

Sooting Tendency of Substituted Aromatic Oxygenates: The Role of Functional Groups and Positional Isomerism in Vanillin Isomers

Hojin Jung^{a,†}, Jaeyoung Cho^{b,‡,*}, Yeonjoon Kim^c, Zhanhong Xiang^d,
Sabari Kumar^a, Piper Barnard^d, Charles S. McEnally^d, Lisa D. Pfefferle^d,
Seonah Kim^{a,*}

^aDepartment of Chemistry, Colorado State University, Fort Collins, CO 80523, USA

^bDepartment of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA

^cDepartment of Chemistry, Pukyong National University, Busan 48513, Korea

^dDepartment of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA

Abstract

Substituted aromatics are commonly observed in lignin-based biofuel; however, their high sooting tendency prevents direct utilization in commercial combustors. Recent studies have revealed that oxygenated functional group substitution could effectively suppress the soot emission from aromatic biofuels. This study aims to enhance the understanding of sooting tendencies in aromatic oxygenates with mono-, di-, and tri-substitutions, focusing on various functional groups and their positional isomerism. We established a yield sooting index (YSI) database of 42 single-ring aromatic compounds, including 30 new measurements from the present study. The constructed database was utilized to develop a multivariate linear regression (MLR) model to predict the YSI of substituted aromatic oxygenates based on their structural features. The fitted coefficients of the MLR model indicate vastly different impacts of hydroxyl, formyl, and methoxy functional group, as well as the importance of positional isomerism. To understand the role of oxygenated functional groups, we used substituted vanillin isomers containing hydroxyl, methoxy, and formyl groups as a model system. Comparing the sooting tendencies of these compounds revealed a high sensitivity of YSI to positional isomerism. A further mechanistic study using quantum-mechanical calculations showed that subtle interactions between three oxygenated functional groups in vanillin isomers can alter their thermal decomposition pathway, affecting the sooting tendencies of these aromatic fuels. The present study provides a novel statistical and theoretical explanation of how oxygenated substitution and its positional isomerism influence sooting behaviors, facilitating the rational design of lignin-based biofuels with minimal soot emission.

Keywords: Yield sooting index; Multivariate linear regression; Density function theory; Isomer effect; Vanillin

*Corresponding author.

†Equal contribution.

1 **1. Introduction**

2
3 Biomass has been a dominant source of alternative
4 fuels (biofuels) for decades, decarbonizing the
5 transportation and industrial sector with its low
6 carbon footprint. Most current biofuels come from
7 sugar, starch, and vegetable oils, which can easily be
8 converted into aliphatic oxygenates (alcohol, ether,
9 esters) through thermochemical processes and
10 fermentation [1,2]. These compounds, especially
11 bioethanol and fatty-acid methyl esters, were
12 successfully integrated into mass production and
13 blended into conventional fuels in many countries [3].
14 Lignocellulosic biomass, meanwhile, has been
15 considered a challenging but promising source of
16 future biofuels. The elevated lignin content in
17 lignocellulosic biomass results in a high concentration
18 of aromatics compounds in the derived biofuel, as the
19 lignin transforms to various oxygenated aromatics
20 such as phenol, cresol, and xylanol, during
21 depolymerization [4,5]. The aromatic content in the
22 fuel is sometimes beneficial for applications requiring
23 low-reactivity fuels (e.g. spark-ignition engine), but in
24 general has been avoided due to its higher sooting
25 tendency [6]. Still, the lignocellulosic biofuel has a
26 huge advantage in its even lower carbon footprint.
27 Spatari et al. [7] showed that the greenhouse gas
28 emission from lignocellulosic (corn stover) biofuel is
29 only ~50 % of those from energy crops (switchgrass),
30 primarily attributed to the fact that it does not require
31 N-fertilizer emitting N₂O.

32 This low environmental impact of lignocellulosic
33 biofuel has driven numerous research studies to
34 mitigate the soot emissions from aromatic
35 compounds. Kim et al. [8] compared the sooting
36 tendency of 15 different mono- and di-substituted
37 aromatic compounds using a yield sooting index
38 (YSI). Their statistical analysis showed a clear
39 correlation between YSIs and formation enthalpy
40 (ΔH_f) of the fuel radicals from the weakest bond-
41 fission reaction, which may explain the lower sooting
42 tendency of the oxygenated aromatic compounds. The
43 following synergistic experiment-theory analysis
44 revealed that the hydroxyl group effectively
45 eliminates carbon atoms in the aromatic ring during
46 thermal decomposition, reducing the sooting
47 tendency of fuel. This finding also aligns with recent
48 observations of the combustion community [9,10],
49 where oxygenated aromatics showed a systematically
50 lower sooting tendency than aromatic hydrocarbons.

51 Despite the advantages of the sooting tendency,
52 oxygenated functional groups should be carefully
53 added to the fuel, as they sometimes sacrifice other
54 fuel properties. For example, higher oxygen content
55 in the fuel leads to decreased heating values. The
56 hydroxyl group, especially, is known to lower the
57 melting point and increase the acidity. This clear
58 trade-off between YSI and other fuel properties
59 motivated the present study that aims to find the most
60 effective way to mitigate soot emissions of aromatic
61 compounds with minimal oxygen content.

62 The previous experiments from Wang et al. [11]
63 showed that the benzyl alcohol emits more soot
64 particles than anisole when blended into *n*-heptane,
65 which may indicate the different impacts of hydroxy
66 and methoxy substitution. Meanwhile, Etz et al. [12]
67 compared the sooting tendency of 1- and 2-
68 phenylethanol, showing dramatic sensitivity of YSI to
69 positional isomerism. They explained that the higher
70 YSI of 2-ethylphenol comes from its lower energy
71 barrier to hydroxyl group elimination. Kim et al. [8]
72 observed that the hydroxyl group's soot mitigation is
73 higher when substituted on an ortho-position than on
74 a meta-position by comparing the differential sooting
75 behavior of 2- and 3-ethylphenol. Their mechanistic
76 study revealed that positional isomerism alters the
77 resonance stabilization of the radicals intermediate,
78 affecting the formation of soot precursors from the
79 flame. However, these studies investigated only
80 mono- and di-substituted aromatics and tri-substituted
81 ones have not been explored.

82 The present study aims to provide a more
83 systematic and comprehensive understanding of the
84 sooting tendency of aromatic oxygenates with mono-
85 , di-, and tri-substitution, with varying functional
86 groups and their positional isomerism. First, a YSI
87 database for 42 single-ring aromatic compounds was
88 collected, 30 of which were newly measured for the
89 present study. The curated data was then utilized to
90 develop a multivariate linear regression model (MLR)
91 for YSI prediction, targeting bio-derived aromatic
92 compounds. The fitted coefficients of the MLR model
93 indicate the distinct impacts of functional groups,
94 substituent positional isomerism, and the chemical
95 stability of the fuel radicals on the aromatics' sooting
96 tendencies.

97 These intriguing findings regarding such structural
98 effects led to further mechanistic studies of soot
99 precursor formation pathways of model compounds,
100 vanillin, and its isomers, which contain hydroxyl,
101 methoxy, and formyl groups. Vanillin presents high
102 contents in bio-oils, as it is the direct product of the
103 depolymerization of lignin [13], drawing the attention
104 of combustion researchers for decades [14–16].
105 Additionally, vanillin and its isomer showed vastly
106 different YSI depending on their substituted site, so
107 they are appropriate for examining the effect of
108 oxygenated functional groups and positional
109 isomerism. A further mechanistic study using
110 quantum-mechanical calculations revealed that three
111 oxygenated functional groups in vanillin closely
112 interact during the thermal decomposition, altering
113 the resultant sooting tendency of aromatic fuels. The
114 present study provides the novel statistical and
115 theoretical explanation regarding the impact of
116 oxygenated substitution and its positional isomerism
117 on the sooting tendency, facilitating the rational
118 design of lignin-based biofuels with low soot
119 emission.

120
121
122

1 **2. Methods**

2

3 *2.1 YSI measurements*

4

5 Sooting tendencies of aromatic compounds listed
6 in Table 1 were measured using a yield-based
7 approach we developed previously [17]. The specific
8 procedure used in this study is described in [18]; it
9 consists of three steps: i) we separately doped
10 1000 $\mu\text{mol/mol}$ (1000 ppm) of *n*-heptane (H), toluene
11 (T), and each test sample (TF) into the fuel of a base
12 methane/air flame; ii) we measured the maximum
13 soot concentration in each flame with line-of-sight
14 spectral radiance (LSSR; L); and iii) we rescaled the
15 results into a YSI defined as:

16

$$17 \quad \text{YSI}_{\text{TF}} = (\text{YSI}_T - \text{YSI}_H) \times \frac{L_{\text{TF}} - L_H}{L_T - L_H} + \text{YSI}_H \quad (1)$$

18

19 This rescaling eliminates sources of systematic
20 uncertainty, such as errors in the methane and air
21 flowrates. Furthermore, it allows the new results to be
22 compared quantitatively with a database containing
23 measured YSIs for hundreds of organic compounds
24 [19]. The parameters YSI_T and YSI_H are constants that
25 define the YSI scale; their values – 170.9 and 36.0 –
26 were taken from the database so that the newly
27 measured YSIs would be on the same scale for a direct
28 comparison.

29 Figure 1a shows the apparatus used in these
30 measurements. For all the flames, the gas-phase
31 flowrate of air is 50,000 cm^3/min and the gas-phase
32 flowrates of dopant, CH_4 , and N_2 , are 0.395 cm^3/min ,
33 282.425 cm^3/min , and 112.18 cm^3/min , respectively.
34 Mass flow controllers actively governed the flowrates
35 of the gas-phase components (CH_4 and N_2). A syringe
36 pump controlled the injection rates of the liquid
37 dopants into the gaseous CH_4/N_2 mixture. SI A lists
38 the liquid-phase flowrates calculated for each test
39 compound to produce the target gas-phase dopant
40 flowrate, and the property values used in these
41 calculations. Resistive tapes heated the fuel line to at
42 least 70 °C and above, depending on the test
43 compounds, and the burner to 170 °C. Given this

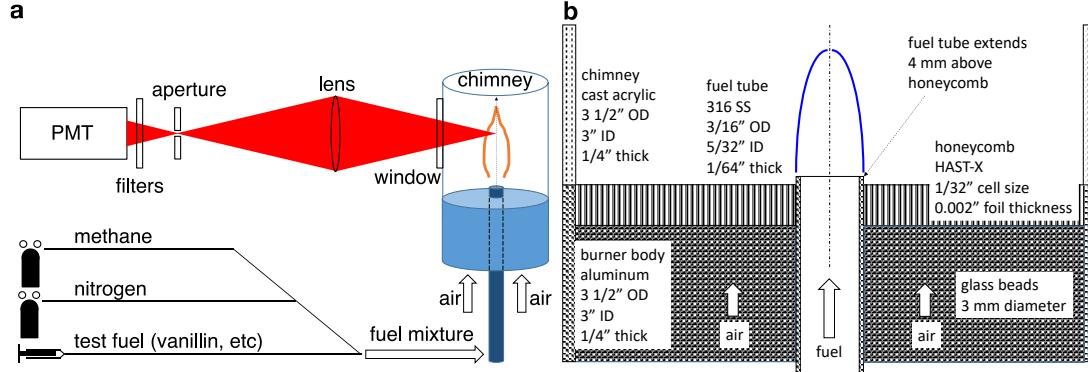


Figure 1. (a) Schematic diagram of the apparatus for measuring L . (b) Details of the specific burner.

1 5000 $\mu\text{mol/mol}$ of each solution was injected into the
 2 flame, values of L_{TF} , L_{H} , and L_{T} were measured for
 3 these solutions, and YSI_{TF} was calculated from Eq.
 4 (1). SI C shows that the L of E and 24BZA mixture
 5 increased linearly with the 24BZA mole fraction,
 6 which experimentally confirms that the components
 7 were not condensing in the fuel delivery system.

8 Each YSI was measured three times and then
 9 averaged. The random uncertainty is estimated to be
 10 $\pm 2\%$ based on the standard deviation of the measured
 11 values for the internal standard. The systematic
 12 uncertainty is estimated to be $\pm 1\%$, mainly due to
 13 uncertainty in the ratio of the mass densities between
 14 species. There is an additional uncertainty when
 15 comparing the new measurements with the earlier
 16 measurements in [19], which we estimate to add $\pm 2\%$
 17 based on the measured values of the internal standard
 18 versus its value in [19]. Overall, we estimate that the
 19 uncertainty in the measured YSI is $\pm 5\%$ or ± 5.0 ,
 20 whichever is larger. The total uncertainty of $\pm 5\%$ is
 21 supported by previous results including: (1)
 22 agreement between YSIs measured with different soot
 23 diagnostics [22], (2) correlation between measured
 24 YSIs and sooting tendencies based on smoke point
 25 [23], (3) agreement between measured YSIs of
 26 mixtures and linear mixing rules [24], and (4)
 27 agreement between measured YSIs and YSIs
 28 simulated with detailed kinetic mechanisms [25].

29

30

31 2.2 Multivariate linear regression

32

33 To gain a systematic understanding of the
 34 structural effect on the aromatics' sooting tendencies,
 35 an MLR model for YSI prediction was developed with
 36 diverse types of descriptors representing i) functional

37 group contribution, ii) substituent positional
 38 isomerism, and iii) the chemical stability of fuel
 39 radicals.

40 Chemical descriptors were calculated to
 41 parameterize the fuel molecules as inputs into the
 42 MLR model. First, the functional group effect was
 43 accounted for by counting the number of each
 44 functional group in the substituent of the aromatic
 45 compounds. The substituents found in the compounds
 46 in Table 1 include hydroxyl, methoxy, formyl,
 47 methyl, and ethyl, all commonly observed in lignin-
 48 based biofuels. Moreover, the effect of positional
 49 isomerism was considered by quantifying the
 50 instances of ortho-, meta-, and para-substitutions
 51 (N_{ortho} , N_{meta} , N_{para}) in di- and tri-substituted aromatic
 52 oxygenates.

53 To account for the chemical stability of the fuel
 54 radicals, we utilized the standard enthalpy of
 55 formation ($\Delta H_{\text{f,RSR}}$) of resonance-stabilized radicals
 56 (RSRs) formed from the weakest bond fission
 57 reaction: Parent aromatic $\rightarrow \bullet\text{RSR} + \bullet\text{R}$, where the R
 58 represents the co-product radicals

59 from the bond fission reactions, such as H, CH_3 ,

60 CH_3O , etc.

61 Kim et al. [8], who previously employed $\Delta H_{\text{f,RSR}}$
 62 for YSI prediction, calculated the $\Delta H_{\text{f,RSR}}$ of each
 63 aromatic compound using an equation derived from
 64 the bond dissociation enthalpy (BDE) definition:

65

$$66 \Delta H_{\text{f,RSR}} = \Delta H_{\text{BDE}} + \Delta H_{\text{f,parent}} - \Delta H_{\text{f,R}} \quad (2)$$

67

68 , where ΔH_{BDE} is the weakest BDE, and $\Delta H_{\text{f,parent}}$ and
 69 $\Delta H_{\text{f,R}}$ represent the standard enthalpy of formation of
 70 the parent aromatic compound and the co-product
 71 radical R, respectively.

Table 1. Measured YSI (YSI_{EXP}) for 42 single-ring aromatic compounds.

Test Fuel	YSI_{EXP}	Test Fuel	YSI_{EXP}	Test Fuel	YSI_{EXP}
toluene	$170.9 \pm 7.7^{\text{a}}$	4-methylanisole	$123.0 \pm 6.2^{\text{b}}$	1,2-benzenediol (catechol)	$56.8 \pm 5.0^{\text{b}}$
ethylbenzene	$216.0 \pm 10.8^{\text{a}}$	3-methylanisole	$126.0 \pm 6.3^{\text{b}}$	4-methoxyphenol	$54.9 \pm 5.0^{\text{b}}$
phenol	$81.3 \pm 5.0^{\text{b}}$	2-methylanisole	$122.0 \pm 6.1^{\text{b}}$	3-methoxyphenol	$64.1 \pm 5.0^{\text{b}}$
Anisole	$111.0 \pm 5.6^{\text{a}}$	4-methylbenzaldehyde (p-tolualdehyde)	$176.7 \pm 8.8^{\text{b}}$	2-methoxyphenol	$64.0 \pm 5.0^{\text{b}}$
benzaldehyde	$119.0 \pm 6.0^{\text{b}}$	3-methylbenzaldehyde (m-tolualdehyde)	$188.0 \pm 9.4^{\text{b}}$	2-hydroxybenzaldehyde	$114.6 \pm 5.7^{\text{b}}$
1,4-dimethylbenzene (p-xylene)	$202.0 \pm 10.1^{\text{a}}$	2-methylbenzaldehyde (o-tolualdehyde)	$186.1 \pm 9.3^{\text{b}}$	4-methoxybenzaldehyde	$116.8 \pm 5.8^{\text{b}}$
1,3-dimethylbenzene (m-xylene)	$221.6 \pm 11.0^{\text{a}}$	1,4-diethylbenzene	$270.7 \pm 13.5^{\text{a}}$	3-methoxybenzaldehyde	$121.8 \pm 6.1^{\text{b}}$
1,2-dimethylbenzene (o-xylene)	$200.0 \pm 10.0^{\text{a}}$	1,3-diethylbenzene	$320.9 \pm 16.0^{\text{a}}$	1,3,5-trihydroxybenzene	$9.7 \pm 5.0^{\text{b}}$
1-ethyl-4-methylbenzene	$257.1 \pm 12.9^{\text{a}}$	1,2-diethylbenzene	$376.3 \pm 18.8^{\text{a}}$	1,2,4-trihydroxybenzene	$15.8 \pm 5.0^{\text{b}}$
1-ethyl-3methylbenzene	$278.0 \pm 13.9^{\text{a}}$	4-ethylphenol	$129.2 \pm 6.5^{\text{b}}$	1,2,3-trihydroxybenzene	$34.0 \pm 5.0^{\text{b}}$
1-ethyl-2methylbenzene	$267.0 \pm 13.4^{\text{a}}$	3-ethylphenol	$134.8 \pm 6.7^{\text{b}}$	4-hydroxy-3-methoxybenzaldehyde (vanillin)	$47.7 \pm 5.0^{\text{b}}$
4-methylphenol (p-cresol)	$104.4 \pm 5.2^{\text{b}}$	2-ethylphenol	$118.9 \pm 5.9^{\text{b}}$	2-hydroxy-3-methoxybenzaldehyde (o-vanillin)	$69.7 \pm 5.0^{\text{b}}$
3-methylphenol (m-cresol)	$107.0 \pm 5.4^{\text{b}}$	1,4-benzenediol (hydroquinone)	$37.8 \pm 5.0^{\text{b}}$	2-hydroxy-4-methoxybenzaldehyde (24BZA)	$64.2 \pm 5.0^{\text{b}}$
2-methylphenol (o-cresol)	$101.9 \pm 5.1^{\text{b}}$	1,3-benzenediol (resorcinol)	$34.1 \pm 5.0^{\text{b}}$	2-hydroxy-5-methoxybenzaldehyde (25BZA)	$56.4 \pm 5.0^{\text{b}}$

^a From McEnally et al. [19], ^b Present work

1 While $\Delta H_{f,R}$ values were sourced from the NIST
 2 Chemistry WebBook database [26], not all $\Delta H_{f,par}$
 3 values were available there. Therefore, we calculated
 4 these $\Delta H_{f,par}$ values using quantum mechanical
 5 methods, employing the Gaussian 16 software suite
 6 [27] (Section 2.3, *vide infra*). This approach involved
 7 quasi-isodesmic reactions with CH_4 and C_6H_6 ,
 8 ensuring the preservation of the aromatic chemical
 9 environments of both reactants and products for more
 10 accurate heat of formation calculations [28]. A
 11 comprehensive list of all collected descriptors for the
 12 42 compounds used in the MLR model is available in
 13 the Supplemental Material (Table SI D.).

14 Among all the descriptors described above, the
 15 most relevant descriptors were selected using LASSO
 16 (Least Absolute Shrinkage and Selection Operator)
 17 regularization [29], effectively reducing prediction
 18 variance by adjusting or nullifying coefficients of
 19 descriptors in the MLR model. Additionally, the
 20 statistical significance of each descriptor was further
 21 evaluated using SHAP (Shapley Additive
 22 exPlanations) [30] values.
 23

24 2.3 Quantum mechanics calculation

25 We adopted the M06-2X density functional along
 26 with the def2-TZVP basis set for all geometry
 27 optimizations, single-point energy calculations, and
 28 Hessian calculations. The M06-2X/def2-TZVP level
 29 of theory produces energy results with 1-2 kcal/mol
 30 uncertainty, while preventing excessive amounts of
 31 spin contamination [31]. Verification of transition
 32 states was achieved by detecting a singular imaginary
 33 frequency, while intrinsic reaction coordinate analysis
 34 was performed to ascertain the associated reactants
 35 and products for each identified transition state. The
 36 ALFABET (A machine-Learning derived, Fast,
 37 Accurate Bond dissociation Enthalpy Tool) [32] was
 38 utilized for determining the weakest bond in aromatic
 39 compounds and estimating its bond dissociation
 40 enthalpy (BDE), whose uncertainty bound is known
 41 to be within 1 kcal/mol for most neutral organic
 42 compounds consisting of C, H, O, and N atoms. All
 43 quantum-mechanical calculations were conducted
 44 using the Gaussian 16 program suite [27].
 45

46 3. Results and discussion

47 3.1 YSIs of aromatic compounds of interest

48 We expanded the YSI measurement database by
 49 conducting YSI measurements on additional 30
 50 aromatic oxygenates, resulting in an updated database
 51 that now encompasses 5 mono-, 30 di-, and 7 tri-
 52 substituted compounds, as detailed in Table 1. These
 53 compounds feature diverse substituents, including
 54 hydroxyl, methoxy, and formyl groups commonly
 55 found in biomass and methyl and ethyl groups
 56 prevalent in petroleum products positioned at
 57 different locations.

58 As described in Table 1, the measured YSIs of
 59 aromatics tend to be lower when there are oxygenated

60 substitutions, which can be seen by comparing the
 61 YSI of toluene to that of phenol, anisole, and
 62 benzaldehyde. On the other hand, the substitution of
 63 alkyl groups (methyl or ethyl) leads to higher soot
 64 emission, as illustrated by the >200 YSIs from xylene
 65 and ethyl-methyl-benzene isomers. Interestingly, the
 66 YSIs of bi-substituted and tri-substituted aromatics
 67 indicate a significant impact of positional isomerism
 68 on the sooting tendency. For example, catechol (1,2-
 69 benzenediol) has ~20 units higher YSI than its
 70 positional isomers, resorcinol (1,3-benzenediol) and
 71 hydroquinone (1,4-benzenediol).
 72

73 This large range in YSIs of single ring aromatic
 74 compounds, spanning from 9.7 (1,3,5-
 75 trihydroxybenzene) to 376.3 (1,2-diethylbenzene),
 76 motivated the statistical analysis of the YSI database
 77 using an MLR model in the following section.
 78

79 3.2 Multivariate Linear Regression

80 The developed MLR model incorporates LASSO
 81 for descriptor selection and the fitted coefficients of
 82 each descriptor as follows:
 83

$$84 \frac{\text{YSI}_{\text{EXP}}}{\text{MW}} = 0.54N_{\text{methyl}} + 0.98N_{\text{ethyl}} \quad (3)$$

$$85 -1.08N_{\text{hydroxyl}} - 0.34N_{\text{methoxy}}$$

$$86 -0.08N_{\text{para}} + 0.18\Delta H_{f,RSR}$$

87 , where MW represents the molecular weight of the
 88 tested fuel. Figure 2a presents the parity plot for the
 89 developed MLR model. The model performs strongly
 90 in predicting sooting tendencies, as evidenced by the

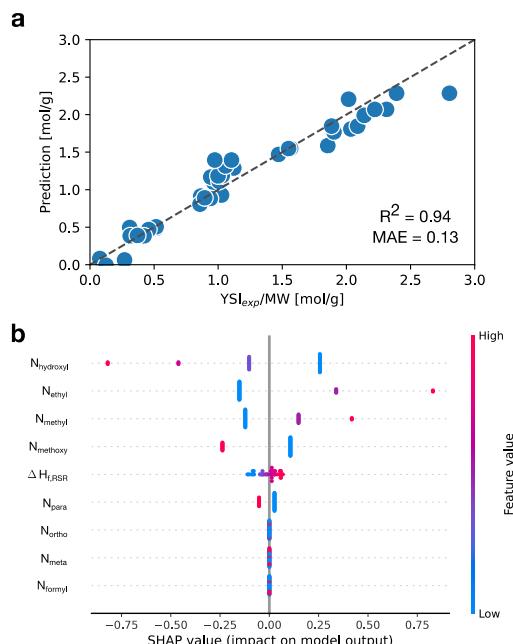
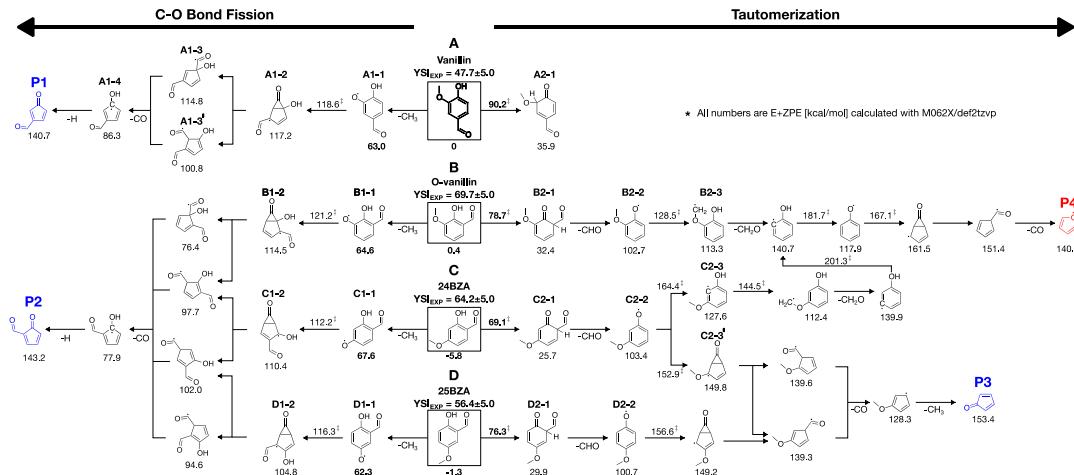


Figure 2. (a) Parity plot for YSI/MW prediction with multivariate linear regression model using LASSO. (b) SHAP values for features used in the model.

1 R^2 value of 0.94 and a mean absolute error (MAE) of
 2 0.13 across 42 compounds.
 3 Analysis of the model's fitted coefficients in Eq. (3)
 4 reveals insights into the impact of various factors on
 5 the normalized YSI. The coefficients associated with
 6 different functional groups indicate their quantitative
 7 contribution to the sooting tendency of aromatics;
 8 more methyl and ethyl groups increase the YSI, while
 9 hydroxyl and methoxy groups mitigate the soot
 10 emission. Meanwhile, the fitted coefficient for N_{para} is
 11 negative, implying a lower YSI of di- and tri-
 12 substituted aromatics in the para-position, as opposed
 13 to those substituted in ortho- and meta-positions.
 14 Notably, the positive coefficients of $\Delta H_{\text{f,RSR}}$ align
 15 with Kim et al.'s research [8], which showed the
 16 positive correlation between YSI/MW and $\Delta H_{\text{f,RSR}}$ of
 17 15 compounds. This consistency implies that the
 18 resonance-stabilized structure of the fuel radical is
 19 still one of the important features for understanding
 20 the sooting tendency of di- and tri-substituted
 21 aromatics.

22 Figure 2b displays the SHAP values for all the
 23 descriptors in our model, shedding light on their
 24 relative importance and impact on the model's
 25 predictions. It is observed that descriptors like N_{ortho} ,
 26 N_{meta} , N_{formyl} were excluded through the LASSO
 27 process.


28 Despite the effectiveness of the developed
 29 regression model in predicting $\text{YSI}_{\text{EXP}}/\text{MW}$, there are
 30 still outliers presenting larger errors than the MAE.
 31 Moreover, the current YSI database includes only a
 32 limited number of positional isomers of di- and tri-
 33 substituted compounds, which may have led to the
 34 statistical insignificance of N_{ortho} and N_{meta} in SHAP
 35 analysis (Fig. 1b). This lack of significance should not
 36 be misinterpreted as invalidating the potential impact
 37 of ortho and meta substitutions on the YSI values of
 38 certain compounds. This potential influence is clearly
 39 shown by the variations in the YSI values of

40 diethylbenzene isomers, as listed in Table 1. The
 41 current model does not possess the capacity to delve
 42 into how positional isomerism affects reaction
 43 pathways. To address this limitation of the MLR
 44 model, we conducted mechanistic studies that
 45 elucidate substituent effects on sooting tendencies
 46 with quantum-mechanical calculations, particularly
 47 for four vanillin isomers having all hydroxyl, methoxy,
 48 and formyl groups altogether.

49
 50 **3.3 Mechanistic studies – substituent effects on**
 51 **sooting tendencies of vanillin isomers**

52 Figure 3 illustrates the proposed thermal
 53 decomposition pathways of four vanillin isomers and
 54 their calculated ground-state energies with zero-point
 55 energy correction ($E+\text{ZPE}$). As noted, the selected
 56 vanillin isomers show vastly different YSI depending
 57 on the positional isomerism. Vanillin, where the
 58 methoxy and formyl groups are attached at ortho- and
 59 para-position relative to hydroxyl groups, has the
 60 lowest YSI of 47.7 among the tested isomers.
 61 Meanwhile, by simply relocating the formyl groups to
 62 ortho-position (*o*-vanillin), its YSI increases by 22.0
 63 units. Interestingly, YSIs of vanillin isomers
 64 gradually decrease as methoxy groups are away from
 65 the hydroxyl group, as can be inferred by comparing
 66 *o*-vanillin, 24BZA, and 25BZA.

67 We posited that the soot formation from vanillin
 68 isomers is initiated by unimolecular thermal
 69 decomposition rather than bimolecular hydrogen
 70 abstraction, especially in the diffusion flame burner
 71 used in the present study. This assumption is based on
 72 a relatively low dissociation temperature of vanillin.
 73 Wu et al. [14] executed a microtubular experiment on
 74 the vanillin's thermal decomposition with a residence
 75 time of 10 – 100 μs , where they observed the vanillin
 76 starts to dissociate around 850 K. This temperature
 77 corresponds to \sim 1 cm height above the burner (HAB)

Figure 3. Thermal decomposition pathway of four vanillin isomers, starting from the C-O bond fission or tautomerization.

1 of the present experiment, while the flame tip is
2 located at ~6 cm HAB [33]. The reactive radicals such
3 as H, OH, and CH₃ usually do not reach this lower part
4 (~1 cm) of diffusion flame; thus, the bimolecular
5 hydrogen abstraction by these reactive radicals hardly
6 competes with the fast-unimolecular reactions of
7 vanillin. Still, it is noteworthy that the bimolecular
8 reaction of “vanillin + OH = product” favors hydrogen
9 abstractions at the formyl groups [34]; thus, its
10 subsequent reactions may resemble those of the
11 tautomerization pathway in Figure 3 (*vide infra*
12 Section 3.3.2).

13 The unimolecular decomposition of the vanillin
14 isomers can be initiated either through i) the C-O bond
15 fission of the methoxy group, which is the weakest
16 bond, or through ii) tautomerization, where a
17 hydrogen atom in the hydroxyl group migrates to
18 another carbon atom to form a ketone. The details of
19 each pathway are described below.

20

21 3.3.1 C-O bond fission

22

23 Breaking the weakest C-O bond in the methoxy
24 group of vanillin (YSI=47.7) makes a phenoxy radical
25 that readily eliminates the CO through intermediate
26 radicals with 3-membered rings (A → A1-1 → A1-2
27 → A1-3/A1-3' → A1-4) [35]. The resultant hydroxyl
28 and formyl substituted cyclopentadienyl radical (A1-
29 4) undergoes subsequent O-H bond fission (A1-4 →
30 P1), culminating in the formation of P1. Similarly, the
31 C-O bond fission of other vanillin isomers leads to the
32 formation of P2, which is a positional isomer of P1.
33 Both P1 and P2 can potentially lose a formyl group,
34 forming a radical that leads to the creation of
35 cyclopentadienone (P3). Cyclopentadienone is known
36 for its propensity to undergo further unimolecular
37 decomposition, resulting in cyclobutadiene and
38 carbon monoxide through ring contraction and CO
39 elimination [36]. Given its 4-membered cyclic and
40 unstable hydrocarbon structure, cyclobutadiene can
41 break down further, generating acetylenes.
42 Consequently, the C-O bond fission of vanillin
43 isomers minimally contributes to soot formation,
44 resulting in relatively smaller species, such as
45 acetylene.

46 The mechanistic study above indicates that the C-
47 O bond fission alone does not fully account for the
48 differences in YSI_{EXP} across the isomers. In this
49 regard, we postulated that the tautomerization
50 pathway may be where the positional isomerism
51 effect originated.

52

53 3.3.2 Tautomerization

54

55 Figure 3 shows that the tautomerization has a
56 higher energy barrier than C-O bond fission in all the
57 tested vanillin isomers. Vanillin tautomerization faces
58 an energetic barrier of 90.2 kcal/mol (A → A2-1),
59 while its C-O bond fission energy is only 63.0
60 kcal/mol (A → A1-1). This drastically different
61 energy barrier indicates that the C-O bond cleavage is

62 vanillin's single dominant dissociation pathway,
63 leading to its lowest YSI among the four isomers.

64 However, other vanillin isomers – *o*-vanillin,
65 24BZA, and 25BZA – have a relatively lower energy
66 barrier of 74.9 – 78.3 kcal/mol for the tautomerization
67 pathway. Although this is still higher than the C-O
68 bond fission barrier, the tautomerization channel can
69 compete with C-O bond fission owing to the different
70 nature of the transition state: the C-O bond fission
71 proceeds through a loose transition state; thus, its rate
72 coefficient decreases more drastically at low pressure
73 than the tautomerization that goes through a tight
74 transition state [37]. Considering the present
75 experiment was conducted at atmospheric pressure,
76 the pressure effect may lead to significant reaction
77 flux via tautomerization. Moreover, tunneling effects
78 are more facile through a tight transition state [37],
79 especially when it involves H migration, making the
80 tautomerization channel competitive to C-O fission
81 despite a higher energy barrier.

82 Following the tautomerization of *o*-vanillin (B →
83 B2-1), its weakest bond shifts to the C-C bond
84 between the formyl group and the α -carbon.
85 Subsequent C-C bond fission (B2-1 → B2-2) leads to
86 the loss of the formyl group and the formation of a
87 phenoxy radical (B2-2). Interestingly, when the
88 methoxy group is adjacent to the radical center of the
89 phenoxy radical, like in *o*-vanillin, the hydrogen in the
90 methoxy group easily migrates to the radical center
91 [38] (B2-2 → B2-3). Once it migrates, the subsequent
92 reactions dispose of all oxygen atoms from the
93 molecules, forming the cyclopentadienyl radical (P4).
94 The P4 radical has been known as a strong soot
95 precursor [39], and it explains the highest YSI (69.7)
96 of *o*-vanillin among the tested isomers.

97 On the other hand, the phenoxy radical from the
98 tautomerization of 24BZA (C2-2) has a relatively
99 higher energy barrier to forming a P4 radical owing to
100 the longer distance between the phenoxy radical
101 center and the methoxy group. Thus, the P4 formation
102 pathway (C2-2 → C2-3) can compete with the CO
103 disposal pathway (C2-2 → C2-3'), with a similar
104 energy barrier (61 kcal/mol vs. 49.5 kcal/mol). The
105 CO disposal from phenoxy radical results in the
106 formation of P3, which quickly dissociates to CO and
107 two acetylenes [36] and thus minimally contributes to
108 soot formation. Consequently, the 24BZA has a lower
109 YSI (64.2) compared to *o*-vanillin.

110 Lastly, the phenoxy radical from 25BZA's
111 tautomerization (D2-2) almost exclusively leads to P3
112 formation because the methoxy group is located at the
113 para-position, making its YSI as low as 56.4. The
114 mechanistic study on 25BZA revealed that its low
115 YSI_{EXP} is due to the comparatively least interaction
116 between the methoxy group and the radical center.
117 This observation aligns with the negative coefficient
118 of N_{para} in the MLR model.

119 The mechanistic study above clearly suggests that
120 the subtle change in the positional isomerism of
121 formyl, methoxy, and hydroxyl groups can
122 significantly alter the thermal dissociation pathway of

1 vanillin isomers, thus explaining the varying YSI
2 measurements observed.

3 **4. Conclusion**

6 The present study examined the sooting tendencies
7 of mono-, di-, and tri-substituted aromatic
8 oxygenates, focusing especially on the role of
9 different functional groups and their positional
10 isomerism. A comprehensive yield sooting index
11 (YSI) database for 42 single-ring aromatic
12 compounds, including 30 new entries, was
13 established. Leveraging the curated data, a
14 multivariate linear regression (MLR) model was
15 developed for YSI prediction. The fitted coefficients
16 of the developed MLR model indicated a positive
17 contribution of $\Delta H_{f,RSR}$, N_{methyl} , and N_{ethyl} to the YSI,
18 while the N_{hydroxy} , N_{methoxy} , and N_{para} coefficients
19 negatively contribute to the YSI. A mechanistic study
20 was performed on the thermal decomposition pathway
21 of vanillin and its isomers to understand the effect of
22 substituent position in aromatic oxygenates. The
23 mechanistic study suggested that the C-O bond fission
24 of vanillin and its isomers led to their complete
25 breakdown, minimally contributing to soot formation.
26 However, *o*-vanillin and 24BZA can form potent soot
27 precursors through tautomerization, explaining their
28 high YSI compared to the other isomers. Interestingly,
29 the reaction pathway following the tautomerization
30 has a strong sensitivity to the distance between the
31 hydroxyl and methoxy group, which aligns with the
32 positive contribution of N_{para} in the MLR model.
33 These insights, combining statistical and theoretical
34 methodologies, contribute to developing lignin-based
35 biofuels with reduced soot emissions, promoting the
36 creation of environmentally friendly fuel alternatives.

37 **Declaration of competing interest**

39
40 The authors declare that they have no known
41 competing financial interests or personal relationships
42 that could have appeared to influence the work
43 reported in this paper.

44 **Acknowledgements**

47 This journal article was developed based on
48 funding from the Alliance for Sustainable Energy,
49 LLC, Managing and Operating Contractor for the
50 National Renewable Energy Laboratory for the U.S.
51 Department of Energy. It was conducted as part of the
52 Co-Optimization of Fuels & Engines (Co-Optima)
53 project sponsored by the Bioenergy Technologies and
54 Vehicle Technologies Offices of the U.S. Department
55 of Energy. This work for CSU was supported by the
56 Colorado State University startup funds for PI
57 (Seonah Kim) and the U.S. National Science
58 Foundation award CBET 2210894. Computer time
59 was provided by the NSF Extreme Science and
60 Engineering Discovery Environment (XSEDE, now
61 ACCESS), Grant no. TG-CHE210034. P.B. was

62 supported by a STARS Summer Research Fellowship
63 from Yale College.

64 **Appendix A. Supplementary Information**

65 **References**

66

67

68

69 [1] R.K. Srivastava, N.P. Shetti, K.R. Reddy, E.E. Kwon,
70 M.N. Nadagouda, T.M. Aminabhavi, Biomass utilization
71 and production of biofuels from carbon neutral materials,
72 Environ. Pollut. 276 (2021) 116731.

73 [2] D.P. Ho, H.H. Ngo, W. Guo, A mini review on renewable
74 sources for biofuel, Bioresour. Technol. 169 (2014) 742–
75 749.

76 [3] OECD, F. and A.O. of the U. Nations, OECD-FAO
77 Agricultural Outlook 2021-2030, (2021).

78 [4] V. Ashokkumar, R. Venkarkarthick, S. Jayashree, S.
79 Chuetor, S. Dharmaraj, G. Kumar, W.-H. Chen, C.
80 Ngamcharussrivichai, Recent advances in lignocellulosic
81 biomass for biofuels and value-added bioproducts - A
82 critical review, Bioresour. Technol. 344 (2022) 126195.

83 [5] A.T. Hoang, H.C. Ong, I.M.R. Fattah, C.T. Chong, C.K.
84 Cheng, R. Sakthivel, Y.S. Ok, Progress on the
85 lignocellulosic biomass pyrolysis for biofuel production
86 toward environmental sustainability, Fuel Process.
87 Technol. 223 (2021) 106997.

88 [6] W.A. A. Demirbas M.A. Balubaid, A.M. Basahel, M.H.
89 Sheikh, Octane Rating of Gasoline and Octane Booster
90 Additives, Pet. Sci. Technol. 33 (2015) 1190–1197.

91 [7] S. Spatari, H.L. MacLean, Characterizing Model
92 Uncertainties in the Life Cycle of Lignocellulose-Based
93 Ethanol Fuels, Environ. Sci. Technol. 44 (2010) 8773–
94 8780.

95 [8] Y. Kim, B.D. Etz, G.M. Fioroni, C.K. Hays, P.C. St.
96 John, R.A. Messerly, S. Vyas, B.P. Bækkel, F. Guo, C.S.
97 McEnally, L.D. Pfefferle, R.L. McCormick, S. Kim,
98 Investigation of structural effects of aromatic compounds
99 on sooting tendency with mechanistic insight into
100 ethylphenol isomers, Proc. Combust. Inst. 38 (2021)
101 1143–1151.

102 [9] Z. Xiang, F. Guo, D. Curtis, C.S. McEnally, L.D.
103 Pfefferle, J. Zhu, Sooting Tendencies of Phenolic
104 Hydrocarbons, (2022).

105 [10] B.P. Bækkel, C.S. McEnally, P.C.S. John, S. Kim, A.
106 Jain, H. Kwon, Y. Xuan, L.D. Pfefferle, Sooting
107 Tendencies of Aromatic Hydrocarbons With Oxygen-
108 Containing Side-Chains, (2020).

109 [11] W. Wang, Z. Zhang, D. Shi, Y. Huang, L. Zhou, Study
110 of soot formations in co-flow laminar diffusion flames of
111 n-heptane and oxygenated aromatic biofuels from
112 atmospheric condition to 2.3 bar, Fuel. 297 (2021)
113 120753.

114 [12] B.D. Etz, G.M. Fioroni, R.A. Messerly, M.J. Rahimi,
115 P.C. St. John, D.J. Robichaud, E.D. Christensen, B.P.
116 Bækkel, C.S. McEnally, L.D. Pfefferle, Y. Xuan, S.
117 Vyas, R.S. Paton, R.L. McCormick, S. Kim, Elucidating
118 the chemical pathways responsible for the sooting
119 tendency of 1 and 2-phenylethanol, Proc. Combust. Inst.
120 38 (2021) 1327–1334.

121 [13] C. Isola, H.L. Sieverding, A.M. Numan-Al-Mobin, R.
122 Rajappagowda, E.A. Boakye, D.E. Raynie, A.L.

1 Smirnova, J.J. Stone, Vanillin derived from lignin
2 liquefaction: a sustainability evaluation, *Int. J. Life Cycle
3 Assess.* 23 (2018) 1761–1772.

4 [14] X. Wu, Z. Pan, S. Bjelić, P. Hemberger, A. Bodí,
5 Unimolecular thermal decarbonylation of vanillin stifled
6 by the bimolecular reactivity of methyl-loss intermediate,
7 *J. Anal. Appl. Pyrolysis.* 161 (2022) 105410.

8 [15] M. Pelucchi, C. Cavallotti, A. Cuoci, T. Faravelli, A.
9 Frassoldati, E. Ranzi, Detailed kinetics of substituted
10 phenolic species in pyrolysis bio-oils, *React. Chem. Eng.*
11 4 (2019) 490–506.

12 [16] E.-J. Shin, M.R. Nimlos, R.J. Evans, A study of the
13 mechanisms of vanillin pyrolysis by mass spectrometry
14 and multivariate analysis, *Fuel.* 80 (2001) 1689–1696.

15 [17] C.S. McEnally, L.D. Pfefferle, Improved sootting
16 tendency measurements for aromatic hydrocarbons and
17 their implications for naphthalene formation pathways,
18 *Combust. Flame.* 148 (2007) 210–222.

19 [18] J. Zhu, J.V. Alegre-Requena, P. Cherry, D. Curtis, B.G.
20 Harvey, M.A. Jabed, S. Kim, C.S. McEnally, L.D.
21 Pfefferle, J.-D. Woodroffe, Sooting tendencies of
22 terpenes and hydrogenated terpenes as sustainable
23 transportation biofuels, *Proc. Combust. Inst.* 39 (2023)
24 877–887.

25 [19] C.S. McEnally, D.D. Das, L.D. Pfefferle, Yield Sooting
26 Index Database Volume 2: Sooting Tendencies of a Wide
27 Range of Fuel Compounds on a Unified Scale, (2017).

28 [20] J. Gau, D. Das, C.S. McEnally, D. Giassi, N. Kempema,
29 M. Long, Yale Coflow Burner Information and CAD
30 Drawings, (2017).

31 [21] B. Franzelli, M. Roussillo, P. Scouflaire, J. Bonnety, R.
32 Jalain, T. Dormieux, S. Candel, G. Legros, Multi-
33 diagnostic soot measurements in a laminar diffusion
34 flame to assess the ISF database consistency, *Proc.
35 Combust. Inst.* 37 (2019) 1355–1363.

36 [22] D.D. Das, P.C. St. John, C.S. McEnally, S. Kim, L.D.
37 Pfefferle, Measuring and predicting sootting tendencies of
38 oxygenates, alkanes, alkenes, cycloalkanes, and
39 aromatics on a unified scale, *Combustion and Flame* 190
40 (2018) 349–364.

41 [23] D.D. Das, C.S. McEnally, T.A. Kwan, J.B. Zimmerman,
42 W.J. Cannella, C.J. Mueller, L.D. Pfefferle, Sooting
43 tendencies of diesel fuels, jet fuels, and their surrogates
44 in diffusion flames, *Fuel* 197 (2017) 445–458.

45 [24] C.S. McEnally, Y. Xuan, P.C. St. John, D.D. Das, A.
46 Jain, S. Kim, T.A. Kwan, L.K. Tan, J. Zhu, L.D.
47 Pfefferle, Sooting tendencies of co-optima test gasolines
48 and their surrogates, *Proceedings of the Combustion
49 Institute* 37 (2019) 961–968.

50 [25] H. Kwon, S. Lapointe, K. Zhang, S.W. Wagnon, W.J.
51 Pitz, J. Zhu, C.S. McEnally, L.D. Pfefferle, Y. Xuan,
52 Sooting tendencies of 20 bio-derived fuels for advanced
53 spark-ignition engines, *Fuel* 276 (2020) 118059.

54 [26] P.J. Linstrom, W.G. Mallard, The NIST Chemistry
55 WebBook: A Chemical Data Resource on the Internet, *J.
56 Chem. Eng. Data.* 46 (2001) 1059–1063.

57 [27] M. J. Frisch, et al. Gaussian 16, Rev. C.01, (2016)
58 Wallingford, CT.

59 [28] A. Karton, B. Chan, Accurate Heats of Formation for
60 Polycyclic Aromatic Hydrocarbons: A High-Level Ab
61 Initio Perspective, *J. Chem. Eng. Data.* 66 (2021) 3453–
62 3462.

63 [29] R. Tibshirani, Regression Shrinkage and Selection Via
64 the Lasso, *J. R. Stat. Soc. Ser. B Methodol.* 58 (1996)
65 267–288.

66 [30] S.M. Lundberg, S.-I. Lee, A Unified Approach to
67 Interpreting Model Predictions, in: *Adv. Neural Inf.
68 Process. Syst.*, Curran Associates, Inc., 2017.

69 [31] S. Maier, B. Thapa, K. Raghavachari, G4 accuracy at
70 DFT cost: unlocking accurate redox potentials for
71 organic molecules using systematic error cancellation,
72 *Phys. Chem. Chem. Phys.* 22 (2020) 4439–4452.

73 [32] P.C. St. John, Y. Guan, Y. Kim, S. Kim, R.S. Paton,
74 Prediction of organic homolytic bond dissociation
75 enthalpies at near chemical accuracy with sub-second
76 computational cost, *Nat. Commun.* 11 (2020) 2328.

77 [33] Y. Xuan, G. Blanquart, Numerical modeling of sootting
78 tendencies in a laminar co-flow diffusion flame,
79 *Combust. Flame.* 160 (2013) 1657–1666.

80 [34] Y. Sun, L. Liu, M. Li, X. Chen, F. Xu, Theoretical
81 investigation on the mechanisms and kinetics of
82 OH/NO₃-initiated atmospheric oxidation of vanillin and
83 vanillic acid, *Chemosphere*, Volume 288, Part 2, 2022,
84 132544.

85 [35] L. Pratali Maffei, M. Pelucchi, T. Faravelli, C.
86 Cavallotti, Theoretical study of sensitive reactions in
87 phenol decomposition, *React. Chem. Eng.* 5 (2020) 452–
88 472.

89 [36] A.R. Ghildina, A.D. Oleinikov, V.N. Azyazov, A.M.
90 Mebel, Reaction mechanism, rate constants, and product
91 yields for unimolecular and H-assisted decomposition of
92 2,4-cyclopentadienone and oxidation of cyclopentadienyl
93 with atomic oxygen, *Combust. Flame.* 183 (2017) 181–
94 193.

95 [37] J. Cho, A.W. Jasper, S.J. Klippenstein, R.
96 Sivaramakrishnan, Nonthermal Effects in the
97 Dissociation of HO₂ and Other Carbonyl-Centered
98 Free Radicals, 13th U.S. National Combustion Meeting.
99 (2022).

100 [38] D.J. Robichaud, A.M. Scheer, C. Mukarakate, T.K.
101 Ormond, G.T. Buckingham, G.B. Ellison, M.R. Nimlos,
102 Unimolecular thermal decomposition of
103 dimethoxybenzenes, *J. Chem. Phys.* 140 (2014) 234302.

104 [39] J.A. Mulholland, M. Lu, D.-H. Kim, Pyrolytic growth
105 of polycyclic aromatic hydrocarbons by cyclopentadienyl
106 moieties, *Proc. Combust. Inst.* 28 (2000) 2593–2599.