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Abstract
We develop a quantitative large deviations theory for random hypergraphs, which
rests on tensor decomposition and counting lemmas under a novel family of cut-type
norms. As our main application, we obtain sharp asymptotics for joint upper and
lower tails of homomorphism counts in the r-uniform Erdős–Rényi hypergraph for
any fixed r ! 2, generalizing and improving on previous results for the Erdős–Rényi
graph (r D 2). The theory is sufficiently quantitative to allow the density of the
hypergraph to vanish at a polynomial rate, and additionally yields tail asymptotics
for other nonlinear functionals, such as induced homomorphism counts.
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1. Introduction

1.1. Overview
For a fixed integer r ! 2 and (large) integer n, let Qn;r D Œ0; 1!.

Œn!
r / denote the set

of Œ0; 1!-valued functions on r -sets I D ¹i1; : : : ; irº # Œn! WD ¹1; : : : ; nº. We asso-
ciate elements of Qn;r with edge-weighted r -uniform hypergraphs over Œn! with edge
weights Q.I/, I 2

!Œn!
r

"
. The set Qn;r also parameterizes the collection of inho-

mogeneous Erdős–Rényi measures "Q over unweighted r -uniform hypergraphs (r -
graphs), where for a random r -graph with distribution "Q, each r -set I is included
as an edge independently with probability Q.I/. For the case that Q $ p for some
p 2 .0; 1/, we have that "Q DW "p is the distribution of the Erdős–Rényi r -graph
G DG .r/

n;p .
Our aim is to establish precise estimates, at exponential scale, for probabilities of

rare events for G , and in particular to justify asymptotics (in the large n limit) of the
form

log"p.E/%& inf
®
Ip.Q/ WQ 2 E 0

¯
(1.1)

for general sets of hypergraphs E (viewed as subsets of the discrete cube ¹0; 1º.Œn!r /),
where the infimum is taken over an appropriate “approximation” E 0 of E in the solid
cube Qn;r . Here, Ip.Q/ WD D."Qk"p/ is the relative entropy of "Q with respect to
"p (see (1.17)).

Of particular interest are tail estimates for the number of occurrences of a fixed r -
graph H as a sub-hypergraph of G , which have been the subject of intense activity in
recent years, mainly for the case r D 2 (we review the literature in Section 1.3 below).
Writing V.H/, E.H/ for the vertex and edge sets of an r -graph H , and v.H/, e.H/
for their respective cardinalities, we recall that the homomorphism density of H in a
weighted hypergraph Q 2Qn;r is

t .H;Q/D 1

nv.H/

X
"WV.H/!Œn!

Y
e2E.H/

Q
!
#.e/

"
; (1.2)

where we have extended Q symmetrically to a function on ordered r -tuples, taking
value zero when the coordinates are not all distinct. For the case that QD AG is the
0–1 adjacency tensor of an r -graph G, this is the probability that a uniform random
mapping of the vertices of H into the vertices of G maps the edges of H onto edges
of G. In this case, we abusively write t .H;G/ WD t .H;AG/.

As an application of our main results—namely, the quantitative LDP of The-
orem 3.1 (a consequence of a tensor decomposition lemma (Theorem 2.13)) and
a counting lemma (Theorem 2.15)—we obtain the following instances of (1.1) for
intersections of super/sublevel sets of functionals (1.2). For a sequence of r -graphs



REGULARITY METHOD AND LDP FOR RANDOM HYPERGRAPHS 875

H D .H1; : : : ;Hm/ and ı D .ı1; : : : ; ım/ 2 RmC, define the joint upper-tail rate and
corresponding entropic optimization problem

UTn;p.H; ı/ WD& logP
!
t .Hk;G /! .1C ık/pe.Hk/; 1' k 'm

"
; (1.3)

ˆn;p.H; ı/ WD inf
Q2Qn;r

®
Ip.Q/ W t .Hk;Q/! .1C ık/pe.Hk/; 1' k 'm

¯
; (1.4)

and for ı 2 .0; 1/m the analogous joint lower-tail quantities

LTn;p.H; ı/ WD& logP
!
t .Hk;G /' .1& ık/pe.Hk/; 1' k 'm

"
; (1.5)

‰n;p.H; ı/ WD inf
Q2Qn;r

®
Ip.Q/ W t .Hk;Q/' .1& ık/pe.H/; 1' k 'm

¯
: (1.6)

The scaling by pe.H/ is natural as one checks that E t .H;G /% pe.H/ for the range of
p considered below. For an r -graph H , we write $.H/ for its max-degree—that is,
the maximum over v 2 V.H/ of degH .v/D j¹e 2 E.H/ W v 2 eºj. In the following,
we additionally refer to a hypergraph parameter $0.H/ whose definition is deferred
to (3.15), only noting here that it always lies in the range

1

r

!
$.H/C 1

"
'$0.H/'$.H/C 1 (1.7)

with the lower bound attained (for instance) by stars, and the upper bound attained by
cliques. For our conventions on asymptotic notation, see Section 1.6.

THEOREM 1.1
Fix r -graphs H1; : : : ;Hm. Let $max Dmaxk$.Hk/ and $0max Dmaxk$0.Hk/.
(a) (Joint upper tail). If n!1=#

0
max ( p < 1, then for any fixed ı1; : : : ; ım > 0,

UTn;p.H; ı/!
!
1& o.1/

"
ˆn;p

!
H;ı & o.1/

"
(1.8)

and if n!1=#max ( p < 1, then

UTn;p.H; ı/'
!
1C o.1/

"
ˆn;p

!
H;ıC o.1/

"
: (1.9)

(b) (Joint lower tail). If n!1=#
0
max logn( p < 1, then for any fixed ı1; : : : ; ım 2

.0; 1/,

LTn;p.H; ı/D
!
1C o.1/

"
‰n;p

!
H;ıC o.1/

"
: (1.10)

Remark 1.2
For the proofs of (1.8) and (1.9), we may assume that p 'mink.1C ık/!1=e.Hk/, as
otherwise the bounds hold vacuously. In Section 7.3, we establish (1.9) by an alter-
native argument (similar to the one for the upper bound in (1.10)) which yields a



876 COOK, DEMBO, and PHAM

wider range of p for certain graphs; we refrain from pursuing the widest range of p
that can be obtained by our arguments under various assumptions on H . We remark
that in the graphs setting (r D 2), where asymptotic formulas for ˆn;p.H; ı/ have
been established (see [9], [10]), the upper bound (1.9) is easily obtained by com-
puting the probability of specific events that saturate the upper tail. However, in the
general r -graph setting such formulas have only been obtained in a few cases (see
Corollary 3.2).

Remark 1.3
A similar result holds for mixed upper and lower tails for p) n!1=#

0
max logn. How-

ever, when pD o.1/ the answer is just the lower-tail problem (1.5) for the subcollec-
tion of theHk in the lower tail, together with any in the upper tail for which$.Hk/D
1. This is due to the different speeds for lower- versus upper-tail deviations (of order
nrp vs. nrp#.H/). For similar reasons, it turns out that for p D o.1/ the right-
hand sides of (1.8) and (1.9) are asymptotically equal to ˆn;p.%.H/;%.ı//, where
% denotes restriction to the entries k for which $.Hk/D$min Dmin`$.H`/—see
[10] for the case r D 2 (the idea is the same for general r ) or the proof of Proposi-
tion 9.1. Consequently, the assumption for (1.8) can be relaxed to 1 > p) n!1=#

0
?

for $0? Dmax¹$0.Hk/ W$.Hk/D$minº.

Remark 1.4
By straightforward modifications of our arguments, Theorem 1.1 extends to ran-
dom r -graphs drawn from inhomogeneous Erdős–Rényi measures "P , provided that
P.I / 2 Œcp;Cp! for all I 2

!Œn!
r

"
and some fixed 0 < c < C <1. (One replaces

Ip.Q/ with D."Qk"P / in (1.4) and (1.6).)

Various cases of Theorem 1.1 have been established before, mainly with r D 2
and/or mD 1, with some results holding in a wider range of p; we review the litera-
ture in Section 1.3 below. We note that treating joint tail events (m! 2) is important
for applications to the analysis of general exponential random graph models, a class
of Gibbs distributions on graphs that is widely applied in the social sciences literature
(see [19], [20], [32], [40]).

Our aim is more general than joint tail estimates: in this work we initiate a quan-
titative large deviations theory for random hypergraphs. In particular, in Theorem 3.1
we establish versions of the approximation (1.1) for general sets E at (large) fixed n,
which amount to quantitative large deviation principles (LDPs) for the Erdős–Rényi
measure on r -graphs, extending the qualitative LDP of Chatterjee and Varadhan [21]
for the case r D 2 and fixed p. The approximating sets E 0 are defined under a new
family of tensor norms k * k"B that generalize the matrix cut norm. The main technical
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ingredient for establishing Theorem 3.1 is a decomposition lemma (Theorem 2.13) for
sparse tensors that generalizes the classic Frieze–Kannan decomposition for matrices
(see [42]). The role of the decomposition lemma is analogous to that of Szemerédi’s
regularity lemma in [21]. Combining with an accompanying sparse counting lemma
(Theorem 2.15)—a deterministic result establishing sharp Lipschitz control on the
functionals t .H; */ under the B"-norms—we obtain the upper- and lower-tail bounds
for homomorphism counts as contractions of the general LDPs.

We expect that our results could be applied or extended to other natural distri-
butions on r -graphs. For instance, apart from inhomogeneous Erdős–Rényi r -graphs
(see Remark 1.4 above) one may apply the results of this work to random regular
hypergraphs, in a similar way to how large deviations results for the case r D 2 from
[31] were applied to random regular graphs in [10] and [49].

The B"-norms are the main innovation of this work. (The work [31] relied on the
spectral norm, which is unavailable for tensors.) There are several novel features of
these norms and the associated decomposition and counting lemmas. First, they are
constructed to adapt to the level of sparsity under consideration. Second, as opposed
to typical decomposition lemmas in extremal graph theory, our decomposition lemma
attains a better quantitative bound that is crucial for obtaining Theorem 3.1, by (neces-
sarily) excluding an exceptional set whose probability can be made arbitrarily small.
Finally, both our tensor norm and decomposition lemma make explicit use of the
Boolean nature of the test tensors in order to obtain the nearly optimal quantitative
bound—in particular, in the case r D 2 we improve on the result from [31] for counts
of general graphs H .

In extremal graph theory, the combination of decomposition lemmas (and closely
related regularity lemmas) with counting lemmas is known as a regularity method, and
our results for the B"-norms thus comprise a new regularity method for sparse hyper-
graphs, which we expect will have applications outside of large deviations theory.

Within the context of large deviations, the regularity method approach is quite
flexible, and we demonstrate this with an application to the upper tail for induced
homomorphism counts in Theorem 10.1. We further obtain strong results for the lower
tail of counts of Sidorenko hypergraphs in Theorem 10.2.

In Section 1.2 we review the connections between large deviations problems,
graph limits, and the regularity method, highlighting a special case of one of our
key technical results, the sparse counting lemma. In Section 1.3 we give an overview
of previous works on upper and lower tails for random graphs, and in Section 1.4
we discuss the potential scope and limitations of the regularity method approach to
quantitative LDPs.
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1.2. Large deviation principles and the regularity method
On a conceptual level, the most important antecedent for our results is the seminal
work of Chatterjee and Varadhan [21] establishing an LDP for the Erdős–Rényi graph
(the case r D 2). Their result is a true LDP in the classical sense, in that it establishes
asymptotics of the form (1.1) for subsets E of a fixed topological space Q, where
E 0 is an open/closed approximation of E . It is perhaps unclear how such an LDP
could be formulated in this context, as the Erdős–Rényi measures are on a sequence
of spaces Qn;2 of growing dimension, but an appropriate setting is provided by the
topological space of graphons, which is in some sense the completion of the collection
of all finite graphs of all sizes under a topology induced by the cut norm. This is the
appropriate topology for studying homomorphism densities t .H; */, as these extend
to continuous functionals on graphon space—a consequence of the classic counting
lemma. The key ingredient for the LDP is the compactness of graphon space, which
is a consequence of Szemerédi’s regularity lemma (in fact the Frieze–Kannan weak
regularity lemma in [42] suffices for their purposes). Indeed, graphon theory gives
a topological perspective on the classic regularity method in extremal graph theory,
which is based on the regularity and counting lemmas.

We note that while large deviations theory was first formulated at the (in some
sense “correct”) level of generality of a topological theory by Varadhan [79] in
the 1960s, the topological theory of dense graph limits was developed much more
recently by Lovász, Szegedy, and coauthors (see [13]–[15], [63]). We refer to the
books [18] and [62] for further background on graph limits and the regularity method.

Unfortunately, graphon theory is largely unsuitable for the study of sparse graphs,
such as Erdős–Rényi graphs with p D n!c for any positive constant c > 0. In [17],
Chatterjee poses the problem of developing a sparse graph limit theory that is pow-
erful enough to prove upper-tail asymptotics for sparse Erdős–Rényi graphs. While
there are by now several sparse graph limit theories (see, e.g., [11] and references
therein), we do not know of any that are generally suitable for the study of large
deviations.

The present work bypasses the development of an appropriate sparse
(hyper)graph limit theory by instead developing a sparse hypergraph regularity
method at finite n. As with sparse graph limits, existing sparse regularity tools are
unsuitable for the study of upper-tail large deviations (we review the literature in
Section 2). The main challenge in this context is localization phenomena: that the
underlying mechanisms for upper-tail deviations in the sparse setting are the appear-
ance of dense configurations of o.n2/ edges, which are invisible to the cut-norm
topology. Such localized structures are a general problem for the development of
sparse extensions of the regularity and counting lemmas, and hence for a sparse
graph limit theory. We remark that such localization phenomena do not occur in the
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corresponding problem for lower-tail deviations. As such, asymptotics for extremes
of the lower tail (the probability of containing no copy of a certain graph H ) have
been obtained previously in beautiful works around the KŁR conjecture and the
hypergraph container method (see [4], [66], [71]; see also Remark 2.4).

In place of the cut norm, we introduce a family of tensor norms designed to detect
localization phenomena. A key result is a (deterministic) sparse counting lemma giv-
ing optimal Lipschitz control on homomorphism counts of fixed r -graphs H in large
sparse r -graphs G, which we expect could be useful for other extremal problems
where localization plays an important role. We highlight here a special case of our
sparse counting lemma for homomorphism counts of K.3/4 , the complete 3-graph on
4 vertices (thus K.3/4 contains all 4 possible edges of size 3). Recall that the sym-
metric adjacency tensor for an r -graph G is denoted AG . We say that H 0 is a proper
sub-hypergraph of H if V.H 0/+ V.H/ and E.H 0/ is a strict subset of E.H/.

THEOREM 1.5 (Sparse counting lemma for K.3/4 -counts)
Let p 2 .0; 1/ be arbitrary, and let G1, G2 be two 3-graphs over the common vertex
set Œn! such that

max
I;J;K#Œn!2

ˇ̌
ˇ

X
.i;j;k/2I .2;3/\J .1;3/\K.1;2/

AG1.i; j; k/&AG2.i; j; k/
ˇ̌
ˇ

' "p *
!
n3p3C np2

!
jI j C jJ j C jKj

"
C jI .2;3/ \ J .1;3/ \K.1;2/j

"
(1.11)

for some " 2 .0; 1!, where for I # Œn!2 and a; b 2 ¹1; 2; 3º we write I .a;b/ WD
¹.i1; i2; i3/ W .ia; ib/ 2 I º+ Œn!3. Assume further that

t .H;G1/'Lpe.H 0/ (1.12)

for some L! 1 and all proper sub-hypergraphs H 0 #K.3/4 . Then
ˇ̌
t .K

.3/
4 ;G1/& t .K.3/4 ;G2/

ˇ̌
! "Lp4: (1.13)

The left-hand side of (1.11) is the maximal edge discrepancy between G1 and G2
over sets of the special form I .2;3/\J .1;3/\K.1;2/, which play an analogous role to
the cut sets I ,J + Œn!2 in the definition of the cut norm for 2-graphs. For homomor-
phism densities of general r -graphs H we consider edge discrepancies across struc-
tured sets with more general shapes, with carefully chosen .n;p/-dependent weights
as on the right-hand side of (1.11), which will be crucial for obtaining accurate control
when G1, G2 are sparse. The shapes of structured sets and the weights are summa-
rized by a weighted base system B, which leads to the definition of a norm k * k"B. In
that setup, the bound (1.11) is equivalent up to constant factors to a bound of the form
kAG1 &AG2k"B ' "p for a certain base system B (see Examples 2.7 and 2.9).
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The general sparse counting lemma of Theorem 2.15 roughly states that for a
given r -graph H , if G1, G2 are two (large) r -graphs such that

t .H 0;Gi /DO.pe.H 0//; i D 1; 2; (1.14)

for all proper sub-hypergraphsH 0 #H (in particularG1, G2 areO.p/-sparse, by the
case that H 0 is a single edge) and kAG1 &AG2k"B ' "p for an appropriate choice of
weighted base system B depending on H , then

ˇ̌
t .H;G1/& t .H;G2/

ˇ̌
! "pe.H/; (1.15)

where the implicit constant depends only on H .
The full definition of the B"-norms is a bit notationally involved (as is common

in hypergraph regularity theory), so we first motivate them in Section 2 with a spe-
cial instance for matrices. The key point is that the right-hand side of (1.15) can be
made small compared to the typical value % pe.H/, even when p D o.1/ (the result
is nonasymptotic so p may depend in an arbitrary way on n).

Sparse counting lemmas for the cut norm have been a subject of intense study
ever since a sparse extension of Szemerédi’s regularity lemma was observed by
Kohayakawa [58] and Rödl. Existing sparse counting lemmas establish (1.15) under
different hypotheses, generally assuming that G1 and G2 are both contained in a
sparse pseudorandom “host” graph—effectively ruling out localization phenomena,
which are treated as a nuisance—while only assuming that they are close in the cut
metric, which is sensitive to differences in edge counts only at a macroscopic scale
(over a constant proportion of the vertices). While such versions are effective for
obtaining sparse Ramsey/Turán theorems or certain extreme cases of the lower tails,
they are unsuitable for our purposes of controlling upper tails, which are governed by
localization phenomena. Our assumption (1.14) is weaker than a pseudorandom host
condition, while closeness under a B"-norm is (necessarily) stronger, as these are
designed to be sensitive to localization. We discuss these points further in Section 2.

The accuracy of the B"-norms is only useful for large deviations if the space Qn;r

is sufficiently compact under these norms, in a quantitative (metric entropy) sense.
Indeed, a typical approach to derive a large deviation upper bound is to first derive an
upper bound on certain special sets, and combine them by constructing a covering of
(most of) the space by these special sets. As encountered later in Theorem 6.1, by a
straightforward consequence of the minimax theorem, one has a nonasymptotic large
deviation upper bound taking the form of the right-hand side of (1.1) for the measure
of convex sets E 0. Thus, one obtains large deviation upper bounds for more general
sets E by covering them with convex sets and applying the union bound, leading to an
error term given by the metric entropy of the set E (i.e., the logarithm of the covering
number).
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Suitable control on the metric entropy is established by the decomposition lemma
(Theorem 2.13), which allows general sets E to be efficiently covered by small balls
centered on “structured” tensors. Theorem 2.13 generalizes the Frieze–Kannan
decomposition for matrices, and crucially provides more efficient decompositions
after the (optional) removal of a small set of exceptional tensors.

As an example, in the context of K.3/4 -counts as in Theorem 1.5 above,
Theorem 2.13 implies that the set of all 3-graphs G over Œn! is covered by the
"p-neighborhood (under the norm k * k"B) of a small collection of “structured”
weighted 3-graphs, together with a set E of “exceptional” 3-graphs of measure
P.Gn;p 2 E/ ' pLn3p3 . The structured weighted r -graphs have adjacency tensors
Q that are linear combinations of at most O.L"!2p!2/ Boolean “test tensors” of
the form 1.i;j;k/2I .2;3/\J .1;3/\K.1;2/ , with notation as in Theorem 1.5. The parameter
L! 1 is free to be chosen according to one’s needs; note there is a trade-off between
the measure of the exceptional set E and the size of the covering.

The decomposition lemma thus allows us to cover superlevel and sublevel sets
for homomorphism densities t .H; */, by a small number of sets of diameter O."p/
in the appropriate B"-norm, together with an exceptional set whose measure can be
made small compared to the large deviation rate. The counting lemma then shows that
t .H; */ can only change by O."pe.H// on these sets (recall that (1.11) is equivalent
to such a bound) which allows us to justify the approximation of the upper and lower
tails by (1.4) and (1.6), respectively.

1.3. Previous works
The past decade has seen several results of the form of Theorem 1.1 established for
various ranges of sparsity p, mainly for the case r D 2 (the Erdős–Rényi graph) and
mD 1, and often focusing only on the upper or lower tail. In the present work we aim
for broader LDP-type statements as in (1.1), which can only be expected to hold in a
proper subset of the range of p for which the asymptotics (1.8)–(1.10) are expected
to hold—we discuss this point further in Section 1.4 below.

Many works have obtained asymptotics for UTn;p.H; ı/ and LTn;p.H; ı/ hold-
ing up to constants depending on ı. For the lower tail this is accomplished by Jan-
son’s inequality (see [51], [53]). For the “infamous” upper tail, following the works
[52] and [57] obtaining upper and lower bounds matching up to a factor log.1=p/,
the sharp dependence on n and p was obtained in a wide range of p for triangles (see
[16], [34]), general cliques (see [33]), cycles (see [70]), and stars (see [74]).

Following the LDP of [21] for fixed p and r D 2, the first results establishing
sharp asymptotics for UTn;p.H; ı/ allowing p D n!c took a rather different route
from the one taken here, proceeding through a general study of Gibbs measures on
the hypercube. This began with the influential work of Chatterjee and Dembo [19]
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introducing a new nonlinear large deviations paradigm, further developed in [2], [3],
[38], [39], and [80], with the focus of establishing sufficient conditions for validity of
the naive mean-field approximation for the partition function, a problem of indepen-
dent interest in statistical physics. Large deviation estimates were deduced through
(lossy) approximation arguments, and hence these works could only permit a small
sparsity exponent c.

The more direct approach to the large deviations problem through an appropriate
finite-n regularity method was introduced by the first two authors in [31] for the case
r D 2, where improved ranges for p were obtained by replacing the cut norm with the
spectral norm. The sparse counting lemma step in that work was only sharp for cycle
counts, which is ultimately due to the fact that these can be expressed as moments of
the spectral distribution of the adjacency matrix. For the case of cycle counts, similar
results (and superior in the case of triangles) were independently obtained by Augeri
[2]. The method was further applied to edge eigenvalues of the adjacency matrix in
[31], with a formula for the corresponding entropic optimization problem obtained in
[8]; results on edge eigenvalues of sparser Erdős–Rényi graphs have more recently
appeared in [5] and [7].

The lack of a spectral theory for tensors motivated the development of the B"-
norm regularity method, which is the main technical contribution of this work.

In [50], the upper-tail asymptotic (1.8)–(1.9) was extended to an essentially sharp
range of p for the case (r D 2, m D 1, non-bipartite $-regular H ), with an opti-
mal result for the bipartite case subsequently obtained in [6]. (These works consider
counts of embeddings, which only allow injective maps # in (1.2); while the differ-
ence is negligible in the ranges of p considered here, embedding counts have signif-
icantly different behavior from homomorphism counts when p( n!1=#.) We com-
ment further on the method of [6] and [50] in Section 1.4 below. Very recently (after
the first version of this paper appeared on arXiv) the same method was further devel-
oped to obtain upper-tail asymptotics for induced homomorphism counts of H D C4
in the Erdős–Rényi graph (r D 2) in an essentially optimal range of p (see [22]).

Upper tails for other random graph models besides the Erdős–Rényi distribu-
tion have been studied: G.n;m/ (uniformly random with n vertices and m edges)
in [35]; random regular graphs in [10], [37], and [49]; and sparse inhomogeneous
Erdős–Rényi graphs, such as stochastic block models in [10]. For the case of fixed p,
extensions of the Chatterjee–Varadhan LDP to inhomogeneous Erdős–Rényi graphs
have been established in [12], [47], and [67].

There are only a few works considering hypergraphs with r ! 3. The upper-
tail asymptotic (1.8)–(1.9) was established in [64] for the case of p fixed, m D 1
and H a linear hypergraph (see Example 3.8 below), and more recently in [61]
for general H and n!c.H/ ( p ( 1 for sufficiently small c.H/ > 0, using gen-
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eral nonlinear large deviation tools from [38] (one checks that their proof allows
c.H/D 1=.6e.H//C o.1/). Very recently, the lower-tail asymptotic (1.10) for the
case m D 1 was established in an optimal range of sparsity in [60] by a beautiful
entropy argument (as in [6] and [50] they consider embeddings rather than homomor-
phisms).

There is a parallel line of works establishing asymptotic formulas for the entropic
optimization problems (1.4) and (1.6). For r D 2,mD 1, and fixed p, this was done in
[21] and [64] for the upper tail in a certain region of the .p; ı/-plane. The latter work
extended [21] to counts of linear hypergraphs in dense Erdős–Rényi hypergraphs, and
further characterized the regime of .p; ı/ for which the infimizer is the constant Q$
p in this more general context. In [68], such a regime is provided for the variational
problem corresponding to counts of general hypergraphs. For r D 2 and 1) p)
n!1=#, an asymptotic formula was obtained for the upper tail for all ı > 0 in [65]
(mD 1, H a clique), [9] (mD 1, general H ), and [10] (general m and H ). In [81],
Zhao obtains lower-tail formulas with p fixed or decaying as slowly as n!c.H/ for a
small c.H/ > 0, and certain ranges of ı. For general r , mD 1, and 1) p) n!1=#,
an asymptotic formula for the upper tail is obtained in [61] for the case H is a clique
or the 3-graph depicted in Figure 1 (see Corollary 3.2).

Beyond establishing asymptotic formulas for (joint) upper and lower tails, there
is the refined problem of describing the typical structure of G conditioned on the tail
event. This has been addressed for p fixed in some cases in [21] and [64], and for the
full range of p D o.1/ in [50] for the upper tail with r D 2, mD 1, and H a clique.
More recently (after this paper was posted to the arXiv) the first two authors estab-
lished the conditional structure of Erdős–Rényi graphs conditional on general joint
upper tail events as in (1.3), with pD o.1/ allowed to decay at a certain (suboptimal)
polynomial rates, by combining large deviations results of [31] and the present work
with a stability analysis for solutions of the entropic optimization problem (1.4) estab-
lished in [9] and [10]. In [32], the results on the conditional structure of Erdős–Rényi
graphs were used to establish the typical structure of sparse exponential random graph
models. We mention also the line of works [54]–[56], [69] on the related problem of
determining the typical structure of dense random graphs with constrained edge and
H counts for various choices of H .

1.4. Discussion
Our focus in this work is on the development of quantitative LDP-type statements
as in (1.1) applying to general subsets of Qn;r at large, fixed n, and to translate
these to joint-tail asymptotics as in Theorem 1.1 using a sparse counting lemma. This
approach has the advantage of being quite robust, applying to any functional enjoying
a counting lemma under an appropriate B"-norm—examples include nonmonotone
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functionals such as induced homomorphism counts, as well as nonpolynomial func-
tions such as the B"-norms themselves (or compositions of these with affine maps,
such as centering), which can be viewed as weighted generalizations of the max-cut
functional. The method also applies almost1 equally well to upper- and lower-tail
events.

However, LDPs applying to general sets E can only be expected to hold in a
limited range of sparsity. For instance, under the version of the B"-norms that is
needed to analyze clique counts, for which $.H/D

!v.H/!1
r!1

"
, the LDP only yields

(1.8)–(1.9) for n!1=.#.H/C1/ ( p < 1, whereas the asymptotic should hold for all
p) n!r=#.H/ (up to polylogarithmic factors). For general H we believe our method
could be sharpened to yield the joint upper- and lower-tail asymptotics (1.8)–(1.10)
in the range 1 > p ) n!1=#max ; this would follow in particular from relaxing the
condition (2.16) in the decomposition lemma by a factor p (see also Remark 2.3).
While we can push further than n!1=#max for certainH for which particularly efficient
choices of B"-norm suffice for an accurate counting lemma, in general we believe
the upper and lower tails for t .H;G / should require very different arguments when
p( n!1=#.H/.

Thus, for certain sets E , arguments establishing (1.1) in the optimal range of p
will have to exploit special properties of E once p is below a certain threshold. For the
case of superlevel sets for counts of a fixed regular graph H (the case of upper tails
with r D 2, mD 1, and $-regular H in Theorem 1.1), this has been accomplished in
the optimal sparsity range by a beautiful truncated moment method argument devel-
oped in [50] and further improved for the bipartite case in [6]. The general argument
succeeds in covering the upper-tail event by events on which the discrete gradient of
the subgraph-counting functional is essentially supported on a small set of edges that
they call a “core,” reducing the problem to the (quite technical) task of counting the
possible locations of cores, which they accomplish by exploiting the special structure
of subgraph-counting polynomials. In [50], they also apply their general method to
the upper tail of counts of k-term arithmetic progressions in sparse subsets of Œn!.
While the method is simplest for upper tails of polynomials with nonnegative coef-
ficients, it extends to certain nonmonotone polynomials including induced subgraph

1We say “almost” as there is a technical issue in applying the counting lemma for lower-tail estimates, stemming
from the necessity of the crude upper bound (1.14) for counts of subgraphs. For upper tails this can be enforced
by arguing inductively over the number of edges in H , so that we can restrict to the high-probability event that
such a bound holds for all smaller graphs. However, for the lower tail there is the issue that the bad event that
(1.14) fails is of upper-tail type and hence is much larger than the event we want to estimate. For the proof
of (1.10) we get around this by using the Fortuin–Kasteleyn–Ginibre (FKG) inequality to restrict to the event
that (1.14) holds. This relies on monotonicity of homomorphism counts, which we do not have for induced
homomorphism counts, and hence we do not have a result on the lower tail for the latter. We hope that an
alternative argument for restriction to (1.14) can be found that avoids the use of monotonicity.
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counts (see [50, Theorem 9.1], which is proved in the recent work [22] treating the
upper tail for induced C4-counts).

For lower tails, a beautiful entropic method was recently introduced in [60],
where they obtain the asymptotic (1.10) (for embedding counts rather than homomor-
phism counts) in the optimal sparsity range. This approach makes use of the mono-
tonicity of sublevel sets for embedding counts.

Finally, we note that whereas (1.8)–(1.10) are obtained by the sparse regular-
ity method, we obtain the upper bound (1.9) for joint upper tails in the range p)
n!1=#max by applying a careful tilting argument, using the Efron–Stein inequality to
derive concentration for homomorphism counts (as well as induced homomorphism
counts) of a random tensor sampled from sparse product measures. In Section 7.3 we
give an alternative argument, more along the lines of the proof of (1.8) and (1.10) and
holding in a different range of p, which may be better or worse depending on H .

1.5. Organization
In Section 2 we discuss previous extensions of the regularity method for sparse
graphs, introduce the B" tensor norms (first in the matrix case), and state our general
decomposition and counting lemmas. Section 3 contains our general quantitative
LDPs and some corollaries of Theorem 1.1 obtained by combining with earlier works
on the upper-tail optimization problem ˆn;p.H; ı/. Sections 4–6 contain the proofs
of the counting lemma (Theorem 2.15), decomposition lemma (Theorem 2.13), and
quantitative LDPs (Theorem 3.1). For the proof of Theorem 1.1, we establish (1.8) in
Section 7, (1.10) in Section 8, and (1.9) in Section 9. In Section 10 we give extensions
of Theorem 1.1 to induced homomorphism counts and the lower tail for counts of
Sidorenko hypergraphs.

1.6. Notational conventions
We use C , c, c0, and so on to denote constants that may change from line to line,
understood to be absolute if no dependence on parameters (such as r ) is indicated.
For a (set of) parameter(s) P , we write C.P / for a constant depending only on P .

(Standard) asymptotic notation
For quantities f , g depending on other parameters such as n or H , we write f D
O.g/, f ! g, and g " f to mean jf j' Cg, and f D‚.g/ to mean f ! g ! f . We
indicate dependence of the implied constant on parameters P by writing, for example,
f DOP .g/; f !P g. Notation o.*/, !.*/e),( is with respect to the limit n!1,
with f D o.g/, g D !.f /, f ( g, and g) f being synonymous to the statement
f=g! 0.
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Tensors
Throughout, we consider r fixed independently of n. Denote by Zn;r the set of order-
r tensors of size n (r -tensors), which we view as mappings Z W Œn!r ! R. We equip
Zn;r with the usual `p-norms kZkpp D

P
i1;:::;ir2Œn! jZ.i1; : : : ; ir/j

p . The Euclidean
inner product on Zn;r for any r (including Zn;1 ŠRn) is denoted h*; *i. The orthogo-
nal projection to a subspace W is denoted PW . For a set E #Zn;r , we write hull.E/
for its convex hull.

An r -tensor is symmetric if it is invariant under permutation of the arguments.
We write Sn;r #Zn;r for the set of symmetric r -tensors supported on entries with r
distinct coordinates, An;r # Sn;r for the subset of Boolean tensors, which are natu-
rally associated to r -graphs, and Qn;r WD hull.An;r/, that is, the set of Q 2 Sn;r with
all entries lying in Œ0; 1!. For S 2 Sn;r , we often abusively view its argument as an
unordered set, writing S.I / WD S.i1; : : : ; ir/ for I D ¹i1; : : : ; irº.

Recall the distributions "Q introduced at the start of Section 1.1, which we view
as measures on An;r . We generally deal with random hypergraphs through their adja-
cency tensors in An;r . Unless otherwise stated, P is a probability measure under
which A has distribution "p , so that A is the adjacency matrix for the Erdős–Rényi
hypergraph G DG .r/

n;p , and E is the associated expectation. For Q 2Qn;r , we write
PQ, EQ for probability and expectation under which A has the distribution "Q. The
relative entropy between the Bernoulli.p/ and the Bernoulli.x/ measures on ¹0; 1º is
denoted

Ip.x/ WDD."xk"p/D x log
x

p
C .1& x/ log

1& x
1& p ; x 2 Œ0; 1! (1.16)

(extended continuously from .0; 1/ to Œ0; 1!). With some abuse we use the same nota-
tion for the relative entropy of "Q with respect to "p on An;r , defining

Ip WQn;r ! Œ0;1/; Ip.Q/D
X

1$i1<%%%<ir$n
Ip
!
Q.i1; : : : ; ir/

"
: (1.17)

Note that EAD pJn;r for the adjacency tensor Jn;r of the complete r -graph on n
vertices. That is, Jn;r.i1; : : : ; ir/D 1 if the indices are all distinct and zero otherwise.

Hypergraphs
All r -graphs are assumed to be finite and simple (i.e., with edge sets having no
repeated elements). We often refer to r -uniform hypergraphs, sub-hypergraphs, and
hyperedges simply as r -graphs, subgraphs, and edges, respectively. For hypergraphs
H D .V;E/ and H 0 D .V0;E0/, we say H 0 +H if V0 + V and E0 + E, and H 0 #H
if V0 + V and E0 # E. We write v.H/ WD jV.H/j, e.H/ WD jE.H/j, and $.H/ for
the maximum degree ofH , that is, the maximum number of edges sharing a common
vertex v 2 V.H/. For U # V.H/, we write
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@HU WD
®
e 2 E.H/ W e¤ U;e \U ¤;

¯
; dH .U / WD j@HU j (1.18)

for the edge boundary of U and its cardinality, respectively (excluding U itself when
it is an edge). For f# U + V, we denote the f-dominated boundary and degree of U
by

@Hf U WD
®
e0 2 E.H/ W ; ¤ e0 \U + f

¯
D @HU n @H .U n f/;

dHf .U / WD j@Hf U j:
(1.19)

This is a subset of @HU consisting of edges whose overlap with U is contained in f.
We additionally set @H; U WD ;, dH; .U / WD 0. We will usually drop the superscript H
from all notation, but in some places there will be more than one hypergraph in play
and it will be necessary to clarify.

Homomorphism counts
As in several previous works on upper tails (e.g., [9], [19], [21]), we count subgraphs
in the sense of hypergraph homomorphisms. Recall that a homomorphism between r -
graphsH andG is a mapping # W V.H/! V.G/ such that the image of every edge in
H is an edge in G. We do not require that # be injective—in particular, distinct edges
of H may be mapped to a common edge in G. We write hom.H;G/ for the number
of homomorphisms from H to G, so that t .H;G/ from (1.2) is n!v.H/ hom.H;G/.
We extend this to a function on Sn;r as

hom.H;S/ WD
X

"WV.H/!Œn!

Y
e2E.H/

S
!
#.e/

"
(1.20)

so that for a graph G over Œn! with adjacency tensor AG we have hom.H;G/ D
hom.H;AG/. Here, with slight abuse we interpret S.#.e// for e D ¹v1; : : : ; vrº as
S.#.v1/; : : : ;#.vr// when # is injective on e and zero otherwise. We additionally
denote the normalized quantities

t .H;S/ WD hom.H;S/
nv.H/

; tp.H;S/ WD t .H;S=p/D
hom.H;S/
nv.H/pe.H/

; (1.21)

often writing t .H;G/ WD t .H;AG/ and tp.H;G/ WD tp.H;AG/.

2. Novel cut-type norms and a sparse regularity method
Our general approach reduces the problem of large deviations for nonlinear function-
als of Erdős–Rényi hypergraphs to the development of a sparse hypergraph regularity
method under appropriate extensions of the cut norm. This is a problem of general
interest in extremal graph theory that goes beyond applications to large deviations,
and there is already a large body of literature on sparse extensions of the regularity
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method. In this section we begin with a brief overview of such results and explain why
their assumptions make them unsuitable for our purposes. Then we discuss a special
instance of the norms and decompositions in the matrix setting, in order to motivate
the more complicated statements for general hypergraphs (deferred to Sections 2.3–
2.4).

2.1. Previous work on sparse regularity
Much of the literature on sparse regularity is with an eye toward sparse extensions
of classical Turán-type theorems. These show that sufficiently dense subsets G of a
large set & are guaranteed to contain some small structure—specifically, a set from
a distinguished class S #

!$
k

"
of k-sets for some fixed k. For instance, if & is the

edge set of the complete graph Kn on n-vertices, and S is the set of
!rC1
2

"
-tuples of

edges forming a copy of KrC1, then Turán’s theorem guarantees that G # & contains
some element of S when jGj=j&j exceeds 1 & 1

r (see [78]). A second example is
Szemerédi’s theorem in [77], where & D Œn!, S is the collection of k-term arithmetic
progressions, and G must contain some S 2 S if jGj ! ıj&j for any fixed positive ı
and n sufficiently large.

Sparse Turán-type theorems establish the same statements when the “host set”
& is instead taken to be a sparse pseudorandom subset of the host set &0 from the
corresponding classical theorem. An example is the Green–Tao theorem establishing
existence of arithmetic progressions of arbitrary length in the primes [48, Theorem
1.2], which proceeded through a “relative Szemerédi theorem” for a certain set &
of almost-primes that is a sparse pseudorandom subset of &0 D Œn! (see [48]). In the
realm of graph theory, Turán’s theorem (and more generally, the Erdős–Stone theorem
and Simonovits’s stability theorem) has been transferred to host graphs & such as
sparse Erdős–Rényi graphs (see [27], [72]; see also Remark 2.4 below for a discussion
of related results) and graphs satisfying certain pseudorandomness conditions (see
[25]).

These results can be proved by mimicking proofs of corresponding results for
the dense setting, for instance, via sparse versions of the hypergraph removal lemma,
which in turn are obtained from sparse extensions of hypergraph regularity and count-
ing lemmas. Let us briefly recall these in the graph setting (2-uniform hypergraphs).
Recall the normalized matrix cut norm

kMk! D
1

n2
max
I;J#Œn!

ˇ̌
hM;1I ˝1J i

ˇ̌
; M 2Rn&n: (2.1)

Here, 1I ˝1J is the rank-1 matrix 1I 1T
J , and h*; *i is the Euclidean (Hilbert–Schmidt)

inner product on Rn&n. This extends to a metric d! on the set Gn of graphs over
the vertex set Œn! as d!.G1;G2/D kAG1 & AG2k!, with AGi the adjacency matrix
for Gi . Thus, we trivially have d!.G1;G2/ ' 1, and a bound d!.G1;G2/ ' " < 1
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provides uniform control on the discrepancy betweenG1,G2 of edge counts in vertex
subsets of Œn! of macroscopic size, that is, linear in n.

A result of Frieze and Kannan [42] (from which their weak regularity lemma is
easily deduced) states that for any graph G, there is a decomposition of its adjacency
matrix as

AG DAstrCArand; (2.2)

where the structured piece Astr is a linear combination of O.1="2/ cut matrices
1Ik ˝1Jk , and the pseudorandom piece Arand satisfies kArandk! ' ". The cut-
norm counting lemma says that the homomorphism density functionals t .H; */
(recall (1.21)) are OH .1/-Lipschitz in the cut metric. For graphs G1, G2 of density
pD o.1/ we trivially have d!.G1;G2/! p, so for a sparse regularity lemma we seek
a decomposition as in (2.2) with kArandk! ' "p. In general, such a decomposition
requires a growing number of cut matrices, but straightforward modifications of the
Frieze–Kannan argument yield sparse decomposition lemmas with O".1/ cuts under
additional “no dense spots” assumptions on G (see [23]).

One may similarly hope for a sparse counting lemma saying that jtp.H;G1/ &
tp.H;G2/j!H " (recall the notation (1.21)) if d!.G1;G2/' "p, but this too is false
without additional assumptions: consider, for instance, the case that G1 and G2 agree
on all edges outside a set of vertices V0 of size ‚.np/, where G1 is empty and G2
is full. Since these only differ on O.n2p2/ edges we have d!.G1;G2/! p2 D o.p/,
whereas for triangle counts (say) we have jtp.K3;G1/& tp.K3;G2/j" 1. However, in
the applications to sparse Turán-type theorems described above, G1 and G2 are both
contained in a pseudorandom (or truly random) host graph & , and sparse counting
lemmas have been established under various “(pseudo)random container” assump-
tions (see [1], [25], [26], [28], [43]).

2.2. A modified cut norm for sparse graphs
Unfortunately, none of the sparse regularity or counting lemmas just described are
useful for us, as the “no dense spots” and “pseudorandom container” hypotheses rule
out the localization phenomena we are trying to detect. In [9] and [65], two phenom-
ena are identified as the dominant mechanisms for upper-tail deviations of tp.H;G /
in the Erdős–Rényi graph for n!1=#.H/( p( 1: the appearance of an almost-clique
(of density close to 1) on ‚.np#.H/=2/ vertices,2 or of an almost-complete bipar-
tite graph on J , Œn! n J for jJ j D ‚.np#.H//. Both types of subgraphs contain
‚.n2p#/ D o.n2/ edges when p D o.1/ and are hence invisible to the cut norm;
moreover, the cuts that correlate with G on these events, namely, 1I0˝1I0 and
1J0˝1Œn!nJ0 , have factors occurring at three separate scales.

2In fact, the almost-clique mechanism only contributes to large deviations whenH is a regular graph.
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Further localization phenomena have been described in the setting of regular
graphs (see [10], [49]), and the possibilities are more numerous in the hypergraph
setting (see [61]).

Our approach is to develop generalizations k *k"B of the cut norm that are sensitive
to localization phenomena at all scales. In the general hypergraph setting this is done
in terms of a (user-specified) set system F over Œr !, and the class of cut matrices is
replaced by a class of test tensors T that are entrywise products of tensors 'f; f 2 F
varying only on coordinates in f. We defer the general definitions to Section 2.3 and
discuss here a particular instance of these norms in the case of 2-graphs. (See also
Theorem 1.5 and the discussion that follows it for an example for 3-graphs, stated
there in terms of sets of edges rather than the functional formulation given here.)

Denote by T D Tn the class of Bernoulli cut matrices T D 1I ˝1J with I;J +
Œn!. Given a graph H D .V;E/ of maximum degree $, we set a cutoff scale n0 WD
np#!1 and for T D 1I ˝1J 2 T denote

kT k#;2 D
!
jI j _ n0

"!
jJ j _ n0

"
: (2.3)

(This can be extended to a norm on Rn&n, but we only apply it to cut matrices.) Now
for M 2Rn&n, let

kMk"#;2 D sup
T2T

jhM;T ij
kT k#;2

D max
I;J#Œn!

j1T
IM 1J j

.jI j _ n0/.jJ j _ n0/
: (2.4)

Note that k * k#;2 and k * k"#;2 depend on p, but we suppress this from the notation.
The k *k"#;2-norm specializes to the normalized cut norm (2.1) upon taking pD 1, but
for smaller p the k *k"#;2-norm is sensitive to changes in density at smaller scales. The
counting lemma of Theorem 2.15 specializes to this setting to say that if 2-graphsG1,
G2 over Œn! satisfy kAG1 &AG2k"#;2 ' "p and tp.H 0;G1/'L for every proper sub-
graph H 0 #G1, then jtp.H;G1/& tp.H;G2/j!H L". We note that the full version
Theorem 2.15 generalizes this to multilinear homomorphism functionals, and Theo-
rem 4.1 further extends to signed homomorphisms, which includes induced homo-
morphisms.

Note that some form of cutoff scale n0 is necessary, as otherwise the norm would
be too sensitive to changes on single entries. The specific choice np#!1 is motivated
by the proof of the counting lemma, where it is a critical threshold for the influence of
an endpoint of a single edge ofG on t .H;G/. Indeed, by a telescoping decomposition
based on the edges of H , one can express tp.H;G1/& tp.H;G2/ as a sum of terms
indexed by edges eD ¹u;vº 2 E.H/ and embeddings  W V.H/ n ¹u;vº! Œn!. Each
term in the sum can be expressed in the form hAG1 &AG2 ;1I ˝1J i, where I and J
are the common neighbors of  .@H .u/// and  .@H .v// (recall our notation (1.18)).
In a random graph, jI j and jJ j are typically of order npdegH .u/!1 and npdegH .v/!1,
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respectively, which are at least np#!1. This is the motivation for the cutoff n0 D
np#!1 in the definition of k * k#;2.

The following is a special case of our tensor decomposition lemma (Theo-
rem 2.13). Recall that ADA.2/n;p is the adjacency matrix for the Erdős–Rényi graph.

THEOREM 2.1 (Decomposition lemma, special case)
There exist absolute constants C0; c0 > 0 such that the following holds. Let (; " > 0,
and assume that n and p 2 .n!2; 1/ are such that

np#C1 ! C0 logn
"2 log.1=p/

: (2.5)

Then there exists a (possibly empty) exceptional set E?.(; "/ + An;2 with P.A 2
E?.(; "//' pc0%n

2
such that for each A 2An;2 n E?.(; "/ there is a decomposition

ADAstrCArand; (2.6)

where

Astr D pJn;2C
kX
iD1

˛iTi and kArandk"#;2 ' "p

for real numbers ˛1; : : : ; ˛k , and cut matrices T1; : : : ; Tk such that

kX
iD1
kTik#;2 ' ("!2p!2n2: (2.7)

Remark 2.2
Theorem 2.1 contains the Frieze–Kannan decomposition lemma (2.2) as a special
case: taking p D 1=2 (say) makes n2k * k"#;2 equivalent to the cut norm, and then
taking ( to be a sufficiently large absolute constant makes E?.(; "/ D ;; from the
lower bound kTik#;2 ! n20 " n2; it follows that k D O.1="2/. However, the option
to remove the exceptional set of tensors E?.(; "/ is important for our application to
upper tails, as taking a smaller value of ( reduces the complexity of the approximation
Astr, effectively reducing the dimension of the space of tensors. We will set ( just
large enough that & logP.E?.(; "// is above the large deviation rate (for instance, for
the upper tail of t .H;G / this is ( D Kp#.H/ for a sufficiently large constant K).
A further key difference from the Frieze–Kannan decomposition lemma is that in
(2.7) the complexity is measured in terms of the total size of the cut matrices.

Remark 2.3
We believe that the right-hand side of (2.7) can be improved to ()!2p!1n2, which
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would allow us to replace the left-hand side of (2.5) with np#. An assumption of
np#) 1 would be essentially optimal: when np# ! 1, the row-sums in submatrices
of size np#!1 , np#!1 (the smallest scale controlled by the norm k * k#;2) cease to
concentrate, and we can no longer have uniform control on densities in such subma-
trices holding with high probability. Relaxing the left-hand side in (2.5) to np#, and
more generally saving a factor p in the analogous assumption (2.16) for the general
decomposition lemma, would immediately imply that Theorem 1.1 holds with $0max

replaced by $max in all cases. (For more precise details on the improvement in the
case r D 2 as well as in the general case, we refer to Remark 3.10.)

In the standard way one can deduce a weak regularity lemma-type statement in
terms of the partition of Œn! generated by the factors of the test tensors Ti , but this is
not needed for our applications.

Theorem 2.1 takes the typical form of a decomposition lemma from graph theory
and additive combinatorics, in that the summands in the expansion of the structured
piece are controlled in some norm k * k, while the pseudorandom piece is small in the
dual norm k * k", a general perspective that was explored by Gowers in [46]. Another
common form of decomposition lemma obtains finer control on the pseudorandom
piece, making kArandk" small relative to the “complexity” k of the structured piece,
by separating out a further piece Asmall that is small in another norm such as `2 (the
original regularity lemma of Szemerédi is of this type). This comes at the cost of a
much larger value of k than in weak regularity lemmas, and we will not need such
control.

Before moving on to the general definition of the B"-norms for r -tensors, let us
mention one other case of the norms when r D 2, which is to take the smaller class
T D ¹1I ˝1 W I + Œn!º, with

kT k#;1 D n *
!
jI j _ n0

"
for T D 1I ˝1 (2.8)

and

kMk"#;1 D sup
T2T

jhM;T ij
kT k#;1

D max
I#Œn!

j1T
IM 1 j

n.jI j _ n0/
: (2.9)

Alternatively, letting dM .i/ WD 1
n

Pn
jD1M.i; j / be the vector of normalized row

sums for M ,

kMk"#;1 D max
I#Œn!

hdM ;1I i
jI j _ n0

:

This norm turns out to be effective for studying star homomorphism densities
t .K1;#;G/, which is perhaps unsurprising since star homomorphism counts are deter-
mined by the degree sequence of G—indeed, we have t .K1;#;G/D 1

nkdAGk#`" . In
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this case, our general decomposition lemma is approximating the degree sequence
dAG of a graph by a short weighted combination of indicators 1Ik , which can be
done more efficiently than approximating the whole matrix AG in the norm k * k"#;2.
As a result, Theorem 1.1 gives tail asymptotics for star homomorphism counts in
a wider range of p than for, say, clique counts. The form of (2.9) as compared to
(2.4) illustrates a key point of the B"-norms defined below: that to have an effective
counting lemma for H -counts, we only need to use test tensors that are nonconstant
on coordinates corresponding to vertices where edges overlap.

Remark 2.4
It would be remiss to not mention work on the KŁR conjecture on an embedding
lemma for subgraphs of the sparse Erdős–Rényi graph G .2/

n;p (see [59]), which was
ultimately proved using the hypergraph container method in [4] and [71]. An embed-
ding lemma is weaker than a counting lemma, only providing the existence of at least
one appearance of some subgraph H , whereas a counting lemma provides roughly
the expected number of copies based on edge densities between parts of a vertex par-
tition. Stronger “probabilistic counting lemmas” for G .2/

n;p were obtained in [28] and
[43], motivated in particular by Turán-type theorems (as discussed in Section 2.1).
We note an interesting contrast: whereas these works make use of the determinis-
tic Kohayakawa–Rödl sparse regularity lemma (with a no-dense-spots condition) and
establish a counting lemma that holds for dense subgraphs of G .2/

n;p with high proba-
bility, here we combine a deterministic counting lemma with a decomposition lemma
holding (with acceptable complexity for our application) with high probability.

2.3. The B"-norms
There are several natural generalizations of the cut norm to r -tensors. For instance,
one can take cut tensors of the form 1I1˝ * * *˝ 1Ir for I1; : : : ; Ir # Œn!, as was done
for the sparse Frieze–Kannan decomposition proved in [23]. However, it turns out that
the resulting norm is only useful for controlling homomorphism densities for linear
hypergraphs H (see [64]).

Instead, we will consider the wider class of Boolean tensors formed by entry-
wise products of tensors varying on strict subsets of the r coordinates. We have the
following.

Definition 2.5 (Weighted base)
Given a set e of size r , a base (over e) is a collection F of proper subsets of e with
; 2 F and such that any two nonempty elements f1; f2 2 F are incomparable, that is,
f1 6# f2. A weighted base over e is a tuple BD .r; e; *;F; d?; ¹dfºf2F/, with
' * W Œr !! e a bijective mapping;
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' F a base over e;
' nonnegative integer weights d? and df satisfying df ' d? for each f 2 F, and

d; WD 0.
A base system over an r -graph H is a collection BD ¹B.e/ºe2E.H/ with each B.e/ a
weighted base over e.

In our applications to H -counts, the choice of integer weights d?, df will gener-
ally be determined by the degrees of an edge and its subsets.

For a weighted base B we define an associated set of test tensors TB # Zn;r
consisting of all nonzero Boolean tensors T W Œn!r ! ¹0; 1º of the form

T .i1; : : : ; ir/D
Y
f2F

'f ı %f.i1; : : : ; ir/; i1; : : : ; ir 2 Œn!; (2.10)

for general Boolean functions 'f W Œn!f! ¹0; 1º, where we denote by %f W Œn!r ! Œn!f

the natural projections .i1; : : : ; ir/ 7! .iv/v2&!1.f/. We always take '; to be the constant
tensor ';.i1; : : : ; ir/$ 1. We quantify the size of the factors of a test tensor as in (2.10)
with the rescaled `1.Œn!f/-norm:

kT kf WD nr!jfjpd?!dfk'fk1 (2.11)

(in particular kT k; D nrpd? ), and define

kT kB WDmax
®
kT k1;max

f2F
kT kf

¯
: (2.12)

(This can be extended to a norm on Zn;r , but we only apply it to test tensors.) Note
that the inclusion of ; 2 F means that we always have kT kB ! nrpd? . We define a
seminorm k * k"B on Zn;r via duality:

kZk"B WD max
T2TB

jhZ;T ij
kT kB

: (2.13)

When F covers Œr ! this defines a genuine norm on Zn;r , but we do not enforce this in
general. We note that these seminorms additionally depend on all components of the
weighted base B (not just the base F) as well as p, but we suppress this dependence
from the notation. If BD ¹B.e/ºe2E is a finite collection of weighted bases B.e/ over
the respective r -sets e (such as a base system over an r -graph H , with ED E.H/),
then we denote the seminorm

kZk"B WDmax
e2E
kZk"B.e/: (2.14)

Example 2.6
For the case r D 2, we recover the matrix norm (2.3) by taking the maximal base
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FD ¹;; ¹1º; ¹2ºº over ¹1; 2º, d? D 2$& 2 and d¹1º D d¹2º D$& 1, and this further
specializes to the normalized cut norm 1

n2
k * k! upon taking pD 1.

For general r ! 2, it is useful to consider the maximal base FD
! Œr!
r!1
"
[ ¹;º with

appropriate degree parameters. For instance, we have the following.

Example 2.7
In the K.3/4 -counting lemma presented in Theorem 1.5, the bound (1.11) is equivalent
up to constant factors to the bound kAG1 & AG2k"B ' "p, where for the weighted
base B we take e D ¹1; 2; 3º, * the identity, FD ¹;; ¹1; 2º; ¹2; 3º; ¹1; 3ºº, d? D 3, and
d¹1;2º D d¹2;3º D d¹1;3º D 1. Indeed, for this choice of base a test tensor takes the
form 1I .2;3/\J .1;3/\K.1;2/ for sets I;J;K # Œn!2. (The equivalence is up to a constant
because we take a sum on the right-hand side in (1.11) rather than a maximum as in
(2.12).)

For general r and F and with p D 1, we have kT kB D nr and we recover the
family of generalized cut norms considered by Conlon and Lee in [30] (various special
cases of which had been considered earlier, such as the case F D

! Œr!
r!1
"
[ ¹;º by

Gowers in [44], [45]). It was shown in [30] for the unweighted setting (p D 1) that
k * k"B is polynomially equivalent to certain generalized Gowers norms, though the
polynomial loss appears to make the latter ineffective in the sparse setting (this is
related to how various definitions of quasirandomness for dense graphs cease to be
equivalent for sparse graphs).

For our application to H -homomorphism counts (through the counting lemma,
Theorem 2.15 below), for each edge e 2 E.H/ we will select a weighted base over e
satisfying the following property.

Definition 2.8 (Dominating base)
For an r -graphH and e 2 E.H/, a base F over e isH -dominating if every edge over-
lap e\ e0 with e0 ¤ e is contained in some f 2 F. A weighted base isH -dominating if
its base isH -dominating. A base system BD ¹B.e/ºe2E.H/ overH isH -dominating
if each of the weighted bases B.e/ is H -dominating.

Observe that if the weighted bases B D .r; e; *;F; d"; ¹dfºf2F/ and B0 D .r; e; *;
F0; d"; ¹d 0f ºf02F0/ over bases F and F0, respectively, are such that d" D d 0", any f0 2 F0

is contained in F, and df0 D df, then kT kB ! kT kB0 . Thus kZk"B ' kZk"B0 .
With a fixed choice of dominating base F.e/ for each e 2 E.H/, and some

arbitrary choice of bijections *e W Œr !! e, we take the H -dominating base system
BD ¹B.e/ºe2E.H/ with
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B.e/D
!
r; e; *e;F.e/; dH .e/;

®
dHf .e/

¯
f2F.e/

"
(2.15)

and with degree parameters as defined in (1.18) and (1.19). The choice of integer
weights is motivated by the proof of the counting lemma, where the prefactors in
(2.11) combined with the hypothesis of a crude upper bound on counts of subgraphs
of H (as in (1.14)) will allow us to close an induction on the number of edges in
H . (We only depart from the choice of weights (2.15) in the proof of Theorem 2.15,
via the generalization Theorem 4.1, where we take H -dominating bases with weights
dHC.e/, dHCf .e/ taken according to a subgraphHC ofH , but in the statement of the
theorem, and hence in all of its applications, we take weights as in (2.15).)

Example 2.9
Continuing the example of Theorem 1.5, the base of Example 2.7 can be made into
a base system B over the edges of K.3/4 by taking the weighted base B for each edge
(identifying each with ¹1; 2; 3º), and one verifies that the weights d?, df given in
Example 2.7 are chosen as in (2.15).

While the maximal base FD ¹;º [
! e
r!1
"

(as in Examples 2.6 and 2.7) is always
dominating, for certain H one can use bases with a smaller number of smaller sets,
which leads to better quantitative estimates. For instance, we have the following.

Example 2.10
When H is a sunflower, where pairwise overlaps of all edges are equal to a common
kernel V0 + V.H/ (thus $.H/ D e.H/), then for any e 2 E.H/ one can take the
dominating base FD ¹;; V0º, with weights as in (2.15) being d? D dV0 D$.H/& 1.
With this choice Theorem 2.13 gives a more efficient approximation of the adjacency
tensorA by test tensors, leading to a less restrictive decay condition on p (see (2.16)).

Example 2.11
For the case of 2-graphs, for an edge e D ¹u;vº one can always take F.e/ D
¹;; ¹uº; ¹vºº as in Example 2.6. If u (resp., v) has degree 1, then one can take the
smaller dominating base F.e/D ¹;; ¹vºº (resp., ¹;; ¹uºº). In this case, the adjacency
matrices for two graphs are close in the B.e/"-(semi)norm when they have approx-
imately the same degree sequence. Such an approximation is indeed sufficient for
approximating hom.H;G/ when H is a star (for which we can take such a base for
every edge) as these are moments of the degree distribution.

Example 2.12
WhenH is a linear hypergraph, for which je\e0j 2 ¹0; 1º for all distinct e; e0 2 E.H/,
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then for each edge e the base of singletons F.e/D ¹;º [ ¹¹vº W v 2 eº is dominating,
and the class of test tensors thus reduces to the class of cuts 1I1˝ * * *˝ 1Ir .

We return to these and other examples in Section 3.2, where we state results for
tails of homomorphism counts in Gn;p .

2.4. B" decomposition and counting lemmas
The following is our general decomposition lemma, showing that, under the Erdős–
Rényi measure, most symmetric Boolean tensors A 2An;r can be decomposed into
a structured piece Astr that is a combination of a small number of test tensors of con-
trolled size under the B-norm, and a pseudorandom piece Arand that is small in the
dual B"-norm. The theorem allows for a trade-off between the measure of the set of
tensors to be excluded and the complexity of the resulting decomposition (in particu-
lar one may choose to make no exclusion). Recall our notation Jn;r for the symmetric
Boolean r -tensor with Jn;r.i1; : : : ; ir/D 1 if and only if all of the arguments i1; : : : ; ir
are distinct (so that for the Erdős–Rényi tensor we have EAD pJn;r ).

THEOREM 2.13 (Decomposition lemma)
The following holds for C0; c0 > 0 depending only on r . Fix a weighted base B D
.r; e; *;F; d?; ¹dfºf2F/, and let (; " > 0. Assuming n and p 2 .n!2; 1/ are such that

wn;p.B/ WDmin
f2F
¹nr!jfjpd?!dfC2º! C0 logn

"2.1_ log.1=p//
; (2.16)

then there exists a (possibly empty) exceptional set E?.(; "/ + An;r with P.A 2
E?.(; "//' pc0%n

r
such that for each A 2An;r n E?.(; "/ there is a decomposition

ADAstrCArand; (2.17)

where

Astr D pJn;r C
kX
iD1

˛iTi and kArandk"B ' "p (2.18)

for real numbers ˛1; : : : ; ˛k and test tensors T1; : : : ; Tk 2 TB satisfying

kX
iD1
kTikB ' (nr=."p/2: (2.19)

Furthermore, for each 1 ' j ' k, the tensor Tj is separated from the span of
¹T1; : : : ; Tj!1º by Euclidean distance at least "p1Cd?nr=2.
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Remark 2.14
The final statement on Euclidean distances will be useful for bounding covering num-
bers of An;r n E?.(; "/ under the B"-norm.

The following is our general sparse counting lemma, which we state for a mul-
tilinear generalization of homomorphism counts. For a collection S of symmetric
tensors ¹Seºe2E.H/ in Sn;r , we define

tp.H;S/D
hom.H;S/
nv.H/pe.H/

WD 1

nv.H/pe.H/

X
"WV.H/!Œn!

Y
e2E.H/

Se
!
#.e/

"
:

For S with Se $ S0 for some S0 2 Sn;r the above expression reduces to the pre-
vious definition tp.H;S/ D tp.H;S0/ from (1.21). This multilinear generalization
of homomorphism counts allows us to capture other functionals of interest such as
induced subgraph counts. It also naturally appears in the proof of the counting lemma,
which interpolates between two (weighted) hypergraphs that are close under the k *k"B-
seminorm.

Recall the notion of a dominating base system from Definition 2.8.

THEOREM 2.15 (Counting lemma)
Let p 2 .0; 1/, and let H be an r -graph. Let B be an H -dominating base system as
in (2.15), and let k * k"B be the associated seminorm on Zn;r as defined in (2.14). Let
C #An;r be a set of diameter at most "p under k * k"B for some " 2 .0; 1!, and assume
further that there exist Q0 2 hull.C/ and L! 1 such that

tp.H
0;Q0/'L (2.20)

for all proper subgraphs H 0 #H . Then for any P D ¹P eºe2E.H/, QD ¹Qeºe2E.H/

with each P e;Qe 2 hull.C/, we have

tp.H;P /& tp.H;Q/!H L":

The above is a consequence of Theorem 4.1 giving a counting lemma for the
broader class of signed-homomorphism functionals interpolating between homomor-
phism counts and induced homomorphism counts.

3. Quantitative LDPs

3.1. Quantitative B"-norm LDPs
As a consequence of Theorem 2.13, we obtain quantitative LDPs for the measure
space .An;r ;"p/ at large fixed n. For comparison, the classical LDP for a sequence
of measures +n on a topological space Q states that for any E #Q,
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& inf
x2D

I.x/' lim inf
n!1

1

Rn
log+n.E/' lim sup

n!1

1

Rn
log+n.E/'& inf

x2F
I.x/ (3.1)

for any open D + E and closed F . E , where Rn is the speed and I.*/ is the LDP
rate function.

For our quantitative result, the rate function is the relative entropy Ip.Q/ D
D."Qk"p/ (see (1.17)). Now we specify our notions of outer and inner approxi-
mations of a set E # An;r . Let E be an arbitrary finite collection of r -sets, and let
BD ¹B.e/ºe2E be a collection of weighted bases B.e/ over e. Recalling the associ-
ated seminorm defined in (2.14), for Q 2Qn;r , ı > 0, we denote the ı-neighborhood
of Q in An;r by

UB.Q; ı/ WD
®
A 2An;r W kQ&Ak"B ' ı

¯
: (3.2)

For E +An;r , we denote the outer approximation

.E/B;ı WD
[
A2E

hull
!
UB.A; ı/

"
(3.3)

and the inner approximation

.E/ıB;ı WD
®
Q 2Qn;r WUB.Q; ı/+ E

¯
: (3.4)

Note that .E/B;ı and .E/ıB;ı are subsets of the solid cube Qn;r . We also emphasize
that the convex hulls in (3.3) are different from (and generally proper subsets of) the
balls ¹Q 2Qn;r W kQ&Ak"B ' ıº.

THEOREM 3.1 (Quantitative LDP)
Let B be a collection of weighted bases as above.
(a) (LDP upper bound). With C0, c0 as in Theorem 2.13, let p 2 .n!2; 1/, (; " > 0,

and assume that wn;p.B/ WDmine2Ewn;p.B.e// satisfies the lower bound in
(2.16). Then for any E +An;r ,

log P.A 2 E/'&min
!
R?; inf

®
Ip.Q/ WQ 2 .E/B;"p

¯
&RME

"
(3.5)

for some cutoff rate

R? D c0(nr log.1=p/&OB.1/ (3.6)

and metric entropy rate

RME !B
(nr logn
"2wn;p.B/

: (3.7)
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(b) (LDP lower bound). If wn;p.B/! C 00"!2 logn for a sufficiently large constant
C 00.r/ > 0, then for any E +An;r ,

log P.A 2 E/!& inf
®
Ip.Q/ WQ 2 .E/ıB;"p

¯

&O
!
1C nr=2

ˇ̌
log
!
p ^ .1& p/

"ˇ̌"
; (3.8)

where the implied constant is absolute.

In applications, we take ( such that R? exceeds the rate of the rare event of
interest—for the upper tail of tp.H;G / this means taking ( DKp# for a sufficiently
large constant K . From our assumption on wn;p.B/ we have RME D O.R?/, but
we must further ensure that wn;p.B/) 1 to have RME be negligible compared to
the main term. This amounts to a lower-bound constraint on p, and there is generally
flexibility (within the requirements of a counting lemma) to choose the weighted bases
to lighten this constraint.

The upper bound of Theorem 3.1 follows from Theorem 2.13 by a straightfor-
ward covering argument, combined with the nonasymptotic bound (6.1). The term
RME is the sum of log-covering numbers of An;r n E?.Kp

#; "/ by "p-balls in the
B.e/"-norms. (The refinement to convex hulls of their intersections is important when
combining Theorem 3.1 with Theorem 2.15.) To obtain bounds for upper tails of
functionals f WQn;r ! R we apply Theorem 3.1 to E D ¹f ! tº, and then use The-
orem 2.15 to show that ¹f ! t C ,º # .E/ıB;"p # .E/B;"p # ¹f ! t & ,º for some
,D o"!0.1/.

3.2. Upper and lower tails for hypergraph counts
Our main application of Theorem 3.1, in combination with the counting lemma (The-
orem 2.15), is Theorem 1.1 on joint upper and lower tails for homomorphism counts.
In this subsection, we state some corollaries of Theorem 1.1 for specific classes of
hypergraphs and define the parameter $0.H/. Further applications of Theorems 3.1
and 2.15 are given in Section 10.

For the case m D 1 and p D o.1/, the optimization problem ˆn;p.H; ı/ was
recently analyzed in [61] for certain H—specifically, complete hypergraphs and the
3-graph depicted in Figure 1—where they deduced upper-tail asymptotics for p)
n!1=.6e.H// logn via the general framework from [38], which required bounding the
Gaussian width of gradients for the homomorphism counting functionals. Combining
Theorem 1.1 with [61, Theorem 2.3], we obtain the following.
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Figure 1. The 3-graph considered in [61] (see Corollary 3.2) has six vertices (dots) with four
edges denoted by straight lines. (Reproduced with permission from [61].)

COROLLARY 3.2
For fixed r , k, and K.r/k the r -uniform clique on k vertices, we have

log P
!
tp.K

.r/
k ;G /! 1C ı

"

D&
!
1C o.1/

"
min

°ır=k
rŠ
;

ı

.r & 1/Šk
±
nrp.

k!1
r!1/ log.1=p/ (3.9)

if n!c.r;k/ ( p ( 1 with c.r; k/ D 1=.
!k!1
r!1

"
C 1/. Furthermore, the lower bound

holds for the wider range n!1=.
k!1
r!1/( p( 1.

Moreover, withH the 3-graph depicted in Figure 1, for n!1=2( p( 1, we have

log P
!
tp.H;G /! 1C ı

"

D&
#1
6
C o.1/

$
min¹

p
9C 3ı & 3;

p
ıºn3p2 log.1=p/: (3.10)

The ranges of p for the upper bounds follow from our computation of the param-
eters $0.K.r/

k
/ and $0.H/ in Examples 3.6 and 3.8 below. Analogously to the case

r D 2, the asymptotic (3.9) for cliques matches the probability of appearance of
higher-rank analogues of the “clique” and “hub” structures that were first described
in [65]. One may view H from Figure 1 as the 3-graph obtained by transposing the
incidence matrix of the complete 2-graph G D K4. The interest in this particular
hypergraph is that the mechanism for large deviations of hom.H;G / is more intricate
than the simple appearance of a clique or hub structure as is the case for H DK.r/k
(see [61] for further discussion).

We next highlight consequences of Theorem 1.1 combined with a result from
[9] providing an asymptotic for ˆn;p.H; ı/ for the for the case r D 2, m D 1, and
pD o.1/.
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COROLLARY 3.3 (The case of 2-graphs)
Let H be a fixed 2-graph of maximal degree $! 2.
(a) For any fixed ı > 0, assuming n!1=.#C1/( p ' .1C ı/!1=e.H/,

log P
!
tp.H;G /! 1C ı

"
D&

!
1C o.1/

"
ˆn;p

!
H;ıC o.1/

"
(3.11)

and for fixed ı 2 .0; 1/ and n!1=.#C1/ logn( p < 1,

log P
!
tp.H;G /' 1& ı

"
D&

!
1C o.1/

"
‰n;p

!
H;ıC o.1/

"
: (3.12)

(b) Furthermore, (3.11) (resp., (3.12)) holds in the range n!1=# ( p '
.1C ı/!1=e.H/ (resp., p ) n!1=# logn) whenever each vertex of H of
degree $ is contained in an isolated star.

(c) Further specializing to the case that H D K1;# (the $-armed star) and
n!1=#( p( 1,

logP
!
tp.K1;#;G /! 1C ı

"
D&

!
1C o.1/

"
ın2p# log.1=p/: (3.13)

Remark 3.4
For general r , the asymptotic (3.11) holds in the range n!1=#.H/ ( p '
.1C ı/!1=e.H/, for instance, when H is a sunflower with at least 2=.r & jV0j/
petals, where V0 # V.H/ is the kernel of H (see Example 3.7).

Remark 3.5
The assumption on p in part (c) is sharp, as the upper-tail rate is known to be of size
‚ı.n

1C1=#p log.1=p// for n!.1C1=#/.logn/1=.#!1/ ! p ! n!1=# (see [74]).

Proof
Part (a) is immediate from Theorem 1.1. For (b), we only need to verify that$0.H/'
$.H/ for such 2-graphs, which we do in Example 3.9 below. Part (c) follows from
Theorem 1.1 and [9, Theorem 1.5], where we note that the independence polynomial
of the graph H" defined in that work is PH"../D 1C . whenever H is a star.

We now define the parameter $0.H/ appearing in Theorem 1.1. Roughly speak-
ing, it measures how efficiently one can cover the edge overlaps of H , with a small
value for r -graphs with overlaps concentrated on a small number of small vertex sets
(such as sunflowers or sparse linear hypergraphs) and a large value for cliques. A key
point is that it depends only on the neighborhood structure of single edges, similarly
to how $.H/ depends only on the neighborhood of single vertices. Thus it is a local
hypergraph parameter that is independent of the size of H (as quantified by v.H/ or
e.H/).
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Recall the notion of a dominating weighted base from Definition 2.8. Given a
dominating base F over an edge e 2 E.H/, recalling the edge degree parameters from
(2.15), we set

d 0F.e/Dmax
®
d 0f .e/ W f 2 F

¯
;

d 0f .e/D
dH .e/& dHf .e/C 2

je n fj D
´
dH .enf/C1
jenfj f¤;;

dH .e/C2
r

fD;:
(3.14)

(Recall that dH .e/ does not count e itself.) Note that d 0f .e/ is a normalized count of
the edges overlapping e n f, that is, those that are not dominated by f. (If the 2 were
replaced by 1 in the first expression for d 0f .e/, then it would be the average degree of
vertices in e n f.) We define

d 0.e/Dmin
F
d 0F.e/; $0.H/D max

e2E.H/
d 0.e/; (3.15)

where the minimum is taken over all dominating bases F for e. That is, $0.H/ is the
smallest number $0 such that every edge e 2 E.H/ has a dominating base F.e/ such
that

ˇ̌®
e0 2 E.H/ W e0 \ .e n f/¤;

¯ˇ̌
'$0je n fj& 1 (3.16)

for every f 2 F.e/ (note that the left-hand side counts the edge e). From this definition,
recalling the notation of (2.16) and Theorem 3.1, we have that for any r -graph H ,
whenever np#

0.H/ ! 1, there exists anH -dominating base system BD ¹B.e/ºe2E.H/

with weights as in (2.15) such that

wn;p.B/D min
e2E.H/

wn;p
!
B.e/

"
D min
e2E.H/

min
f2F.e/

.npd
0
f .e//r!jfj ! np#0.H/: (3.17)

We record some general bounds on $0.H/ by considering specific dominating
bases. We drop the superscript H from all notation for the remainder of this section.
We write

$?.H/D max
e2E.H/

d.e/

for the maximal edge degree (which does not count the edge e itself). For 1' s ' r ,
let

$s.H/D max
e2E.H/

max
U2.es/

ˇ̌
¹e0 W U \ e0 ¤;º

ˇ̌

denote the largest number of hyperedges intersecting a size-s subset of some edge of
H ; in particular, $1.H/D$.H/, $r.H/D$?.H/C 1, and $s.H/' s$.H/ for
every 1' s ' r & 1. Since d 0.e/! .d.e/C 2/=r , it follows that for any r -graph H ,
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$0.H/! $?.H/C 2
r

! $.H/C 1
r

; (3.18)

whereas taking F.e/D
! e
r!1
"
[ ¹;º (which is always a dominating base) shows that

$0.H/'$.H/C 1: (3.19)

Indeed, for each fD e n ¹vº we have d.e n f/D d.v/'$.H/. If every pair of edges
overlaps in at most s0 vertices, then taking the bases F.e/D ¹;º [

! e
s0

"
we obtain the

sharper bound

$0.H/' max
s2¹r;r!s0º

$s.H/C 1
s

: (3.20)

Example 3.6 (Cliques)
WhenH is the r -uniform clique on k vertices, we have$.H/D

!k!1
r!1

"
and$0.H/D!k!1

r!1
"
C1, so that equality holds in (3.19). Indeed, for each hyperedge e we are forced

to take F.e/D
! e
r!1
"
[ ¹;º to satisfy the domination condition.

Example 3.7 (Sunflowers and stars)
When H is a sunflower, with pairwise intersections of all $ edges (“petals”)
equal to a common “kernel” V0 # V.H/, for every edge the optimal base is
F.e/ D ¹;; V0º, for which we have d 0;.e/ D #C1

r and d 0V0.e/ D
2

r!jV0j , and so

$0.H/Dmax¹#C1
r
; 2
r!jV0jº. Thus, sunflowers attain the minimum in (3.18) as long

as the kernel is of size jV0j ' r #!1#C1 . For the r -uniform $-armed star, with $ ! 2
(with jV0j D 1) we have $0.H/D #C1

r when r ! 3 and $0.H/Dmax¹#C12 ; 2º'$
when r D 2.

Example 3.8 (Linear hypergraphs)
When all pairs of edges share at most one vertex, then (3.20) holds with s0 D 1. For
instance, for linear cycles (or disjoint unions thereof), $0.H/Dmax¹4r ; 3

r!1º which
attains the lower bound (3.18) of 4=r for all r ! 4. For 2-graphs of degree 2 we
have $0.H/ ' 3, and one checks that in fact $0.H/D 3. For the linear 3-graph of
Corollary 3.2, taking F.e/D

!e
1

"
[ ¹;º shows that $0.H/D 1

2
.$2.H/C 1/D 2. For

the Fano plane, one checks that $0.H/D$.H/D 3.

Example 3.9 (2-graphs)
As was noted in (3.19), we always have $0.H/ ' $.H/C 1. Here we verify that
$0.H/ ' $.H/ for any 2-graph H as in Corollary 3.3(b). Indeed, for any edge
e D ¹u;vº with an end v of maximal degree we take the base F.e/D ¹;; ¹vºº, giv-
ing d 0.e/D max¹12 .$.H/C 1/; 2º ' $.H/. For any other edge, the maximal base
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F.e/ D ¹;; ¹uº; ¹vºº verifies that d 0.e/ ' $.H/, and thus $0.H/ D maxe d 0.e/ '
$.H/.

Remark 3.10
As in Remark 2.3, we believe that the right-hand side of (2.19) can be improved
to (nr)!2p!1, which would allow us to replace the left-hand side of (2.16) with
minf2F¹nr!jfjpd"!dfC1º. This would in turn imply that the conclusion of Theo-
rem 1.1 holds as long as p) n!1= Q#.H/, where Q$.H/ is defined as follows. Given a
dominating base F over an edge e 2 E.H/, we set

QdF.e/Dmax
® Qdf.e/ W f 2 F

¯
;

Qdf.e/D
dH .e/& dHf .e/C 1

je n fj D
´
dH .enf/
jenfj f¤;;

dH .e/C1
r fD;:

(Compare (3.14).) Note that Qdf.e/ is the average degree of vertices in e n f. We define

Qd.e/Dmin
F
QdF.e/; Q$.H/D max

e2E.H/
Qd.e/;

where the minimum is taken over all dominating bases F for e.

4. Proof of Theorem 2.15 (Counting lemma)
We will actually prove a more general version, involving a generalization of homo-
morphism counts that also includes induced homomorphism counts as a special case.
We say that a pair H D .H; // is a signed hypergraph if H D .V;E/ is a hypergraph
and / W E! ¹&1;C1º is a labeling of the edges by signs. Recall from Section 1.6 that
H 0 D .V0;E0/ +H if V0 + V and E0 + E, and H 0 #H if V0 + V and E0 # E. We
say that H 0 D .H 0; / 0/+H D .H; // (resp., H 0 D .H 0; / 0/#H ) if H 0 +H (resp.,
H 0 # H ) and / 0 D /jE0 . For a signed hypergraph H D .H; //, the signing induces
two subgraphs of H given by H˙ with V.H˙/D V.H/ and E.H˙/D /!1.˙1/. We
extend the definition of homomorphism counts to signed hypergraphs by defining for
any H 0 +H and S D .Se/e2E.H/ 2 SE.H/,

hom.H 0; S/D
X

"WV.H 0/!Œn!

Y
e2E.H 0C/

Se.#e/
Y

e2E.H 0!/

!
1& Se.#e/

"
: (4.1)

For compactness, here and in the remainder of the section we write

#v WD #.v/; #e WD #.e/D ¹#vºv2e

and similarly #U WD #.U / for general U # V.
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We can alternatively express this using the functional hom.H; */ as follows: with
/ fixed, we denote

eS DeS' D .eSe/e2E.H/; eSe WD
´
Se /.e/DC1;
Jn;r & Se /.e/D&1:

(4.2)

(Recall that Jn;r is the tensor with entries 1 when all indices are distinct and 0 other-
wise.) We have

hom.H ; S/D hom.H;eS/: (4.3)

Theorem 2.15 follows immediately from the next result upon taking the trivial
labeling /.e/$ 1.

THEOREM 4.1 (Counting lemma for signed homomorphisms)
Let p 2 .0; 1/, and let H D .H; // be a signed hypergraph as above. For each e 2
E.H/, let F.e/ be an H -dominating base for e, and define a weighted base B.e/D
.r; e; *e;F.e/; dHC.e/; ¹dHCf .e/ºf2F.e//. With base system BD ¹B.e/ºe2E.H/, let k *
k"B be the associated seminorm on Zn;r as defined in (2.14). Let C #An;r be a set
of diameter at most "p under k * k"B for some " 2 .0; 1!, and assume further that there
exist Q0 2 hull.C/ and L! 1 such that

hom.H 0;Q0/'Lnv.H 0/pe.H 0C/ 8H 0 D .H 0; / 0/#H : (4.4)

Then for all P D .P e/e2E.H/ and QD .Qe/e2E.H/ with each P e;Qe 2 hull.C/,
ˇ̌
hom.H ;P /& hom.H ;Q/

ˇ̌
!H L"nv.H/pe.HC/: (4.5)

Note that while the bases for B.e/ are H -dominating, the weights are taken from
the neighborhood structure in the subgraph HC.

Proof
Fix H and C as in the statement of the lemma. We prove by induction on m' e.H/
that for all H 0 D .H 0; / 0/ +H with e.H 0/ ' m, all A D .Ae/ 2 CE.H 0/ and Q D
.Qe/ 2 hull.C/E.H

0/, we have
ˇ̌
hom.H 0;A/& hom.H 0;Q/

ˇ̌
' C.m; r/L"nv.H 0/pe.H 0C/ (4.6)

for some C.m; r/ <1. One can then replace A with P as in the theorem statement
via the triangle inequality.

The base casemD 0 holds trivially. Assume now that (4.6) holds for all H 0 +H

with e.H 0/ ' m & 1. We fix H 0 D .H 0; / 0/ +H with e.H 0/D m and A and Q as
above. For brevity, we write
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V0 WD V.H 0/; E0 WD E.H 0/; E0˙ WD E.H 0˙/:

We first express hom.H 0;Q/ as a convex combination of homomorphism counts
for Boolean tensors. Labeling the elements of C as Bj , 1 ' j ' jC j, for each e 2
E.H/ we express Qe DPj c

e
jBj for coefficients cej 2 Œ0; 1! with

P
j c

e
j D 1. We

have

hom.H 0;Q/D
X

"WV0!Œn!

Y
e2E0C

Qe.#e/
Y
e2E0!

!
1&Qe.#e/

"

D
X

"WV0!Œn!

Y
e2E0C

hX
j

cejBj .#e/
i Y
e2E0!

hX
j

cej
!
1&Bj .#e/

"i

D
X

"WV0!Œn!

X
j

Y
e2E0

ceje

Y
e2E0C

Bje .#e/
Y
e2E0!

!
1&Bje .#e/

"

D
X
j

cj hom.H 0;Bj /;

where sums over j run over all j D .je/e2E0 2 jC jE
0
, and we set

cj WD
Y
e2E0

ceje ; Bj WD .Bje /e2E0 :

Now noting that
P
j cj D 1, we have

ˇ̌
hom.H 0;A/& hom.H 0;Q/

ˇ̌
D
ˇ̌
ˇ
X
j

cj
!
hom.H 0;A/& hom.H 0;Bj /

"ˇ̌ˇ

'
X
j

cj
ˇ̌
hom.H 0;A/& hom.H 0;Bj /

ˇ̌
:

Thus, fixing collections AD .Ae/e2E0 and B D .Be/e2E0 of tensors in C , it suffices
to show that

ˇ̌
hom.H 0;A/& hom.H 0;B/

ˇ̌
' C.m; r/L"njV0jpjE0Cj: (4.7)

Label the hyperedges of E0 as e1; : : : ; em. Recalling the notation (4.2), we express
the difference of homomorphism counts as a telescoping sum

hom.H 0;A/& hom.H 0;B/

D hom.H 0;eA/& hom.H 0;eB/
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D
X

"WV0!Œn!

mX
kD1

%eAek .#ek /& eBek .#ek /
&Y
j<k

eBej .#ej /
Y
j>k

eAej .#ej /

D
mX
kD1

X
"WV0nek!Œn!

e&ekk;"
Y
e2E0W
e\ekD;

eZek.#e/;

where

An;r 3 eZek WD
´eBe for eD ej with j ' k;
eAe for eD ej with j > k,

e&ekk;" WD
X

 Wek!Œn!

%eAek . ek /& eBek . ek /
& Y
e2@H 0 .ek/

eZek.#enek [ e\ek /;

and eZe
k
.#enek [  e\ek / is the value of the symmetric r -tensor eZe

k
evaluated at an

arbitrary ordering of the set #enek [ e\ek .
Now we recognize the expression
Y

e2@H 0 .ek/

eZek.#enek [ e\ek /D
Y

f2F.ek/

Y
e2@H 0f .ek/

eZek.#enek [ e\ek /

DW
Y

f2F.ek/

'f
!
. v/v2f

"
DW Tek ;"

!
. v/v2ek

"
(4.8)

as the output of a test tensor Tek ;" 2 T .ek/. Hence we can express

e&ekk;" D heAek & eBek ; Tek ;"i:
Noting that eAek & eBek D˙.Aek &Bek / for each k, we can apply the triangle inequal-
ity and our assumption on the diameter of C to bound

ˇ̌
hom.H 0;A/& hom.H 0;B/

ˇ̌

'
mX
kD1

X
"WV0nek!Œn!

ˇ̌
hAek &Bek ; Tek ;"i

ˇ̌ Y
e2E0W
e\ekD;

eZek.#e/

' "p
mX
kD1

X
"WV0nek!Œn!

kTek ;"kB.ek/
Y
e2E0W
e\ekD;

eZek.#e/: (4.9)

Recalling our choice of weights for the weighted base B.ek/, by definition we have

kTek ;"kB.ek/ ' kTek ;"k1C
X

f2F.ek/

nr!jfjpd
HC .ek/!d

HC
f .ek/k'fk1:
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From (4.8),

kTek ;"k1 D
X

 Wek!Œn!

Y
e2@H 0 .ek/

eZek.#enek [ e\ek /

and for k'fk1 we have the same expression with @H
0

f .ek/ in place of @H
0
.ek/. Substi-

tuting these bounds in (4.9), we obtain
ˇ̌
hom.H 0;A/& hom.H 0;B/

ˇ̌

' "p
mX
kD1

°
hom.H .k/;eZk/

C
X

f2F.ek/

nr!jfjpd
HC .ek/!d

HC
f .ek/ hom.H .k;f/;eZk/

±
; (4.10)

where H .k/ D .V0;E0 n ¹ekº/, and for H .k;f/,

V.H .k;f//D V0 n .ek n f/; E.H .k;f//D
®
e 2 E0 W e \ .ek n f/D;

¯
:

In particular,

v.H .k;f//D jV0j& r C jfj (4.11)

and

e.H .k;f/
C /D

ˇ̌®
e 2 E0C W e \ .ek n f/D;

¯ˇ̌

D
ˇ̌
E0C \ ¹ekºc \ @HC.ek/\ @

HC
f .ek/

c
ˇ̌

D jE0Cj& 1'.ek/D1 & dH
0
C.ek/C d

H 0C
f .ek/

! jE0Cj& 1'.ek/D1 & dHC.ek/C d
HC
f .ek/: (4.12)

By restricting / to the edge sets of H .k/ and H .k;f/, we obtain signed hypergraphs
H .k/ #H 0 and H .k;f/ #H 0 for each k 2 Œm! and f 2 F.ek/. For any H 00 D .H 00; / 00/
in this collection of signed hypergraphs we have e.H 00/'m&1, and by the induction
hypothesis and the assumption (4.4), for any Q 2 hull.C/E

0
,

hom.H 00;Q/D hom.H 00;Q/' hom.H 00;Q0/C
ˇ̌
hom.H 00;Q/& hom.H 00;A0/

ˇ̌

'
!
1CC.m& 1; r/

"
Lnv.H 00/pe.H 00C/

(recalling "' 1). Applying this for each H .k/ and H .k;f/ with QDZk and combin-
ing with (4.11) and (4.12), we obtain
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hom.H .k/;eZk/'
!
1CC.m& 1; r/

"
LnjV

0jpe.H 0C/!1;

hom.H .k;f/;eZk/'
!
1CC.m& 1; r/

"
LnjV

0j!rCjfjpe.H 0C/!1!dHC .ek/Cd
HC
f .ek/:

Substituting these bounds into (4.10), we obtain (4.7) upon taking C.m; r/ WD
m2r .1C C.m & 1; r//. This completes the induction step to conclude the proof of
Theorem 4.1.

5. Proof of Theorem 2.13 (Decomposition lemma)
Throughout this section, we write T WD TB. ForA 2An, we denote the centered tensor

NADA&EADA& pJn;r :

We refer the reader to Section 1.6 for our notational conventions for tensors.

LEMMA 5.1
Let k ! 1 and T1; : : : ; Tk 2 T . For 1' i ' k, let Wi be the span of ¹T1; : : : ; Tiº and
set

bTi WD PW?
i!1
.Ti / (5.1)

(with bT1 D T1). We have

P
#^
i2Œk!

ˇ̌
h NA;bTi i

ˇ̌
! "pkTikB

$
' 2k exp

#
&c.r/"2p2

!
1_ log.1=p/

" kX
iD1
kTikB

$

for some c.r/ > 0 depending only on r .

Proof
By the union bound,

P
#^
i2Œk!

ˇ̌
h NA;bTi i

ˇ̌
! "pkTikB

$
' 2kP

#^
i2Œk!
h NA;0ibTi i! "pkTikB

$
;

where 0i 2 ¹C1;&1º. Fix a choice of 01; : : : ;0k , and let eTi D 0ibTi . Then

P
#^
i2Œk!
h NA;0ibTi i! "pkTikB

$
' P

#D
NA;

kX
iD1

eTi
E
! "p

kX
iD1
kTikB

$
:

Since eT1; : : : ;eTk are orthogonal, we have

'''
kX
iD1

eTi
'''2
2
D

kX
iD1
keTik22 '

kX
iD1
kTik22 D

kX
iD1
kTik1; (5.2)

where the last equality uses that the Ti are Boolean tensors.
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Let eT DPk
iD1 eTi . Then for any 1> 0,

P
#D
NA;

kX
iD1

eTi
E
! "p

kX
iD1
kTikB

$
' exp

#
&1"p

kX
iD1
kTikB

$
E exp

!
1h NA;eT i":

Recall that the entries of NA with distinct coordinates are independent centered
Bernoulli.p/ random variables, up to the symmetry constraint. Let NA0 W ¹nºr=Sr !R
be the independent entries of NA. Notice that

h NA;eT i D h NA0;eT 0i
for some tensor eT 0 in which each coordinate is a sum of at most rŠ entries of eT . We
thus have keT 0k22 ' rŠkeT k22. Hence,

E exp
!
1h NA;eT i"D E exp

!
1h NA0;eT 0i"D Y

i2Œn!r=S

!
pe(.1!p/eT 0.i/C .1& p/e!(peT 0.i/

"
:

We claim that

p(.1!p/x C .1& p/e!(px ' e(2x2= log.1=p/:

Indeed, we have

pe(.1!p/x C .1& p/e!(px ' exp
!
&1pxC pŒe(x & 1!

"
' exp

!
12x2= log.1=p/

"

assuming that j1xj' log.1=p/, since for jzj' log.1=p/, we have exp.z/' 1C z C
z2=.p log.1=p/2/ by monotonicity of the function z 7! exp.z/!1!z

z2
. Otherwise, j1xj>

log.1=p/ and we have

pe(.1!p/x C .1& p/e!(px D e(.1!p/xClogp C .1& p/e!(px

' exp
!
12x2= log.1=p/

"
:

Thus,

E exp
!
1h NA;eT i"' exp

!
12keT 0k22= log.1=p/

"
' exp

!
c1.r/1

2keT k22= log.1=p/
"
:

By choosing 1D c2.r/"p log.1=p/
Pk
iD1 kTikB=keT k22, we obtain

P
#D
NA;

kX
iD1

eTi
E
! "p

kX
iD1
kTikB

$

' exp
#
&c3.r/"2p2 log.1=p/

# kX
iD1
kTikB

$2.
k QT k22

$

' exp
#
&c.r/"2p2 log.1=p/

kX
iD1
kTikB

$
;
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using (5.2) and
Pk
iD1 kTik1 '

Pk
iD1 kTikB. Moreover, the same bound with

log.1=p/ replaced by 1 follows from Hoeffding’s inequality.

We establish Theorem 2.13 by the following iterative procedure. We initialize
R0 D NA. If kR0k"B ' "p, then the claim follows with k D 0. Otherwise, we proceed
to step k D 1. At step k ! 1, having obtained R0; : : : ;Rk!1 and T1; : : : ; Tk!1, if
kRk!1k"B > "p, then there exists Tk 2 T so that jhRk!1; Tkij > "pkTkkB. Taking
such a Tk , we set

Rk DRk!1 &Pspan.bTk/.Rk!1/D PW?k .
NA/;

where for brevity we denote the subspace Wk WD span.T1; : : : ; Tk/. We stop the pro-
cess at step k if either

kRkk"B ' "p or
kX
iD1
kTikB > ("!2nrp!2; (5.3)

and otherwise proceed to step k C 1. Note that the process must stop at step k for
some

k ' k? WD b1C ("!2p!d?!2c: (5.4)

Indeed, if the process has not stopped after step k & 1 for some k ! 1, thenPk!1
iD1 kTikB ' ("!2nrp!2, while on the other hand kTikB ! kTik; D nrpd? for

each 1' i ' k & 1, and (5.4) follows by combining these bounds.
We take

Pk
iD1 ˛iTi to be the expansion of PWk . NA/ in the basis ¹T1; : : : ; Tkº.

Note that for each 1' j ' k, since Rj!1 is orthogonal to T1; : : : ; Tj!1,

"pkTj kB <
ˇ̌
hRj!1; Tj i

ˇ̌
D
ˇ̌
hRj!1;bTj i

ˇ̌
' kRj!1k2kbTj k2 ' kAk2kbTj k2

(recalling the notation (5.1)), and so the distance of Tj to the span of ¹T1; : : : ; Tj!1º
is

kbTj k2 ! "pkTj kBkAk2
! "pn

rpd?

nr=2
D "p1Cd?nr=2;

as claimed.
If the process stops at some k for which

Pk
iD1 kTikB ' ("!2nrp!2, then the first

condition in (5.3) holds, that is,
'' NA&PWk . NA/

''"
B ' "p;

and we obtain the claim. We take E?.(; "/ to be the set of A 2 An;r for which the
process runs until the second condition in (5.3) holds for some k ' k?.
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Thus, it only remains to bound the measure of E?.(; "/. For the case that the pro-
cess ends at step k D 1 we obtained the desired probability bound from the second
bound in (5.3) and Lemma 5.1, so we may henceforth assume that k ! 2. In partic-
ular, from (5.4) it follows that ("!2p!d?!2 ! 1 in this case. Denoting the event in
Lemma 5.1 by E.T1; : : : ; Tk/, we have

E?.(; "/+
[

T1;:::;Tk WPk
iD1 kTikB>%"!2nrp!2

E.T1; : : : ; Tk/: (5.5)

By Lemma 5.1, for each fixed sequence T1; : : : ; Tk ,

P
!
E.T1; : : : ; Tk/

"
' 2k exp

#
&c.r/"2p2

!
1_ log.1=p/

" kX
iD1
kTikB

$
: (5.6)

We break up the union on the right-hand side of (5.5) into dyadic ranges forPk
iD1 kTikB. For each j ! 0, let

E?j .(; "/ WD
[

T1;:::;Tk WPk
iD1 kTikB2Ij

E.T1; : : : ; Tk/;

where Ij WD ("!2nrp!2 * Œ2j ; 2jC1/. Writing Ti D
Q

f2F '
.i/
f ı%f as in (2.10) we have

that for all f 2 F,

k' .i/f k1 ' kTikB=.nr!jfjpd?!df/:

The number of choices for the Boolean tensor ' .i/f given kTikB is thus at most

njfjk)
.i/
f k1 ' exp

# jfj * kTikB.logn/
nr!jfjpd?!df

$
; (5.7)

and so the number of choices for Ti given kTikB is at most

exp
!
r2r.logn/ * kTikB *max

f2F
¹njfj!rpdf!d?º

"
:

Since each kTikB can take at most Or .b/ different values in an interval Œa; b!, the
total number of choices of T1; : : : ; Tk with

Pk
iD1 kTikB 2 Ij is at most

X
z1C%%%Czk2Ij

exp
#
r2r.logn/ *

# kX
iD1

zi

$
*max

f2F
¹njfj!rpdf!d?º

$

' exp
!
2jC1C2r("!2.logn/p!d?!2max

f2F
¹njfjpdfº
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COr
!
k log.2jC1("!2nrp!2/

""

D exp
!
Or .2

j / * ("!2.logn/p!d?!2 *max
f2F
¹njfjpdfº

"
;

where we used that

max
f2F
¹njfjpdfº! nj;jpd; D 1

along with (5.4) to absorb the errors depending on k (recall that we reduced to the
case ("!2p!d?!2 ! 1, and note that ("!2 D O.n/ from our assumptions). Com-
bining with (5.6), our assumption (2.16), and taking the constant C0 D C0.r/ there
sufficiently large, we obtain

P
!
E?j .(; "/

"

' exp
!
Or .2

j / * ("!2.logn/p!d?!2 *max
f2F
¹njfjpdfº& c.r/2j (nr

!
1_ log.1=p/

""

' exp
!
&c.r/2j (nr

!
1_ log.1=p/

""

for a modified constant c.r/ > 0. Summing the above bound over j and combining
with (5.5) and the union bound, this completes the proof of Theorem 2.13.

6. Proof of Theorem 3.1 (Quantitative LDP)

6.1. Proof of the LDP upper bound
In this section we prove Theorem 3.1(a). We use the following nonasymptotic LDP
upper bound for convex sets, which holds in wide generality, and is a simple conse-
quence of the minimax theorem (see [36, Exercise 4.5.5]).

LEMMA 6.1
For a Borel probability measure " on a topological vector space V , and any convex,
compact subset B # V , we have

".B/' exp
!
& inf
Q2B

ƒ".Q/
"
; (6.1)

where ƒ" W V ! RC is the convex dual of the log-moment generating function
ƒ.1/D log

R
V e

(.Q/ d".Q/ on the dual vector space V".

For the case of the Erdős–Rényi measure "p on the vector space Sn;r of real
symmetric r -tensors with zero diagonals, one checks that ƒ".Q/D Ip.Q/.

We commence with the proof of Theorem 3.1(a). For t ! 0 and sequences T D
.T1; : : : ; Tk/ 2 T .e/k and !D .11; : : : ;1k/ 2 Rk , we let Ke.T ;!I t / be the convex
hull of all A 2An;r such that
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'''A&EA &
kX
iD1

1ibTi
'''"

B.e/
' t; (6.2)

where we recall from (5.1) the notation .bT1; : : : ;bTk/ for the associated orthogonal
sequence. For each e 2 E, let Ie be the collection of all sets of the form Ke.T ;!I2"p/
for some 1' k ' b1C ("!2p!d?.e/!2c, some T D .T1; : : : ; Tk/ 2 T .e/k , and some
! in the scaled integer lattice ƒk WD ."p1Cd?.e/=2=k/ *Zk such that

kX
iD1
kTikB.e/ ' ("!2nrp!2 and k!k1 ' p!1!d?.e/"!1: (6.3)

We claim that for each e 2 E,

P
°
A …

[
K2Ie

K
±
' exp

!
&c0(nr log.1=p/

"
(6.4)

with c0 > 0 as in Theorem 2.13. Indeed, it suffices to show that Ie covers the com-
plement in An;r of the exceptional set E?e.(; "/ provided by the application of Theo-
rem 2.13 with weighted base B.e/. To that end, fix an arbitrary A 2An;r n E?e.(; "/.
From Theorem 2.13 we have that A satisfies (6.2) with t D "p for some T 2 T .e/k

and ! 2 Rk , with kbTj k2 ! "p1Cd?.e/nr=2 for each 1 ' j ' k, where we henceforth
write d?.e/, df.e/ for the weights associated to the weighted base B.e/. It follows
from the Cauchy–Schwarz inequality that

j1j j D
jhPWj . NA/;bTj ij
kbTj k22

' k
NAk2

kbTj k2
' "!1p!1!d?.e/;

so k!k1 ' "!1p!1!d?.e/. Now let !0 2 ƒk be as in (6.3) with k! & !0k1 '
"p1Cd?.e/=2=k. By an application of the triangle inequality for the k *k"B.e/-seminorm,
we only need to show that

kbTik"B.e/ ' p!d?.e/=2 (6.5)

for each 1' i ' k. For this, note that kbTik2 ' kTik2 ' nr=2 since Ti is Boolean. Now
for any Z 2Zn;r with kZk2 ' nr=2,

kZk"B.e/ D sup
T2T .e/

jhZ;T ij
kT kB.e/

' kZk2kT k2
kT k1=21 .nrpd?.e//1=2

D kZk2
.nrpd?.e//1=2

' p!d?.e/=2;

where in the second equality we used that kT k22 D kT k1 for Boolean T . Thus we
obtain (6.5) and hence (6.4), as desired.

Now set
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I0E D
°\
e2E

Ke WKe 2 Ie for each e 2 E
±
;

and let IE be obtained by replacing each K 2 I0H with the convex hull of K \An;r .
We claim that

log jIEj!B (n
r"!2w!1n;p logn: (6.6)

Fixing e 2 E, it suffices to prove that the claimed bound holds for log jIej (up to mod-
ification of the constant by a factor jEj). First, recalling the bound (5.7), the number
of T 2 T .e/ with a given value of kT kB.e/ is at most

Y
f2F.e/

njfjkT kB.e/=.n
r!jfjpd?.e/!df.e//;

so the total number of choices for T as in (6.3) is at most

exp
#
.logn/

kX
iD1

X
f2F.e/

jfjkTikB.e/
nr!jfjpd?.e/!df.e/

$

' exp
!
Or.1/wn;p

!
B.e/

"!1
("!2nr logn

"
: (6.7)

The number of choices for k, 11; : : : ;1k and kT1kB.e/; : : : ;kTkkB.e/ is

X
k$1C%"!2p!d?.e/!2

# 2

"2p2C
3
2d?.e/

$k
Or .("

!2nrp!2/k

D nOr .1/nOr .%"!2p!d?.e/!2/; (6.8)

where we noted that the bases of the exponentials in k are all nOr .1/ by our assump-
tions on n, p, (, and ". Now since wn;p.B.e// ' nr!j;jpd?.e/!d;C2 D nrpd?.e/C2,
we see that the second factor in (6.8) is dominated by the right-hand side of (6.7). We
thus obtained the claimed bound on jIej, establishing (6.6).

Fix E +An;r . We claim that for any K 2 IE,

K \ E ¤;H)K + .E/B;4"p: (6.9)

Indeed, fix arbitrary K 2 IE with K \ E ¤ ;. It suffices to show that for any fixed
A1;A2 2K , we have

kA1 &A2k"B.e/ ' 4"p 8e 2 E:

But this is immediate from the definitions: we have K DTe2E Ke for some choices
of Ke 2 Ie , and each Ke is contained in the 2"p-neighborhood of some A0e 2An;r

under k * k"B.e/, so the above bound follows by the triangle inequality.
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Now we are ready to conclude. For F #Qn;r , we abbreviate

Ip.F / WD inf
®
Ip.Q/ WQ 2 F

¯
: (6.10)

Applying the union bound and (6.4), we have

P.A 2 E/' jEjpc0%nr C
X

K2IEWK\E¤;
P.A 2K/:

For the latter term we apply (6.1) to bound
X

K2IEWK\E¤;
P.A 2K/

'
X

K2IEWK\E¤;
exp

!
& Ip.K/

"
' jIEj max

K2IEWK\E¤;
exp

!
& Ip.K/

"

D jIEj exp
#
& Ip

# [
K2IEWK\E¤;

K
$$
' jIEj exp

!
& Ip

!
.E/B;4"p

""
;

where in the final line we used (6.9). Applying (6.6), the claim now follows by using
log.aC b/'max.log.2a/; log.2b//.

6.2. Proof of the LDP lower bound (3.8)
The claim quickly follows from the next lemma.

LEMMA 6.2
Fix a collection BD ¹B.e/ºe2E of weighted bases, let p 2 .0; 1/, " > 0, and assume
that

min
e2E

wn;p
!
B.e/

"
! C.r/"!2 logn (6.11)

for a sufficiently large constant C.r/ > 0. Then for any Q 2Qn;r ,

log"p
!
UB.Q; "p/

"
!& Ip.Q/&O

!
1C nr=2

ˇ̌
log
!
p ^ .1& p/

"ˇ̌"
:

Indeed, for any E +An;r and anyQ 2 .E/ıB;"p we have P.A 2 E/! "p.UB.Q;

"p// by monotonicity, and the claim follows from the above lemma and taking the
supremum over such Q.

It only remains to establish Lemma 6.2. To this end, we use the following two
lemmas, starting with a complementary lower bound for Lemma 6.1.

LEMMA 6.3
For d ! 1 and p 2 .0; 1/, let "p be the product Bernoulli(p) measure on ¹0; 1ºd , and
let + be any other product measure on ¹0; 1ºd . For any E + ¹0; 1ºd ,
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log"p.E/!&D.+k"p/C log+.E/&O
#d1=2j log.p ^ .1& p//j

+.E/1=2

$
:

Proof
While [31, Lemma 6.3] is stated in terms of two adjacency matrices of simple graphs
of d D

!n
2

"
edges, one drawn from "p for some p 2 .0; 12 ! and the other from some

product measure + on ¹0; 1ºd , this lemma and its proof apply to any value of d and
to any such product measures of Bernoulli variables. Further, with p ' 1

2
used only

for the elementary bound of [31, (6.7)], upon changing p there to .1& p/, the same
proof applies also for p 2 .12 ; 1/.

LEMMA 6.4
Fix a weighted base BD .r; e; *;F; d?; ¹dfºf2F/, and let p 2 .0; 1/, " > 0. Ifwn;p.B/!
C.r/"!2 logn for a sufficiently large constant C.r/ > 0, then

"Q
!®
A 2An;r W kA&Qk"B ! "p

¯"
' exp.&c"2pd?C2nr/:

Proof
Let PQ be a probability measure under which A has distribution "Q, and let EQ be
the associated expectation. From Hoeffding’s inequality we get that for any T 2 TB,

PQ
!ˇ̌
hA &Q;T i

ˇ̌
> "pkT kB

"
' 2 exp

#
&c"

2p2kT k2B
kT k22

$
' 2 exp

!
&c0"2p2kT kB

"
:

Recalling (5.7), by the union bound we have that for any L> 0,

PQ
!
9T 2 TB W kT kB DL;

ˇ̌
hA &Q;T i

ˇ̌
> "pkT kB

"

' 2 exp
!
Or .logn/max

f2F
¹njfj!rpdf!d?ºL& c0"2p2L

"

' 2 exp
!
&.c0=2/"2p2L

"
;

assuming that C.r/ in our assumption (6.11) is sufficiently large. Since the set of pos-
sible values for kT kB is contained in a union of jFj C 1' 2r arithmetic progressions
in Œnrpd? ; nr ! of step at least 1, and nrpd?C2 ! wn;p.B/, the claim follows from
another union bound and summing the at most 2r geometric series (and we can take
C.r/ larger if necessary to absorb the prefactor 2r ).

Proof of Lemma 6.2
From Lemma 6.3, identifying An;r with ¹0; 1º.nr/, we get that for any E +An;r and
Q 2Qn;r ,

log"p.E/!& Ip.Q/C log"Q.E/&O
#nr=2j log.p ^ .1& p//j

"Q.E/1=2

$
:
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Taking E DTe2E Ee with Ee D ¹A 2An;r W kA &Qk"B.e/ < "pº, from Lemma 6.4
we have "Q.Ee/ ! 1& 1=.2jEj/ if C.r/ is sufficiently large. From the union bound
we get that "Q.E/! 1=2, and the claim follows upon substituting this estimate in the
above display.

7. Proof of Theorem 1.1—Upper tail
In this section we establish (1.8). We also show how (1.9) can be established along
similar lines under some alternative assumptions on p and H . The proof of (1.9)
under the assumption p) n!1=# is quite different and is given in Section 9.

To lighten notation, we will first present the proof of (1.8) for the case mD 1 in
Section 7.1, and then describe in Section 7.2 the simple modifications that are needed
for the general case.

7.1. Upper bound for the upper tail probability (case mD 1)
In this subsection we prove the following proposition, yielding (1.8) for the case
mD 1.

PROPOSITION 7.1
For any r -graph H and ı; / > 0, assuming that

np#
0.H/ log.1=p/ > C2/!3 logn (7.1)

for sufficiently large C2.H; ı/ > 0, we have

log P
!
tp.H;A/ > 1C ı

"
'&.1& //ˆn;p.H; ı & //: (7.2)

We need the following lemma, which one obtains by the same lines as in [61,
Theorem 2.2] (for the lower bound they do not use the stated assumption that p)
n!1=#.H/, and their upper-bound assumption on p is also not necessary, as one can
use Lemma 9.5 below in place of their Lemma 4.7 to get sufficient control on Ip).

LEMMA 7.2
For any n 2N, p 2 .0; 1/, u > 0, and r -graph H with $.H/! 2,

ˆn;p.H;u/"H;u nrp#.H/ log.1=p/:

Moreover, for u! 1,

ˆn;p.H;u/"H u#.H/=e.H/nrp#.H/ log.1=p/:

In the remainder of this subsection, we set $ WD$.H/ and denote
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Rn;p WD nrp# log.1=p/: (7.3)

The following claim, giving the tail probability for the event under which we can
apply Theorem 2.15, will be proved together with Proposition 7.1 by induction on the
number of edges in H .

CLAIM 7.3
There exists C 02.H/ > 0 such that for any L>C 02.H/, if

np#
0.H/ log.1=p/! C 02L3 logn (7.4)

then if $! 2,

P
!
tp.H;A/!L

"
' exp.&cL1=e.H/Rn;p/ (7.5)

and when $D 1,

P
!
tp.H;A/!L

"
' exp.&cL1=e.H/nrp logL/: (7.6)

The key to the proof of Proposition 7.1 is that Theorem 2.15 only requires control
over proper subgraphs ofH as given by Claim 7.3, and thus can be guaranteed induc-
tively. (Observe that the conclusion of Claim 7.3 can be essentially obtained from the
conclusion of Proposition 7.1 and the crude upper bound in Lemma 7.2; however, the
constant C 02 in Claim 7.3 is independent of LD 1C ı, which will be important for
closing the inductive argument.)

Proof of Proposition 7.1
We proceed by induction on the number of edges in H . For the case e.H/ D 1,
Claim 7.3 follows from a standard tail bound for the binomial distribution, and Propo-
sition 7.1 follows immediately from Lemma 6.1 as the superlevel set in this case is
a (convex) half-space. From the fact that tp.H1 [ H2;Q/ D tp.H1;Q/tp.H2;Q/
for H a disjoint union of two graphs H1, H2 we further obtain the case $D 1 for
Proposition 7.1 and Claim 7.3.

Assume now that $ ! 2 and that Proposition 7.1 and Claim 7.3 hold when
e.H/' `& 1 for some `! 2. Consider now an r -graph H with e.H/D `.

Recalling (3.14), for each e 2 E.H/ we fix a dominating weighted base B.e/ as
in (2.15) with d 0F.e/.e/'$0.Hk/, and form the base system BD ¹B.e/ºe2E.H/. This
implies

wn;p.B/! min
e2E.H/

min
f2F.e/

.np#
0.H//r!jfj ! np#0.H/ (7.7)

since by definition we have jfj < r for any element f of any base (note that we may
alternatively express d 0f .e/ in (3.14) as .dH .e/& dHf .e/C 2/.r & jfj/).
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We denote sublevel sets by

LH .L/ WD
®
Q 2Qn;r W tp.H;Q/'L

¯
; L > 0; (7.8)

and additionally denote

L<H .L/ WD
\
F!H

LF .L/: (7.9)

With C2, C 02 to be determined over the course of the proof, consider for now arbitrary
ı; / > 0, and additional parameters L0 > C 02.H/, K ! 1, and " > 0. We may assume
that / < ı=2. Taking C 02.H/ ! maxF!H C 02.F /, from the induction hypothesis and
the union bound we have

P
!
A …L<H .L0/

"
!H exp.&cL1=e.H/0 Rn;p/: (7.10)

(Here we used our assumption $ ! 2: note that for F #H of max-degree 1, while
(7.6) loses a factor log.1=p/ in the exponent as compared to (7.5), we gain a factor
p1!#.) Now set

E WDAn;r \LH .1C ı/c \L<H .L0/:

From the previous bound and Theorem 3.1 we have

P
!
A 2LH .1C ı/c

"
!H exp.&cL1=e.H/0 Rn;p/C P.A 2 E/

!H exp.&cL1=e.H/0 Rn;p/C exp.&c0KRn;p/

C exp
# C1KRn;p logn
"2np#0.H/ log.1=p/

& Ip
!
.E/B;"p

"$

(recall the shorthand notation (6.10)). From Theorem 2.15 it follows that

.E/B;"p +LH

!
1C ı &OH .L0"/

"c
;

and hence

Ip
!
.E/B;"p

"
!ˆn;p

!
H;ı &OH ."L0/

"
: (7.11)

Substituting this bound into the previous bound, we get that for any K ! 1, L0 >
C 02.H/, ı ! 2/ > 0, and " < c.H//=L0 for c.H/ > 0 sufficiently small,

P
!
A 2LH .1C ı/c

"
!H exp.&cL1=e.H/0 Rn;p/C exp.&c0KRn;p/

C exp
# C1KRn;p logn
"2np#0.H/ log.1=p/

&ˆn;p.H; ı & //
$

DW (I)C (II)C (III): (7.12)
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Now to establish (7.2) under the assumption (7.1), from Lemma 7.2 we can
take L0, K sufficiently large depending on H , ı to make the terms (I) and (II)
in (7.12) negligible. Fixing such L0, K , we can then fix " D c0/ for sufficiently
small c0.H; ı/ > 0, so that, together with (7.7) and our assumption (7.1), by taking
C2.H; ı/ sufficiently large we make the first term in the exponential of (III) at most
'
2
ˆn;p.H; ı & //, and (7.2) follows.

For (7.5), in (7.12) we take L0 D 2L! C 02.H/, ı D L& 1, / D 1=2 (say), K D
2L1=e.H/, " D c00=10L for sufficiently small c00.H/ > 0, and combining with (7.7)
and (7.4), the claim then follows upon taking C 02.H/ sufficiently large.

7.2. Upper bound for the upper-tail probability (general case)
For the case of general m 2 N, we follow similar lines as in Section 7.1 with some
minor modifications. The proof is now by induction on ` WD maxk e.Hk/. The case
` D 1 is handled exactly as before (the half-spaces being intersected have parallel
boundaries). For `! 2, we fix a dominating weighted base B.e/ for each k 2 Œm! and
e 2 E.Hk/, and (7.7) now holds with the minimum now taken over all edges in all
graphs Hk . In place of (7.3) we now take

Rn;p WD nrpmink#.Hk/ log.1=p/: (7.13)

The bounds in Lemma 7.2 extend toˆn;p.H; ı/ by restricting the infimum to a single
superlevel set ¹tp.Hk; */ ! 1C ıkº for which $.Hk/D min`$.H`/. We apply the
upper-LDP bound of Theorem 3.1(a) with

E WDAn;r \LH .1Cı/c \L<H .L0/;

where for L 2RmC,

LH .L/ WD
\
k2Œm!

LHk .Lk/; L<H .L0/ WD
\
k2Œm!

\
F!Hk

LF .L0/: (7.14)

For this choice of E , Theorem 2.15 implies .E/B;"p +LH .1Cı &OH .L0"//c , and
the rest of the argument proceeds as before.

7.3. Lower bound for the upper-tail probability
In this subsection we show how the bound (1.9) easily follows from Theorems 3.1
and 2.15 under some alternative assumptions. As in the proof of (1.8) we present
only the case m D 1 to lighten notation, but the argument extends to general m in
a straightforward way, following similar modifications as in Section 7.2. The proof
assuming p) n!1=#.H/ is quite different and is given in Section 9.
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PROPOSITION 7.4
In the setting of Theorem 1.1, the bound (1.9) holds if p) n

!min. 1
"0.H/ ;

r
2".H/ / logn

and if we further assume that either (a) p ! n!1=#.H/ or (b) H is regular.

This is an immediate consequence of Lemma 7.2 and the following, together with
the assumption p) n!1=#

0.H/ logn (via (3.17)).

LEMMA 7.5
Let H be an r -graph, and let ı > / > 0. Suppose that there exists an H -dominating
base system B D ¹B.e/ºe2E.H/ with weights as in (2.15) such that
mine2E.H/wn;p.B.e// ! C.H; ı//!2 logn for a sufficiently large constant
C.H; ı/ > 0. Then if p ! n!1=#.H/, or if p ! n!r=#.H/ and H is regular, we
have

log P
!
tp.H;A/! 1C ı

"
!&ˆn;p.H; ıC //&O

!
1C nr=2

ˇ̌
log
!
p ^ .1& p/

"ˇ̌"
:

(To deduce case (b) in Proposition 7.4 note that n!1=#
0.H/ ! n!r=#.H/ from

(1.7), and the assumption p) n!r=.2#.H// implies that the error term in Lemma 7.5
is o.Rn;p/D o.ˆn;p.H; ı//.)

Proof
Setting E WDAn;r \LH .1C ı/c and letting "D c/ for c D c.H; ı/ > 0 to be taken
sufficiently small, from Theorem 3.1(b) we have

P
!
tp.H;A/! 1C ı

"
!& Ip

!
.E/ıB;"p

"
&O

!
1C nr=2

ˇ̌
log
!
p ^ .1& p/

"ˇ̌"
; (7.15)

assuming that C.H; ı/ is sufficiently large depending on c and the constant C 00.r/
from Theorem 3.1(b). It only remains to show that

Ip
!
.E/ıB;"p

"
'ˆn;p.H; ıC // (7.16)

if c is sufficiently small. Letting 1'K DOH;ı.1/ to be chosen later, we first argue
that

.E/ıB;"p .LH .1C ıC //c \L<H .K/: (7.17)

Indeed, letting Q0 be an arbitrary element of the left-hand side, for any A 2
UB.Q0; "p/ we have from Theorem 2.15 applied to C DUB.Q0; "p/ that

tp.H;A/! tp.H;Q0/&OH;ı."/! 1C ıC / &OH;ı."/! 1C ı

if c is sufficiently small, and (7.17) follows. Next, by considering Q 2 Qn;r of the
form Q.I/D 1 whenever I \ ŒbLp#.H/nc!¤; and otherwiseQ.I/D p, one easily
checks that
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ˆn;p.H;2/!H;* nrp#.H/ log.1=p/ (7.18)

for any fixed 2 > 0, assuming p ! n!1=#.H/ and taking L D L.H;2/ sufficiently
large. If H is regular, then we get the same bound for p ! n!r=#.H/ by considering
Q of the form Q.I/ D 1 for I # ŒbLp#.H/=rnc! and otherwise Q.I/ D p. From
Lemma 7.2, we can hence fix K sufficiently large depending on H and ı so that

Ip
!
LF .K/

c
"
Dˆn;p.F;K & 1/ > ˆn;p.H;2ı/

for every subgraph F of H . Since ˆn;p.H;2ı/!ˆn;p.H; ıC //, it follows that

ˆn;p.H; ıC //D Ip
!
LH .1C ıC //c

"
D Ip

!
LH .1C ıC //c \L<H .K/

"

and (7.16) follows upon combining the above with (7.17).

8. Proof of Theorem 1.1—Lower tail
Recall our notation LH .u/ D ¹Q 2 Qn;r W tp.H;Q/ ' uº and L<H .u/ DT
F)H LF .u/. We will make frequent use of the shorthand notation (6.10). We

need the following elementary estimate for the lower-tail optimization problem (1.6)
(for a proof, see [60, Lemma 22]).

LEMMA 8.1
For any r -graph H and ı 2 .0; 1/, ‰n;p.H; ı/D Ip.LH .1& ı//"H;ı nrp.

Since ‰n;p.H; ı/ ! ‰n;p.Hk; ık/ for any k 2 Œm!, it immediately follows that
‰n;p.H; ı/"H;ı nrp for any H and ı 2 .0; 1/m.

8.1. Upper bound on the lower-tail probability
As in the proof of the upper bound for the upper tail, we will combine the upper LDP
of Theorem 3.1 with the counting lemma (Theorem 2.15). However, whereas for the
upper tail we needed to argue by induction on the number of edges in H in order to
satisfy the crude bound assumption (2.20) for subgraphs, here we can reduce to this
assumption with a simple application of the FKG inequality.

LEMMA 8.2
Recalling the notation (7.14), there exists C D C.H/ > 0 such that

P
!
A 2LH .1&ı/

"
' 2P

!
A 2LH .1&ı/\L<H .C /

"
:

Proof
Since the sets LH .1&ı/º and L<H .C /º are monotone subsets of the hypercube, we
have by the FKG inequality that
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P
!
A 2LH .1&ı/

"

D P
!
A 2LH .1&ı/\L<H .C /

"
C P

!
A 2LH .1&ı/;A …L<H .C /

"

' P
!
A 2LH .1&ı/\L<H .C /

"
C P

!
A 2LH .ı/

"
P
!
A …L<H .C /

"
:

Rearranging yields

P
!
A 2LH .1& ı/

"
' P.A 2LH .1&ı/\L<H .C //

1& P.A …L<H .C //
:

Now for any k 2 Œm! and subgraph F #Hk , from Markov’s inequality we get that
P.A …LF .C //! 1=C . The claim follows by applying this together with the union
bound over F #Hk , k 2 Œm! and taking C sufficiently large depending on H .

We proceed with the proof of the upper bound in (1.10). Let c D c.H/ > 0 to be
taken sufficiently small, and set " WD c/ . By our lower-bound assumption on p and
(3.17), we can select a collection BD ¹B.e/ºe2SmkD1 E.Hk/ of dominating weighted
bases over the edges of each Hk with weights as in (2.15), such that for any fixed
W0 DW0.H; ı; // and all n sufficiently large,

wn;p
!
B.e/

"
!W0"!2 logn: (8.1)

With C D C.H/ as in Lemma 8.2, we denote E WDAn;r \LH .1&ı/ \L<H .C /.
Taking W0 larger than the constant C0.r/ from Theorem 2.13, we can apply Theo-
rem 3.1(a) with $D 1 and some 1'K DOH .1/ to be chosen later to bound

P.A 2 E/'&min
®
c0Kn

rp log.1=p/&OB.1/;
Ip
!
.E/B;"p

"
&OB

!
KW !10 nrp log.1=p/

"¯
: (8.2)

Now we claim that

.E/B;"p +LH .1&ıC / 1/ (8.3)

if c is sufficiently small. Indeed, letting A0 2 E be arbitrary, applying Theorem 2.15
with C DUB.Q; "p/, we have that for each 1' k 'm,

tp.Hk;Q/' tp.A0/COH ."/' 1& ık C /

if c is sufficiently small, and (8.3) follows. Thus, Ip..E/B;"p/ ! ‰n;p.H; ı & / 1/.
From Lemma 8.1 (and the remark that follows it) we can fix K sufficiently large
and then fix W0 sufficiently large such that the minimum in (8.2) is attained by the
second argument, and such that the error term in the second argument is at most
/‰n;p.H; ı & / 1/. The lower bound on LTn;p.H; ı/ in (1.10) follows.
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8.2. Lower bound for the lower-tail probability
The upper bound on LTn;p.H; ı/ in (1.10) is a consequence of Lemma 8.1 and the
following, together with our assumption on p (via (3.17)).

PROPOSITION 8.3
Let H be an r -graph, and let ı 2 .0; 1/, / 2 .0; 1 & ı/. Assume that there exists a
collection B D ¹B.e/ºe2E.H/ of weighted bases such that mine2E.H/wn;p.B.e// !
C.r//!2 logn for a sufficiently large constant C.r/ > 0. Then

log P
!
tp.H;A/' 1& ı

"
!&‰n;p.H; ıC //&O

!
1C nr=2

ˇ̌
log
!
p ^ .1& p/

"ˇ̌"
:

To establish the proposition we need two lemmas. In the following we denote by
Q$pn;r the set of all Q 2Qn;r with entries uniformly bounded by p.

LEMMA 8.4
For any sequence of r -graphs H D .H1; : : : ;Hm/ and ı 2 .0; 1/m, we have
Ip.LH .1&ı//D Ip.LH .1&ı/\Q$pn;r /.

Proof
Clearly the left-hand side is bounded by the right-hand side. For the reverse inequal-
ity, let Q 2 LH .1&ı/ be arbitrary. Since tp.Hk; */ is monotone increasing in each
coordinate we have tp.Hk;Q ^ p/' tp.Hk;Q/ for each k, so Q ^ p 2LH .1&ı/.
Furthermore, since Ip is monotone increasing under increasing Q.I/ 2 Œp; 1! for any
I 2

!Œn!
r

"
with all other coordinates held fixed, we have that Ip.Q/! Ip.Q ^ p/, and

the claim follows.

LEMMA 8.5
There exists c D c.H/ > 0 such that for any / > 0,

LH .1&ı & / 1/\Q$pn;r +
!
A\LH .1&ı/

"ı
B;c'p

:

Proof
We write E WDA\LH .1&ı/. Let c > 0 to be taken sufficiently small depending on
H , and put " D c/ . Fixing an arbitrary Q 2 LH .1&ı & / 1/ \ Q$pn;r , our aim is to
show that UB.Q; "p/ + LH .1&ı/. Since Q 2 Q$pn;r we have by monotonicity that
tp.F;Q/' tp.F;p/' 1 for every r -graph F . In particular, Q 2L<H .1/. Applying
Theorem 2.15 with C DUB.Q; "p/ and Q0 DQ we have

tp.Hk;Q/& tp.Hk;A/!H "
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for each k 2 Œm! and every A 2UB.Q; "p/. From the triangle inequality it follows
that tp.Hk;A/' 1& ık & / COH ."/ for every such k and A, and the claim follows
by taking "D c/ for some c D c.// > 0 sufficiently small.

Proof of Proposition 8.3
Setting " D c/ for c.H/ > 0 sufficiently small and denoting E WD A \LH .1&ı/,
from Theorem 3.1(b) it suffices to show that

Ip
!
.E/ıB;"p

"
'‰n;p.H; ıC / 1/D Ip

!
LH .1&ı & / 1/

"
:

From Lemma 8.4 the right-hand side is equal to Ip.LH .1&ı & / 1/ \ Q$pn;r /, and
from Lemma 8.5 this is bounded below by the left-hand side above as long as c is
sufficiently small.

9. Alternative lower-bound argument: Concentration under the tilted law
In this section we establish the bound (1.9) of Theorem 1.1 under the stated assump-
tion p) n!1=#min . We have already shown in Section 7.3 how the lower bound can be
established using the general LDP lower bound of Theorem 3.1(b) together with the
counting lemma. Theorem 3.1(b) in turn is based on concentration of the B"-norms
under the tilted Erdős–Rényi laws "Q (see Lemma 6.4). Here we instead show that
the homomorphism counts themselves are concentrated under the tilted law. In fact,
we show this for the more general signed homomorphism counts of Theorem 2.15,
which also includes induced homomorphism counts as a special case.

The bound (1.9) under the assumption 1 > p) n!1=#.H/ is a consequence of
the following. For the upper-bound assumption on p, recall Remark 1.2.

PROPOSITION 9.1
In the setting of Theorem 1.1, if n!1=#max ( p 'mink.1C ık/!1=e.Hk/, then for any
fixed / > 0 and all n sufficiently large,

P
!
tp.Hk;A/ > 1C ık ; 1' k 'm

"
! 1
2

exp
!
&.1C //ˆn;p.H; ıC / 1/

"
:

The main step is to show that for any r -graph H and any Q 2Qn satisfying

Ip.Q/! nrp#.H/ log.1=p/;

we have that if p ! n!1=#.H/, then the homomorphism counting functional concen-
trates under "Q, in the sense that

VarQ
!
tp.H;A/

"
(
!
EQtp.H;A/

"2
:

We prove the following more general statement for signed homomorphisms (recall
the definitions from (4.1)).
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PROPOSITION 9.2
Let n!1=#.HC/ ' p ' 1& "0 for some "0 > 0, and let Q 2Qn;r be such that

Ip.Q/'Knrp#.HC/ log.1=p/

for some K 2 .0;1/. Then

VarQ
!
hom.H ;A/

"
!K;H ;"0

hom.H ;Q/2

np#.HC/
:

Taking Proposition 9.2 as given, we now establish Proposition 9.1 by a tilting
argument.

Proof of Proposition 9.1
Fix / > 0. We may assume that / ' 1. The argument is slightly simpler when either
p is fixed or all of the Hk have the same max-degree. We thus introduce a cutoff
parameter p0./;H ; ı/ > 0 to be taken sufficiently small, and let U + Œm! be defined
to be U WD ¹k 2 Œm! W $.Hk/ D $minº when p < p0, and U WD Œm! when p ! p0,
where we write $min WD mink$.Hk/. We write HU , ıU for the restriction of the
sequences H , ı to the indices in U .

For the main step of the argument, we find an element Q? 2Qn;r for which

Ip.Q?/' .1C /=2/ˆn;p.HU ; ıU C / 1/ (9.1)

and such that the joint upper-tail event is likely under the tilted law "Q? , specifically:

PQ?
#
A 2

m\
kD1

LHk .1C ık/c
$
! 3=4 (9.2)

(recalling the notation (7.14)). We begin by fixing an arbitrary elementQ 2Qn;r such
that

tp.Hk;Q/! 1C ık C / 8k 2 U

and

Ip.Q/' .1C /=4/ˆn;p.HU ; ıU C / 1/: (9.3)

By considering Q0 2 Qn;r of the form Q0.I / D p C .1 & p/1I\Œn0!¤; for n0 D
bCnp#minc, one easily verifies that tp.Hk;Q0/! 2C ık ! 1C ıkC / for all k 2 U if
C D C.H; ı/ > 0 is sufficiently large, and thus we see that the right-hand side above
is OH;ı.nrp#min log.1=p//. Hence,

Ip.Q/!H;ı nrp#min log.1=p/: (9.4)
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Note that for each k 2 U ,

EQ hom.Hk;A/! hom.Hk;Q/: (9.5)

Combining this with Proposition 9.2 applied with H DHk (all edges receiving the
positive sign) and "0 D "0.ı;H /D 1&mink.1C ık/!1=e.Hk/ > 0, we have

VarQ
!
tp.Hk;A/

"
(
!
EQtp.Hk;A/

"2

for each k 2 U . In particular, from Chebyshev’s inequality and the union bound we
get

PQ
#
A 2

\
k2U

LHk .1C ık/c
$
! 1& o.1/:

For the case that U D Œm!, this yields (9.2) with Q? DQ.
For the case that p < p0 and not all$.Hk/ are equal, we modifyQ slightly. First,

setting n1 D bC 0np#minC1c, let Q00 have entries Q00.I /D p for all I # Œn1 C 1;n!,
and otherwise Q00.I /D 1. By the same computation as for Q0 above, we have that
tp.Hk;Q

0
0/! 1C ık C / for each k 2 Œm! nU if C 0.H; ı/ is sufficiently large. Now

let Q? WDQ _Q00 be the entrywise maximum of Q and Q00. By monotonicity we
have that (9.2) holds. Moreover, since Q? only differs from Q on OH;ı.nrp#minC1/
entries we have

Ip.Q?/' Ip.Q/COH;ı
!
nrp#minC1 log.1=p/

"
:

On the other hand, for any k 2 U we can lower bound ˆn;p.HU ; ıU C / 1/ !
ˆn;p.Hk; ık C //, and combining with Lemma 7.2, the above, and (9.3) we get

Ip.Q?/'
!
1C /=4COH;ı.p/

"
ˆn;p.HU ; ıU C / 1/

' .1C /=2/ˆn;p.HU ; ıU C / 1/

taking p0 sufficiently small depending on / , H , and ı, giving (9.1) as desired.
Setting E WDTm

kD1LH .1C ık/c , we next observe that

EI.A 2 E/D EQ?I.A 2 E/ exp
!
&W.A/

"
;

where

W.A/D
X

I2.Œn!r /

°
A.I / log

Q.I/

p
C
!
1&A.I /

"
log

1&Q.I/
1& p

±
:

By Lemma 7.2, the random variable W.A/ has expectation
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EQ?
%
W.A/

&
D Ip.Q?/"H;ı nrp#min log.1=p/

and variance

VarQ?
!
W.A/

"
D
X
I

#
log

p

Q?.I /
& log

1& p
1&Q?.I /

$2
Q?.I /

!
1&Q?.I /

"

' 4
X
I

!
.logp/2C

!
log.1& p/

"2"
Q?.I /

!
1&Q?.I /

"

C 4
X
I

!!
logQ?.I /

"2C !log
!
1&Q?.I /

""2"
Q?.I /

!
1&Q?.I /

"

!H;ı nr.logp/2

since we assumed that 1& p "H;ı 1. Thus,

VarQ?
!
W.A/

"
(
!
EQ?

%
W.A/

&"2
:

In particular, for sufficiently large n, we have a subset E 0 of E with PQ?.L0/ !
PQ?.E/ & 1=4 ! 1=2 such that for all A 2 E 0, W.A/ ' .1C /=10/ Ip.Q?/. There-
fore,

P.A 2 E/! EQ?I.A 2 E 0/ exp
!
&W.A/

"
! 1
2

exp
!
&.1C /=10/ Ip.Q?/

"
;

and hence

P.A 2 E/! 1
2

exp
!
&.1C /=10/.1C /=2/ˆn;p.HU ; ıU C / 1/

"

! 1
2

exp
!
&.1C //ˆn;p.HU ; ıU C / 1/

"

! 1
2

exp
!
&.1C //ˆn;p.H; ıC / 1/

"
;

as desired.

Remark 9.3
As was pointed out to us by a referee, for r ! 3 and for r D 2 under the stronger
assumption that .np#min/2 ) log.1=p/, one can prove Proposition 9.1 using much
weaker control of the eventA 2Tm

kD1LHk .1C ık/c (e.g., via Markov’s inequality),
together with stronger control of the random variable W.A/, which is a sum of inde-
pendent random variables. We have decided to proceed via Proposition 9.2 as it may
be of independent interest.



REGULARITY METHOD AND LDP FOR RANDOM HYPERGRAPHS 931

It remains to establish Proposition 9.2. We begin by collecting a few lemmas.
The first is a Brascamp–Lieb-type generalization of Hölder’s inequality that has been
applied extensively in previous works analyzing the upper-tail optimization problem.

LEMMA 9.4 (Finner’s inequality [41]; see also [65, Theorem 3.1])
For each i 2 Œn!, let3i be a probability space with measure"i . Let"DNn

iD1"i . Let
A1;A2; : : : ;An be nonempty subsets of Œn!D ¹1; 2; : : : ; nº, and for A+ Œn! let "A DN
i2A"i and 3A D

Q
i2A3i . Let fi 2 Lqi .3Ai ;"Ai / for each i 'm. Assume thatP

i Wj2Ai q
!1
i ' 1 for all j ' n. Then we have

Z mY
iD1

fi d"'
mY
iD1

#Z
jfi jqi d"Ai

$1=qi
:

LEMMA 9.5
For any p 2 .0; 1/ and 0' x ' 1& p, we have Ip.pC x/" x2 log.1=p/.

Proof
The claim is trivial for p 2 Œc; 1/ for any fixed constant c > 0 by the uniform convexity
of Ip , so we may assume that p is sufficiently small. Since Ip.p/D I0p.p/D 0 and
I00p.x/! 1=x, the claimed bound holds for x ' 1= log.1=p/. For larger x one simply
notes that I0p.x/" log.1=p/ for x !pp (say).

LEMMA 9.6
Let$! 2,K > 0, and let G be an r -graph with maximum degree at most$. Suppose
that Q 2Qn;r has all entries in Œp; 1!, and

Ip.Q/'Knrp# log.1=p/:

Then

tp.G;Q/!K;G 1:

Proof
For economy of notation, we write i D .i1; : : : ; ir/. LetZ.i /DQ.i /&p 2 Œ0; 1&p!.
We have

hom.G;Q/D
X
G0#G

pe.G/!e.G0/ hom.G0;Z/;

where G0 ranges over subgraphs of G with the same vertex set.
Let G0 +G. Then as the maximum degree of G (and hence G0) is at most $, we

have
P
e2E.G0/Wv2e

1
# ' 1. Thus, by Lemma 9.4,
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n!v.G0/ hom.G0;Z/D n!v.G0/
X

 WV.G/!Œn!

Y
e2E.G0/

Z
!
 .e/

"

'
Y

e2E.G0/

#
n!r

X
 We!Œn!

Z
!
 .e/

"#$1=#

'
#
n!r

X
i2Œn!r

Z.i /2
$e.G0/=#

:

By Lemma 9.5,

X
i2Œn!r

Z.i /2 ! Ip.Q/
log.1=p/

:

Thus,

hom.G0;Z/' nv.G0/O
#n!r Ip.Q/

log.1=p/

$e.G0/=#
'O.K C 1/e.G0/=#nv.G/pe.G0/;

and hence

hom.G;Q/'O.K C 1/e.G/=#nv.G/
X
G0#G

pe.G/!e.G0/Ce.G0/ !K;G nv.G/pe.G/;

as claimed.

Below we will need to compare EQ hom.G;A/ with hom.G;Q/. By expanding
the polynomial hom.G;A/ and taking expectations, one sees that since the entries of
Q lie in Œ0; 1!, we have EQ hom.G;A/ ! hom.G;Q/. The next lemma shows that a
nearly matching upper bound holds. For a hypergraph G, let S.G/ be the collection
of hypergraphs G0 such that there exists a surjective map ‰ from V.G/ to V.G0/
such that E.G0/D ¹‰.e/ W e 2 E.G/º (without repeated elements). In particular, G 2
S.G/. We have

EQ hom.G;A/'
X

G02S.G/
hom.G0;Q/: (9.6)

The next lemma shows that the contribution from G0 2 S.G/ with G0 ¤G is negligi-
ble.

LEMMA 9.7
Let G be an r -graph with maximum degree at most $, and let G0 2 S.G/. Assume
that v.G0/ < v.G/ and that p ! n!1=#. If Q 2 Qn;r has all entries at least p and
satisfies
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Ip.Q/'Knrp# log.1=p/;

then

hom.G0;Q/!K;G
nv.G/pe.G/

np#
: (9.7)

Furthermore, the same conclusion holds if all entries ofQ are equal to some q 'Kp.

Proof
SinceG0 2 S.G/, we have a surjection‰ W V.G/! V.G0/ such that E.G0/D ¹‰.e/ W
e 2 E.G/º. Let ‰0 W V.G0/! V.G/ be any map such that ‰.‰0.v//D v for all v 2
V.G0/. LetG be the induced subgraph ofG on .V.G0//. Note that‰0 gives a bijection
between V.G0/ and V.G/ such that‰0!1.E.G//+ E.G0/. For the first claim, observe
that

hom.G0;Q/D
X

 WV.G0/!Œn!

Y
e2E.G0/

Q
!
 .e/

"

'
X

 WV.G0/!Œn!

Y
e2E.G/

Q
!
 
!
‰0!1.e/

""

D
X

"WV.G/!Œn!

Y
e2E.G/

Q
!
#.e/

"
D hom.G;Q/;

where in the second equality we let # D ı‰0!1. Note that G has maximum degree
at most $ as it is an induced subgraph of G. By the above and Lemma 9.6, we have

hom.G;Q/' hom.G;Q/!K;G nv.G/pe.G/:

In the case that all entries of Q are equal to q 'K 0p, we trivially have

hom.G0;Q/!G;K0 nv.G/pe.G/:

Thus, for both cases, to obtain (9.7) it suffices to show that

nv.G/!v.G/pe.G/!e.G/ ' .np#/!1:

By our assumptions that p ! n!1=# and v.G0/ D v.G/ < v.G/, it suffices to show
that

$
!
v.G/& v.G/

"
! e.G/& e.G/:

Noting that

$
!
v.G/& v.G/

"
D$

ˇ̌
V.G/ n‰0

!
V.G0/

"ˇ̌
!
ˇ̌®
e 2 E.G/ W e 6# g

!
V.G0/

"¯ˇ̌
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and

e.G/& e.G/D
ˇ̌®
e 2 E.G/ W e 6#‰0

!
V.G0/

"¯ˇ̌
;

we obtain the desired conclusion.

Proof of Proposition 9.2
From the Efron–Stein inequality we have that

VarQ
%
hom.H ;A/

&
' 1
2

X
I2.Œn!r /

EQ
%!

hom.H ;A/& hom.H ;AI /
"2&
;

where AI ;A0I ;A
1
I 2 An are equal to A except (up to the symmetry constraint)

for AI .I / being a Bernoulli.Q.I // random variable independent of A, whereas
A1I .I /D 1 and A0I .I /D 0. Taking expectation over the variables AI .I /, we have
the bound

VarQ
%
hom.H ;A/

&
'
X
I

Q.I/
!
1&Q.I/

"
EQ$I .H ;A/2

'
X
I

Q.I/EQ$I .H ;A/2; (9.8)

where

$I .H ;A/ WD hom.H ;A1I /& hom.H ;A0I /:

Recalling the notation

Ae' D
´
A e 2 E.HC/;

1&A e 2 E.H!/;

for A 2An, we have

$I .H ;A/D
X

E0)E.H/

X
"WV.H/!Œn!
"!1.I /DE0

Y
e2E.H/

.A1I /
e
'.#e/&

Y
e2E.H/

.A0I /
e
'.#e/

D
X

E0)E.H/

X
"WV.H/!Œn!
"!1.I /DE0

Œ1E0#E.HC/ & 1E0#E.H!/!

,
Y

e2E.HC/nE0
A.#e/

Y
e2E.H!/nE0

!
1&A.#e/

"
:
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Squaring, dropping the negative summands, and bounding terms 1&A.#e/ by 1, we
obtain

$I .H ;A/2

'
X

E0;E1)E.HC/
orE0;E1)E.H!/

X
"0;"1WV.H/!Œn!

"a.e/DI 8e2Ea;aD1;2

Y
e2E.HC/nE0

A.#0e /
Y

e2E.HC/nE1
A.#1e /:

Combining the above with the FKG inequality, we get that (9.8) is bounded by

EQ
X
I

A.I /
X

E0;E1)E.HC/
orE0;E1)E.H!/

X
"0;"1WV.H/!Œn!

"a.e/DI 8e2Ea;aD1;2

Y
e2E.HC/nE0

A.#0e /

,
Y

e2E.HC/nE1
A.#1e /:

We can interpret the above sum as counting homomorphisms of graphs GC
obtained from H as follows. Let H 0, H 1 be disjoint copies of H . For a D 0; 1, let
Ea # E.H a/, and write Va for the union of the edges in Ea; further, let H a

C be a
subgraph of H a isomorphic to HC (with V.H a

C/ D V.H a/ and edges correspond-
ing to the positively labeled edges of H ). Let eH be the union of H 0 [H 1 with a
disjoint edge e?, and define a surjection ‰ from V. eH/D V.H 0/ [ V.H 1/ [ e? to
V 0 WD .V.H 0/ n V0/[ .V.H 1/ n V1/[ e" as follows:
' On V 0 we take ‰ to be the identity map.
' On each Va we take‰ to be any surjection to e? such that‰.e/D e? for every

e 2Ea.
LetG be the graph on V 0 that is the image of eH under‰—that is, its edge set consists
of the images ‰.e/ of e 2 E. eH/, removing any repetitions. We further let GC be the
subgraph of G on the same vertex set V 0 with edges that are the images of the edges
of H 0

C [H 1
C, together with the edge e?. Letting GH be the collection of graphs GC

over V 0 that can be obtained in this way, we have
X
I

A.I /$I .H ;A/2 '
X

GC2GH

hom.GC;A/:

Combining the previous displays and applying (9.6), we have shown that

VarQ
%
hom.H ;A/

&
' EQ

X
GC2GH

hom.GC;A/

'
X

GC2GH

X
F 2S.GC/

hom.F;Q/: (9.9)
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Now consider an arbitrary F 2 S.GC/ for some GC 2 GH . By definition, F is the
image of GC under a surjection ‰0 W V 0! V.F / that maps edges to edges. Let F 0 be
the subgraph over V.F / obtained by removing the edge ‰0.e"/, and observe that F 0

is the image under the restriction ‰00 of ‰0 ı‰ to V.H 0 [H 1/ of a subgraph H 0 of
H 0
C [H 1

C over the same vertex set. (Specifically, it is the image of the subgraph of
H 0
C [H 0

! obtained by removing the edges E0 [E1.) Since ‰00 is a surjection from
V.H 0 [H 1/ to V.F /, we have that F 0 2 S.H 0

C [H 0
!/. Moreover,

v.F 0/D v.F /' jV 0j D 2v.H/& jV0j& jV1j C r < 2v.H/D v.H 0
C [H 1

C/;

where the strict inequality follows from the fact that each of V0 and V1 contain at least
one edge by assumption. Let Q0 be defined by the coordinatewise maximum between
Q and p. Then Ip.Q0/' Ip.Q/'Knrp#.HC/ log.1=p/ and

hom.F;Q/' hom.F 0;Q/' hom.F 0;Q0/:

From Lemma 9.7 we have

hom.F 0;Q0/!K;H
nv.H0C[H1C/pe.H0C[H1C/

np#.HC/
D n2v.H/p2e.HC/

np#.HC/
:

Combining these bounds with (9.9) yields the claim.

10. Other applications

10.1. Upper tails for induced homomorphism counts
For an r -graph H and Q 2 Qn;r , the induced homomorphism count of H in Q is
defined as

ind.H;Q/D
X

"WV.H/!Œn!

Y
e2E.H/

Q
!
#.e/

" Y
e2.V.H/

r /nE.H/

!
1&Q

!
#.e/

""
:

As before, this definition extends to symmetric r -tensors.
For simplicity, we only consider the analogue of (1.8)–(1.9) for the case mD 1.

Define

UTind
n;p.H; ı/D& log P

!
ind.H;G /! .1C ı/nv.H/pe.H/.1& p/.v.H/

r /!e.H/"

and the corresponding upper-tail optimization problem

ˆind
n;p.H; ı/D inf

®
Ip.Q/ WQ 2Qn;r ;

ind.H;Q/! .1C ı/nv.H/pe.H/.1& p/.v.H/
r /!e.H/¯:
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THEOREM 10.1
The bounds (1.9) and (1.8) hold with UTind

n;p.H; ı/, ˆ
ind
n;p.H; ı/ in place of

UTn;p.H; ı/, ˆn;p.H; ı/ (in the case mD 1), under the same lower-bound assump-
tions on p, and also assuming that p ' p0 for an arbitrary fixed p0 2 .0; 1/.

For the lower bound on UTind
n;p.H; ı/, we follow the proof of Proposition 7.1. The

only difference is that in place of Theorem 2.15 we apply the generalized counting
lemma Theorem 4.1 with the signed hypergraph K D .Krv.H/; //, where /.e/DC1
if e 2 E.H/ and /.e/D &1 if e 2

!V.H/
r

"
n E.H/. The subgraphs K˙ induced by /

are then defined by V.K˙/D V.H/, E.KC/D E.H/, and E.K!/D
!V.H/
r

"
nE.H/.

We also use in the proof the fact that

ˆind
n;p.H; ı/"H;ı nrp#.H/ log.1=p//;

which follows from the argument of [61, Theorem 2.2]. For p D !.n!1=#.H//, we
obtain a matching upper bound

ˆind
n;p.H; ı/!H;ı nrp#.H/ log.1=p/;

by fixing a subset J0 of Œn! of size ‚H;ı.np#.H//, and let Q be so that Q takes value
1=2 on hyperedges which intersect J0 and Q takes value p elsewhere. We can verify
that Ip.Q/D‚H;ı.nrp#.H/ log.1=p//.

Next, we show the upper bound on UTind
n;p.H; ı/, following the proof of Proposi-

tion 9.1. We highlight the main changes and additional steps. Let Q 2Qn;r be such
that

hom.K;Q/! .1C ıC //nv.K/pe.KC/.1& p/e.K!/ " nv.K/pe.KC/

and

Ip.Q/D
X

I2.Œn!r /

Ip
!
Q.I/

"
' .1C /=4/ˆind

n;p.H; ıC //! nrp#.KC/ log.1=p/:

In order to show that

VarQ
!
hom.K;A/

"
(
!
EQ hom.K;A/

"2
; (10.1)

by Proposition 9.2 it suffices to show that

hom.K;Q/! EQ hom.K;A/: (10.2)

The right-hand side is bounded below by EQ inj.K;A/D inj.K;Q/, where we write
inj.K; */ for the count of injective signed homomorphisms. On the other hand, the
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count of noninjective signed homomorphisms of K in Q is at most the count of
noninjective homomorphisms of KC DH in Q, for which Lemma 9.7 gives

hom.H;Q/& inj.H;Q/D o.nv.H/pe.H//:

Since 1&p ! 1&.1Cı/!1=e.H/ "ı;H 1, the right-hand side is o.hom.K;Q//. Thus,
hom.K;Q/D .1C o.1// inj.K;Q/, which establishes (10.2) and hence (10.1).

We can easily show that

W.A/D
X
I

°
A.I / log

Q.I/

p
C
!
1&A.I /

"
log

1&Q.I/
1& p

±

concentrates around its expectation under PQ. We then obtain the desired upper bound
on UTind

n;p.H; ı/ as in Proposition 9.1.

10.2. Lower tails for Sidorenko hypergraphs
We call H a Sidorenko hypergraph if

hom.H;Q/
nv.H/

! hom.Krr ;Q/
e.H/ 8Q 2Qn;r ;

where Krr is simply one hyperedge. For the case r D 2, a famous conjecture in
extremal combinatorics by Erdős and Simonovits [75] and Sidorenko [73] states that
all bipartite graphs are Sidorenko. This conjecture has been verified for a large fam-
ily of bipartite graphs, including trees, even cycles, paths, hypercubes, and bipartite
graphs with one vertex complete to the other side (see [24], [29], [76] and references
therein). While a natural generalization of Sidorenko’s conjecture to hypergraphs is
false, it is known that many families of hypergraphs satisfy the Sidorenko property
(see [76]).

Let H be a graph (so r D 2). Let Oq be so that Oqe.H/ ' .1 & ı/pe.H/, and let
q D Oq n

n!1 . It is established in [31] that

LTn;p.H; ı/'
!
1C o.1/

" n
2

!
Ip.q/;

as long as p D !.n!1=.2#2.H/!1//. Furthermore, if H is a Sidorenko graph, then the
following nonasymptotic bound holds:

LTn;p.H; ı/!
 
n

2

!
Ip.q/:

Our next theorem generalizes this result to r -uniform Sidorenko hypergraphs and
improves on the range of p where the lower-tail asymptotics hold. We remark that
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in [60] the reduction of the lower-tail asymptotics to the corresponding variational
problem has been shown in an optimal range of sparsity for graphs (r D 2), where the
reduction is also shown for hypergraphs satisfying appropriate degree conditions.

Denote by Eq the expectation with respect to the random r -graph where each
hyperedge is independently included with probability q.

THEOREM 10.2
Let H be an r -graph. Assume that p D !.n!1=#.H//. Fix ı 2 .0; 1/, let Oq D .1 &
ı/1=e.H/p, and let q D Oq nr

n%%%.n!rC1/ . Then

LTn;p.H; ı/'
!
1C o.1/

" n
r

!
Ip
!!
1& o.1/

"
q
"
: (10.3)

Furthermore, if H is a Sidorenko hypergraph, then we have

LTn;p.H; ı/!
 
n

r

!
Ip.q/: (10.4)

Our result thus yields the lower-tail asymptotics as long as H is Sidorenko and
p D !.n!1=#.H//. We remark that in the regime p D !.n!1=#.H//, we can verify
that Oq D‚.p/ so q D‚.p/. In the case r D 2, this improves the threshold in [31].

We turn to the proof of Theorem 10.2. We first give the proof of (10.3) follow-
ing the proof of Proposition 9.1. Let / > 0 be any sufficiently small real number.
We choose Qq D q.1 & //. We write E Qq and VarQq for expectation and variance under
the distribution of a random tensor A whose entries are independent and identically
distributed Bernoulli. Qq/ variables. We first establish an analogue of Proposition 9.2
showing the concentration of hom.H;A/ where A has independent Bernoulli. Qq/
entries. In particular, we show that

VarQq
!
hom.H;A/

"
(
!
E Qq hom.H;A/

"2
: (10.5)

First, notice that cp ' Qq ' p for some constant c 2 .0; 1/ depending only on ı.
We have that

E Qq hom.H;A/!
!
1C o.1/

"
nv.H/ Qqe.H/: (10.6)

Indeed, by summing over the injective homomorphisms, we obtain

E Qq hom.H;A/!
!
1& o.1/

"
nv.H/ Qqe.H/:

Recall that we denote by Jn;r 2An;r the tensor with all “off-diagonal” elements
equal to 1. Following identically the proof of Proposition 9.2, we obtain that
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VarQq
!
hom.H;A/

"
!H

X
G2S. QH/Wv.G/<2v.H/

hom.G; QqJn;r/;

where QH is the hypergraph obtained from two disjoint copies of H , and recall that
S. QH/ is the collection of hypergraphs G such that there exists a surjective map f
from V. QH/ to V.G/ such that E.G/D f .E. QH//. By Lemma 9.7 applied with QD
QqJn;r , we obtain that for each G 2 S. QH/,

hom.G; QqJn;r/D o.n2v.H/p2e.H//:

Thus,

Var Qq
!
hom.H;A/

"
D o.n2v.H/p2e.H//D o

!!
E Qq hom.H;A/

"2"
;

using (10.6), yielding (10.5). The concentration of

W.A/D
X
i

°
A.i / log

Qq
p
C
!
1&A.i /

"
log

1& Qq
1& p

±

easily follows noting that

E QqW.A/! cnr
#
Qq log

Qq
p
C .1& Qq/ log

1& Qq
1& p

$

and

VarQq
!
W.A/

"
' Cnr Qq.1& Qq/

#
log

p

Qq & log
1& p
1& Qq

$2
;

so as Qq 2 Œcp;p!, we have Var Qq.W.A// D o..E QqW.A//2/: Combining this with
(10.5),we obtain (10.3) as in the proof of Proposition 9.1.

To establish (10.4) under the additional assumption that H is Sidorenko, we
note that if hom.H;A/ ' .1 & ı/pe.H/nv.H/, then by the Sidorenko property,
hom.Krr ;A/' Oq. Noting that

hom.Krr ;A/D n!r
X
i2Œn!r

A.i /D n * * * .n& r C 1/
nr

 
n

r

!!1X
i

A.i /;

(10.4) follows from basic properties of the binomial distribution.
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and sparse Erdős-Rényi graphs, Ann. Probab. 48 (2020), no. 5, 2404–2448.
MR 4152647. DOI 10.1214/20-AOP1427. (882)

[3] T. AUSTIN, The structure of low-complexity Gibbs measures on product spaces, Ann.
Probab. 47 (2019), no. 6, 4002–4023. MR 4038047. DOI 10.1214/19-aop1352.
(882)

[4] J. BALOGH, R. MORRIS, and W. SAMOTIJ, Independent sets in hypergraphs, J. Amer.
Math. Soc. 28 (2015), no. 3, 669–709. MR 3327533.
DOI 10.1090/S0894-0347-2014-00816-X. (879, 893)

[5] A. BASAK, Upper tail of the spectral radius of sparse Erdős-Rényi graphs, Probab.
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