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ARTICLE INFO ABSTRACT

Keywords: We introduce a new principle for devising numerical schemes for conservation laws in one
Finite volume method and multiple dimensions. The new formulation is based on the Total of Time Variation (TOTV)
TVD

defined as the volume integral of the magnitude of the time derivative. For the one-dimensional
scalar advection equation with a constant velocity, TOTV and the usual total variation (TV) are
the same except for a constant factor. For non-linear equations and/or in multiple dimensions,
TV and TOTV are different. We show that TOTV is a conserved quantity for one- and multi-
dimensional scalar conservation laws with a non-linear flux function that can depend on the
spatial coordinates as well. We call a numerical scheme that ensures that the discrete form of
TOTV is not increasing in time a Total of Time Variation Diminishing (TOTVD) method. A TOTVD
scheme is stable against catastrophic instabilities that would lead to uncontrolled growth of the
time derivative. We show that the first order upwind scheme with a finite time step satisfying the
usual CFL condition is TOTVD for all equations that satisfy the TOTVD property analytically. We
demonstrate the difference between TV and TOTV with numerical tests.

Stability
Conservation laws

1. Introduction

A large part of computational physics is concerned with solving systems of equations that can be written as conservation laws.
For each conserved quantity « the time evolution is governed by

Qu+V-t,U,x,0)=0 1)

where f, is a flux vector depending on the vector of conserved variables U, the coordinates x and time ¢ in general. For sake of
clarity, we use upper case for vectors and matrices of variables and bold face for vectors in the spatial coordinates. The conservation
form of (1) ensures that the volume integral of u will only change due to the fluxes through the external boundaries.

Devising a scheme that can solve conservation laws accurately while maintaining stability and avoiding spurious oscillations is
highly desirable. On the other hand, proving that a scheme will have these properties for the most general form of (1) is a daunting
task. In practice, practitioners design schemes that have (some of) the desired properties for a subset of the equations and then hope
that they will perform satisfactorily for a wider class of equations in practice.

One of the most successful class of numerical schemes solving (1) are based on the total variation diminishing (TVD) principle
[1]. For a spatially one-dimensional case the total variation (TV) is defined as

TX:/dxldxul (2)
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Fig. 1. Solution of a 1D scalar linear equation d,u — d, (usin kx) = 0 with initial condition u = 1. The four lines show the solutions at 7 =0,1.69, 3.52 and 5.34, respectively.
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Fig. 2. Solution of the MD scalar equation d,u+d,(u|y|) = 0 on a double periodic 2D domain. The initial condition is u = 1 inside a square and 0 outside. The four plots
show the solutions at =0,1,2 and 3 from left to right.

and the TVD property states that

T, (ty) ST, (1)) for t,>1 3)

The x subscript refers to the fact that 7 involves the x derivative. It can be shown that the analytic solution of a subset of (1) satisfies
(3). For example, a scalar equation with flux f = f(u) satisfies the TVD property, even if f is a non-linear function of u. Another
example is the linear advection equation with f = au

Oju+ 0, (au) =0, 4

where the velocity « is a constant. However, if a is a function of x, the TVD property does not hold. For example, if a = sinx and
u =1 initially at r = 0 then T, (0) = 0. After a short time 7 > 0, the solution will have a wave like solution with a finite amplitude since
0;u(x,0) = —0, (usinx) = —cos x and T.(r) > T,.(0) = 0 violates the TVD property (see Fig. 1).

Another important subset of the general conservation laws for which the TVD property is satisfied, is a system of linear (in
U) hyperbolic equations with flux functions F = A - U, where A is a constant matrix with real eigenvalues. Such equations can
be rewritten into scalar advection equations (4) for the characteristic variables W replacing U and the characteristic velocity 4,,
replacing a. Then each of these equations satisfy the TVD property for each characteristic variable w.

Finally, for multi-dimensional (MD) scalar equations with f = f(u), the MD TV defined as

TX=/dV|Vu| (5)

v
satisfies the MD TVD condition:

Ty (1) < Ty (1)) for t,>1 (6)

where x refers to the gradient with respect x. While this is mathematically interesting, there are very few equations of interest that
belong to this subset. The non-linear 2D Burgers equation with f = (u?/2,4?/2) and the MD linear advection equation with f = au
(where a is a constant velocity vector) are two examples.

It is equally important to recognize that most of the equations of interest do not satisfy the TVD property. Important examples are
non-linear systems of equations, such as the Euler equations in one or more dimensions. Another example is the advection of some
scalar quantity in an arbitrary flow field with f = a(x)u, where the velocity vector a(x) depends on the coordinates (see Fig. 2 as an
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illustration). For the special case of divergence free flow field when V-a=0and 0=0,u+ V - (au) =0,u +a- Vu=: Du/Dt, Sokolov et
al. [2] showed that the exact solution satisfies the TVD property for the TV defined as

TS=/dV|V~[a(X)u]|=/a'VIa(X)~Vu| 7)
4 v

The interpretation of this functional in [2] is that T, evaluates the spatial variation of u along streamlines. But there is an alternative
and much more general interpretation based on the fact that V - [a(x)u] =V - f = —9,u: in fact T is the volume integral of |0,u|.
Based on this observation, we introduce the total of time variation (TOTV) as

7.~ [ aviou ®
|4

We will show that a surprisingly wide class of conservation laws satisfy the total of time variation diminishing (TOTVD) property

T,(ty) <T,(t;) for t,>1 ©)]

The TV and TOTV are related to each other in several ways. For differentiable functions u(x, r), one can define a space-time variation

T T
T, = / dr / 4V (Vul + 10,ul) = / T +T)) (10)
0 14 0

that plays a central role in the theory of scalar conservation laws [3, chapter 2]. While the TVD property guarantees that T, is
bounded, the TOTVD property does not in more than 1 spatial dimensions. This shows that the TOTVD property is less restrictive
than the TVD property (6) defined for the MD case, because TOTVD restricts only 1 derivative with respect to time, while TVD restricts
multiple derivatives with respect to space. This is not necessarily a disadvantage. There is an important subset of conservation laws
that satisfy the TOTVD property but not the TVD property. In addition, the MD TVD property (6) is incompatible with second order
accuracy [4]. In contrast, as demonstrated in [2], the TOTVD property can be enforced without breaking the global second-order
of accuracy for the multi-dimensional advection equation with a spatially dependent divergence free velocity field. It is likely that
second order TOTVD schemes exist for the more general MD scalar non-linear conservation laws with spatially dependent fluxes,
although this is not proved or demonstrated in the present work.

The paper is structured as follows. Section 2 identifies the type of conservation laws that satisfy the TOTVD property. Section 3
establishes the numerical properties of TOTVD schemes. We prove that the first order upwind scheme has the TOTVD property as
long as it satisfies the usual CFL condition in Section 4. In section 5 we perform numerical tests and compare the TOTVD scheme
with the typical ad hoc multi-dimensional “TVD” schemes based on 1D TVD limiters. We conclude with section 6.

2. TOTVD conservation laws

In this section we identify some subsets of conservation laws (1) that satisfy the TOTVD property. We also contrast the TOTVD
and TVD properties. For all equations we assume either periodic boundaries or zero flux through the boundary so that the global
conservation of the conservative variable(s) is exact.

2.1. Linear scalar advection equation in 1D

We start with the simplest equation

du+adu=0 an
where a # 0 is the constant velocity. For this simple equation TOTV and TV are related as
T, = |alT, (12)

so the TVD and TOTVD conditions are analytically equivalent.
2.2. Multi-dimensional scalar conservation law

A MD conservation law for a scalar u can be written as

ou+V-f(u,x)=0 (13)

where the only restriction is that f does not depend explicitly on time. This will be needed, because we will use the time derivative
of (13) in the proof. Before proceeding, we note again that (13) does not satisfy the TVD condition (6) in general, because the flux
function depends explicitly on the coordinates.
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The TOTV for u can be written as
T,=/dV|a,u|=/dV|v-f(u,x)| (14)
v v

Let us split the computational domain V into two parts: in V'* the time derivative d,u is positive or zero and in V'~ it is negative.
For continuous functions, d,u =0 must hold at the interfaces 0V'* between V* and V~. The TOTV can be written as a sum of two
integrals T," and 7,” over V" and V-, respectively:

T,=T+T, where TF= i/ dVi 1s)
v+

and i = d,u. The global conservation of u means that T, — 7.~ = f,, i =0, so in fact

T,=2T; =2T; (16)

so it is sufficient to show that T;* is conserved. Notice that T,* is the volume integral of # that satisfies the conservation law

du+V-fu,x)=0 17

which is the time derivative of the original conservation law (13). We can now apply the Reynolds transport theorem together with
Gauss’s divergence theorem to calculate the time derivative
0T = / dS - (—f(u,x) + vp(x)u) (18)
v+

The first term on the right hand side is the integral of the flux f over the surface of ¥+, while the second term is the change due to

the motion of the boundary with velocity v. Note that only the normal (to the surface) component of vz matters, which is uniquely

defined. Since & = d,u =0 at the surface, the second term vanishes. The first term can also be easily calculated from the chain rule:
of(u,x) du

f(u,x)= o az=0 (19)

since, again, d,u =0 at the surface.

This completes our proof that the analytic solution of the scalar conservation law (13) conserves T, and therefore it satisfies the
TOTVD property (9). We note that the linear conservation laws with divergence-free velocity considered by [2] is a subset of the
conservation laws described by (13). It is also important to note that the definition of TOTV (8) and the proof of the TOTVD property
(9) are only valid for differentiable u(x,t) functions. Generalization to discontinuous functions is left for future work.

2.3. Linear system of hyperbolic conservation laws in 1D

Here we consider a vector of unknowns U with N, elements that satisfy the conservation law

U +0,(A-U)=0 (20)

where A is a constant N;; X N matrix with Ny, real eigenvalues, and Ny, left and Ny, right eigenvectors that form an orthonormal
basis. The characteristic variables can be defined as W = L-U, where L is a matrix formed from the left eigenvectors of A. Conversely,
U can be expressed as U = R- W where R= L™! is the matrix of right eigenvectors. Substituting into (20) results in

OR-W+0d,(A-R-W)=0 (21)
where A is a diagonal matrix formed from the eigenvalues A,,. Multiplying (21) with the left eigenvector matrix from the left results
in

oW +0,(A-W)=0 (22)

which is set of Ny; independent linear advection equations that can be written as

w+V - (A,w)=0 (23)

for each characteristic variable v. Since (23) is a linear 1D advection equation identical to (11), the TOTVD scheme coincides with
the TVD scheme for each characteristic variable.

While the 1D linear system of equations does not seem very common in practical problems, the very successful TVD schemes
applied to systems of equations in multiple dimensions are all based on the 1D linear system of equations. In essence, the TVD
schemes are applied to a linearized form of the non-linear system of equations separately for each dimension. The resulting schemes
are routinely and successfully used to solve the general conservation laws (1).
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Fig. 3. Left: initial condition (dashed) and solution at 7 = 0.5 (solid) of the isothermal hydrodynamic problem. Right: time evolution of the TOTV of density and
momentum.

Table 1

Subsets of conservation laws with no explicit time dependence.
Equation Flux TVD TOTVD Equivalent
Linear 1D scalar au Yes Yes Yes
Linear 1D scalar (x) a(x)u No Yes No
Linear MD scalar au Yes (1st order) Yes Yes
Linear MD scalar (x) a(x)u No Yes No
Non-linear 1D scalar f(w) Yes Yes No
Non-linear 1D scalar (x) f(u,x) No Yes No
Non-linear MD scalar f(u) Yes (1st order) Yes No
Non-linear MD scalar (x) f(u,x) No Yes No
Linear 1D system AU Yes Yes Yes
Non-linear 1D system FU) No No -
Non-linear MD system FU) No No -

2.4. Nonlinear system

A simple example for a 1D non-linear system is the hydrodynamic equations for isothermal gas. The conservative variables
U = (p, m) are the mass and momentum densities. The fluxes are F = (m,m?/p + kp), where k is a constant related to temperature. Let
us consider a 1D problem with initial condition p =1, m = sin(x) and k£ = 0.1 on a periodic domain [0, 2x]. Fig. 3 shows the converged
numerical solution (obtained on a grid of 5,000 cells with the first order upwind scheme) at 1 = 0.5 together with the time variation of
TOTYV for both p and m (TV is increasing for both variables, and is not shown). Clearly, TOTV is monotonically increasing with time
for both variables and it seems impossible to construct a combination of these quantities that would satisfy a TOTVD-like property.
We conclude that a nonlinear system of equations is neither TVD, nor TOTVD in general.

2.5. Summary of TOTVD conservation laws

We summarize the findings of this section in Table 1. For the 1D linear equations the two principles are equivalent. For non-linear
scalar equations both principles apply, but TVD contradicts second order of accuracy in the MD case. The TOTVD principle applies to
all scalar conservation laws with coordinate dependent fluxes f = f(u,x). Conversely, conservation laws with purely time dependent
flux functions f =f(u,7) are TVD, but not TOTVD. The spatially variable flux involves a much richer set of equations than the time
dependent flux, simply because there is only one time variable but there can be multiple spatial coordinates in MD. The MD scalar
equations with coordinate dependent fluxes are practically important, and for these equations only the TOTVD concept applies.
Non-linear systems are neither TVD nor TOTVD in general.
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2.6. 1D example

Finally, we demonstrate how significant the difference can be between TV and TOTV. Fig. 1 shows the solution of
2

T 20

on the [-10,10] domain with periodic boundary conditions. The initial condition is u(x,0) = 1. The 4 curves show the solution at
t=0,1.69,3.52 and 5.34. The peak at x =0 grows exponentially, because at x = 0 the equation reduces to

du+0, (—usinkx)=0,  k 24

ou=ku (25)
since cos0 =1 and 0,u(0,7) = 0. The TV therefore goes to infinity, on the other hand the TOTV is finite (7, = 20), it is conserved
analytically, and it diminishes numerically.

2.7. MD example

The 1D example had locally growing solution due to the non-zero divergence of the “velocity” v =9, f = —sin kx. But TV can grow
even if the maximum of the solution does not. Let us consider a 2D equation

du+a,uly)=0 (26)

describing a shear flow on a double periodic domain —10 < x,y < 10. The velocity field a =f/u = (|y|,0) has zero divergence. The
initial condition is u(x,y,0) =2 inside a square —5 < x,y <5 and u(x, y,0) = 1 outside. Fig. 2 demonstrates the time evolution. The
shear will distort the square increasing its TV roughly linearly with time T, — oo as r — co. In contrast, the TOTV remains constant.

3. Properties of TOTVD schemes

In this subsection we prove that a TOTVD scheme is stable against catastrophic instabilities and show that it does not directly
suppress spurious spatial oscillations.

First of all, we need to discretize (8). A very natural discretization is

[A 1]
=) V,—— 27
Z‘ LAt @27

where u! is the cell average value in cell i at time step n. The A, operator takes the difference between time steps n + 1 and », or
formally for any quantity g:

Anq c= qn+1 _ qn (28)

The symbol A without a subscript will be used as a short hand notation for A, when » is known from the context. V; is the volume of
cell i, and ¢, is the time at step n. For the sake of simplicity, we assume that the temporal update consists of a single stage. We will
consider multi-stage TOTVD schemes at the end of this section.

3.1. Stability

It is clear that the TOTV defined by (8) is intimately related to stability. Numerical instabilities typically manifest themselves in
an exponential growth of the amplitude of the solution, which means that the magnitude of the time derivative |9,u| will also grow
exponentially, so that the TOTV will grow unbounded as well.

To make this argument more formal, let us assume that the maximum magnitude of the solution defined as M" = max; |u| grows
faster than linear starting from time step m:

M">M"+c(t,—1,)* for n>m (29)
where ¢ >0 and a > 1 are constants. The magnitude of the largest discrete time derivative is then bounded as

|Agu; M MF M- M
max ——— > max >
kelmn—11i Ayt kelmn—1]  f g — I t,—1,

>c(t, —1,)"! (30)

which grows unbounded as #, — . This means that the maximum of the discrete TOTV, which is a sum of positive contributions
from the grid cells including the cell with the maximum change,

[Agu; [Au;
Tk = Ll iu LN s e, 1) 31
kelmne1] kelmne1] Z At kelman1l. At €Uty =) (31)
will also grow unbounded.
The solution of d,u = 0, (usin kx) has a maximum value at x = 0 that goes to infinity exponentially with time, u(0,) = u(0, 0) exp(k?),

still the TOTV is conserved (see subsection 2.6). This may seem to contradict the proof above, but it does not. In the proof we
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Fig. 4. Left: hypothetical numerical solution for the advection equation d,u + d,u = 0 on a uniform grid with Ax = 1. The initial condition is a square wave (black line).
The numerical solution at 7 =0.5 and 1 = | are shown with blue diamonds and red triangles, respectively. The TV increased from 7 =0.5 to ¢ = 1, but the TOTV remained
the same despite the overshoot at x = —10.5 and undershoot at x = 11.5. Right: hypothetical numerical solution for a stationary (or slowly moving) sharp profile. The
initial condition is shown by the black line. In the first time step it sharpens into a pure jump (blue diamonds), and in the second time step creates a staircase function
(red triangles). All these changes satisfy the conservation law and the TVD property, but they violate TOTVD, as the magnitude of the time derivative is increasing.
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

assumed that there is a finite size grid cell with a discrete value whose magnitude grows faster than linear. The solution is positive
everywhere and the volume integral of u is conserved both analytically and numerically (we took periodic boundaries), so the cell
with the maximum value cannot exceed the sum of the initial cell values S° = ¥, u°. This means that while the analytic maximum
value u(0,t) — oo exponentially, the discrete maximum value M" is bounded from above by S. Conversely, one could wonder if
the conservation property excludes the unlimited growth of a cell value, which would render the proof about stability meaningless.
Fortunately, that is not the case either. For a conservative scheme the typical numerical instability manifests as a short wavelength
oscillation with exponentially increasing magnitude. The cell values will have opposite signs, so the sum .S” will be conserved, but
the maximum magnitude M" increases exponentially.

We proved that a scheme satisfying (27) cannot be unstable with a growth rate exceeding linear growth, so in practice this means
that a TOTVD scheme is stable.

3.2. Spurious oscillations

The TVD condition guarantees that the solution remains oscillation free. This is easiest to see for the 1D scalar equation

Qu+0, fu)=0 (32)
The TV defined in (3) is equal to the differences of local extrema:

E-1
To= Y fu(x,) = u(xsy)| (33)
e=1
where x| < x, < ... <xj are the locations of the local extrema including the values at non-periodic boundaries (for periodic bound-
aries there is an additional term |u(xg) — u(x,))| in the sum). If any of the extrema become more extreme or any new extrema appear,
while other extrema do not change, 7, will get larger. Since the extrema are separated from each other, changes at one local ex-
tremum have no causal relationship with changes at another one (unless they are in neighboring cells). This means that the global
TVD property is sufficient to guarantee that there will be no new extrema.
The TOTVD property, by itself, does not guarantee that no spurious oscillations appear, because it constrains the temporal change
rather than the spatial gradients. To demonstrate this, let us consider the propagation of a square wave in 1D. The advection equation
with velocity a =1 is

ou+0,u=0 (34)

and the initial condition is u(x,0) =1 for |x| < 10 and O otherwise on a periodic domain of —20 < x < 20. Let us use a uniform grid
consisting of 40 cells of size Ax = 1, so initially u? = 1 for i = 11...30 and 0 in the rest of the cells. We will fix the time step to At =0.5.
The analytic as well as the discrete TV is T, =2 due to the two jumps at x = +10.

Assuming that the scheme is exact in the finite volume sense with this initial data, the solution in the first time step changes only
in cells 11 and 31: from “(1)1 =1to “11 =0.5 and from “(3)1 =0to uél =0.5, so the discrete TOTV is T = (0.5 +0.5)/ At = 2. Let us assume
that in the next time step the solution changes from u!, =0.5 to 4 =0.1, from u!, =1 to u?, = 1.1, from uy, =05 to u§1 =0.9 and
from “éz =0 to ”gz = —0.1 due to some overly zealous anti-diffusive scheme that is trying to sharpen the solution. The changes are
conservative, ), ul =20 for n =0, 1,2, but new extrema were created in cells 12 and 32. The TV has increased from 2 to 2.2, but the
TOTV did not change, since T} = (0.4 + 0.1 + 0.4 +0.1)/At =2 =T?. Fig. 4 shows this hypothetical numerical solution.

It is noteworthy that the analytic TV and TOTV are equivalent for this equation according to (12), but the discrete TV and TOTV

are different in general, since TV is the sum of differences of neighboring cell values |u; — u;_,|, while TOTV is the sum of differences
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of neighboring cell interface fluxes | f;,,, — fi—1»|- The truncation errors of the discretization can break the analytic proportionality
f = au, which results in different consequences for the TVD and TOTVD schemes.

For 1 spatial and 1 temporal dimension, the TVD and TOTVD conditions are, in some sense, symmetric: TVD restricts oscillations
in space, while TOTVD restricts oscillations in time. The right panel of Fig. 4 shows a hypothetical temporal oscillation that would
be allowed by a TVD scheme, but not by TOTVD. The amplitude of the spatial/temporal oscillations is limited by the neighboring
extrema in the spatial/temporal variation. One major difference, however, is that TVD prohibits development of new extrema in u,
while TOTVD does not. This property of TVD is important for ensuring positivity, for example.

While the TOTVD property does not prohibit spurious spatial oscillations, it does not mean that a TOTVD scheme will necessarily
produce them (similarly, a TVD scheme will not necessarily produce temporal oscillations). Properly used upwind fluxes and TVD-
based limiters can suppress spatial oscillations successfully even for equations that do not satisfy the TVD condition. The TOTVD
property can be used as an additional constraint to guarantee stability and further reduce the chances of producing ill-behaved
numerical solutions.

4. TOTVD schemes

A single stage finite volume scheme solving the scalar conservation law (13) can be written as

Au; 1 1
NV ;As,i'f;i:_vi Zfﬂli (35)

The s index refers to the faces of cell i with volume V; and outward pointing face vectors A,;. The face centered flux vector is f/,
and ¢f, 1= A, -f{, is the normal flux through the cell face. While using abstract notation for cell centers and cell faces is common,
it is possible to make the notation precise. For a 3D Cartesian grid with N x N x N grid cells, the index i = 1,..., N? lists cells in a
natural order of sweeping through the first dimension first, then the second, and finally the third. The neighbors of cell i are i + 1,
i+ N and i + N? assuming that cell i is not near any boundary. To make it easy to refer to these neighbor cells, the sides are indexed
with s € S = {+1,+N,+N?} instead of the usual 1, ...,6. The s face of cell i will be denoted as subscript s,i. This notation allows for
expressing spatial relationships in a precise form. For example, the s,i face coincides with the —s,i + s face, while the opposite —s, i
face coincides with the s,i — s face. A conservative discretization requires

n

ws,i = _(pzs,iJrs (36)
The TOTV defined in (27) can be written as

T"= Z Zng,i
s

i
where we dropped the 7 subscript for simplicity. Similar to the analytic case (15), we can split the computational grid into two sets
of cells 1 v and 1", where the solution is increasing (d,u; >0 for i € I 0 and decreasing (0,u <0 for i € I"), respectively:

(37)

T"=T"+T" T;:iZZ(p?’i (38)
Il s
Similar to the analytic case (16), the two partial sums are equal due to the global conservation of Y .(V;u;) and

T" =277 = 271" (39)

The summation in (38) reduces to the cell faces at the boundaries of the I sets since the internal fluxes cancel out. The sets of
boundary faces B’ are defined as follows: for (i, s) € B, i€l} and (i+s) € 1", while for (i,s) € B", i € I" and (i+s) € I}. We note that
the two sets are different, but in fact they refer to the same cell faces, just relating them to different cell centers. With this definition

we have

EENE (40)
Z

4.1. Necessary condition

First we consider a small time step when the boundaries of the I} sets do not change, and the discrete change of 7" = 2T} is
proportional to the sum of the time derivatives of ¢,; along the boundary. To simplify the notation, we will drop the » superscripts
in this subsection. Taking the time derivative of (40), the scheme is TOTVD if

T=%) ¢,<0 (41)
B,

To proceed, we need to define the discrete face flux function. There are several possibilities, but for sake of simplicity, we assume
that the face flux is calculated from the face state u,; obtained from a linear combination of nearby cell center values:
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us,i = Z C‘{d,s,iui+ds (42)
d

Psi = As,i : f(u X ) (43)

8,00 80
where the coefficients «, ;; will be determined later. The index d covers the stencil, for example d =0 and d = 1 refer to the cell
and its s neighbor, respectively. Consistency requires that ), a, ; ; = 1. In addition, requiring a, ;; > 0 helps preserving positivity and
avoiding oscillations. A simple second order accurate interpolation has «;,; = «; ;; = 1/2 taking the arithmetic average of the cell
center values on the two sides of face s.
We can now substitute the discrete normal flux from (43) into (41) and apply the chain rule

Ti =F 2 As,i . auf(us,i’xx,i)us,i =F z as,i(us,i) Z ad,s,iui+ds (44)
B, B, d
where we introduced the “normal velocity”

as,i(u) = As,i - v(u, Xx,i) (45)

and the “velocity”

v(u,x) : = 0,f(u,x) (46)

When aj ;(u, ;) > 0, the velocity points outward from cell i towards cell i + s, when a;(u; ;) <0, the velocity vector points towards cell
i.

Let us consider T, that is expressed as a sum over faces B,, so i € I, and i; >0, while i +s € I_ and #;,; <0. From (44), the time
derivative of T, will be non-positive if

_a:,i(us,i) 2 ad,s,iui+ds <0 (47)
d
for every cell face in B, . A simple choice for o, ; that guarantees T, <0 is

Bsii=aps;i =1 ug;=u for ay;(ug;) 20,
Ys,i = al,s,i = 1; u.v,i =Ujgg for ax,i(u.v,i) < O’ (48)

which is the first order upwind scheme. The upwind direction is determined by the velocity v: when it points outward from cell i, the
cell center state u; is used, when it points inward, the neighbor cell state u;,  is used to calculate the flux. We introduced g ; and v,
the weight of the cell and the neighbor cell, respectively, to simplify the notation.

There is a circular dependency in (42), (45) and (48), because the definition of a,; depends on «, ;, and vice versa. To resolve
this, we define the upwind direction based on the cell center states instead of the state at the face:

P = U ifag; ) +ag;u,,) 20

Usi =Ujts it ag; () +ag,; () <0 (49)

i

For typical cases the two cell center based velocities a;(1;) and a;;(u;,,) have the same signs that also agrees with the sign of the
face value based velocity aj ;(u; ).

We proved that the first order upwind flux satisfies the TOTVD property T"*! < T" where T" is defined by (27) as long as the sets
of cells with increasing and decreasing values do not change.

4.2. First order upwind scheme is TOTVD

For an arbitrary time step, the TOTVD condition for T, =T/2, based on (38), can be written as
—AT, = Y oMt =Y 9! 20 (50)
I_T'] s l:’_,g

We can split the set I"*! into two disjoint subsets: I7 = I" n I"*! for the cells that were and keep increasing and I+ :=1" n I"*' for
the newly added I, cells. Similarly, I” can be split into I and I; = 1" n I"*!, the cells that no longer grow in time step n+ 1. Using
these subsets the condition becomes:

D@ RGN+ D (@ AR )= D ot = Y @l =0 (51)
It.s It.s It.s I s

Grouping terms with superscripts » and with changes A separately gives

Z Ay, + Z Ay, + Z @5i— Z ¥ 20 (52)
ITs I s

Its Its
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Finally we can cancel out internal normal fluxes in the first two sums, and sum over the boundary faces only:

ZM:#ZM&&Z%, ery,_ (53)

It

where BI and BY are the boundary faces surrounding I} and I*, respectively. This inequality is the discretized form of (18). There
are three possible reasons for the left side to be different from 0:

1. The normal flux ¢,; changes at the boundary B* and B* (first two sums).
2. Cells at the edge of I 1 become part of I"*! or vice versa (last two sums).
3. Cells in the middle of I v become part of I"*! or vice versa (last two sums).

The first one is the discrete equivalent of (41). The second reason is the discrete motion of the boundary corresponding to the second
term in (18). The third reason corresponds to a spurious oscillation in the time derivative, which should be avoided.

4.2.1. Proof of TOTVD for the first order upwind scheme with finite time step

We will prove that the first order upwind scheme guarantees that changes due to the first and second causes are non-negative,
and the third does not happen as long as the time step obeys an appropriate CFL condition.

In the first two sums in (53) we can write the change in the normal fluxes as

Ap,;=A; -0, f(u”, X, ) Aug; ,,-(u;‘,.)Aus’i (54)

where uj; € [y, u"“] is some intermediate value between the two time steps. The existence of u* is guaranteed by the differentiability
of the ﬂux function £ (u,x) and the mean value theorem. For a well-behaved flux function, we expect a,,(u},) € [a, ;(u,), a; ;(u;;.)]. To
further simplify the expressions, we use the shorthand notation aj; := ay,(u;,). Note that for a lmear ﬂux function a,; does not
depend on u. In the last two sums in (53), ), (p;”i can be replaced with —(V;/At)Au;. With these changes (53) becomes:

Z ay,Aug; + Bz:’ ay;Aug; — Z A Au; + Z —Au >0 (55)
BY +

In the third sum Aw; <0 since i € I* C I”. In the fourth sum Aw; > 0 as it is over cells in I C I}. In both cases, we can replace At
with a larger or equal value based on the CFL condition and the left hand side will not increase. We now assume, and then later
prove, that the CFL condition can be written as

v
Ar<C— (56)

where a}, :=max(0,4*,) and C <1 is the CFL coefficient. Using the CFL condition to replace At a sufficient inequality for (55) is

N @l Aug+ Y a Aug+ Y at A+ Y at|Au| >0 (57)
B B Is

It,s

In the third sum Au; <0 was replaced with —|Ay;| and in the last sum Ay; >0 was replaced with |Ay;| to make positivity arguments
simpler. The last two sums contribute with all non-negative terms. In the third sum over I, s we can drop the positive contributions
from faces that are not in B, so it can be combined with the second sum. Finally, for the upwind scheme a* Au; = a} Au; +a_ , Auy

in the first two sums, where a_; :=min(0, a},). After applying these changes the sufficient condition is

3 (a;j |Au, | + a;iAul-H) + Y s Au, + Y at A 20 (58)
+

BI Bt Il s

The only terms that can be negative are a; Au; . This requires Au;,, > 050 (i +5) € I. On the other hand, in the first sum (i +s) & I +
so (i +5) € I7. Using the a a+s .+, identity, we can move this term into the last sum. In the second sum Ay, > 0 requires that
(i+s)el’= I+ Ul If G + s) € I}, then the term can be moved into the first sum as its —s neighbor i ¢ I so face —s,i+s € Bf. If
(i+s)e I N then the term can be moved into the last sum. In the modified last sum a given face (-s,i + s) elther comes from the ﬁrst
or the second sum depending on the sign of Au;, so it can only occur at most once. By including all faces with negative contributions
into the first and last sums, the left hand side reduces, and the following sufficient condition is obtained

Z(a;,. —af)|Au | + Z(a;,. —a’)lAu] >0 (59)
Bt Il

The left hand side is identically zero, so the original inequality (53) holds.
We have proved that the first order upwind scheme with a finite time step satisfying the CFL condition (56) is TOTVD.

4.2.2. No negative change inside I, for first order upwind scheme
An additional desirable property, although not necessary for the TOTVD property, is that a cell inside I, does not become part of

I_ in a single time step. The requirement is that

10
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An+] U

Au;
S Z(% +Ap, )=Vt = Y a5 Aug >0 (60)

s

if cell i € I, and all its neighbors i + s € I, so Auy; >0 and Au,, ;>0 for all s indexes. The first term V;Au; /At can be estimated from

the CFL condition (56). In the second term Aug; > 0 from (49) if the signs of a;(;) and a;;(u;,,) do not change from time step » to

time step »n + 1. This means that in (60) terms with "j,i <0 coefficients increase the left hand side of the inequality, so they can be
. v e 4 ; . . . B

safely dropped by replacing aj; with af; := max(0, a5,). For the other terms with af, >0, the first order upwind flux sets Au,; = Au;,

so a sufficient condition for inequality (60) is

Z at Au; - Z al Au; >0 (61)
s s
which is obviously true. A similar proof can be employed to show that no cells belonging to I, pop up inside I_.
We have proved that the first order upwind scheme satisfying the CFL condition does not produce new I_ cells inside I, or vice
versa, which is the TOTVD analogue of the TVD schemes not creating spurious spatial oscillations.

4.2.3. Properties of the first order upwind scheme

Combining the previous results, we proved that the first order upwind flux with a time step limited by the CFL condition (56)
satisfies the TOTVD property and does not generate spatial-temporal oscillations. While this result is similar to the well-known
theorem that the first order upwind scheme is TVD, it is actually quite different. The first order upwind scheme applied to the
example equations in subsections 2.6 and 2.7 will not produce TVD results, but they satisfy the TOTVD property. This proof is also
more general than the result obtained for the linear divergence-free transport equation [2].

4.3. Second order TVD scheme

We will evaluate the TOTVD property, or lack of it, of the usual second order TVD schemes that apply the limiters on a dimension-
by-dimension basis. For the monotonized central (MC) limiter the face value ug; is constructed from the cell center values at i — s, i
and i+ s as

1 . 1
Ug; =u; + Emmmod (ﬁ(ui+x —uy), E(ui+s —ui_s), Bu; — “i—s)> (62)

when the velocity points from cell i to i + s. Otherwise the same formula is used but centered on cell i + s. The parameter f is in
the range [1,2]. For g =1 the MC limiter becomes the standard minmod limiter, since the middle term (u;,, — u;_)/2 in the minmod
function can be removed in this case. In the numerical tests, we will imply f =2 when we refer to the MC limiter and g =1 for the
minmod limiter.

For second order accuracy in time, the usual midpoint method is employed:

n+1/2 _ At
G == gy Rl 63)

At
i =u =N ot (64)
s

The final update looks just like the one-stage scheme, except for using »"+!/2 in the normal flux:

o= AT x) (65)
where the face value uf;’l/ 2 is constructed from the cell center values u;H/ 2 in the neighborhood of cell i using the TVD limiter (62).

5. Numerical tests

We perform a few simple tests to demonstrate the usefulness of the TOTV concept, to confirm that the upwind scheme is truly
TOTVD, and to evaluate the evolution of TOTV for the usual second order TVD scheme.

5.1. 2D linear advection equation

We solve the scalar conservation law

%+V-f(u,x,y):0 (66)

on a 2D periodic square domain —5 < x, y <5 with a flux function

f(u,x,y) =uv(x,y) 67)

The velocity vector field v depends on the location:

11
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Fig. 5. Initial condition far the test solving a scalar conservation law in 2D. The left panel shows the initial distribution of «, while the other two panels show the two
components of the fixed but non-uniform velocity field.

loguatt=0.6 loguatt=1.3 loguatt=2.0
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4 2 0 2 4 4 2 0 2 4 4 2 0 2 4
X X X

Fig. 6. Time evolution of the 2D linear advection test obtained by the TVD scheme with the MC limiter on a 200 x 200 grid.

. = —sin 27(x +2y)
X 10
3 . 2z(2x+y)
v, = -3 sin — (68)

Note that v and its derivatives are continuous but it has non-zero divergence. The initial condition is a circular bump centered around
the x = y=—1 location:

u(t:0)=1+200S2% where r=v(x+ 12+ (y+1)? (69)

for r <3 and u(r =0) = 1 otherwise. The initial condition and its first derivatives are continuous. Fig. 5 shows the smooth initial
condition and the velocity field.

Fig. 6 shows the time evolution of the solution with the TVD scheme on a 200 x 200 grid. The time step is fixed to Az =1/160, so
it takes 320 time steps to reach the final time 7 = 2. Note that the 10-based logarithm of u is shown, so u varies almost 4 orders of
magnitude by time ¢ =2 due to the non-zero divergence of the velocity field. The fast growth of extrema result in a rapidly growing
total variation (TV) defined in 2D with the L1 norm as

T;’y=2(|u”.'+1 _u?|+|”?+N_u?|) (70)

1

as shown in the top panel of Fig. 7. Clearly, the TVD principle cannot be applied for this equation. In contrast, the TOTV defined by
(27) is decreasing as expected from the analytic TOTVD property. The decrease is monotonic for the first order upwind scheme as
proven in the previous section. The second order TVD scheme with the minmod limiter also reduces TOTV monotonically (for this
particular test), while the sharper MC limiter is almost always (315 times out of 320 time steps, to be exact) TOTVD.

5.2. 2D Burgers equation
We solve the same problem as in the previous subsection, except that the flux function is defined as
f(u,x,y)= %uzv(x, y) 71)
The true “velocity” of /ou = uv is a function of u, which can form discontinuous solutions (“shocks”) in a finite time even for an
initially smooth solution. In addition, the CFL condition also depends on u, so the time step is adapted according to (56) with C =0.9.

If the initial u is positive everywhere, it should remain positive.

12
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Fig. 7. Time evolution of TV (70), and TOTV (27) while solving the 2D linear advection test with the first order upwind scheme (red), and the second order TVD
scheme using the MC (black) and minmod (blue) limiters, respectively, on a 200 x 200 grid.
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Fig. 8. Time evolution of the 2D Burgers equation test obtained by the TVD scheme with the MC limiter on a 200 x 200 grid.

Fig. 8 shows the time evolution of u. The maxima are larger and sharper compared to the linear case, on the other hand the
minima are less pronounced. There is a discontinuity in the middle of the domain already at r = 0.6 due to the divergence of the field
and non-linearity of the flux function.

Fig. 9 shows the time evolution of TV and TOTV for the first order upwind and second order TVD schemes. Clearly, the classical
TV is growing rapidly, so it cannot be used to characterize the stability of the numerical scheme. For the first order scheme TOTV
diminishes monotonically as expected. Finally, for the second order TVD scheme TV is increasing rapidly, but TOTV is decreasing
overall, although it is not perfectly monotonic. This suggests that the TOTVD property is applicable to this 2D non-linear equation
and it can prove stability for the first order upwind scheme, and it is well-behaved for the second order TVD scheme, although the
decrease is not perfectly monotonic (TOTV increases 101 times out of the 1112 time steps for the MC limiter and 20 times out of the
884 times steps for the minmod limiter).

6. Conclusions

We have introduced a new concept, the Total of Time Variation (TOTV) to characterize conservation laws and numerical schemes.
We showed that the solutions of nonlinear scalar conservation laws with spatially dependent flux functions satisfy the TOTV dimin-
ishing (TOTVD) property analytically, but not the TVD property. Conversely, scalar conservation laws with purely time dependent
fluxes satisfy the TVD property, but not TOTVD. Despite this space-time symmetry, purely spatially dependent flux functions are more
interesting in practice than purely time dependent flux functions, simply because there are multiple spatial dimensions, but only one
temporal dimension. This makes TOTVD interesting and useful in practical applications as demonstrated in [2]. We showed that a
numerical scheme satisfying the TOTVD property is stable against non-linearly (or exponentially) growing numerical instabilities.

We proved that the first order upwind scheme is TOTVD for a time step satisfying the usual CFL condition. Our proof requires
that the first order scheme is applied at the boundaries between temporally increasing and decreasing subdomains. Anywhere else,
any second or higher order scheme can be used. One possible way to construct a second order TOTVD scheme could be based
on the Multi-dimensional Optimal Order Detection (MOOD) algorithm [5]. The difficulty is to construct a MOOD-TOTVD scheme
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Fig. 9. Time evolution of TV (70), and TOTV (27) while solving the 2D Burgers equation test with the first order upwind scheme (red), and the second order TVD
scheme using the MC (black) and minmod (blue) limiters, respectively, on a 200 x 200 grid.

that does not apply the first order scheme on an unnecessarily large fraction of the computational domain. On the other hand, our
numerical tests show that the second order TVD-based scheme (using TVD limiters in each dimension independently) performs well,
and it overall reduces TOTV, even if not monotonically. It may be possible to prove that this is a general property of second order
TVD-based schemes, which would extend the theoretical understanding of the applicability of these schemes.

Generalization of the TOTVD principle to systems of equations and construction of second order TOTVD numerical schemes
remain open questions that can be explored in the future.
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