelty, and Impact

This article contributes a framework comprising:
• An in-situ analysis protocol to determine SMA lifetime

versus thermal-mechanical loading in soft robotic limbs,
• Deployment of a supervisory feedback controller to

enforce the most favorable (highest force) long-life
operation of an SMA actuator,

• Validation in a representative robot in hardware, with
force and displacement preserved under feedback for
hundreds of cycles in a practical task.

In doing so, we define a long-life limit for fatigue of smart
actuators, more nuanced than a traditional yield-and-fracture
understanding. For an actuator with internal state T , the long-
life limit T ∗

max is that which maximizes the actuator’s force
subject to that limit at infinite cycle life. Let F v

max(T ) be
the maximum actuator force during cycle v at limit T , then:

T ∗
max = argmax

T
lim
v→∞

F v
max(T ). (1)

This methodology is, to the author’s knowledge, the first
deployment of a fatigue management system in practice for
thermal or shape memory mechanisms in soft robots, and
the first feedback controller that maximizes output forces
while preventing that fatigue. This system could overcome
persistent challenges in time-varying modeling and short
lifetimes, accelerating these robots’ adoption and impact
[41], [42] from locomotion [43] to wearables [44].

II. METHODOLOGY

Our approach combines a hardware design and two layers
of feedback control into an experimental procedure, both to
determine our long-life limit, then to maintain that limit in
subsequent experiments.

A. Hardware

The soft limbs used in the test setup are adapted from
prior designs [15], [19], [33], now with a quick replacement
(“swappable”) feature for the SMA actuators and associated
sensors, allowing us to fatigue then replace the actuators
between tests. The manufacturing process casts the limb’s
main body using a 3D-printed mold and silicone polymer
(Smooth-Sil 945, Smooth-On). In prior designs [45], coiled
SMA wires (Dynalloy Flexinol 90◦C, 0.020” diam.) were
inserted into cavities in the limb and affixed with Silpoxy
adhesive, a common technique [20], [46].

Fig. 2: Limb fabrication process with the incorporation of the
actuator module (a). The SMA is crimped to a wire which
is bonded to the module along with the thermocouples using
Sil-Poxy. The created bundle (b) is threaded through the limb
with the ground/pink wire (c). Once the bundle is inserted
all the way through the limb (d), the SMAs and ground wire
are crimped at the tip to secure the bundle in the limb (e).

Our proposed approach instead uses a small, replaceable,
modular bracket for the SMA coils (Fig. 2(a), Fig. 3(a)(1)).
We attach the SMA coils to this bracket to form a “bundle.”
For temperature measurement, a thermocouple (5TC-TT-K-
36-72, Omega) is attached to each SMA on the rear of
the bundle by thermally conductive, electrically insulating
epoxy (Fig. 2(b), Fig. 3(a)(2-3)). Crucially, we can then
easily insert or remove both the actuators and sensors without
compromising the limb body (Fig. 2(c)-(d)), only needing to
crimp or cut an electrical connection at the limb’s distal end
for a return path for the current (Fig. 2(e)). The swapping
procedure can be readily completed in under five minutes,
and was a key enabler of our enormous dataset with ∼20
prototype bundles used to validate our method. Use of the
same body across trials, as well as the limited bending
movement of the body due to the nature of the blocked force
testing procedure, minimized the influence of fatigue in the
silicone body itself.

The electronics for our limb include actuation and sensing,
and our test setup also integrates a force plate, as well as a
computer vision system for experiments. The SMA muscles
are powered independently by Joule heating, via a 7V
power supply, with one MOSFET each controlled by a pulse
width modulation (PWM) voltage signal. A microcontroller
(Arduino Mega 2560) applies this PWM as a control input
to vary the effective electrical current flowing through the
wire, generating heat. The microcontroller communicates
over USB serial with a Python script running on a laptop
(Core i5, 2.6GHz, 16 GB RAM), which performs the control
calculations. Temperature measurements are obtained from
an amplifier (MCP9600) connected over I2C to the same
microcontroller (Fig. 4).

To measure the force generated by the SMA, we propose
a block-force test setup (Fig. 3) with a load cell force sensor.
The limb is fabricated and then inserted into a 3D printed
bracket above the force plate, preventing deflection upwards
and making our tests more consistent. This off-the-shelf
sensor uses strain gauges to create a Wheatstone bridge, and
an analog-to-digital converter (AVIA HX711) connected to
the same microcontroller to record and transmit forces.



Fig. 3: Testing and limb setup for recording force output. The
bundle, composed of the module (1), thermocouples (2), and
SMA wires (3), is placed in the center configuration of the
limb then placed into a 3D printed bracket (a) that limits the
movement of the limb towards the force plate. The limb is
then fitted with a foot at its end (a) to localize force output
and placed into contact with the force plate (b).

For our experiments with free space motion of the limb,
the laptop Python script uses the AprilTag 2 library [47] with
fiducial markers placed on the limb.

B. Supervisory Controller for Temperature

The approach in this article uses temperature feedback to
maintain safe long-life operation. To do so, we deploy our
previous work’s supervisory control system that dynamically
saturates control inputs to ensure a temperature limit.

From this previous work [15] [33], we have evidence
showing that a linear model to describe the SMA temperature
dynamics is sufficiently accurate for our application. At time
step k, we use Tk+1 = (α1(Tk−Tamb)+α2uk)dt+Tk as the
discrete-time SMA dynamics, where Tk stands for the tem-
perature of the SMA, uk for the control input (PWM value)
applied to the SMA, and dt is the time step for the control
cycle. The three linear system characteristic coefficients are
Tamb for the ambient temperature constant, α1, and α2. For
the simplicity of the following equations, we can rewrite the
dynamics as Tk+1 = a1Tk+a2uk+a3, where a1 = α1dt+1,
a2 = α2/dt and a3 = −α1Tambdt. To calibrate this model,
we collected SMA temperatures given random PWM input
and created a 10-minute dataset for a linear data fit to identify
the parameters of the SMA. The corresponding coefficients
were Tamb = 35.16, α1 = −0.079, α2 = 29.22, with the
control period dt = 0.2 secs.

Our one-step-ahead predictive supervisory controller limits
the maximal control input so that the predicted next step
temperature never exceeds the desired temperature (Tmax).
The maximal control input is u∗

k = 1
a2
(Tmax − a1Tk − a3).

To compensate for the modeling error, we apply a discount
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Fig. 4: Logical architecture for the proposed system. In each
experiment trial, one of the two input generators is selected
to determine when to start/stop heating in every heating
cycle. The generators’ PWM input is then limited by the
temperature supervisor to make sure the SMA stably reaches
the desired temperature.

factor γ ∈ (0, 1] to u∗
k. However, the discount factor shifts

the equilibrium point of the closed-loop system. So, we
further adjust the equilibrium to T

′

max = (1/γ − a1((1 −
γ)/γ))Tmax − a3((1 − γ)/γ) to make sure the actual tem-
perature settles at Tmax. In this case, the updated maximal
control input is u∗

k = 1
a2
(T

′

max − a1Tk − a3). The actual
control input is uk = min(ûk, γu

∗
k), where ûk is some

nominal PWM input signal. For our experiments, we chose
γ = 0.15.

C. Input Profile Generator Controllers for Testing

Our tests seek to mimic representative actuation profiles
for SMAs in soft robots, in order to fatigue the actuators
under different heating-cooling trials. To do so, we chose
two different options for the nominal control signal ûk

in our control architecture (Fig. 4), denoted “input profile
generators” C1 and C2.

Operation of soft robots that utilize artificial muscles can
occur with large or small intervals between actuation periods.
In the case we assume that the SMA has enough time to
cool down to a set temperature between cycles, we will use
the C1 generator that creates the sequence ûk via a set of
temperature setpoints, calculated via Algorithm 1. In this
approach, the SMA is heated at a 50% duty cycle ûk = 0.5
until the desired limit temperature was reached within some
tolerance (Tk − Tmax < 8◦C). The temperature is then
maintained by the supervisor for 20 seconds, after which,
heating stops (ûk = 0.0) until the cooling temperature of
35◦C is reached. This cycle would then be repeated for as
many trials as were desired.

In the case the SMAs do not have enough time to fully
cool down, we will use the C2 generator that creates the
sequence ûk via a set of fixed-time transitions, calculated
via Algorithm 2. In this approach, the SMA is heated at
50% duty cycle for 45 seconds, subject to the supervisor’s
action. After the 45 seconds had passed, the SMA would be
allowed to cool for 65 seconds, marking the end of a cycle.



Algorithm 1: C1, Temperature-based Input Gen-
erator

for v (cycle)← 1 to V do
Initialize heatedF lag, coolingF lag ← false;
Initialize heatedT ime to zero;
for each step k do

Tk ← readSensorData(), ûk ← 0.5 ;
if abs(Tk − Tmax) < 8 then

if heatTimeFlag is false then
heatedF lag ← true;
start timing heatedT ime;

else
if heatedT ime ≥ 20sec. then

coolingF lag ← true;
heatedF lag ← false;

if coolingF lag then
ûk ← 0;
if Tk < T cool then

v = v + 1 //start next actuation cycle ;

u∗
k ← predictMaximumInput(Tk) ;

uk = min(ûk, u
∗
k) ;

Fig. 5: Example results from controller C1 and controller
C2 with temperature maximum of Tmax = 150◦C. Plot (1)
shows reaching the limit temperature (1a), holding the limit
temperature for 20 seconds (1b), and then cooling to 35◦C
(1c) as set by C1. Plot (2) shows the fixed 45 seconds of
heating (2a) and 65 seconds of cooling (2b) as set by C2.

The key differences between the approaches are related
to the temperature range the SMAs would experience within
each cycle and the total time the SMA would experience its
set limit temperature. Qualitatively, C2 sequence cycled the
actuators faster, with less cool-down between cycles, than
C1. Representative cycles from each are shown in Fig. 5.

D. Experimental Procedures

Our experimental procedure applies each framework to
collect a large dataset of forces and temperatures. For each
trial, we select a maximum temperature Tmax, fabricate a
fresh SMA bundle, and assemble the limb into the force-plate

Algorithm 2: C2, Time-based Input Generator
for v (cycle)← 1 to V do

Initialize
heatingF lag, coolingF lag ← true, false;

Initialize heatingT ime, coolingT ime to zero;
start timing heatingT ime;
for each step k do

Tk ← readSensorData(), ûk ← 0.5 ;
if heatingT ime ≥ 45sec. then

coolingF lag ← true;
start timing coolingT ime;

if coolingF lag then
ûk ← 0;
if coolingT ime ≥ 65sec. then

v = v + 1 //start next actuation cycle ;

u∗
k ← predictMaximumInput(Tk) ;

uk = min(ûk, u
∗
k) ;

test setup. We then execute the control framework with either
C1 or C2 for a total of 100 cycles, measuring the blocked
bending force at the limb’s tip. This process is repeated
through a set of temperatures for each controller.

Each trial generates a set of datapoints {Ft, Tt} ∈ R2×N

for N timesteps, e.g., {F0, T0, F1, T1, . . . , FN , TN}. Within
this trial, there are v = 1 . . . V heating cycles, where for all
our tests, V = 100. Our supervisory control system prevents
the SMA from exceeding a set maximum temperature during
this process. For both methods, we calculate a maximum
force F v

max(T ) for trial v, at this limit T = Tmax, by
taking the max force measurement over a window of values
corresponding with cycle v in the dataset. For the fixed-time
test, we select the v-th window in the force data starting at
the start time t = k, identified using the controller’s output
trajectory, until the end of the heating period at t = k +K,
where K = 45 seconds. Within this set of {Fk, . . . , Fk+K},
we manually filter any outliers in the data (see Discussion),
then take F v

max = max({Fk, . . . , Fk+K}).
Similarly, for the temperature setpoint test, we selected the

window indices k and K based on a trace of our controller
outputs, where k was such that Tk > Tmax−8◦C. The end of
the window, K, was selected at the next timepoint where the
temperature decreased back down, i.e., Tk+K < Tmax−8◦C.
We filtered outliers by removing the initial portion of the
window where we observed transients, e.g., k′ = k+(K/2)
to remove half the window. This procedure was performed
by examining the controller’s oscillations at each setpoint.
Then, F v

max = max({Fk′ , . . . , Fk′+K}).

III. RESULTS

With the goal of maximizing a consistent force output, we
compared these two methods of fatigue testing, measuring
the complex relationship between temperature, maximum
force over time, and cyclic loading sequence. The raw data
from fourteen of these tests is shown in Fig. 6. Each Tmax



Fig. 6: Maximum force output of the SMA-powered limb per cycle with trials performed at different Tmax limits, using
two controller approaches, 100 cycles each. Results under the temperature setpoint input generator C1 (left) show a more
monotonic relationship between Tmax vs. F v

max than under C2 (right).

was chosen empirically at regularly-spaced temperature in-
tervals, starting at the values from our prior work [32], [33]
and increasing or decreasing until we observed qualitative
changes in the curves.

A. Long-Life Force and Temperature Prediction

To draw generalizable conclusions, we fit each trajectory
to an exponential decay. This curve fit serves two purposes:
first, we may better visualize the overall trend for each
temperature trial, but second and more importantly, we can
predict the long-term maximum force output, F∞

max, from the
curve fit. The exponential-decay fits were chosen empirically
for their low root-mean-square error (RMSE) versus our
datasets; future work will examine if a more physically-
motivated model is appropriate.

To do this fit for each of the Tmax temperature limits,
where j = 1, . . . , J and J = 8 for the temperature setpoint
method and J = 6 for the fixed-time method, we fit two
variations on an exponential decay and chose the version
with the lower RMSE:

Fmax,j(v) = aje
−bjv + cj , (2)

Fmax,j(v) = aje
−bjv + dje

−gjv + cj (3)

These fits are plotted alongside the discrete F v
max points in

Fig. 6. We observe that both the C1 and C2 trends generally
showed continually decreasing force, implying that more
cycles would show more fatigue or degradation. The lowest
temperature tested, 118◦C, has a slight variation in its initial
curve shape, where temperatures are sufficiently low such
that hysteresis is dominant rather than thermal fatigue in the
initial few cycles.

From the equations of best fit, we propose that F∞
max = cj .

This constant offset would be the predicted settling value
as the number of cycles V → ∞. We plotted each of
the fourteen F∞

max points versus the temperature limit that
generated them (Fig. 7).

Our data suggest a concrete answer to the core question
of SMA lifetime: what ranges of maximum temperatures
ensure repeatable behavior? We first observe that similar

Fig. 7: Predicted long-term force output at different tem-
peratures for both controller methods. Based on the data
previously gathered, this plot contains the predicted long-
term equilibrium force output for both controller types:
temperature setpoint (C1) and fixed time (C2).

long-life forces occur across both methods for temperatures
in the range of 118◦C to 150◦C, at a maximum around
1.5N - 1.6N. Above that temperature, results are inconsistent
between the two actuation profiles, yet the F∞

max forces do
not significantly exceed those of the lower temperatures in
either profile. We therefore propose a conservative approach:
the maximum-life temperature T ∗

max should be the lowest-
temperature inflection point between the two profiles. For
C2, this solution mathematically aligns with eqn. (1), since
T ∗
max = argmaxT F∞

max, as it does for the first peak using
C1 (below 180◦ C). For our SMAs, this maximum-life
temperature is between 130◦C - 150◦C.

B. Validation of Long-Life Maximum Forces

To further validate our approach, we placed two repre-
sentative prototypes from this experiment in a free motion
test of lifting a weight (Fig. 8, left). We compared the SMA
that had been cycled within the temperature range of 130◦C -
150◦C, at Tmax = 140◦C, versus the SMA cycled at a higher
temperature with Tmax = 230◦C. Using the worst case for
our method’s predictive power, both were cycled according
to the C1 profile (temperature setpoint), since the initial data
from C1 implied that high temperatures experienced little
fatigue over our testing range. We cycled each SMA an



Fig. 8: A displacement test with a 50g load demonstrates that
an SMA controlled at its long-life limit consistently generates
larger motions. A prototype fatigued above the limit (230◦C)
displaces to the red dot position (left), whereas the long-life
limb (140◦C) raises the weight to the blue dot. Each of two
wires were actuated per the C1 profile (right), with snapshots
taken at a timepoint of the same wire temperature (t2) for
comparison. Three cycles are shown per test; solid lines are
average values.

additional 50 cycles in this arrangement. Then, a 50g mass
was attached to the tip of each limb and subjected to C1

again for 3 cycles at Tmax = 140◦C.
The limb with SMAs fatigued at 230◦C experiences

a significantly lower displacement when compared to a
limb fatigued at 140◦C, seen in three representative cycles’
computer vision tracking data in Fig. 8. This displacement
corresponds to SMA force, seen degraded by a factor of two.
These results verify that our conservative T ∗

max maintained
the highest-observed long-life force output.

IV. DISCUSSION

The results in this article show that a soft robot, powered
by SMA actuators, can be controlled to consistently apply
high forces and displacements at long cycle lifetimes (150+
cycles). This work is one of the first results, in terms of
design and control, that induced consistent output forces
from an SMA artificial muscle in-situ. The experiments em-
phasize that the stimulus-response behavior of SMA artificial
muscles does not exist in isolation, but is influenced by their
robot’s design, sensing, actuation, and control. Our method
specifically lets us correlate in-situ sensor readings with
muscle lifetime within the robot itself, a key to moving these
robots into real-world applications.

A. Implications of Cycle Profiles versus Lifetime

In Fig. 7, there is a clear inflection point where force de-
creases as temperature increases. Beyond this point, the use
case begins to have a greater influence on the behavior, show-
ing inconsistent trends from the C1 input sequence generator
(longer cycling, more cooling) versus the C2 inputs (shorter
cycling, less cooling). Consequently, our recommendation is
to be conservative when the robot’s application is not yet
known and to choose the temperature limit at the lower-
temperature inflection point between the two approaches.

Additionally, there are diminishing returns beyond the
temperature inflection point, where even in an ideal scenario
where the SMA can cool down to 35◦C, achieving an

additional 0.1N more force requires more than 50 degrees
of heating. This is expected given the materials science
behind the shape-memory effect, and our method provides
a quantifiable approach for designers to judge how to set
these limits specifically.

B. Limitations of Methodology

Despite the useful conclusions that arise from our method-
ology, there are limitations to the approach. First, inconsis-
tencies in both fabrication by-hand and variation in the off-
the-shelf SMAs themselves will inevitably limit the ability
to draw larger conclusions about cycle life for forces above
F∞
max. In particular, though some of the observed forces

were larger at temperatures above the fatigue limit, our data
was not sufficient to reliably predict forces at these higher
temperatures. Fortunately, this work is not directed towards
short-term higher forces, and instead proposes a reliable
lower bound on maximum consistent forces.

Second, our two heating cycle profiles were chosen based
on past experience rather than a rigorous process. We propose
that C1 and C2 reasonably reflect different use case scenarios
the limb could encounter in real-world settings, but other
loading sequences may show a different relationship or break
with temperature-dependence entirely.

Finally, this approach uses a curve fit to predict a long-
lifetime maximum force, which inherently introduces as-
sumptions that may not hold. The two different exponential
decays were chosen as fitting curves, empirically, based
on quality of fit (via RMSE), rather than first-principles
reasoning. These curve fits were strikingly consistent in their
predictions at low-to-moderate temperatures in Fig. 7, and
those predictions held in a hardware experiment. Although
our approach is useful for estimating the inflection point in
terms of temperature, different learned models would likely
generate different fatigued force predictions at higher tem-
peratures. Our general approach of identifying a conservative
limit via an inflection point may still remain viable even in
those situations.

V. CONCLUSION

This article proposes a framework for design, sensing, and
control that maintains long-life force and displacement for
shape memory alloy (SMA) actuators in soft robots. Our
results demonstrate that temperature sensing with feedback
may be sufficient to prevent functional fatigue in these artifi-
cial muscles in practical soft robotics tasks. The framework
was successfully demonstrated on a coiled Nitinol SMA ac-
tuator with a nominal transition temperature of 90◦C, where
a temperature limit in the range of 130◦C to 150◦C was ideal
(via our experimental methodology) for the muscle’s cycle
life while maximizing consistent force output.

This article is one of the first practical attempts to quantify
SMA functional fatigue life versus control, but many open
questions remain. Future work will focus on evaluating
lifetimes and consistent forces including strain, as this article
reports blocked force only, as well as internal material phase
transition, as this article only senses temperature.



More importantly, future work will seek to implement this
method on large, high-force, high-displacement soft robot
limbs, with sensing and estimation of contact. Maximizing
these forces while maintaining a consistent relationship be-
tween states and control input will be key to estimating a
soft SMA-powered robot’s pose and applied forces. Using
these results, soft robots may one day be able to interact
meaningfully with their environments at human-size scales.
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