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Reactions between imines and tungsten alkylidyne complexes are
studied. The trianionic pincer ligand supported alkylidyne [‘BuOCO]
WCC(CH3z)3(THF), (1) reacts with N-(R)-1-phenylmethanimine
(PMI-R, R = Me, Ph, Bn, and TMS) yielding [‘BuOC(H)O]
W(n2-‘BUC=CPh)N(R) (4-R), products from metathesis reaction.
In contrast, the non-pincer alkylidyne (‘BuQ);W=CC(CH5); does
not react with PMI-R imines.

Imines participate in metathesis-like reactions. Imine-imine
metathesis’™ is the exchange of NR/CHR groups between
different imines and is a synthetic tool for carboamination
of alkynes,>® metal organic polyhedra,” covalent adaptable
networks,® and self-healing polymers® and copolymers.*® Imi-
nes slowly undergo metathesis without a catalyst but metal-
imido complexes accelerate the exchange.>''™" Access to a
four-membered metallacycle intermediate,*>"® similar to that
of alkene and alkyne metathesis,'® lowers the kinetic
barrier.>>*! Metal alkylidenes also react with imines in stoi-
chiometric metathesis reactions.”> >’

Scheme 1A depicts examples of Nb, Ta and Mo alkylidenes
in irreversible metathesis with imines yielding new alkenes and
metal-imido complexes.”>** In contrast, alkylidyne-imine
chemistry is notably scarce and instead cycloadditions to the
alkylidyne occur.*®*>' For example,® adding N-methyl-1-
phenylmethanimine (PMI-Me) to cationic Mn complexes
[Cp(CO),Mn=CR]" (R = Ph, Tol) produces the chelated alkyli-
dene 1°-CsH4(CO),Mn=C(R)N(CH,;)C(H)Ph where the imine
inserts into the Cp ligand. In contrast, combining the same
PMI-Me with [Cp(CO),Re =CTol]" results in the [2+2] cycloaddi-
tion product (Scheme 1B). Activated alkynes also react with imines
in metathesis-like reactions according to Scheme 1C.***7® How-
ever, missing from the catalogue is the metathesis between an
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A case of alkylidyne-imine metathesist
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imine and an alkylidyne (Scheme 1D). In this study, we explore
imine reactivity with strained and unstrained tungsten alkylidyne

A. Alkylidene-Imine Metathesis

/H R
H\C/F’h M]=c | H_.-Ph
i L N+ 1
R/N M] By " H
R = Ph, ‘Bu, Me
H. _'Bu H\C)Bu H\C/’Bu
i = X Jlx or i
M] X7 | Y THF ~V% OR;
THF AN” YoR,
M= Nb, Ta Ar = 2,6-diisopropylphenyl
X=Cl, Br Ry = C(CF3)2(CH3), C(CF3)(CHa)2

B. Alkylidyne-Imine Cycloaddition

@
& Ph\ H
,
H\C/ Ph @C\

Mn=C—R I _— N—
OC/ | + /N Mn:C/
co oc” | \
R = Ph, Tol co R
® @ Hy P
& e L
—  » oc e,
_Re=C—Tol % N od \c/
oc” | =
co Tol
C. Alkyne-Imine Metathesis
R H_ _R
Ho _Ry ! Ri R4 Ry G °
(¢} C Catalyst Cc—C | I
Il + | | ST | — N&_Co
_N N \l/ Ry
R; - RS SR,
Rs SR,
D. Alkylidyne-Imine Metathesis: This Work )
H_ _Ph Bu Bu\ /Ph
| c=C
\ ¥ I H
N c—W] ¢ WEN—
/ /

Scheme 1 (A) Alkylidene-imine metathesis with Nb, Ta, and Mo complexes. (B)
Examples of alkylidyne-imine cycloaddition reactions. (C) Metathesis between
activated alkynes and imines (D) Alkylidyne-imine metathesis (this work).
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complexes. The tungsten alkylidyne (‘BuO);W = CC(CHj;);*” does
not react with any imines examined even at elevated temperature.
However, metathesis occurs between the trianionic pincer tung-
sten alkylidyne [‘BuOCOJWCC(CH,);(THF), (1)*®* and PMI-R
imines.

Alkylidenes ring-open cyclic imines,**” thus 3,4-dihydroiso-
quinoline (3,4-DHQ) was chosen to probe imine metathesis
with alkylidynes. Treating complex 1 with one equiv. of 3,
4-DHQ in benzene results in THF substitution and coordina-
tion of the imine to afford ['BuOCO]W = CC(CHj,);(3,4-DHQ)
(2) within 15 min. Maroon coloured crystals of 2 deposit at
—30 °C from a concentrated pentane or toluene solution within
2 d. Single crystal X-ray diffraction interrogation of the crystals
provides the solid-state structure depicted in Fig. 1. The struc-
ture comprises the N-bound imine, the OCO pincer ligand and
the intact alkylidyne. The complex is pseudo-C; symmetric with
a plane of symmetry bisecting the complex through the W=C
alkylidyne and the imine ring. Presumably due to the strong

No
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trans influence of the alkylidyne, the 3,4-DHQ coordinates
in the cis position. Overall, the formally W(vi) ion adopts
a distorted square pyramidal geometry with an Addison
parameter’® (t5) of 0.14. Complex 2 is thermally stable in
solution at 80 °C for 2 d; metathesis does not occur.

The 'H NMR spectrum of complex 2 is consistent with the
solid-state C, structure. Two singlets for the pincer-‘Bu and
alkylidyne-‘Bu protons appear at 1.57 and 0.70 ppm with
relative integration of 2:1, respectively. The imine proton
resonates as a singlet at 8.49 ppm. Diagnostic signals for the
alkylidyne and Cj,s,~W carbons appear at 320.8 and 193.1 ppm,
respectively. The imine carbon resonates at 171.8 ppm. Addi-
tion of less than one equiv. of 3,4-DHQ results in a portion of
unreacted complex 1. However, adding a slight excess of 3,
4-DHQ results in an equilibrium mixture of 2, free 3,4-DHQ,
and a double substituted product where the alkylidyne inserts
into the pincer backbone to give the tethered alkylidene
complex [0,C(‘BuC=)]W(n>-3,4-DHQ)(3,4-DHQ) (3) (Fig. 1).

Fig. 1 Reactions between imines and complex 1 with solid state structures of 2 and 4-R. Hydrogen atoms are omitted for clarity and thermal ellipsoid

are presented at 50% probability.
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Isolated solids of complex 2 show minor amounts of 3 are
present by NMR spectroscopy. Adding 5 equiv. of 3,4-DHQ does
not provide pure 3. Instead, all three entities are identifiable
in situ by NMR spectroscopy. The 'H NMR spectrum of the
mixture reveals three singlets for the ‘Bu groups of 3, implying a
C; symmetric structure in solution. Aryl-‘Bu protons reside at
1.50 and 1.04 ppm, and the alkylidene-‘Bu protons resonate at
0.97 ppm with a 1:1:1 relative integration. The alkylidene and
Cipso carbon resonate at 256.3 and 118.1 ppm, respectively,
drastically different from the monosubstituted complex 2 but
consistent with known OCO supported tethered tungsten
alkylidenes.**™** The 'H-"H and "H-"*C couplings in the homo-
nuclear correlation spectroscopy (COSY), hetronuclear single
quantum correlation (HSQC) and hetronuclear multiple bond
correlation (HMBC) spectra identify the OCO ligand, ‘Bu, DHQ
and 1>-3,4-DHQ moieties (see ESIt for spectra). The nuclear
Overhauser effects (nOes) between H29-31 of the M=C-Bu
group and H5, H14 and H24-26 on the OCO moiety provides
evidence for a bond between C27 and C12 (Fig. 2). Providing
evidence for an 1*-3,4-DHQ moiety, protons H29-31 display a
strong nOe with H49 and H48 protons on the side of the DHQ
facing the alkylidene, but only weak nOes to the opposite face.
Another consequence of the 1?-3,4-DHQ is protons H29-31 do
not exhibit an nOe with H41 since it points away. Also, the
methine C41 exhibits an upfield signal at 44.7 ppm, consistent
with being bound to W, whereas C32 resonates significantly
downfield at 166.8 ppm. Indicating the DHQ coordinates in the
assigned orientation in Fig. 2, only ‘Bu protons H24-26 exhibit
a nOe with the proximal H41. Interestingly, 3,4-DHQ binds in
two different modes in the same complex. However, the bind-
ing modes themselves are not unusual and are previously
reported in different complexes.’**"****> Reductive migratory
insertion of the alkylidyne carbon into the W-C,,, bond is a
common outcome when unsaturated substrates bind to
complex 1.*°"***° The insertion relaxes the constrained geome-
try enforced by the [OCOJ*~ pincer ligand.

Though 3,4-DHQ only substitutes THF on complex 1, PMI-R
(N-methyl-1-phenylmethanimine, N-benzyl-1-phenylmethanimine,
N-phenyl-1-phenylmethanimine, and N-trimethylsilyl-1-phenylme-
thanimine) execute metathesis.

Heating a dark red benzene solution of 1 with PMI-R imines
at 80 °C for 2-4 d results in a colour change to transparent
yellow signalling the formation of metathesis products [‘BuO-
C(H)OW(n**BuC=CPh)N(R) (4-R) in quantitative yield according
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Fig. 2 Structure of complex 3 with relevant atom labels.
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Table 1 Selected bond lengths (A), bond angles (°), and geometric index
for complexes 2, 4-R

2 4-Me 4-Ph 4-Bn
W1-N1 2.210(16)  1.731(14) 1.757(19) 1.738(3)
W1-C27 1.763(17)  2.063(16) 2.034(2) 2.051(3)
W1-C34 — 2.047(17) 2.030(2) 2.044(3)
W1-C12 2.142(17)  — — —
C27-C34 — 1.325(2) 1.317(3) 1.322(5)
01-W1-02 144.38(5)  110.53(5) 109.51(6) 107.45(10)
C27-W1-C34  — 37.62(6) 37.84(9) 37.66(14)
W1-N1-C39 — 163.88(19)  148.98(17)  170.80(3)
75 0.14 0.01 0.02 0.02

to Fig. 1. Monitoring the reaction by NMR spectroscopy reveals
complexes 4-R begin to form within minutes but the distinct colour
change only occurs as the reaction approaches completion. Com-
plexes 4-Me and 4-Bn precipitate from concentrated pentane
solution, and 4-Ph and 4-TMS precipitate from concentrated Et,O:
THF (9:1) solution as yellow crystals within 24 h at —30 °C. 4-R are
C, symmetric in the solid state (Fig. 1). The structural parameters are
similar for all the 4-R complexes (Table 1). The formally W(vi) ion
adopts a distorted square pyramidal geometry based on 5 values
(Table 1).** The [OCOP*~ pincer is protonated to a dianionic [OCOJ*~
ligand and resides in the basal plane. The metathesis product alkyne
binds to the other two basal plane sites and the imido nitrogen
occupies the axial position. Almost linear W1-N1-C39 bond angles
and W1-N1 bond lengths (Table 1) agree with known tungsten
imido complexes.***” Consistent with a double bond and elongated
to ~1.3 A, the C27-C34 bond lengths are consistent with published
tungsten n>-bound alkyne complexes.*® > NMR studies suggest that
4-R retains C; symmetry in solution as well, exhibiting three singlets
attributable to the ‘Bu protons in 1:1:1 relative integration ratio.
The n*bound alkyne carbons appear upfield in the range 205 to
180 ppm as compared to alkylidene or alkylidyne carbons. A
distinctive triplet signal appears ~8.00 ppm for H12 in the
'H NMR spectrum.

The reaction between 1 and PMI-R imines is unprecedented.
Reactions between alkylidynes and imines occur but none proceed
through metathesis, instead cycloadditions occur.?*** The reaction
between 1 and PMI-R imines is an alkylidyne-imine metathesis
reaction, as the exchange of fragments is evident within complexes
4-R. The protonation of the pincer is critical to the reaction. Neither
PMI-R imines nor 3,4-DHQ react with (‘BuO);W = CC(CHj)s, even
upon heating. Exemplifying the need for protonation, N-cyclohexyl-
1-phenylethan-1-imine and N-1-diphenylethan-1-imine, both lack-
ing an acidic proton, do not react with complex 1 (Fig. 1).

In conclusion, two unusual reactivity outcomes occur upon
treating complex 1 with imines. The constrained trianionic pincer
ligand is critical to imparting the unusual reactivity. Using acyclic
PMI-R imines, complex 1 executes a stoichiometric alkylidyne-imine
metathesis, clearly driven by protonation of the pincer backbone.
Using cyclic 3,4-DHQ, complex 1 undergoes reductive migratory
insertion into the pincer backbone to give tethered alkylidene 3.
Adding excess 3,4-DHQ to a solution of 1 induces reversible C-C
bond cleavage between the tethered alkylidene 3 and alkylidyne
2, but no metathesis occurs. An important conclusion from this
work is that a masked active alkylidyne within complex 1 is

Chem. Commun., 2023, 59, 12899-12902 | 12901
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unleashed by protonating the backbone pincer. Studies eluci-
dating the latency of the reactive alkylidyne in other metathesis
reactions are ongoing.

This material is based upon work supported by the National

Science Foundation CHE-2154377 (ASV), CHE-1828064 (KAA),
CHE-0650456 (CENTC).
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