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Abstract

The interaction between the nuclear and chloroplast genomes in plants is crucial for preserving essential cellular functions in
the face of varying rates of mutation, levels of selection, and modes of transmission. Despite this, identifying nuclear genes
that coevolve with chloroplast genomes at a genome-wide level has remained a challenge. In this study, we conducted an
evolutionary rate covariation analysis to identify candidate nuclear genes coevolving with chloroplast genomes in
Juglandaceae. Our analysis was based on 4,894 orthologous nuclear genes and 76 genes across seven chloroplast partitions
in nine Juglandaceae species. Our results indicated that 1,369 (27.97%) of the nuclear genes demonstrated signatures of
coevolution, with the Ycf1/2 partition yielding the largest number of hits (765) and the ClpP1 partition yielding the fewest
(13). These hits were found to be significantly enriched in biological processes related to leaf development, photoperiodism,
and response to abiotic stress. Among the seven partitions, AccD, ClpP1, MatK, and RNA polymerase partitions and their
respective hits exhibited a narrow range, characterized by dN/dS values below 1. In contrast, the Ribosomal,
Photosynthesis, Ycf1/2 partitions and their corresponding hits, displayed a broader range of d\/dS values, with certain values
exceeding 1. Our findings highlight the differences in the number of candidate nuclear genes coevolving with the seven
chloroplast partitions in Juglandaceae species and the correlation between the evolution rates of these genes and their cor-
responding chloroplast partitions.
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Significance

Our study provides new insights into the coevolutionary dynamics between plant nuclear and plastid genomes. By ap-
plying evolutionary rate covariation (ERC) analysis to nine Juglandaceae species, we detected candidate nuclear genes
that exhibited signatures of coevolution with plastid partitions. Our results contribute to the advancement of our under-
standing of the interaction between these genomes and highlight the potential utility of ERC analysis for uncovering
coevolved and cofunctional genes in plants.
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Introduction

A significant portion of the proteins required for chloroplast
function are encoded in the nucleus and are transported
into the chloroplast, where they interact with the chloroplast
genome and its gene products (Sloan et al. 2014; Rockenbach
et al. 2016; Weng et al. 2016; Williams et al. 2019; Forsythe
etal. 2021). The interaction between the chloroplast and nu-
clear genomes has been well documented in numerous plant
species (Huang et al. 2014; Kawabe et al. 2018; Lietal. 2021)
and is crucial for overall fitness, as demonstrated by the fre-
guent involvement of plastid—nuclear incompatibilities in re-
productive isolation (Schmitz-Linneweber et al. 2005;
Greiner et al. 2011; Bogdanova et al. 2015; Barnard-Kubow
et al. 2016; Zupok et al. 2021).

The detection of evolutionary rate covariation (ERC)
through analysis of the correlation between evolution rates
of nuclear and plastid genes has proven to be a valuable ap-
proach to identify coevolving and cofunctional genes (i.e.,
groups of proteins that contribute to a shared function
via physical, epistatic, or regulatory interactions). The ERC
method, which is based on the premise that functionally re-
lated genes that coevolve exhibit correlated changes in
their evolution rates across phylogenies, has been widely
utilized in studies of fungi, insects, and mammals (Osada
and Akashi 2012; Barreto and Burton 2013; Clark et al.
2013; Yan et al. 2019; Steenwyk et al. 2022). However,
the application of ERC analysis to identify nuclear candidate
genes with coevolution in plant lineages has been limited,
with only a few studies conducted in Geraniaceae and
Silene species (Sloan and Taylor 2012; Weng et al. 2016;
Williams et al. 2019). In a recent study, Forsythe et al.
(2021) applied ERC analysis using whole nuclear and plastid
genome data to major clades of angiosperms and identified
hundreds of nuclear genes that could interact with plastid
proteins, demonstrating the potential of ERC analysis as a
powerful tool for investigating plastid—-nuclear interactions
in plants.

The family Juglandaceae, belonging to the order Fagales,
is comprised of three subfamilies, Rhoipteleoideae
(Rhoiptelea), Engelhardioideae (Engelhardtia, Oreomunnea,
Alfaroa), and Juglandoideae (Carya, Platycarya, Cyclocarya,
Juglans, and Pterocarya) (Lu et al. 1999; Zhang et al. 2021).
The species within Rhoipteleoideae and Engelhardioideae
are primarily distributed in subtropical and tropical forests,
whereas those within Juglandoideae are prevalent in temper-
ate deciduous forests of the Northern Hemisphere (Lu et al.
1999; Zhang et al. 2021). Previous studies have identified a
few plastid genes that have undergone positive selection
within the Juglandaceae. For instance, Xu et al. (2021) re-
ported a positive selection of the plastid gene ycf7 in three
species of Asian butternuts, and Hu et al. (2016) observed
that five plastid genes (matK, ycf1, accD, rps3, and rpoA) ex-
perienced positive selection between sect. Cardiocaryon and

sect. Dioscaryon in Juglans. These plastid genes, which have
undergone positive selection, are likely to have elevated rates
of protein evolution. In recent years, high-quality, chromosome-
level nuclear genomes have been published for several
Juglandaceae species. The availability of these genomes fa-
cilitates the accurate identification of orthologous nuclear
genes, which is a crucial step in detecting ERC. Thus, the
abundance of genomic data and the occurrence of plastid
genes with elevated evolution rates make Juglandaceae
an ideal group for investigating plastid—nuclear interactions
through ERC analysis.

In this study, we aimed to investigate the potential plas-
tid—nuclear interactions and the ERC in the Juglandaceae
family. To this end, we applied the method of Forsythe
et al. (2021) to identify potential novel plastid—nuclear in-
teractions and investigate any differences in the number
and evolution rates of nuclear genes that exhibit significant
signatures of ERC with the plastid genome (i.e., “ERC hits’).
We partitioned the plastid genome into seven functional
partitions, including AccD, MatK, ClpP1, Photosynthesis,
Ribosomal, RNA polymerase, and Ycf1/2, and performed
parallel ERC analyses comparing each of these partitions
against all nuclear genes. Our results found that 27.97%
of the nuclear genes demonstrated signatures of co-
evolution, and these genes were significantly enriched in
the biological processes related to leaf development,
photoperiodism, and abiotic stress response.

Results

Plastid Genome Features of Juglandaceae

We sequenced, assembled, and annotated the plastid gen-
omes of nine Juglandaceae species, the accession numbers
of which are listed in the supplementary material
(supplementary table S1, Supplementary Material online).
The plastid genome structure of these species was found
to be consistent with the typical quadripartite organization,
comprising two identical copies of inverted repeats, a long
single-copy region, and a short single-copy region
(supplementary fig. S1, Supplementary Material online).
The plastid genome lengths ranged from 159,730 bp to
161,713 bp (supplementary table S1, Supplementary
Material online). The overall GC content of the plastid gen-
omes and the proportion of protein-coding genes varied
between 35.9-36.2% and 37.1-37.4%, respectively. The
plastid genomes of these species were found to contain a
total of 114 genes, including 80 protein-coding genes, 30
tRNA genes, and 4 rRNA genes (supplementary table S1,
Supplementary Material online). Additionally, we identified
18 genes with introns, among which six were tRNA genes
(trnA-UGC, trnG-UCC, trnL-UAA, trnl-GAU, trnK-UUU,
and trnV-UAC) and 12 were protein-coding genes (atpF,
clpP, ndhA, ndhB, petB, petD, rpl2, rps12, rpl16, rpoCl,
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rps16, and ycf3). Out of the 12 protein-coding genes, nine
had a single intron, and three (clpP, rps12, and ycf3) had
two introns. The absence of any rearrangements among
the nine plastid genomes highlights the high level of struc-
tural conservation within Juglandaceae (supplementary fig.
S2, Supplementary Material online).

Genome-wide ERC Analyses Reveal Correlated Evolution
Between Plastid and Nuclear Genes

In accordance with the method proposed by Forsythe et al.
(2021), we partitioned the genes encoded in the plastid gen-
ome into seven functional categories, AccD, MatK, ClpP1,
Photosynthesis, Ribosomal, RNA polymerase, and Ycf1/2
(supplementary table S2, Supplementary Material online).
The alignment lengths of the AccD, ClpP1, MatK, and Ycf1/2
partitions were 1,599 bp, 588 bp, 1,521 bp, and 13,011 bp,
respectively. The photosynthesis partition, with the longest
alignment of 31,959 bp, encompassed 46 genes. The
Ribosomal partition consisted of 8,376 bp and 21 genes, while
the RNA polymerase partition, comprising four genes, had an
alignment length of 10,515 bp. Phylogenetic trees were then
constructed for each partition (fig. 1).

Two previous studies on the Juglandaceae family
showed that it has an allopolyploid origin (Zhu et al.
2019; Zhang et al. 2020). Subgenome assignments were
made for nine Juglandaceae species and 4,894 orthologous
nuclear genes were obtained (see Materials and Methods).
A genome-wide scan was then conducted to identify po-
tential instances of plastid—nuclear ERC by testing 34,258
pairwise correlations (seven plastid trees x 4,894 nuclear
trees = 34,258 comparisons), based on normalized branch
lengths, as described in supplementary table S3,
Supplementary Material online. Applying the criteria of
Pearson P < 0.05 and Spearman P < 0.1, we identified a to-
tal of 1,369 significant ERC hits in the seven plastid parti-
tions (supplementary table S4, Supplementary Material
online). The number of hits of the seven partitions is as fol-
lows, AccD: 55 hits; ClpP1: 13 hits; MatK: 117 hits;
Photosynthesis: 284 hits; Ribosomes: 314 hits; RNA poly-
merase: 80 hits; Ycf1/2: 765 hits. We also applied separate,
more stringent, filtering criteria of false discovery rate
(FDR)-adjusted  Pearson P<0.05 or FDR-adjusted
Spearman P < 0.05 to identify the strongest ERC hits, yield-
ing two hits from the MatK partition and 56 hits from the
Ycf1/2 partition (supplementary table S5, Supplementary
Material online).

Subcellular Localization of ERC Hits

To ask whether our ERC hits are enriched for functional
characteristics tied to their coevolution with plastid parti-
tions, we identified orthologous genes in Arabidopsis and
used these orthologs to map functional annotations from
Arabidopsis to our Juglandaceae gene families. We analyzed

the ERC hits that are known to directly interact with
plastid-encoded proteins, as annotated by the Cytonuclear
Molecular Interactions Reference for Arabidopsis (CyMIRA)
classification (Forsythe et al. 2019). Our analysis revealed a
marked increase in the degree of enrichment for plastid lo-
calization and interaction in the ERC hits compared to the
general classification (approximately 4-8 times more en-
riched, depending on the plastid partition) (fig. 2A,
supplementary table S6, Supplementary Material online).
On the other hand, no significant enrichment was observed
among the ERC hits for either mitochondrion-targeted pro-
teins or mitochondrion-interacting proteins. These results
provide evidence that correlated plastid—nuclear evolution
is a widespread phenomenon across nuclear genomes and
can be detected through ERC analysis.

Gene Ontology Functional Enrichment of ERC Hits

We performed gene ontology (GO) enrichment analyses, re-
vealing that the ERC hits were overrepresented in cellular
components related to the plastid, such as the “plastid enve-
lope” and “intracellular membrane-bounded organelle” (fig.
2B, supplementary table S7, Supplementary Material online).
Enrichment analysis of biological processes indicated that the
ERC hits were associated with plant growth-related processes,
including “shoot system development”, “postembryonic de-
velopment”, and “phyllome development”, and three meta-
bolic processes, positive regulation of biological processes,
and DNA-templated transcription (fig. 2B, supplementary
table S7, Supplementary Material online). Additionally, the
ERC hits were found to be highly enriched in the terms “re-
sponse to abiotic stimulus” and “regulation of response to ex-
ternal stimulus”, which may relate to the plant defense
system. The molecular functions of the ERC hits were also
found to be overrepresented in terms such as
“DNA-binding transcription factor activity”, “transcription
cis-regulatory region binding”, “protein binding”, “kinase in-
hibitor activity”, and “oxidoreductase activity” (fig. 2B,
supplementary table S7, Supplementary Material online).

As a comparison, we also performed CyMIRA and GO en-
richment analyses using the 1,999 mapped genes as the fore-
ground and the full genome as the background. In these
analyses, we observed significant enrichment for the
same terms which we show in figure 2 (supplementary
table S7, Supplementary Material online). This indicates that
Arabidopsis ortholog mapping may have introduced some de-
gree of bias, resulting in enrichment potentially being tied to
our mapping process rather than ERC results in some cases
(see Discussion).

dN/dS Ratios for Plastid Partitions and ERC Hits

Since dA\/dS test may be unable to detect positive selection on
only one or a few substitutions of a long sequence, no matter
how strong selection may be (Hahn 2018), we conducted
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Fic. 1.—Trees based on plastid genome (plastome) partitions. The plastid genes are partitioned into seven functional categories (as described in
supplementary table S4, Supplementary Material online). Branch lengths inferred from nucleotide alignments are shown on the same scale for all trees to
highlight differences in rates of nucleotide evolution between partitions. Each plastome partition tree was used for ERC analysis against all nuclear gene trees.

calculations of d\/dS values on individual plastid gene across
seven partitions (a total of 76 genes) for each of nine
Juglandaceae species. We identified five genes from partition
of Photosynthesis, Ribosomal, and Ycf1/2 (rpl23, rpl22, rps 14,
psbK, and ycf2) in eight species with dN/dS values exceeding
1, although they did not reach statistical significance (fig. 34)
(supplementary table S8, Supplementary Material online). All
the species for AccD, ClpP1, MatK, and RNA polymerase had a
dN/dS value less than 1, showing low variation (fig. 3A).
We also found that a total of 53 genes in nine species
have a dN/dS value of significantly less than 1, exhibiting

evidence of purifying selection (supplementary table S8,
Supplementary Material online).

Among the 1,369 hits, a total of 987 hits were found to
have dN/dS values significantly less than one, indicating the
existence of purifying selection (supplementary table S8,
Supplementary  Material ~ online). The hits  for
Photosynthesis and Ribosomes have dN/dS values more
than one (supplementary table S8, Supplementary
Material online), but only one hit (onlyS-OG0008075)
from the Photosynthesis partition exhibited a significant
dN/dS value greater than one in seven species (Carya
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Fic. 2.—Significant results from function enrichment analyses of ERC hits. Enrichment scores are shown only for partitions/categories with significant
enrichment. (A) Subcellular localization and cytonuclear interactions of ERC hits. Proteins encoded by genes exhibiting signatures of coevolution with seven
chloroplast partitions were analyzed for their localization and interactions, as classified by the CyMIRA database (Forsythe et al. 2019). Categories indicating
“interacting” refer to nucleus-encoded proteins predicted to directly physically interact with organelle-encoded proteins. The statistical significance of enrich-
ment/depletion (Fisher's exact test) is indicated by filled points (P < 0.05). (B) GO functional enrichment analyses were performed for ERC hits from seven
chloroplast partitions. Categories are grouped by type of GO annotation (cellular component, biological process, and molecular function). Some highly over-
lapping categories were removed (see supplementary data, Supplementary Material online for full results). The statistical significance of enrichment/depletion
(Fisher's exact test) is indicated by filled points (P < 0.05). P values were corrected for multiple tests using the FDR.
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Fic. 3.—The d\/dS distributions of plastid partition, nuclear hits, and nonhits genes for nine Juglandaceae species with B. pendula as outgroup. The X axis
and Y axis represent the d\/dS value and the number of genes, respectively. A) The dN/dS distributions of plastid genes of seven plastid partitions; B) The d\/dS

distributions of nuclear hits (seven partitions) and nonhits.

illinoinensis, Engelhardtia roxburghiana, Juglans regia,
Juglans microcarpa, Juglans mandshurica, Pterocarya ste-
noptera, and Rhoiptelea chiliantha), indicating a potential
signal of positive selection. We further tested whether d\/
dS value of this hit would be caused by relaxed selection
and found that only E. roxburghiana cannot rule out relaxed
negative selection (supplementary table S9, Supplementary
Material online).

The nuclear genes that did not exhibit significant signa-
tures of ERC with any plastid partition (referred to as “non-
hits”) comprise a total of 3,525 genes. There was a
significant difference in the distributions of dN/dS between
the hits and nonhits for the six partitions (P < 0.05) and
marginal significance for the MatK partition (P=0.09)
with the rank sum test (Wilcox test).

Discussion

Overcoming Challenges of Gene/Genome Duplication in
Plant ERC

ERC has been widely applied to identify novel interactions
in animals and fungi (Findlay et al. 2014; Raza et al.

2019; Yan et al. 2019; Steenwyk et al. 2022). However,
the application of this approach at broad phylogenetic
scales in plants has been limited by the prevalence of
gene/genome duplication. The occurrence of gene duplica-
tion or loss can lead to erroneous predictions of ortholo-
gous nuclear genes (Bansal and Eulenstein 2008; Stolzer
et al. 2012; Smith and Hahn 2021; Xiong et al. 2022).
Whole-genome duplication events, which are episodic in
nature (Bowers et al. 2003; Jiao et al. 2014), tend to result
in the subsequent loss of a majority of duplicated genes
within a few million years (lynch and Conery 2000). This
differential loss of duplicated copies among species can
lead to the presence of “hidden paralogues” or
“pseudo-orthologs” in single-copy gene families (Smith
and Hahn 2021). Two previous studies on the
Juglandaceae family showed that it has an allopolyploid ori-
gin (Zhu et al. 2019; Zhang et al. 2020). Fortunately, this
same study performed an in-depth analysis of subgenome
retention following duplication, minimizing the risk of hid-
den paralogues. By using the methods described by Ding
et al. (2023), which depend on the number of retained an-
cestrally inherited genes on chromosomes, we were able to
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assign each of the homoeologous chromosomes of the
nine Juglandaceae species to one of 18 subgenomes and
correctly identify 3,819 and 2,468 orthologous nuclear
genes from dominant and recessive subgenomes. This al-
lowed us to confidently identify true orthologues, thus side-
stepping a common source of error that hinders many plant
phylogenomic analyses.

Rate Heterogeneity and Statistical Power in ERC
Analyses

The application of the ERC method to examine cytonuclear
coevolution in plants encounters a second notable chal-
lenge, namely the relatively slow rate of evolution and
low levels of heterogeneous evolution of most plastid
genes, when compared to nuclear genes or animal mito-
chondrial genomes (Wolfe et al. 1987). Since ERC relies
on rate heterogeneity across a phylogeny (differences in
branch lengths/protein evolution across the tree), highly
conserved homogenous sequences provide very little
power for detecting ERC signatures. However, Goncalves
et al. (2019) showed that plastid genes are not a uniform
entity, often exhibiting differential rates of evolution.
Indeed, we observe differential rate heterogeneity (branch
length) between distinct partitions (supplementary fig. S3,
Supplementary Material online).

The dN/dS analysis results for individual plastid genes in
Juglandaceae species revealed variations in the rates of evo-
lutionary change among these partitions (fig. 3). Our ana-
lysis revealed that 53 plastid genes across the seven
partitions and 987 nuclear hits genes exhibited significant
evidence of undergoing purifying selection. This is consist-
ent with the idea that most plastid genes and their interact-
ing nuclear genes serve conserved roles in the metabolism
of Juglandaceae. In some instances, plastid genes in
Photosynthesis partition showed some evidence of evolving
under positive selection, although this signature did not
reach statistical significance in most cases. In particular,
we observed that one hit from the Photosynthesis partition
exhibited a significant signal of positive selection. The func-
tional annotation of this gene remains uncharacterized, as
an orthologous gene in Arabidopsis could not be identified;
however, we postulate that this gene could potentially
underlie adaptive evolution of photosynthetic mechanisms
in Juglandaceae. Further validation is required in the future.
The presence of purifying and positive selection may con-
tribute to the observed heterogeneity.

In contrast to Forsythe et al. (2021) which focuses on
broadly sampled set of species spanning angiosperms,
our study focuses on a single family. This contrast provides
an important assessment of the power and sensitivity of
ERC applied to closely related species. Despite difference
in evolutionary scale, we found that 15 hits shared
with Forsythe et al. (2021) (supplementary table S10,

Supplementary Material online). These shared hits provide
valuable insights into the functional relationships and the
potential for coevolutionary forces to act at many scales
of evolution.

Widespread Plastid—Nuclear ERC With Ycf1/2

Consistent with our expectations (discussed above), ERC
analyses of the Ycf1/2 partition yield the highest frequency
of ERC hits. The striking signatures of evolution of Ycf1/2
genes and coevolution with nuclear genes may be tied to
a pivotal role in mediating cytonuclear interactions in
Juglandaceae. In photosynthetic eukaryotes, a considerable
number of proteins are transferred from the cytosol to the
chloroplasts through the concerted action of two translo-
con complexes located in the outer and inner membranes
of the chloroplast envelope, known as the TOC and TIC
(translocon at the outer and inner envelope membrane of
chloroplasts) complexes, respectively (Ramundo et al. 2020).
Ycf1 encodes Tic214, which plays a crucial role in the TIC
complex of Arabidopsis (Kikuchi et al. 2013; De Vries
et al. 2015; Nakai 2015, 2018), enabling the transport of
proteins across the inner membrane, the intermembrane
space, and the outer membrane, and thus connecting the
TOC and TIC proteins (Liu et al. 2023). As such, Ycf1 plays
arole in mediating the import of all plastid-targeted nuclear
genes. It stands to reason that Ycf1 would be the target of
shifts in the selection that impact large suites of interacting
plastid—nuclear genes, especially those that are involved in
communication between the nucleus and plastid. Pursuing
the specific conditions that may have led to these patterns
of evolution and coevolution in Ycf1/2 could help reveal the
unresolved functions of these essential genes.

Functional Enrichment of ERC Hits

The present study utilized CyMIRA and GO enrichment ana-
lyses to investigate the functional implications of the genes
identified through the use of ERC. The results revealed that
the identified genes associated with plastids are linked to
processes involved in leaf and shoot development, as well
as photoperiodism regulation. The importance of plastids
in photosynthesis, which relies on various nuclear-encoded
proteins, has been well established (Nam et al. 2021). It has
been estimated that approximately 3,000 nuclear-encoded
proteins are localized in plastids (Richly et al. 2003; Richly
and Leister 2004; Cui et al. 2006) which could explain the
enrichment of ERC hits in these functional categories.
Interestingly, our study also found that ERC hits were en-
riched in terms related to abiotic and external stimulus,
which may have implications for the regulation of plant de-
fense mechanisms. Previous studies have highlighted the
crucial role played by chloroplasts in plant immune re-
sponses, in addition to their photosynthetic functions
(Nomura et al. 2012; Serrano et al. 2016; Kretschmer
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etal. 2019; Medina-Puche et al. 2020; Kachroo et al. 2021).
In response to adverse signals, chloroplasts can trigger
the transmission of signals to the nucleus through calcium
and reactive oxygen species, which activate defense-related
gene expression (Medina-Puche et al. 2020). Juglandaceae
species, such as Juglans cinerea and J. regia, are susceptible
to various fungal infections, including butternut canker and
anthracnose disease (Michler et al. 2006; Wang et al.
2017). Thus, the present findings suggest that the identi-
fied ERC hits may serve as promising candidate genes
for transmitting signals from the cell periphery to the
chloroplast and from the chloroplast to the nucleus in
Juglandaceae species. This could provide valuable insights
into retrograde signaling mechanisms in regulating plant
defense mechanisms.

It should be noted that our application of ERC in a nonmo-
del system required that we draw functional annotations from
Arabidopsis. This degree of separation from the original
annotation source reduced our statistical power and
may have introduced a layer of directional bias into our
functional enrichment analyses (supplementary table S17,
Supplementary Material online). Despite these challenges,
the functional categories we identify and particularly the indi-
vidual strong ERC hit genes within those categories represent
valuable candidates for revealing the mechanisms that under-
lie plastid—nuclear coevolution in Juglandaceae species.

In conclusion, the results of ERC analysis presented in this
study provide a scalable method to predict gene function
and localization, complementing traditional biochemical
approaches. Our findings extend the list of putative nuclear
genes that may be involved in plastid—nuclear interactions in
Juglandaceae. The identification of these candidate genes
represents a significant step towards elucidating the mo-
lecular mechanisms underlying the interactions between
plastids and the nucleus in the Juglandaceae family.
Future functional validation studies are necessary to fully
characterize these interactions and to enhance our under-
standing of the biological implications of these processes.

Materials and Methods

Obtaining the Orthologous Nuclear Genes and
Phylogenetic Inference

In this study, we acquired the genomic datasets of nine
Juglandaceae species, including Cyclocarya paliurus
(Zheng et al. 2021), Ca. illinoinensis (Lovell et al. 2021),
E. roxburghiana (Ding et al. 2023), J. regia (Zhu et al.
2019), J. microcarpa (Zhu et al. 2019), J. mandshurica
(Zhang et al. 2022), Platycarya strobilacea (Zhang et al.
2019), Pt. stenoptera (Zhang et al. 2022), and R. chiliantha
(Ding et al. 2023), as well as two outgroup species, Betula
pendula (Salojarvi et al. 2017) and Ostryopsis davidiana
(Wang et al. 2021). A summary of the species used in the

study is presented in the supplementary material
(supplementary table S12, Supplementary Material online).
To ensure accuracy in our analysis, the transcript with the
longest coding sequence was selected for each gene
when multiple transcripts were available.

The Juglandaceae species are of allopolyploid origin (Zhu
etal. 2019; Zhang et al. 2020). In lineages of allopolyploid
origin, entire parental subgenomes may coexist, with two
or more sets of homoeologous chromosomes that differ
in gene content and expression patterns. Generally, the
dominant subgenome has preferentially retained higher
gene content compared with recessive subgenome (Edger
et al. 2018). Based on the method of Ding et al. (2023),
the gene families for the dominant and recessive subge-
nomes of the nine Juglandaceae species and two outgroup
species (B. pendula and O. davidiana) were obtained using
OrthoFinder (Emms and Kelly 2019) with default para-
meters (supplementary table S13, Supplementary Material
online). The analysis was limited to strict one-to-one ortho-
logous relationships with fewer than three species absent in
the gene family and with information for at least one out-
group. This resulted in 3,819 single-copy orthogroups
from nine dominant subgenomes and two outgroups,
and 2,468 single-copy orthogroups from nine recessive
subgenomes and two outgroups. When aligning DNA se-
guences encoding proteins, nucleotide natural selection oc-
curs at the level of a codon, rather than a single nucleotide.
Based on that, we used the perl script PAL2ZNAL (Suyama
et al. 2006) to perform codon-guided nucleotide sequence
alignment. Nucleotide alignments were subsequently used
for phylogenetic inference and dN\/dS analyses. Orthogroups
with a gap frequency (“-" character) greater than 50%
were excluded from subsequent analysis. Ultimately, 4,894
gene families remained for the construction of gene trees
by RAXML (Stamatakis 2014), with 100 bootstrap replicates.
Tree inference was performed on nuclear sequence align-
ments with the following command for each gene, using
the generalized time reversible (GTR) + optimization of substi-
tution rates + GAMMA model of rate heterogeneity. The seed
for a parsimony search and rapid bootstrapping was provided
by the -p and -x arguments, respectively, and the number of
bootstrap replicates was specified by the -# argument. The
-f argument implemented rapid bootstrap analyses and the
best-scoring tree search, and the -T argument indicated the
number of threads used for parallel computing. The input
file name and output file name were specified by the -s and
-n arguments, respectively, while the outgroup was desig-
nated by the -0 argument.

raxmIHPC-SSE3 -s <input file name> -n <output file name> -
m GTRGAMMA -0 <outgroup> -p 12345 -x 12345 -# 100 -f a

Plastid Genome Assembly and Phylogenetic Inference

To obtain the plastid genomes of the nine Juglandaceae
species, fresh young leaves were sampled from the wild
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and total genomic DNA was extracted from dried leaf tissue
using a plant total genomic DNA kit (Omega, Norcross, GA,
USA) (detailed sampling information in supplementary
table S14, Supplementary Material online). Whole-genome
resequencing was performed using paired-end libraries
with an insert size of 350 bp on Illumina NovaSeq 6000 in-
struments by NovoGene (Beijing, China). The plastid gen-
omes were assembled using the program GetOrganelle
(Jin et al. 2020) with default settings and annotated using
PGA software (Qu et al. 2019). Ambiguous regions were
checked and manually corrected in Geneious Prime
(Kearse et al. 2012), and plastid genome maps were gener-
ated using OGDRAW (Greiner et al. 2019). In addition, the
80 shared protein-coding genes of 11 species were ex-
tracted and aligned using MAFFT v7.47573 (Katoh and
Standley 2013) and pal2nal v. 1474 (Suyama et al. 2006).
The corresponding gene sequences were either analyzed
individually or concatenated from multiple plastid genes
to achieve “plastome partition” alignments, following the
method of Forsythe et al. (2021). The sequences were opti-
mized using RAXML and branch lengths were optimized on
a constraint tree, as indicated by the use of the -f e argu-
ment in the RAXML command.

raxmIHPC-SSE3 -s <input file name > -n <output file
name > -g < name of constraint tree file > -0 < outgroup
>-m GTRGAMMA -p 12345 —f e

Inference of Evolutionary Rate Variation

The evolutionary rate variation (ERC) analysis was con-
ducted following the pipeline described by Forsythe et al.
(2021), which involved a root-to-tip approach. This ap-
proach measures the cumulative length of branches from
the species’ tips to the node representing the most recent
common ancestor of all species tips, providing a
phylogeny-based assessment of nucleotide substitution in
each lineage. The ERC analysis was performed on all ortho-
logous nuclear gene trees and plastid partition trees, ex-
cluding species with missing values from the analysis. To
account for lineage-specific differences in genome-wide
evolution rates, the branch length of each species was nor-
malized by dividing it by the average branch length across
all genes analyzed. The resulting normalized branch length
values were utilized for pairwise ERC comparisons.

A correlation analysis was carried out between the
branch lengths in the plastid and orthologous nuclear
gene trees, calculating Pearson and Spearman correlation
coefficients. To account for multiple comparisons, the Pva-
lues were adjusted using the false discovery rate (FDR)
method in R. Both Pearson and Spearman P values were
used as metrics due to their complementing strengths,
where Pearson is more sensitive to long-branch lengths,
potentially indicative of coaccelerated evolution, and

Spearman is less sensitive to outliers and is generally consid-
ered to be more prone to false negatives. Similar to Forsythe
etal. (2021), we applied one filtering strategy in the context
of identifying large groups of genes with elevated ERC sig-
natures and a separate, more stringent, strategy in the con-
text of identifying the strongest individual ERC hits. For our
group-level enrichment analyses, a gene was considered a
hit if both (uncorrected) Pearson Pvalue < 0.05 and (uncor-
rected) Spearman P value <0.1. For individual gene ana-
lyses, a gene was considered a strong hit if either the
adjusted Pearson P value or the adjusted Spearman P value
(or both) were <0.05. Additionally, for the genes in which
only one of the two adjusted Pwas <0.05, we also required
that the raw Pearson and raw Spearman P value both be
<0.05.

CyMIRA and GO Functional Enrichment Analyses

We performed a BLASTP analysis with a stringent e-value
cutoff of 107'° to identify orthologous genes in
Arabidopsis thaliana based on the orthologous nuclear
genes from the Juglandaceae species. Arabidopsis ortho-
logs were successfully mapped for 1,999 of 4,894
(~40.8%) gene families. Subsequently, to assess the func-
tional enrichment of the identified orthologous genes, we
integrated localization/interaction annotations from the
CyMIRA database and functional annotations from the
GO database. In instances where multiple Arabidopsis para-
logues were present within a gene family, we chose a single
paralogue at random to represent the family, and only
Arabidopsis genes with GO annotations were included in
the analysis. The list of cytonuclear interacting protein
genes in Arabidopsis was obtained from the CyMIRA data-
base (Forsythe et al. 2019). Fold enrichment was calculated
as the ratio of the number of observed hits in a particular
category to the expected number of hits, which was deter-
mined by multiplying the proportion of the background in
that category by the number of hits. The statistical signifi-
cance of the observed fold enrichment was evaluated using
Fisher's exact test with the fisher.test() function in
R. Furthermore, GO enrichment analysis was conducted
using the PANTHER web-based tool (http:/geneontology.
org/) (database release from October 13, 2022), and a
FDR correction was applied. We performed CyMIRA and
GO enrichment analyses using the 1,999 genes as the
“foreground” and the full genome as the background.

dN/dS Analysis for Plastid Partitions and ERC Hits

For each plastid gene and ERC hit of each plastid partition,
the dN/dS ratio of each of nine Juglandaceae species with
B. pendula as outgroup species was calculated using
KaKs_Calculator 2.0 (Wang et al. 2010), based on the
Gamma-MYN algorithm (Wang et al. 2009). The
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Gamma-MYN algorithm operates in a pairwise fashion,
meaning each dN/dS value is calculated by comparing
the outgroup sequence with the sequence of one of
the nine Juglandaceae species. We used RELAX
(Wertheim et al. 2015) to detect whether species with
dN/dS >1 have undergone relaxed negative selection.
Then, we performed a rank sum test using wilcox.test
in R to determine whether there are any significant dif-
ferences in the distribution of hits and nonhits.

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online (http:/www.gbe.oxfordjournals.org/).
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