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We introduce a new principle for devising numerical schemes for conservation laws in one 
and multiple dimensions. The new formulation is based on the Total of Time Variation (TOTV) 
defined as the volume integral of the magnitude of the time derivative. For the one-dimensional 
scalar advection equation with a constant velocity, TOTV and the usual total variation (TV) are 
the same except for a constant factor. For non-linear equations and/or in multiple dimensions, 
TV and TOTV are different. We show that TOTV is a conserved quantity for one- and multi-
dimensional scalar conservation laws with a non-linear flux function that can depend on the 
spatial coordinates as well. We call a numerical scheme that ensures that the discrete form of 
TOTV is not increasing in time a Total of Time Variation Diminishing (TOTVD) method. A TOTVD 
scheme is stable against catastrophic instabilities that would lead to uncontrolled growth of the 
time derivative. We show that the first order upwind scheme with a finite time step satisfying the 
usual CFL condition is TOTVD for all equations that satisfy the TOTVD property analytically. We 
demonstrate the difference between TV and TOTV with numerical tests.

 Introduction

A large part of computational physics is concerned with solving systems of equations that can be written as conservation laws. 
r each conserved quantity 𝑢 the time evolution is governed by

𝜕𝑡𝑢+∇ ⋅ 𝐟𝑢(𝑈,𝐱, 𝑡) = 0 (1)

here 𝐟𝑢 is a flux vector depending on the vector of conserved variables 𝑈 , the coordinates 𝐱 and time 𝑡 in general. For sake of 
arity, we use upper case for vectors and matrices of variables and bold face for vectors in the spatial coordinates. The conservation 
rm of (1) ensures that the volume integral of 𝑢 will only change due to the fluxes through the external boundaries.
Devising a scheme that can solve conservation laws accurately while maintaining stability and avoiding spurious oscillations is 
ghly desirable. On the other hand, proving that a scheme will have these properties for the most general form of (1) is a daunting 
sk. In practice, practitioners design schemes that have (some of) the desired properties for a subset of the equations and then hope 
at they will perform satisfactorily for a wider class of equations in practice.
One of the most successful class of numerical schemes solving (1) are based on the total variation diminishing (TVD) principle 
]. For a spatially one-dimensional case the total variation (TV) is defined as

𝑇𝑥 = ∫ 𝑑𝑥|𝜕𝑥𝑢| (2)
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. 1. Solution of a 1D scalar linear equation 𝜕𝑡𝑢 −𝜕𝑥(𝑢 sin𝑘𝑥) = 0 with initial condition 𝑢 = 1. The four lines show the solutions at 𝑡 = 0, 1.69, 3.52 and 5.34, respectively.

. 2. Solution of the MD scalar equation 𝜕𝑡𝑢 + 𝜕𝑥(𝑢|𝑦|) = 0 on a double periodic 2D domain. The initial condition is 𝑢 = 1 inside a square and 0 outside. The four plots 
ow the solutions at 𝑡 = 0, 1, 2 and 3 from left to right.

d the TVD property states that

𝑇𝑥(𝑡2) ≤ 𝑇𝑥(𝑡1) for 𝑡2 > 𝑡1 (3)

e 𝑥 subscript refers to the fact that 𝑇𝑥 involves the 𝑥 derivative. It can be shown that the analytic solution of a subset of (1) satisfies 
). For example, a scalar equation with flux 𝑓 = 𝑓 (𝑢) satisfies the TVD property, even if 𝑓 is a non-linear function of 𝑢. Another 
ample is the linear advection equation with 𝑓 = 𝑎𝑢

𝜕𝑡𝑢+ 𝜕𝑥(𝑎𝑢) = 0, (4)

here the velocity 𝑎 is a constant. However, if 𝑎 is a function of 𝑥, the TVD property does not hold. For example, if 𝑎 = sin𝑥 and 
1 initially at 𝑡 = 0 then 𝑇𝑥(0) = 0. After a short time 𝑡 > 0, the solution will have a wave like solution with a finite amplitude since 

𝑢(𝑥, 0) = −𝜕𝑥(𝑢 sin𝑥) = − cos𝑥 and 𝑇𝑥(𝑡) > 𝑇𝑥(0) = 0 violates the TVD property (see Fig. 1).
Another important subset of the general conservation laws for which the TVD property is satisfied, is a system of linear (in 

 hyperbolic equations with flux functions 𝐹 = 𝐴̄ ⋅ 𝑈 , where 𝐴̄ is a constant matrix with real eigenvalues. Such equations can 
 rewritten into scalar advection equations (4) for the characteristic variables 𝑊 replacing 𝑈 and the characteristic velocity 𝜆𝑤
placing 𝑎. Then each of these equations satisfy the TVD property for each characteristic variable 𝑤.
Finally, for multi-dimensional (MD) scalar equations with 𝐟 = 𝐟(𝑢), the MD TV defined as

𝑇𝐱 = ∫
𝑉

𝑑𝑉 |∇𝑢| (5)

tisfies the MD TVD condition:

𝑇𝐱(𝑡2) ≤ 𝑇𝐱(𝑡1) for 𝑡2 > 𝑡1 (6)

here 𝐱 refers to the gradient with respect 𝐱. While this is mathematically interesting, there are very few equations of interest that 
long to this subset. The non-linear 2D Burgers equation with 𝐟 = (𝑢2∕2, 𝑢2∕2) and the MD linear advection equation with 𝐟 = 𝐚𝑢
here 𝐚 is a constant velocity vector) are two examples.
It is equally important to recognize that most of the equations of interest do not satisfy the TVD property. Important examples are 
n-linear systems of equations, such as the Euler equations in one or more dimensions. Another example is the advection of some 
2

alar quantity in an arbitrary flow field with 𝐟 = 𝐚(𝐱)𝑢, where the velocity vector 𝐚(𝐱) depends on the coordinates (see Fig. 2 as an 
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ustration). For the special case of divergence free flow field when ∇ ⋅ 𝐚 = 0 and 0 = 𝜕𝑡𝑢 +∇ ⋅ (𝐚𝑢) = 𝜕𝑡𝑢 + 𝐚 ⋅∇𝑢 =∶𝐷𝑢∕𝐷𝑡, Sokolov et 
. [2] showed that the exact solution satisfies the TVD property for the TV defined as

𝑇𝑠 = ∫
𝑉

𝑑𝑉 |∇ ⋅ [𝐚(𝐱)𝑢] | = ∫
𝑉

𝑑𝑉 |𝐚(𝐱) ⋅∇𝑢| (7)

e interpretation of this functional in [2] is that 𝑇𝑠 evaluates the spatial variation of 𝑢 along streamlines. But there is an alternative 
d much more general interpretation based on the fact that ∇ ⋅ [𝐚(𝐱)𝑢] = ∇ ⋅ 𝐟 = −𝜕𝑡𝑢: in fact 𝑇𝑠 is the volume integral of |𝜕𝑡𝑢|.
Based on this observation, we introduce the total of time variation (TOTV) as

𝑇𝑡 = ∫
𝑉

𝑑𝑉 |𝜕𝑡𝑢| (8)

e will show that a surprisingly wide class of conservation laws satisfy the total of time variation diminishing (TOTVD) property

𝑇𝑡(𝑡2) ≤ 𝑇𝑡(𝑡1) for 𝑡2 > 𝑡1 (9)

e TV and TOTV are related to each other in several ways. For differentiable functions 𝑢(𝐱, 𝑡), one can define a space-time variation

𝑇𝐱,𝑡 =

𝑇

∫
0

𝑑𝑡∫
𝑉

𝑑𝑉 (|∇𝑢|+ |𝜕𝑡𝑢|) =
𝑇

∫
0

𝑑𝑡(𝑇𝐱 + 𝑇𝑡) (10)

at plays a central role in the theory of scalar conservation laws [3, chapter 2]. While the TVD property guarantees that 𝑇𝐱,𝑡 is 
unded, the TOTVD property does not in more than 1 spatial dimensions. This shows that the TOTVD property is less restrictive 
an the TVD property (6) defined for the MD case, because TOTVD restricts only 1 derivative with respect to time, while TVD restricts 
ultiple derivatives with respect to space. This is not necessarily a disadvantage. There is an important subset of conservation laws 
at satisfy the TOTVD property but not the TVD property. In addition, the MD TVD property (6) is incompatible with second order 
curacy [4]. In contrast, as demonstrated in [2], the TOTVD property can be enforced without breaking the global second-order 
 accuracy for the multi-dimensional advection equation with a spatially dependent divergence free velocity field. It is likely that 
cond order TOTVD schemes exist for the more general MD scalar non-linear conservation laws with spatially dependent fluxes, 
though this is not proved or demonstrated in the present work.
The paper is structured as follows. Section 2 identifies the type of conservation laws that satisfy the TOTVD property. Section 3
tablishes the numerical properties of TOTVD schemes. We prove that the first order upwind scheme has the TOTVD property as 
ng as it satisfies the usual CFL condition in Section 4. In section 5 we perform numerical tests and compare the TOTVD scheme 
ith the typical ad hoc multi-dimensional “TVD” schemes based on 1D TVD limiters. We conclude with section 6.

 TOTVD conservation laws

In this section we identify some subsets of conservation laws (1) that satisfy the TOTVD property. We also contrast the TOTVD 
d TVD properties. For all equations we assume either periodic boundaries or zero flux through the boundary so that the global 
nservation of the conservative variable(s) is exact.

1. Linear scalar advection equation in 1D

We start with the simplest equation

𝜕𝑡𝑢+ 𝑎𝜕𝑥𝑢 = 0 (11)

here 𝑎 ≠ 0 is the constant velocity. For this simple equation TOTV and TV are related as

𝑇t = |𝑎|𝑇𝑥 (12)

 the TVD and TOTVD conditions are analytically equivalent.

2. Multi-dimensional scalar conservation law

A MD conservation law for a scalar 𝑢 can be written as

𝜕𝑡𝑢+∇ ⋅ 𝐟(𝑢,𝐱) = 0 (13)

here the only restriction is that 𝐟 does not depend explicitly on time. This will be needed, because we will use the time derivative 
 (13) in the proof. Before proceeding, we note again that (13) does not satisfy the TVD condition (6) in general, because the flux 
3

nction depends explicitly on the coordinates.
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The TOTV for 𝑢 can be written as

𝑇𝑡 = ∫
𝑉

𝑑𝑉 |𝜕𝑡𝑢| = ∫
𝑉

𝑑𝑉 |∇ ⋅ 𝐟(𝑢,𝐱)| (14)

t us split the computational domain 𝑉 into two parts: in 𝑉 + the time derivative 𝜕𝑡𝑢 is positive or zero and in 𝑉 − it is negative. 
r continuous functions, 𝜕𝑡𝑢 = 0 must hold at the interfaces 𝜕𝑉 ± between 𝑉 + and 𝑉 −. The TOTV can be written as a sum of two 
tegrals 𝑇 +

𝑡
and 𝑇 −

𝑡
over 𝑉 + and 𝑉 −, respectively:

𝑇𝑡 = 𝑇 +
𝑡
+ 𝑇 −

𝑡
where 𝑇 ±

𝑡
= ±∫

𝑉 ±

𝑑𝑉 𝑢̇ (15)

d 𝑢̇ = 𝜕𝑡𝑢. The global conservation of 𝑢 means that 𝑇 +
𝑡
− 𝑇 −

𝑡
= ∫

𝑉
𝑢̇ = 0, so in fact

𝑇𝑡 = 2𝑇 +
𝑡
= 2𝑇 −

𝑡
(16)

 it is sufficient to show that 𝑇 +
𝑡
is conserved. Notice that 𝑇 +

𝑡
is the volume integral of 𝑢̇ that satisfies the conservation law

𝜕𝑡𝑢̇+∇ ⋅ 𝐟̇(𝑢,𝐱) = 0 (17)

hich is the time derivative of the original conservation law (13). We can now apply the Reynolds transport theorem together with 
uss’s divergence theorem to calculate the time derivative

𝜕𝑡𝑇
+
𝑡
= ∫
𝜕𝑉 +

𝑑𝐒 ⋅
(
−𝐟̇ (𝑢,𝐱) + 𝐯𝐵(𝐱)𝑢̇

)
(18)

e first term on the right hand side is the integral of the flux 𝐟̇ over the surface of 𝑉 +, while the second term is the change due to 
e motion of the boundary with velocity 𝐯𝐵 . Note that only the normal (to the surface) component of 𝐯𝐵 matters, which is uniquely 
fined. Since 𝑢̇ = 𝜕𝑡𝑢 = 0 at the surface, the second term vanishes. The first term can also be easily calculated from the chain rule:

𝐟̇ (𝑢,𝐱) = 𝜕𝐟(𝑢,𝐱)
𝜕𝑢

𝜕𝑢

𝜕𝑡
= 0 (19)

ce, again, 𝜕𝑡𝑢 = 0 at the surface.
This completes our proof that the analytic solution of the scalar conservation law (13) conserves 𝑇𝑡 and therefore it satisfies the 
TVD property (9). We note that the linear conservation laws with divergence-free velocity considered by [2] is a subset of the 
nservation laws described by (13). It is also important to note that the definition of TOTV (8) and the proof of the TOTVD property 
) are only valid for differentiable 𝑢(𝐱, 𝑡) functions. Generalization to discontinuous functions is left for future work.

3. Linear system of hyperbolic conservation laws in 1D

Here we consider a vector of unknowns 𝑈 with 𝑁𝑈 elements that satisfy the conservation law

𝜕𝑡𝑈 + 𝜕𝑥(𝐴̄ ⋅𝑈 ) = 0 (20)

here 𝐴̄ is a constant 𝑁𝑈 ×𝑁𝑈 matrix with 𝑁𝑈 real eigenvalues, and 𝑁𝑈 left and 𝑁𝑈 right eigenvectors that form an orthonormal 
sis. The characteristic variables can be defined as 𝑊 = 𝐿̄ ⋅𝑈 , where 𝐿̄ is a matrix formed from the left eigenvectors of 𝐴̄. Conversely, 
can be expressed as 𝑈 = 𝑅̄ ⋅𝑊 where 𝑅̄ = 𝐿̄−1 is the matrix of right eigenvectors. Substituting into (20) results in

𝜕𝑡𝑅̄ ⋅𝑊 + 𝜕𝑥(Λ̄ ⋅ 𝑅̄ ⋅𝑊 ) = 0 (21)

here Λ̄ is a diagonal matrix formed from the eigenvalues 𝜆𝑤. Multiplying (21) with the left eigenvector matrix from the left results 

𝜕𝑡𝑊 + 𝜕𝑥(Λ̄ ⋅𝑊 ) = 0 (22)

hich is set of 𝑁𝑈 independent linear advection equations that can be written as

𝜕𝑡𝑤+∇ ⋅ (𝜆𝑤𝑤) = 0 (23)

r each characteristic variable 𝑣. Since (23) is a linear 1D advection equation identical to (11), the TOTVD scheme coincides with 
e TVD scheme for each characteristic variable.
While the 1D linear system of equations does not seem very common in practical problems, the very successful TVD schemes 
plied to systems of equations in multiple dimensions are all based on the 1D linear system of equations. In essence, the TVD 
hemes are applied to a linearized form of the non-linear system of equations separately for each dimension. The resulting schemes 
4

e routinely and successfully used to solve the general conservation laws (1).
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. 3. Left: initial condition (dashed) and solution at 𝑡 = 0.5 (solid) of the isothermal hydrodynamic problem. Right: time evolution of the TOTV of density and 
mentum.

Table 1

Subsets of conservation laws with no explicit time dependence.
Equation Flux TVD TOTVD Equivalent

Linear 1D scalar 𝑎𝑢 Yes Yes Yes

Linear 1D scalar (𝑥) 𝑎(𝑥)𝑢 No Yes No

Linear MD scalar 𝐚𝑢 Yes (1st order) Yes Yes

Linear MD scalar (𝐱) 𝐚(𝐱)𝑢 No Yes No

Non-linear 1D scalar 𝑓 (𝑢) Yes Yes No

Non-linear 1D scalar (𝑥) 𝑓 (𝑢, 𝑥) No Yes No

Non-linear MD scalar 𝐟(𝑢) Yes (1st order) Yes No

Non-linear MD scalar (𝐱) 𝐟(𝑢,𝐱) No Yes No

Linear 1D system 𝐴̄ ⋅𝑈 Yes Yes Yes

Non-linear 1D system 𝐹 (𝑈 ) No No −
Non-linear MD system 𝐅(𝑈 ) No No −

4. Nonlinear system

A simple example for a 1D non-linear system is the hydrodynamic equations for isothermal gas. The conservative variables 
= (𝜌, 𝑚) are the mass and momentum densities. The fluxes are 𝐹 = (𝑚, 𝑚2∕𝜌 + 𝑘𝜌), where 𝑘 is a constant related to temperature. Let 
 consider a 1D problem with initial condition 𝜌 = 1, 𝑚 = sin(𝑥) and 𝑘 = 0.1 on a periodic domain [0, 2𝜋]. Fig. 3 shows the converged 
merical solution (obtained on a grid of 5,000 cells with the first order upwind scheme) at 𝑡 = 0.5 together with the time variation of 
𝑇𝑉 for both 𝜌 and 𝑚 (TV is increasing for both variables, and is not shown). Clearly, TOTV is monotonically increasing with time 
r both variables and it seems impossible to construct a combination of these quantities that would satisfy a TOTVD-like property. 
e conclude that a nonlinear system of equations is neither TVD, nor TOTVD in general.

5. Summary of TOTVD conservation laws

We summarize the findings of this section in Table 1. For the 1D linear equations the two principles are equivalent. For non-linear 
alar equations both principles apply, but TVD contradicts second order of accuracy in the MD case. The TOTVD principle applies to 
l scalar conservation laws with coordinate dependent fluxes 𝐟 = 𝐟(𝑢, 𝐱). Conversely, conservation laws with purely time dependent 
x functions 𝐟 = 𝐟(𝑢, 𝑡) are TVD, but not TOTVD. The spatially variable flux involves a much richer set of equations than the time 
pendent flux, simply because there is only one time variable but there can be multiple spatial coordinates in MD. The MD scalar 
uations with coordinate dependent fluxes are practically important, and for these equations only the TOTVD concept applies. 
5

n-linear systems are neither TVD nor TOTVD in general.
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6. 1D example

Finally, we demonstrate how significant the difference can be between TV and TOTV. Fig. 1 shows the solution of

𝜕𝑡𝑢+ 𝜕𝑥 (−𝑢 sin𝑘𝑥) = 0, 𝑘 = 2𝜋
20

(24)

 the [−10, 10] domain with periodic boundary conditions. The initial condition is 𝑢(𝑥, 0) = 1. The 4 curves show the solution at 
0, 1.69, 3.52 and 5.34. The peak at 𝑥 = 0 grows exponentially, because at 𝑥 = 0 the equation reduces to

𝜕𝑡𝑢 = 𝑘𝑢 (25)

ce cos0 = 1 and 𝜕𝑥𝑢(0, 𝑡) = 0. The TV therefore goes to infinity, on the other hand the TOTV is finite (𝑇𝑡 = 20), it is conserved 
alytically, and it diminishes numerically.

7. MD example

The 1D example had locally growing solution due to the non-zero divergence of the “velocity” 𝑣 = 𝜕𝑢𝑓 = − sin𝑘𝑥. But TV can grow 
en if the maximum of the solution does not. Let us consider a 2D equation

𝜕𝑡𝑢+ 𝜕𝑥(𝑢|𝑦|) = 0 (26)

scribing a shear flow on a double periodic domain −10 < 𝑥, 𝑦 < 10. The velocity field 𝐚 = 𝐟∕𝑢 = (|𝑦|, 0) has zero divergence. The 
itial condition is 𝑢(𝑥, 𝑦, 0) = 2 inside a square −5 < 𝑥, 𝑦 < 5 and 𝑢(𝑥, 𝑦, 0) = 1 outside. Fig. 2 demonstrates the time evolution. The 
ear will distort the square increasing its TV roughly linearly with time 𝑇𝐱 →∞ as 𝑡 →∞. In contrast, the TOTV remains constant.

 Properties of TOTVD schemes

In this subsection we prove that a TOTVD scheme is stable against catastrophic instabilities and show that it does not directly 
ppress spurious spatial oscillations.
First of all, we need to discretize (8). A very natural discretization is

𝑇 𝑛 =
∑
𝑖

𝑉𝑖
|Δ𝑛𝑢𝑖|
Δ𝑛𝑡

(27)

here 𝑢𝑛
𝑖
is the cell average value in cell 𝑖 at time step 𝑛. The Δ𝑛 operator takes the difference between time steps 𝑛 + 1 and 𝑛, or 

rmally for any quantity 𝑞:

Δ𝑛𝑞 ∶= 𝑞𝑛+1 − 𝑞𝑛 (28)

e symbol Δ without a subscript will be used as a short hand notation for Δ𝑛 when 𝑛 is known from the context. 𝑉𝑖 is the volume of 
ll 𝑖, and 𝑡𝑛 is the time at step 𝑛. For the sake of simplicity, we assume that the temporal update consists of a single stage. We will 
nsider multi-stage TOTVD schemes at the end of this section.

1. Stability

It is clear that the TOTV defined by (8) is intimately related to stability. Numerical instabilities typically manifest themselves in 
 exponential growth of the amplitude of the solution, which means that the magnitude of the time derivative |𝜕𝑡𝑢| will also grow 
ponentially, so that the TOTV will grow unbounded as well.
To make this argument more formal, let us assume that the maximum magnitude of the solution defined as 𝑀𝑛 =max𝑖 |𝑢𝑛𝑖 | grows 
ster than linear starting from time step 𝑚:

𝑀𝑛 >𝑀𝑚 + 𝑐(𝑡𝑛 − 𝑡𝑚)𝛼 for 𝑛 > 𝑚 (29)

here 𝑐 > 0 and 𝛼 > 1 are constants. The magnitude of the largest discrete time derivative is then bounded as

max
𝑘∈[𝑚,𝑛−1],𝑖

|Δ𝑘𝑢𝑖|
Δ𝑘𝑡

≥ max
𝑘∈[𝑚,𝑛−1]

𝑀𝑘+1 −𝑀𝑘

𝑡𝑘+1 − 𝑡𝑘
≥ 𝑀𝑛 −𝑀𝑚

𝑡𝑛 − 𝑡𝑚
> 𝑐(𝑡𝑛 − 𝑡𝑚)𝛼−1 (30)

hich grows unbounded as 𝑡𝑛 →∞. This means that the maximum of the discrete TOTV, which is a sum of positive contributions 
m the grid cells including the cell with the maximum change,

max
𝑘∈[𝑚,𝑛−1]

𝑇 𝑘 = max
𝑘∈[𝑚,𝑛−1]

∑
𝑖

|Δ𝑘𝑢𝑖|
Δ𝑘𝑡

≥ max
𝑘∈[𝑚,𝑛−1],𝑖

|Δ𝑘𝑢𝑖|
Δ𝑘𝑡

> 𝑐(𝑡𝑛 − 𝑡𝑚)𝛼−1 (31)

ill also grow unbounded.
The solution of 𝜕𝑡𝑢 = 𝜕𝑥(𝑢 sin𝑘𝑥) has a maximum value at 𝑥 = 0 that goes to infinity exponentially with time, 𝑢(0, 𝑡) = 𝑢(0, 0) exp(𝑘𝑡), 
6

ll the TOTV is conserved (see subsection 2.6). This may seem to contradict the proof above, but it does not. In the proof we 
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. 4. Left: hypothetical numerical solution for the advection equation 𝜕𝑡𝑢 + 𝜕𝑥𝑢 = 0 on a uniform grid with Δ𝑥 = 1. The initial condition is a square wave (black line). 
e numerical solution at 𝑡 = 0.5 and 𝑡 = 1 are shown with blue diamonds and red triangles, respectively. The TV increased from 𝑡 = 0.5 to 𝑡 = 1, but the TOTV remained 
 same despite the overshoot at 𝑥 = −10.5 and undershoot at 𝑥 = 11.5. Right: hypothetical numerical solution for a stationary (or slowly moving) sharp profile. The 
tial condition is shown by the black line. In the first time step it sharpens into a pure jump (blue diamonds), and in the second time step creates a staircase function 
d triangles). All these changes satisfy the conservation law and the TVD property, but they violate TOTVD, as the magnitude of the time derivative is increasing. 
r interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

sumed that there is a finite size grid cell with a discrete value whose magnitude grows faster than linear. The solution is positive 
erywhere and the volume integral of 𝑢 is conserved both analytically and numerically (we took periodic boundaries), so the cell 
ith the maximum value cannot exceed the sum of the initial cell values 𝑆0 =

∑
𝑖 𝑢

0
𝑖
. This means that while the analytic maximum 

lue 𝑢(0, 𝑡) → ∞ exponentially, the discrete maximum value 𝑀𝑛 is bounded from above by 𝑆. Conversely, one could wonder if 
e conservation property excludes the unlimited growth of a cell value, which would render the proof about stability meaningless. 
rtunately, that is not the case either. For a conservative scheme the typical numerical instability manifests as a short wavelength 
cillation with exponentially increasing magnitude. The cell values will have opposite signs, so the sum 𝑆𝑛 will be conserved, but 
e maximum magnitude 𝑀𝑛 increases exponentially.
We proved that a scheme satisfying (27) cannot be unstable with a growth rate exceeding linear growth, so in practice this means 
at a TOTVD scheme is stable.

2. Spurious oscillations

The TVD condition guarantees that the solution remains oscillation free. This is easiest to see for the 1D scalar equation

𝜕𝑡𝑢+ 𝜕𝑥𝑓 (𝑢) = 0 (32)

e TV defined in (3) is equal to the differences of local extrema:

𝑇𝑥 =
𝐸−1∑
𝑒=1

||𝑢(𝑥𝑒) − 𝑢(𝑥𝑒+1)|| (33)

here 𝑥1 < 𝑥2 <… < 𝑥𝐸 are the locations of the local extrema including the values at non-periodic boundaries (for periodic bound-
ies there is an additional term |𝑢(𝑥𝐸 ) − 𝑢(𝑥1))| in the sum). If any of the extrema become more extreme or any new extrema appear, 
hile other extrema do not change, 𝑇𝑥 will get larger. Since the extrema are separated from each other, changes at one local ex-
mum have no causal relationship with changes at another one (unless they are in neighboring cells). This means that the global 
D property is sufficient to guarantee that there will be no new extrema.
The TOTVD property, by itself, does not guarantee that no spurious oscillations appear, because it constrains the temporal change 
ther than the spatial gradients. To demonstrate this, let us consider the propagation of a square wave in 1D. The advection equation 
ith velocity 𝑎 = 1 is

𝜕𝑡𝑢+ 𝜕𝑥𝑢 = 0 (34)

d the initial condition is 𝑢(𝑥, 0) = 1 for |𝑥| < 10 and 0 otherwise on a periodic domain of −20 ≤ 𝑥 ≤ 20. Let us use a uniform grid 
nsisting of 40 cells of size Δ𝑥 = 1, so initially 𝑢0

𝑖
= 1 for 𝑖 = 11 … 30 and 0 in the rest of the cells. We will fix the time step to Δ𝑡 = 0.5. 

e analytic as well as the discrete TV is 𝑇𝑥 = 2 due to the two jumps at 𝑥 = ±10.
Assuming that the scheme is exact in the finite volume sense with this initial data, the solution in the first time step changes only 

 cells 11 and 31: from 𝑢011 = 1 to 𝑢111 = 0.5 and from 𝑢031 = 0 to 𝑢131 = 0.5, so the discrete TOTV is 𝑇 0
𝑡
= (0.5 +0.5)∕Δ𝑡 = 2. Let us assume 

at in the next time step the solution changes from 𝑢111 = 0.5 to 𝑢211 = 0.1, from 𝑢112 = 1 to 𝑢212 = 1.1, from 𝑢131 = 0.5 to 𝑢231 = 0.9 and 
m 𝑢132 = 0 to 𝑢232 = −0.1 due to some overly zealous anti-diffusive scheme that is trying to sharpen the solution. The changes are 
nservative, ∑𝑖 𝑢

𝑛
𝑖
= 20 for 𝑛 = 0, 1, 2, but new extrema were created in cells 12 and 32. The TV has increased from 2 to 2.2, but the 

TV did not change, since 𝑇 1
𝑡
= (0.4 + 0.1 + 0.4 + 0.1)∕Δ𝑡 = 2 = 𝑇 0

𝑡
. Fig. 4 shows this hypothetical numerical solution.

It is noteworthy that the analytic TV and TOTV are equivalent for this equation according to (12), but the discrete TV and TOTV 
7

e different in general, since TV is the sum of differences of neighboring cell values |𝑢𝑖 − 𝑢𝑖−1|, while TOTV is the sum of differences 
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 neighboring cell interface fluxes |𝑓𝑖+1∕2 − 𝑓𝑖−1∕2|. The truncation errors of the discretization can break the analytic proportionality 
= 𝑎𝑢, which results in different consequences for the TVD and TOTVD schemes.
For 1 spatial and 1 temporal dimension, the TVD and TOTVD conditions are, in some sense, symmetric: TVD restricts oscillations 

 space, while TOTVD restricts oscillations in time. The right panel of Fig. 4 shows a hypothetical temporal oscillation that would 
 allowed by a TVD scheme, but not by TOTVD. The amplitude of the spatial/temporal oscillations is limited by the neighboring 
trema in the spatial/temporal variation. One major difference, however, is that TVD prohibits development of new extrema in 𝑢, 
hile TOTVD does not. This property of TVD is important for ensuring positivity, for example.
While the TOTVD property does not prohibit spurious spatial oscillations, it does not mean that a TOTVD scheme will necessarily 
oduce them (similarly, a TVD scheme will not necessarily produce temporal oscillations). Properly used upwind fluxes and TVD-
sed limiters can suppress spatial oscillations successfully even for equations that do not satisfy the TVD condition. The TOTVD 
operty can be used as an additional constraint to guarantee stability and further reduce the chances of producing ill-behaved 
merical solutions.

 TOTVD schemes

A single stage finite volume scheme solving the scalar conservation law (13) can be written as
Δ𝑢𝑖
Δ𝑡

= − 1
𝑉𝑖

∑
𝑠

𝐀𝑠,𝑖 ⋅ 𝐟𝑛𝑠,𝑖 = − 1
𝑉𝑖

∑
𝑠

𝜑𝑛
𝑠,𝑖

(35)

e 𝑠 index refers to the faces of cell 𝑖 with volume 𝑉𝑖 and outward pointing face vectors 𝐀𝑠,𝑖. The face centered flux vector is 𝐟𝑛𝑠,𝑖, 
d 𝜑𝑛

𝑠,𝑖
∶= 𝐀𝑠,𝑖 ⋅ 𝐟𝑛𝑠,𝑖 is the normal flux through the cell face. While using abstract notation for cell centers and cell faces is common, 

is possible to make the notation precise. For a 3D Cartesian grid with 𝑁 ×𝑁 ×𝑁 grid cells, the index 𝑖 = 1, … , 𝑁3 lists cells in a 
tural order of sweeping through the first dimension first, then the second, and finally the third. The neighbors of cell 𝑖 are 𝑖 ± 1, 
𝑁 and 𝑖 ±𝑁2 assuming that cell 𝑖 is not near any boundary. To make it easy to refer to these neighbor cells, the sides are indexed 
ith 𝑠 ∈ 𝑆 = {±1, ±𝑁, ±𝑁2} instead of the usual 1, … , 6. The 𝑠 face of cell 𝑖 will be denoted as subscript 𝑠, 𝑖. This notation allows for 
pressing spatial relationships in a precise form. For example, the 𝑠, 𝑖 face coincides with the −𝑠, 𝑖 + 𝑠 face, while the opposite −𝑠, 𝑖
ce coincides with the 𝑠, 𝑖 − 𝑠 face. A conservative discretization requires

𝜑𝑛
𝑠,𝑖

= −𝜑𝑛
−𝑠,𝑖+𝑠 (36)

e TOTV defined in (27) can be written as

𝑇 𝑛 =
∑
𝑖

|||||
∑
𝑠

𝜑𝑛
𝑠,𝑖

||||| (37)

here we dropped the 𝑡 subscript for simplicity. Similar to the analytic case (15), we can split the computational grid into two sets 
 cells 𝐼𝑛+ and 𝐼𝑛−, where the solution is increasing (𝜕𝑡𝑢𝑖 ≥ 0 for 𝑖 ∈ 𝐼𝑛+) and decreasing (𝜕𝑡𝑢 < 0 for 𝑖 ∈ 𝐼𝑛−), respectively:

𝑇 𝑛 = 𝑇 𝑛
+ + 𝑇 𝑛

− 𝑇 𝑛
± = ∓

∑
𝐼𝑛±

∑
𝑠

𝜑𝑛
𝑠,𝑖

(38)

milar to the analytic case (16), the two partial sums are equal due to the global conservation of ∑𝑖(𝑉𝑖𝑢𝑖) and

𝑇 𝑛 = 2𝑇 𝑛
+ = 2𝑇 𝑛

− (39)

e summation in (38) reduces to the cell faces at the boundaries of the 𝐼𝑛± sets since the internal fluxes cancel out. The sets of 
undary faces 𝐵𝑛

± are defined as follows: for (𝑖, 𝑠) ∈𝐵𝑛
+, 𝑖 ∈ 𝐼𝑛+ and (𝑖 +𝑠) ∈ 𝐼𝑛−, while for (𝑖, 𝑠) ∈𝐵𝑛

−, 𝑖 ∈ 𝐼𝑛− and (𝑖 +𝑠) ∈ 𝐼𝑛+. We note that 
e two sets are different, but in fact they refer to the same cell faces, just relating them to different cell centers. With this definition 
e have

𝑇 𝑛
± = ∓

∑
𝐵𝑛
±

𝜑𝑛
𝑠,𝑖

(40)

1. Necessary condition

First we consider a small time step when the boundaries of the 𝐼𝑛± sets do not change, and the discrete change of 𝑇 𝑛 = 2𝑇 𝑛
± is 

oportional to the sum of the time derivatives of 𝜑𝑠,𝑖 along the boundary. To simplify the notation, we will drop the 𝑛 superscripts 
 this subsection. Taking the time derivative of (40), the scheme is TOTVD if

𝑇̇± = ∓
∑
𝐵±

𝜑̇𝑠,𝑖 ≤ 0 (41)

 proceed, we need to define the discrete face flux function. There are several possibilities, but for sake of simplicity, we assume 
8

at the face flux is calculated from the face state 𝑢𝑠,𝑖 obtained from a linear combination of nearby cell center values:
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𝑢𝑠,𝑖 =
∑
𝑑

𝛼𝑑,𝑠,𝑖𝑢𝑖+𝑑𝑠 (42)

𝜑𝑠,𝑖 =𝐀𝑠,𝑖 ⋅ 𝐟(𝑢𝑠,𝑖,𝐱𝑠,𝑖) (43)

here the coefficients 𝛼𝑑,𝑠,𝑖 will be determined later. The index 𝑑 covers the stencil, for example 𝑑 = 0 and 𝑑 = 1 refer to the cell 
d its 𝑠 neighbor, respectively. Consistency requires that ∑𝑑 𝛼𝑑,𝑠,𝑖 = 1. In addition, requiring 𝛼𝑑,𝑠,𝑖 ≥ 0 helps preserving positivity and 
oiding oscillations. A simple second order accurate interpolation has 𝛼0,𝑠,𝑖 = 𝛼1,𝑠,𝑖 = 1∕2 taking the arithmetic average of the cell 
nter values on the two sides of face 𝑠.
We can now substitute the discrete normal flux from (43) into (41) and apply the chain rule

𝑇̇± = ∓
∑
𝐵±

𝐀𝑠,𝑖 ⋅ 𝜕𝑢𝐟(𝑢𝑠,𝑖,𝐱𝑠,𝑖)𝑢̇𝑠,𝑖 = ∓
∑
𝐵±

𝑎𝑠,𝑖(𝑢𝑠,𝑖)
∑
𝑑

𝛼𝑑,𝑠,𝑖𝑢̇𝑖+𝑑𝑠 (44)

here we introduced the “normal velocity”

𝑎𝑠,𝑖(𝑢) ∶=𝐀𝑠,𝑖 ⋅ 𝐯(𝑢,𝐱𝑠,𝑖) (45)

d the “velocity”

𝐯(𝑢,𝐱) ∶= 𝜕𝑢𝐟(𝑢,𝐱) (46)

hen 𝑎𝑠,𝑖(𝑢𝑠,𝑖) > 0, the velocity points outward from cell 𝑖 towards cell 𝑖 + 𝑠, when 𝑎𝑠,𝑖(𝑢𝑠,𝑖) < 0, the velocity vector points towards cell 

Let us consider 𝑇̇+ that is expressed as a sum over faces 𝐵+, so 𝑖 ∈ 𝐼+ and 𝑢̇𝑖 ≥ 0, while 𝑖 + 𝑠 ∈ 𝐼− and 𝑢̇𝑖+𝑠 < 0. From (44), the time 
rivative of 𝑇+ will be non-positive if

−𝑎𝑠,𝑖(𝑢𝑠,𝑖)
∑
𝑑

𝛼𝑑,𝑠,𝑖𝑢̇𝑖+𝑑𝑠 ≤ 0 (47)

r every cell face in 𝐵+. A simple choice for 𝛼𝑑,𝑠,𝑖 that guarantees 𝑇̇+ ≤ 0 is

𝛽𝑠,𝑖 ∶= 𝛼0,𝑠,𝑖 = 1; 𝑢𝑠,𝑖 = 𝑢𝑖 for 𝑎𝑠,𝑖(𝑢𝑠,𝑖) ≥ 0,

𝛾𝑠,𝑖 ∶= 𝛼1,𝑠,𝑖 = 1; 𝑢𝑠,𝑖 = 𝑢𝑖+𝑠 for 𝑎𝑠,𝑖(𝑢𝑠,𝑖) < 0, (48)

hich is the first order upwind scheme. The upwind direction is determined by the velocity 𝐯: when it points outward from cell 𝑖, the 
ll center state 𝑢𝑖 is used, when it points inward, the neighbor cell state 𝑢𝑖+𝑠 is used to calculate the flux. We introduced 𝛽𝑠,𝑖 and 𝛾𝑠,𝑖, 
e weight of the cell and the neighbor cell, respectively, to simplify the notation.
There is a circular dependency in (42), (45) and (48), because the definition of 𝑎𝑠,𝑖 depends on 𝛼𝑑,𝑠,𝑖, and vice versa. To resolve 
is, we define the upwind direction based on the cell center states instead of the state at the face:

𝑢𝑠,𝑖 = 𝑢𝑖 if 𝑎𝑠,𝑖(𝑢𝑖) + 𝑎𝑠,𝑖(𝑢𝑖+𝑠) ≥ 0

𝑢𝑠,𝑖 = 𝑢𝑖+𝑠 if 𝑎𝑠,𝑖(𝑢𝑖) + 𝑎𝑠,𝑖(𝑢𝑖+𝑠) < 0 (49)

r typical cases the two cell center based velocities 𝑎𝑠,𝑖(𝑢𝑖) and 𝑎𝑠,𝑖(𝑢𝑖+𝑠) have the same signs that also agrees with the sign of the 
ce value based velocity 𝑎𝑠,𝑖(𝑢𝑠,𝑖).
We proved that the first order upwind flux satisfies the TOTVD property 𝑇 𝑛+1 ≤ 𝑇 𝑛 where 𝑇 𝑛 is defined by (27) as long as the sets 

 cells with increasing and decreasing values do not change.

2. First order upwind scheme is TOTVD

For an arbitrary time step, the TOTVD condition for 𝑇+ = 𝑇 ∕2, based on (38), can be written as

−Δ𝑇+ =
∑

𝐼𝑛+1+ ,𝑠

𝜑𝑛+1
𝑠,𝑖

−
∑
𝐼𝑛+ ,𝑠

𝜑𝑛
𝑠,𝑖

≥ 0 (50)

e can split the set 𝐼𝑛+1+ into two disjoint subsets: 𝐼++ = 𝐼𝑛+ ∩ 𝐼𝑛+1+ for the cells that were and keep increasing and 𝐼+− ∶= 𝐼𝑛− ∩ 𝐼𝑛+1+ for 
e newly added 𝐼+ cells. Similarly, 𝐼𝑛+ can be split into 𝐼

+
+ and 𝐼−+ = 𝐼𝑛+ ∩ 𝐼𝑛+1− , the cells that no longer grow in time step 𝑛 +1. Using 

ese subsets the condition becomes:
∑
𝐼++ ,𝑠

(𝜑𝑛
𝑠,𝑖

+Δ𝜑𝑠,𝑖) +
∑
𝐼+− ,𝑠

(𝜑𝑛
𝑠,𝑖

+Δ𝜑𝑠,𝑖) −
∑
𝐼++ ,𝑠

𝜑𝑛
𝑠,𝑖

−
∑
𝐼−+ ,𝑠

𝜑𝑛
𝑠,𝑖

≥ 0 (51)

ouping terms with superscripts 𝑛 and with changes Δ separately gives
∑

Δ𝜑𝑠,𝑖 +
∑

Δ𝜑𝑠,𝑖 +
∑

𝜑𝑛 −
∑

𝜑𝑛 ≥ 0 (52)
9

𝐼++ ,𝑠 𝐼+− ,𝑠 𝐼+− ,𝑠

𝑠,𝑖
𝐼−+ ,𝑠

𝑠,𝑖



G.

Fi

w

ar

1

2

3

Th

te

4.

an

w

of

fu

de

In

w

pr

w

In

sim

fro

in

Th

so

(𝑖 
(𝑖 
or

in

Th

4.

𝐼−
Journal of Computational Physics 494 (2023) 112534Toth

nally we can cancel out internal normal fluxes in the first two sums, and sum over the boundary faces only:
∑
𝐵+
+

Δ𝜑𝑠,𝑖 +
∑
𝐵+
−

Δ𝜑𝑠,𝑖 +
∑
𝐼+− ,𝑠

𝜑𝑛
𝑠,𝑖

−
∑
𝐼−+ ,𝑠

𝜑𝑛
𝑠,𝑖

≥ 0 (53)

here 𝐵+
+ and 𝐵+

− are the boundary faces surrounding 𝐼
+
+ and 𝐼+− , respectively. This inequality is the discretized form of (18). There 

e three possible reasons for the left side to be different from 0:

. The normal flux 𝜑𝑠,𝑖 changes at the boundary 𝐵+
+ and 𝐵+

− (first two sums).
. Cells at the edge of 𝐼𝑛+ become part of 𝐼𝑛+1− or vice versa (last two sums).
. Cells in the middle of 𝐼𝑛+ become part of 𝐼𝑛+1− or vice versa (last two sums).

e first one is the discrete equivalent of (41). The second reason is the discrete motion of the boundary corresponding to the second 
rm in (18). The third reason corresponds to a spurious oscillation in the time derivative, which should be avoided.

2.1. Proof of TOTVD for the first order upwind scheme with finite time step
We will prove that the first order upwind scheme guarantees that changes due to the first and second causes are non-negative, 
d the third does not happen as long as the time step obeys an appropriate CFL condition.
In the first two sums in (53) we can write the change in the normal fluxes as

Δ𝜑𝑠,𝑖 =𝐀𝑠,𝑖 ⋅ 𝜕𝑢𝐟(𝑢∗𝑠,𝑖,𝐱𝑠,𝑖)Δ𝑢𝑠,𝑖 = 𝑎𝑠,𝑖(𝑢∗𝑠,𝑖)Δ𝑢𝑠,𝑖 (54)

here 𝑢∗
𝑠,𝑖

∈ [𝑢𝑛
𝑠,𝑖
, 𝑢𝑛+1

𝑠,𝑖
] is some intermediate value between the two time steps. The existence of 𝑢∗ is guaranteed by the differentiability 

 the flux function 𝐟(𝑢, 𝐱) and the mean value theorem. For a well-behaved flux function, we expect 𝑎𝑠,𝑖(𝑢∗𝑠,𝑖) ∈ [𝑎𝑠,𝑖(𝑢𝑖), 𝑎𝑠,𝑖(𝑢𝑖+𝑠)]. To 
rther simplify the expressions, we use the shorthand notation 𝑎∗

𝑠,𝑖
∶= 𝑎𝑠,𝑖(𝑢∗𝑠,𝑖). Note that for a linear flux function 𝑎𝑠,𝑖 does not 

pend on 𝑢. In the last two sums in (53), ∑𝑠 𝜑
𝑛
𝑠,𝑖
can be replaced with −(𝑉𝑖∕Δ𝑡)Δ𝑢𝑖. With these changes (53) becomes:

∑
𝐵+
+

𝑎∗
𝑠,𝑖
Δ𝑢𝑠,𝑖 +

∑
𝐵+
−

𝑎∗
𝑠,𝑖
Δ𝑢𝑠,𝑖 −

∑
𝐼+−

𝑉𝑖

Δ𝑡
Δ𝑢𝑖 +

∑
𝐼−+

𝑉𝑖

Δ𝑡
Δ𝑢𝑖 ≥ 0 (55)

 the third sum Δ𝑢𝑖 ≤ 0 since 𝑖 ∈ 𝐼+− ⊂ 𝐼𝑛−. In the fourth sum Δ𝑢𝑖 ≥ 0 as it is over cells in 𝐼−+ ⊂ 𝐼𝑛+. In both cases, we can replace Δ𝑡
ith a larger or equal value based on the CFL condition and the left hand side will not increase. We now assume, and then later 
ove, that the CFL condition can be written as

Δ𝑡 ≤ 𝐶
𝑉𝑖∑
𝑠 𝑎

+
𝑠,𝑖

(56)

here 𝑎+
𝑠,𝑖

∶= max(0, 𝑎∗
𝑠,𝑖
) and 𝐶 ≤ 1 is the CFL coefficient. Using the CFL condition to replace Δ𝑡 a sufficient inequality for (55) is

∑
𝐵+
+

𝑎∗
𝑠,𝑖
Δ𝑢𝑠,𝑖 +

∑
𝐵+
−

𝑎∗
𝑠,𝑖
Δ𝑢𝑠,𝑖 +

∑
𝐼+− ,𝑠

𝑎+
𝑠,𝑖
|Δ𝑢𝑖|+ ∑

𝐼−+ ,𝑠

𝑎+
𝑠,𝑖
|Δ𝑢𝑖| ≥ 0 (57)

 the third sum Δ𝑢𝑖 ≤ 0 was replaced with −|Δ𝑢𝑖| and in the last sum Δ𝑢𝑖 ≥ 0 was replaced with |Δ𝑢𝑖| to make positivity arguments 
pler. The last two sums contribute with all non-negative terms. In the third sum over 𝐼+− , 𝑠 we can drop the positive contributions 
m faces that are not in 𝐵+

− , so it can be combined with the second sum. Finally, for the upwind scheme 𝑎∗𝑠,𝑖Δ𝑢𝑠,𝑖 = 𝑎+
𝑠,𝑖
Δ𝑢𝑖 + 𝑎−

𝑠,𝑖
Δ𝑢𝑖+𝑠

 the first two sums, where 𝑎−
𝑠,𝑖

∶= min(0, 𝑎∗
𝑠,𝑖
). After applying these changes the sufficient condition is

∑
𝐵+
+

(
𝑎+
𝑠,𝑖
|Δ𝑢𝑖|+ 𝑎−

𝑠,𝑖
Δ𝑢𝑖+𝑠

)
+
∑
𝐵+
−

𝑎−
𝑠,𝑖
Δ𝑢𝑖+𝑠 +

∑
𝐼−+ ,𝑠

𝑎+
𝑠,𝑖
|Δ𝑢𝑖| ≥ 0 (58)

e only terms that can be negative are 𝑎−
𝑠,𝑖
Δ𝑢𝑖+𝑠. This requires Δ𝑢𝑖+𝑠 > 0 so (𝑖 +𝑠) ∈ 𝐼𝑛+. On the other hand, in the first sum (𝑖 +𝑠) ∉ 𝐼++ , 

 (𝑖 + 𝑠) ∈ 𝐼−+ . Using the 𝑎−𝑠,𝑖 = −𝑎+−𝑠,𝑖+𝑠 identity, we can move this term into the last sum. In the second sum Δ𝑢𝑖+𝑠 > 0 requires that 
+ 𝑠) ∈ 𝐼𝑛+ = 𝐼++ ∪ 𝐼−+ . If (𝑖 + 𝑠) ∈ 𝐼++ , then the term can be moved into the first sum as its −𝑠 neighbor 𝑖 ∉ 𝐼++ so face −𝑠, 𝑖 + 𝑠 ∈ 𝐵+

+ . If 
+ 𝑠) ∈ 𝐼−+ then the term can be moved into the last sum. In the modified last sum a given face (−𝑠, 𝑖 + 𝑠) either comes from the first 
 the second sum depending on the sign of Δ𝑢𝑖, so it can only occur at most once. By including all faces with negative contributions 
to the first and last sums, the left hand side reduces, and the following sufficient condition is obtained

∑
𝐵+
+

(𝑎+
𝑠,𝑖

− 𝑎+
𝑠,𝑖
)|Δ𝑢𝑖|+ ∑

𝐼−+ ,𝑠

(𝑎+
𝑠,𝑖

− 𝑎+
𝑠,𝑖
)|Δ𝑢𝑖| ≥ 0 (59)

e left hand side is identically zero, so the original inequality (53) holds.
We have proved that the first order upwind scheme with a finite time step satisfying the CFL condition (56) is TOTVD.

2.2. No negative change inside 𝐼+ for first order upwind scheme
An additional desirable property, although not necessary for the TOTVD property, is that a cell inside 𝐼+ does not become part of 
10

in a single time step. The requirement is that
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𝑉𝑖
Δ𝑛+1𝑢𝑖
Δ𝑛+1𝑡

= −
∑
𝑠

(𝜑𝑛
𝑠,𝑖

+Δ𝜑𝑠,𝑖) = 𝑉𝑖
Δ𝑢𝑖
Δ𝑡

−
∑
𝑠

𝑎∗
𝑠,𝑖
Δ𝑢𝑠,𝑖 ≥ 0 (60)

cell 𝑖 ∈ 𝐼+ and all its neighbors 𝑖 + 𝑠 ∈ 𝐼+, so Δ𝑢𝑖 ≥ 0 and Δ𝑢𝑖+𝑠 ≥ 0 for all 𝑠 indexes. The first term 𝑉𝑖Δ𝑢𝑖∕Δ𝑡 can be estimated from 
e CFL condition (56). In the second term Δ𝑢𝑠,𝑖 > 0 from (49) if the signs of 𝑎𝑠,𝑖(𝑢𝑖) and 𝑎𝑠,𝑖(𝑢𝑖+𝑠) do not change from time step 𝑛 to 
e step 𝑛 + 1. This means that in (60) terms with 𝑎∗

𝑠,𝑖
≤ 0 coefficients increase the left hand side of the inequality, so they can be 

fely dropped by replacing 𝑎∗
𝑠,𝑖
with 𝑎+

𝑠,𝑖
∶= max(0, 𝑎∗

𝑠,𝑖
). For the other terms with 𝑎∗

𝑠,𝑖
> 0, the first order upwind flux sets Δ𝑢𝑠,𝑖 = Δ𝑢𝑖, 

 a sufficient condition for inequality (60) is
∑
𝑠

𝑎+
𝑠,𝑖
Δ𝑢𝑖 −

∑
𝑠

𝑎+
𝑠,𝑖
Δ𝑢𝑖 ≥ 0 (61)

hich is obviously true. A similar proof can be employed to show that no cells belonging to 𝐼+ pop up inside 𝐼−.
We have proved that the first order upwind scheme satisfying the CFL condition does not produce new 𝐼− cells inside 𝐼+ or vice 
rsa, which is the TOTVD analogue of the TVD schemes not creating spurious spatial oscillations.

2.3. Properties of the first order upwind scheme
Combining the previous results, we proved that the first order upwind flux with a time step limited by the CFL condition (56)
tisfies the TOTVD property and does not generate spatial-temporal oscillations. While this result is similar to the well-known 
eorem that the first order upwind scheme is TVD, it is actually quite different. The first order upwind scheme applied to the 
ample equations in subsections 2.6 and 2.7 will not produce TVD results, but they satisfy the TOTVD property. This proof is also 
ore general than the result obtained for the linear divergence-free transport equation [2].

3. Second order TVD scheme

We will evaluate the TOTVD property, or lack of it, of the usual second order TVD schemes that apply the limiters on a dimension-
-dimension basis. For the monotonized central (MC) limiter the face value 𝑢𝑠,𝑖 is constructed from the cell center values at 𝑖 − 𝑠, 𝑖
d 𝑖 + 𝑠 as

𝑢𝑠,𝑖 = 𝑢𝑖 +
1
2
minmod

(
𝛽(𝑢𝑖+𝑠 − 𝑢𝑖),

1
2
(𝑢𝑖+𝑠 − 𝑢𝑖−𝑠), 𝛽(𝑢𝑖 − 𝑢𝑖−𝑠)

)
(62)

hen the velocity points from cell 𝑖 to 𝑖 + 𝑠. Otherwise the same formula is used but centered on cell 𝑖 + 𝑠. The parameter 𝛽 is in 
e range [1, 2]. For 𝛽 = 1 the MC limiter becomes the standard minmod limiter, since the middle term (𝑢𝑖+𝑠 − 𝑢𝑖−𝑠)∕2 in the minmod 
nction can be removed in this case. In the numerical tests, we will imply 𝛽 = 2 when we refer to the MC limiter and 𝛽 = 1 for the 
inmod limiter.
For second order accuracy in time, the usual midpoint method is employed:

𝑢
𝑛+1∕2
𝑖

= 𝑢𝑛
𝑖
− Δ𝑡

2𝑉𝑖

∑
𝑠

𝜑𝑛
𝑠,𝑖

(63)

𝑢𝑛+1
𝑖

= 𝑢𝑛
𝑖
− Δ𝑡

𝑉𝑖

∑
𝑠

𝜑
𝑛+1∕2
𝑠,𝑖

(64)

e final update looks just like the one-stage scheme, except for using 𝑢𝑛+1∕2 in the normal flux:

𝜑
𝑛+1∕2
𝑠,𝑖

∶=𝐀𝑠,𝑖 ⋅ 𝐟(𝑢
𝑛+1∕2
𝑠,𝑖

,𝐱𝑠,𝑖) (65)

here the face value 𝑢𝑛+1∕2
𝑠,𝑖

is constructed from the cell center values 𝑢𝑛+1∕2
𝑗

in the neighborhood of cell 𝑖 using the TVD limiter (62).

 Numerical tests

We perform a few simple tests to demonstrate the usefulness of the TOTV concept, to confirm that the upwind scheme is truly 
TVD, and to evaluate the evolution of TOTV for the usual second order TVD scheme.

1. 2D linear advection equation

We solve the scalar conservation law

𝜕𝑢

𝜕𝑡
+∇ ⋅ 𝐟(𝑢, 𝑥, 𝑦) = 0 (66)

 a 2D periodic square domain −5 ≤ 𝑥, 𝑦 ≤ 5 with a flux function

𝐟(𝑢, 𝑥, 𝑦) = 𝑢𝐯(𝑥, 𝑦) (67)
11

e velocity vector field 𝐯 depends on the location:
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. 5. Initial condition far the test solving a scalar conservation law in 2D. The left panel shows the initial distribution of 𝑢, while the other two panels show the two 
mponents of the fixed but non-uniform velocity field.

Fig. 6. Time evolution of the 2D linear advection test obtained by the TVD scheme with the MC limiter on a 200 × 200 grid.

𝑣𝑥 = −sin 2𝜋(𝑥+ 2𝑦)
10

𝑣𝑦 = −3
2
sin 2𝜋(2𝑥+ 𝑦)

5
(68)

te that 𝐯 and its derivatives are continuous but it has non-zero divergence. The initial condition is a circular bump centered around 
e 𝑥 = 𝑦 = −1 location:

𝑢(𝑡 = 0) = 1 + 2cos2 𝜋𝑟

6
where 𝑟 =

√
(𝑥+ 1)2 + (𝑦+ 1)2 (69)

r 𝑟 ≤ 3 and 𝑢(𝑡 = 0) = 1 otherwise. The initial condition and its first derivatives are continuous. Fig. 5 shows the smooth initial 
ndition and the velocity field.
Fig. 6 shows the time evolution of the solution with the TVD scheme on a 200 × 200 grid. The time step is fixed to Δ𝑡 = 1∕160, so 
takes 320 time steps to reach the final time 𝑡 = 2. Note that the 10-based logarithm of 𝑢 is shown, so 𝑢 varies almost 4 orders of 
agnitude by time 𝑡 = 2 due to the non-zero divergence of the velocity field. The fast growth of extrema result in a rapidly growing 
tal variation (TV) defined in 2D with the L1 norm as

𝑇 𝑛
𝑥𝑦

=
∑
𝑖

(|𝑢𝑛
𝑖+1 − 𝑢𝑛

𝑖
|+ |𝑢𝑛

𝑖+𝑁 − 𝑢𝑛
𝑖
|) (70)

 shown in the top panel of Fig. 7. Clearly, the TVD principle cannot be applied for this equation. In contrast, the TOTV defined by 
7) is decreasing as expected from the analytic TOTVD property. The decrease is monotonic for the first order upwind scheme as 
oven in the previous section. The second order TVD scheme with the minmod limiter also reduces TOTV monotonically (for this 
rticular test), while the sharper MC limiter is almost always (315 times out of 320 time steps, to be exact) TOTVD.

2. 2D Burgers equation

We solve the same problem as in the previous subsection, except that the flux function is defined as

𝐟(𝑢, 𝑥, 𝑦) = 1
2
𝑢2𝐯(𝑥, 𝑦) (71)

e true “velocity” 𝜕𝐟∕𝜕𝑢 = 𝑢𝐯 is a function of 𝑢, which can form discontinuous solutions (“shocks”) in a finite time even for an 
itially smooth solution. In addition, the CFL condition also depends on 𝑢, so the time step is adapted according to (56) with 𝐶 = 0.9. 
12

the initial 𝑢 is positive everywhere, it should remain positive.



G.

Fig

sch

m

an

TV

di

ov

an

de

88

6.

W

ish

flu

in

te

nu

th

an

on
Journal of Computational Physics 494 (2023) 112534Toth

. 7. Time evolution of TV (70), and TOTV (27) while solving the 2D linear advection test with the first order upwind scheme (red), and the second order TVD 
eme using the MC (black) and minmod (blue) limiters, respectively, on a 200 ×200 grid.

Fig. 8. Time evolution of the 2D Burgers equation test obtained by the TVD scheme with the MC limiter on a 200 × 200 grid.

Fig. 8 shows the time evolution of 𝑢. The maxima are larger and sharper compared to the linear case, on the other hand the 
inima are less pronounced. There is a discontinuity in the middle of the domain already at 𝑡 = 0.6 due to the divergence of the field 
d non-linearity of the flux function.
Fig. 9 shows the time evolution of TV and TOTV for the first order upwind and second order TVD schemes. Clearly, the classical 
 is growing rapidly, so it cannot be used to characterize the stability of the numerical scheme. For the first order scheme TOTV 
minishes monotonically as expected. Finally, for the second order TVD scheme TV is increasing rapidly, but TOTV is decreasing 
erall, although it is not perfectly monotonic. This suggests that the TOTVD property is applicable to this 2D non-linear equation 
d it can prove stability for the first order upwind scheme, and it is well-behaved for the second order TVD scheme, although the 
crease is not perfectly monotonic (TOTV increases 101 times out of the 1112 time steps for the MC limiter and 20 times out of the 
4 times steps for the minmod limiter).

 Conclusions

We have introduced a new concept, the Total of Time Variation (TOTV) to characterize conservation laws and numerical schemes. 
e showed that the solutions of nonlinear scalar conservation laws with spatially dependent flux functions satisfy the TOTV dimin-
ing (TOTVD) property analytically, but not the TVD property. Conversely, scalar conservation laws with purely time dependent 
xes satisfy the TVD property, but not TOTVD. Despite this space-time symmetry, purely spatially dependent flux functions are more 
teresting in practice than purely time dependent flux functions, simply because there are multiple spatial dimensions, but only one 
mporal dimension. This makes TOTVD interesting and useful in practical applications as demonstrated in [2]. We showed that a 
merical scheme satisfying the TOTVD property is stable against non-linearly (or exponentially) growing numerical instabilities.
We proved that the first order upwind scheme is TOTVD for a time step satisfying the usual CFL condition. Our proof requires 
at the first order scheme is applied at the boundaries between temporally increasing and decreasing subdomains. Anywhere else, 
y second or higher order scheme can be used. One possible way to construct a second order TOTVD scheme could be based 
13

 the Multi-dimensional Optimal Order Detection (MOOD) algorithm [5]. The difficulty is to construct a MOOD-TOTVD scheme 
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. 9. Time evolution of TV (70), and TOTV (27) while solving the 2D Burgers equation test with the first order upwind scheme (red), and the second order TVD 
eme using the MC (black) and minmod (blue) limiters, respectively, on a 200 ×200 grid.

at does not apply the first order scheme on an unnecessarily large fraction of the computational domain. On the other hand, our 
merical tests show that the second order TVD-based scheme (using TVD limiters in each dimension independently) performs well, 
d it overall reduces TOTV, even if not monotonically. It may be possible to prove that this is a general property of second order 
D-based schemes, which would extend the theoretical understanding of the applicability of these schemes.
Generalization of the TOTVD principle to systems of equations and construction of second order TOTVD numerical schemes 
main open questions that can be explored in the future.
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