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Abstract
Let 𝑋 be a compact, Kähler, Calabi-Yau threefold and
suppose 𝑋 ↦ 𝑋 ⇝ 𝑋𝑡 , for 𝑡 ∈ Δ, is a conifold transition
obtained by contracting finitely many disjoint (−1, −1)
curves in 𝑋 and then smoothing the resulting ordi-
nary double point singularities. We show that, for |𝑡|≪
1 sufficiently small, the tangent bundle 𝑇1,0𝑋𝑡 admits
a Hermitian-Yang-Mills metric 𝐻𝑡 with respect to the
conformally balanced metrics constructed by Fu-Li-Yau.
Furthermore, we describe the behavior of 𝐻𝑡 near the
vanishing cycles of 𝑋𝑡 as 𝑡 → 0.
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1 INTRODUCTION

Let 𝑋 be a compact, Kähler, Calabi-Yau threefold with trivial canonical bundle. Around 1985,
Clemens described a general procedure for constructing new, possibly non-Kähler complexmani-
folds with trivial canonical bundle by contracting a collection of disjoint (−1, −1) curves and then
smoothing the resulting ordinary double point (ODP) singularities. Such a geometric transition
is now called a conifold transition and we denote it by 𝑋 ↦ 𝑋 ⇝ 𝑋𝑡, where 𝑋 is a singular vari-
ety with ODP singularities. Reid’s fantasy conjectures [74] that all complex threefolds with trivial
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canonical bundle can be connected by a sequence of conifold transitions. The goal of this paper,
motivated in part by equations from heterotic string theory, is to show that the tangent bundle
𝑇1,0𝑋𝑡 admits a Hermitian-Yang-Mills metrics𝐻𝑡 with respect to a class of balanced metrics con-
structed by Fu-Li-Yau [35], and to study the geometry of these metrics as |𝑡|→ 0. In order to put
our work in context, we recall the origins of Calabi-Yau geometry in theoretical physics.
If 𝑋 is a compact Kähler manifold with 𝑐1(𝑋) = 0 then the third author’s solution of the Calabi

conjecture [94] implies the existence of a unique Ricci-flat Kählermetric in any Kähler class on𝑋.
This result, which can be viewed as a higher dimensional analog of the Uniformization Theorem,
yields a plethora of examples of compact Riemannian manifolds with zero Ricci curvature and
holonomy contained in 𝑆𝑈(𝑛).
Following the solution of the Calabi conjecture, Candelas-Horowitz-Strominger-Witten [9]

showed that compactKählermanifoldswith holonomy 𝑆𝑈(3), in particular, Calabi-Yaumanifolds
of complex dimension 3, are fundamental building blocks in torsion-free superstring compactifi-
cations. Precisely, [9] constructed superstring compactifications with the Standard Model gauge
group from a Calabi-Yau threefold together with a holomorphic vector bundle 𝐸 → 𝑋 admit-
ting a Hermitian-Yang-Mills connection and satisfying the topological constraints 𝑐1(𝐸) = 0,
and 𝑐2(𝐸) = 𝑐2(𝑋). Of course, the natural choice to make is 𝐸 = 𝑇1,0𝑋, but more generally the
Donaldson-Uhlenbeck-Yau theorem [21, 91] implies that any slope stable vector bundle satisfying
the topological constraints is admissible. In total, these works lead to an abundance of a priori
distinct superstring compactifications.
Shortly thereafter, the possibility of superstring compactifications with torsion was investi-

gated. In this case, the compactifying manifold is a complex threefold 𝑋 with a non-vanishing
holomorphic (3,0)-formΩ (so that canonical bundle is trivial) equipped with a holomorphic vec-
tor bundle 𝐸 → 𝑋 satisfying the topological constraints 𝑐1(𝐸) = 0 = 𝑐1(𝑋) and 𝑐2(𝐸) = 𝑐2(𝑋). In
order for this data to give rise to a supersymmetric compactification, 𝑋 must admit a hermitian
metric 𝑔, with associated (1,1)-form 𝜔, and 𝐸must admit a hermitian metric𝐻 solving the follow-
ing system of equations, called the Strominger system [81]. The first equation is is formulated as
in [58].

𝑑(‖Ω‖𝜔 𝜔2) = 0, (1.1)

𝜔2 ∧ 𝐹𝐻 = 0, (1.2)

√
−1𝜕𝜕𝜔 −

𝛼′

4

(
Tr𝑅𝑚𝑔 ∧ 𝑅𝑚𝑔 − Tr𝐹𝐻 ∧ 𝐹𝐻

)
= 0. (1.3)

Here 𝛼′ > 0 is the inverse string tension, 𝐹𝐻 denotes the curvature of the Chern connection of
(𝐸,𝐻), and ‖Ω‖2𝜔 is the norm of Ω with respect to 𝑔. It is natural to view 𝑅𝑚 as the curvature of
the Chern connection on 𝑇1,0𝑋, though other choices of connection are admissible as proposed by
Hull [49] and further discussed in, for example [19, 28, 37]. Note that if 𝑔 is Kähler, so that 𝑑𝜔 = 0,
then (1.1) implies that 𝜔 solves the Monge-Ampère equation and is hence Ricci-flat, while (1.2)
is the Hermitian-Yang-Mills equation for 𝐻, with respect to 𝜔. Finally, in the Kähler case, the
anomaly cancellation equation (1.3) dictates that

Tr𝑅𝑚 ∧ 𝑅𝑚 − Tr𝐹𝐻 ∧ 𝐹𝐻 = 0.
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286 COLLINS et al.

This coupling between the Hermitian-Yang-Mills equation and the Calabi-Yau equation is highly
non-trivial, but it is automatically satisfied provided 𝐸 = 𝑇1,0𝑋. Thus, we can view the sys-
tem (1.1), (1.2), (1.3) as a generalization of the Calabi-Yau equation to the setting of non-Kähler
complexmanifolds. In particular, the Strominger systemprovides a set of equations for uniformiz-
ing non-Kähler complex threefolds with trivial canonical bundle which can be viewed as natural
generalizations of the Calabi-Yau equation.
This system from heterotic string theory has recently generated a great deal of interest in

mathematics, both for its applications to the study of non-Kähler Calabi-Yau manifolds and its
connections to theoretical physics. Li-Yau [58] constructed solutions on Kähler Calabi-Yau three-
folds by deforming the complex structure of𝑇1,0𝑋 ⊕ ℂ𝑟. Deformations ofKähler solutions tomore
general bundles were considered by Andreas-Garcia-Fernandez [1, 2]. Fu-Yau [34] constructed
solutions to the Strominger system onCalabi-Eckmann-Goldstein-Prokushkin fibrations by using
a certain ansatz to reduce the system to a non-linear PDE of Monge-Ampère type on a 𝐾3 sur-
face. Higher dimensional versions of the Fu-Yau construction have recently been considered in
[17, 30, 48, 63, 64, 69, 70]. Further geometric constructions of solutions, in both the compact and
non-compact cases, can be found in, for example [22–24, 27–29, 36, 38, 60]. Very recently, Phong,
Zhang and the second author have introduced [66] a parabolic approach via the Anomaly flow
and obtained a new proof of the Fu-Yau result; see [4, 25, 26, 65, 67, 68] and the references therein.
We refer the reader to [37, 39, 40, 62, 90] and the references therein for more on this very active
area of research.
While the plethora of solutions to (1.1), (1.2), (1.3) is interesting from a mathematical point of

view, the lack of a unique vacuum for the heterotic string is a fundamental problem for the pre-
dictive power of string theory. A conjectural resolution of this problem was put forth by Reid [74],
inspired by work of Clemens and Friedman. Reid’s fantasy proposes that all complex three folds
with trivial canonical bundle are connected by a sequence of contractions and smoothings. Recall
that a conifold transition

𝑋 → 𝑋 ⇝ 𝑋𝑡, (1.4)

consists of a contraction followed by a smoothing, where the contraction map 𝑋 → 𝑋 contracts
a collection of disjoint rational curves 𝐶𝑖 ⊂ 𝑋, with normal bundle ℙ1(−1)⊕2 (called (−1, −1)
curves) to ordinary double point (ODP) singularities, given locally by equations{

4∑
𝑖=1

𝑧2
𝑖
= 0

}
⊂ ℂ4. (1.5)

By work of Friedman [31], under appropriate assumptions there is a smoothing

𝜇 ∶  → Δ, Δ = {𝑡 ∈ ℂ ∶ |𝑡| < 1} (1.6)

such that 𝜇−1(0) = 𝑋, and 𝜇−1(𝑡) = 𝑋𝑡 is a smooth complex threefold with trivial canonical bun-
dle; see Section 2 for a more thorough discussion of conifold transitions. Locally near the ODP
singularities, this smoothing is given by{

4∑
𝑖=1

𝑧2
𝑖
= 𝑡

}
⊂ ℂ4 × ℂ. (1.7)
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 287

Note that in general, 𝑋𝑡 will no longer be Kähler (even topologically), even if the initial mani-
fold 𝑋 is projective; see [31] for an example of this phenomenon with initial manifold a quintic
in ℙ4. Thus conifold transitions may take us out of Kähler geometry, and a theme of this work
is to understand the geometric structures appearing on the other side. For an introduction to
Calabi-Yau transitions, see [75]. Though non-Kähler, [33] proved that 𝑋𝑡 generically satisfies the
𝜕𝜕̄-Lemma.
Green-Hübsch [42, 43] and Candelas-Green-Hübsch [7, 8] argued that conifold transitions

could be used to connect any twoCalabi-Yaumanifolds realized as complete intersections in prod-
ucts of projective spaces. As we move along in the moduli of string vacua, string physics should
smoothly interpolate through topological changes. For Type II strings, this problem was studied
in [44, 82]. Here we consider heterotic strings, and in order to resolve the vacuum degeneracy
problem for these compactifications it is essential to understand the solvability of the system (1.1),
(1.2), (1.3) through conifold transitions. In fact, the third author has advocated that the solvability
of the Strominger system may provide a useful tool for studying Reid’s fantasy as it provides a
uniformization of non-Kähler Calabi-Yau threefolds.
The study of the Strominger system through conifold transitions was initiated by Fu-Li-Yau

[35] who established the existence of metrics𝜔𝑡 on𝑋𝑡 solving (1.1) assuming the input manifold𝑋
in (1.4) is a compact, Kähler Calabi-Yau. Chuan [16] showed that if 𝐸 → 𝑋 is a holomorphic vector
bundle which is Mumford-Takemoto stable with respect to some Kähler class, holomorphically
trivial in a neighborhood of the curves contracted by themap𝑋 → 𝑋, and (𝑋, 𝐸) can be smoothed
to a family of holomorphic bundles (𝑋𝑡, 𝐸𝑡), then stability can be passed through the transition
in the following sense: there is a hermitian metric 𝐻𝑡 on 𝐸𝑡 solving the Hermitian-Yang-Mills
equation (1.2) with respect to the Fu-Li-Yau metric. We remark that it is unclear whether such
bundles 𝐸 → 𝑋 can be constructed so that, 𝑐2(𝐸) = 𝑐2(𝑋) in 𝐻2(𝑋,ℝ) and in addition 𝑐2(𝐸𝑡) =
𝑐2(𝑋𝑡) in 𝐻4(𝑋𝑡, ℝ) after the conifold transition. Such a situation would be necessary in order
to pass solutions of the full Strominger system through conifold transitions. In any event, the
metric 𝐻𝑡 constructed by Chuan is approximately flat in a neighborhood of the vanishing cycles
of the smooth 𝑋 ⇝ 𝑋𝑡, while the Fu-Li-Yau metric is modeled on a non-flat, Kähler Calabi-Yau
cone metric.
In this work we initiate the study of the Strominger system through conifold transitions

in the case when the gauge bundle 𝐸 is taken to be 𝑇1,0𝑋. Our main theorem is the
following:

Theorem 1.1. Let𝑋 be a Kähler simply connected Calabi-Yau threefold. Let𝑋 → 𝑋 ⇝ 𝑋𝑡 be a coni-
fold transition, with 𝑋𝑡 as in (1.6). Equip 𝑋𝑡 with the Fu-Li-Yau balanced metric 𝑔𝑡 with associated
(1,1) form 𝜔𝑡 . Then, for all |𝑡|≪ 1 sufficiently small there exists a hermitian metric 𝐻𝑡 on 𝑇1,0𝑋𝑡
solving

𝜔2𝑡 ∧ 𝐹𝐻𝑡 = 0.

Furthermore, there exists 𝜆 > 0 such that if 𝑝𝑖 ∈ 𝑋 is a ODP singularity, then after identifying a
neighborhood of 𝑝𝑖 ∈  with the model smoothing (1.7), there are constant 𝑐𝑖, 𝑑𝑖 > 0 such that on a
neighborhood of the vanishing cycles given by

𝜆 =

{‖𝑧‖2 ≤ |𝑡| 3

3+𝜆

}
⊂ 𝑋𝑡,
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288 COLLINS et al.

for each 𝑘 ∈ ℤ≥0 there is a constant 𝐶𝑘 such that

|||∇𝑘𝑔𝑐𝑜,𝑡 (𝑔𝑡 − 𝑐𝑖𝑔𝑐𝑜,𝑡)|||𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑘|𝑡|𝜆‖𝑧‖−2

3
𝑘
,

|||∇𝑘𝑔𝑐𝑜,𝑡 (𝐻𝑡 − 𝑑𝑖𝑔𝑐𝑜,𝑡)|||𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑘|𝑡|𝜆‖𝑧‖−2

3
𝑘
.

Here ‖𝑧‖2 = ∑4

𝑖=1 |𝑧𝑖|2 and 𝑔𝑐𝑜,𝑡 is the explicit Kähler Ricci-flat metric on the smoothing (1.7)
constructed by Candelas-de la Ossa.

Remark 1.2. The existence of a metric𝐻𝑡 on 𝑇1,0𝑋𝑡 solving 𝜔2𝑡 ∧ 𝐹𝐻𝑡 = 0 implies that the tangent
bundle 𝑇1,0𝑋𝑡 is stable with respect to the Fu-Li-Yau balanced class [𝜔𝑡]2 (Corollary 6.14). In the
case when 𝑋𝑡 is topologically #𝑘𝑆3 × 𝑆3 [31, 45], the stability of the tangent bundle was noted in
[5].

Remark 1.3. Since both 𝑔𝑡 and 𝐻𝑡 are locally modeled on the Candelas-de la Ossa explicit Käh-
ler Ricci-flat metric 𝑔𝑐𝑜,𝑡 near the vanishing cycles, we see that the local metric description of
conifold transitions given by Candelas-de la Ossa [10] accurately describes global non-Kähler
conifold transitions of heterotic strings near the vanishing cycles. Our estimates give convergence,
after a suitable local rescaling, of the pair (𝑔𝑡, 𝐻𝑡) to a solution of the anomaly cancellation equa-
tion (1.3) near the ordinary double points of 𝑋 as 𝑡 → 0. For related work on Calabi-Yau metrics
(𝑔𝑡 = 𝐻𝑡) in the case when both sides are Kähler, see for example [47, 76, 78, 88] and references
therein.

Remark 1.4. A similar result holds if we replace the balanced Fu-Li-Yau metric 𝑔𝑡 with the
conformally balanced metric 𝑔̌𝑡 obtained by conformally rescaling 𝑔𝑡. In particular, the pair
(𝑔̌𝑡, 𝐻𝑡) simultaneously solves (1.1) and (1.2), and satisfies an estimate similar to Theorem 1.1; see
Remark 6.13. This implies that near the ODP singularities, at a suitable scale, the pair (𝑔̌𝑡, 𝐻𝑡)
converges to the Calabi-Yau solution of the Strominger system on the conifold as |𝑡|→ 0.

The third author has conjectured [93] that if 𝑋 is any complex threefold with trivial canonical
bundle admitting a pair of metrics (𝜔,𝐻) solving the conformally balanced equation (1.1) and the
Hermitian-Yang-Mills equation (1.2), then there is a solution of the full Strominger system. We
hope to return to this problem, in the setting of conifold transitions, in future work.
The outline of this paper is as follows. In Section 2 we discuss some background material,

including the basic geometric properties of conifold transitions that will be important for our
work. In Section 3 we construct a metric 𝐻0 on the tangent bundle of 𝑇𝑋 → 𝑋

𝑟𝑒𝑔
. More pre-

cisely, the metric 𝐻0 is Hermitian-Yang-Mills with respect to a smooth, balanced metric 𝑔0 on
𝑋
𝑟𝑒𝑔

and, near the singular points of 𝑋, is uniformly equivalent to the Candelas-de la Ossa Ricci-
flat Kählermetric on the conifold (1.5). Furthermore, we show that𝐻0 also satisfies scale invariant
higher-order estimates. The metric 𝐻0 serves as the model metric for the Hermitian-Yang-Mills
metric on 𝑋𝑡, at least away from the vanishing cycles. In Section 4 we establish quantitative,
polynomial decay of 𝐻0 towards a multiple of the Candelas-de la Ossa metric on the conifold.
In Section 5 we use 𝐻0 to construct an approximately Hermitian-Yang-Mills metric 𝐻𝑡 on 𝑋𝑡
with an explicit estimate for the decay rate, with respect to |𝑡|, towards a Hermitian-Yang-Mills
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 289

metric. Finally, in Section 6 we show that, for |𝑡|≪ 1 sufficiently small, 𝐻𝑡 can be perturbed to
a genuine Hermitian-Yang-Mills metric on 𝑇1,0𝑋𝑡. For the reader’s convenience we have pro-
vided an appendix detailing the aspects of the Fu-Li-Yau construction which are important for
our work.

2 THE GEOMETRY OF CONIFOLD TRANSITIONS

In this section we will discuss the basic geometry of conifold transitions. We begin with the
following definition, which fixes the notion of Calabi-Yaumanifold to be considered in this paper.

Definition 2.1. A smooth Calabi-Yau threefold is a smooth complex threefold with finite
fundamental group and trivial canonical bundle

The primary aim of this paper is to understand the solvability of the Hermitian-Yang-Mills
equation on the tangent bundle to a Calabi-Yau threefold as it passes through a conifold transition.

Definition 2.2. A (−1, −1) curve 𝐶 ⊂ 𝑋 is a smooth rational curve 𝐶 ≃ ℙ1 such that the normal
bundle 𝑁𝐶∕𝑋 ≃ ℙ1(−1)⊕2.
From [41, Satz 7] there is an open neighborhood 𝑈 of 𝐶 in 𝑋 such that 𝑈 is biholomorphic to

a neighborhood of the zero section in the total space of ℙ1(−1) ⊕ ℙ1(−1). In particular, this
implies the existence of a contraction map

𝜋𝐶 ∶ 𝑋 → 𝑋

to a singular complex space 𝑋 with an ordinary double point singularity at 𝑝 such that
𝜋𝐶 ∶ 𝑋 ⧵ 𝐶 → 𝑋 ⧵ {𝑝} and 𝜋𝐶(𝐶) = 𝑝. Concretely, if [𝑋1 ∶ 𝑋2] denote homogeneous coordi-
nates on ℙ1, then any non-zero point in the total space ℙ1(−1)⊕2 can be written uniquely
as (𝑤1𝑋1, 𝑤1𝑋2, 𝑤2𝑋1, 𝑤2𝑋2). This defines a biholomorphism from the complement of the zero
section in ℙ1(−1)⊕2 to the complement of the origin in the conifold

𝑉̂0 ∶= {𝑧̂1𝑧̂2 − 𝑧̂3𝑧̂4 = 0} ⊂ ℂ
4. (2.1)

This map can clearly be extended holomorphically over the zero section ofℙ1(−1)⊕2 by sending
ℙ1 to the origin in ℂ4. After a unitary change of coordinates we can rewrite (2.1) as the standard
conifold

𝑉0 ∶=
{
𝑧21 + 𝑧

2
2 + 𝑧

2
3 + 𝑧

2
4 = 0

}
⊂ ℂ4. (2.2)

We now describe another realization of the affine variety (2.2). Consider the Fano surfaceℙ1 × ℙ1.
Denote by

𝑝𝑖 ∶ ℙ
1 × ℙ1 → ℙ1 for 𝑖 = 1, 2

the projection onto the 𝑖-th factor. The conifold can be realized as the blow-down of the zero sec-
tion in the total space of 𝑝∗1ℙ1(−1) ⊗ 𝑝∗2ℙ1(−1). Explicitly, the global holomorphic sections of
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290 COLLINS et al.

𝑝∗1ℙ1(1) ⊗ 𝑝∗2ℙ1(1) define an embedding
𝜄 ∶ ℙ1 × ℙ1 ↪ ℙ3

which is precisely the Segre embedding

𝜄(ℙ1 × ℙ1) = {𝑋1𝑋2 − 𝑋3𝑋4 = 0 || [𝑋1 ∶ 𝑋2 ∶ 𝑋3 ∶ 𝑋4] ∈ ℙ3}.
Taking the cone over this projective variety yields (2.1).
The singular affine variety 𝑉0 given in (2.2) admits an explicit smoothing given by

 =
{
𝑧21 + 𝑧

2
2 + 𝑧

2
3 + 𝑧

2
4 = 𝑡

}
⊂ ℂ4 × ℂ. (2.3)

We denote by 𝜇 ∶  → ℂ the projection 𝜇(𝑧, 𝑡) = 𝑡, and let 𝑉𝑡 = 𝜇−1(𝑡) be the fiber over 𝑡.
Now suppose that 𝑋 is a Calabi-Yau threefold and let 𝐶1, … , 𝐶𝑘 ⊂ 𝑋 be a collection of disjoint

(−1, −1) curves. Let 𝜋 ∶ 𝑋 → 𝑋 be the map contracting the 𝐶𝑖 , so that 𝑋 is a compact complex
space with ordinary double point singularities at 𝑝𝑖 = 𝜋(𝐶𝑖). We have the following well-known
result of Friedman [31, 32]

Theorem 2.3 Friedman, [31]. There is a first order deformation of 𝑋 smoothing 𝑝𝑖 if and only if
there is a relation

𝑘∑
𝑖=1

𝜆𝑖[𝐶𝑖] = 0 in𝐻2(𝑋,ℝ) (2.4)

where each 𝜆𝑖 ≠ 0.
When𝑋 is Kähler (or more generally, satisfies the

√
−1𝜕𝜕-lemma) Kawamata [55], building on

work of Ran [73], and independently Tian [87] showed that the first order smoothings in The-
orem 2.3 integrate to genuine smoothings. Furthermore, by [32, Lemma 8.2] if 𝑋 is a Kähler,
Calabi-Yau threefold in the sense of Definition 2.1 then the fibers of smooth 𝜇 ∶  → Δ are again
Calabi-Yau. In particular, assuming (2.4) holds, there is a holomorphic family

𝜇 ∶  → Δ ∶= {𝑡 ∈ ℂ ∶ |𝑡| < 1}
such that 𝜇−1(𝑡) = 𝑋𝑡 is smooth for 𝑡 ≠ 0 and 𝜇−1(0) = 𝑋. By a result of Kas-Schlessinger [54] the
family 𝑡 is locally biholomorphic to the model smoothing  near each ordinary double point.
We make the following definition.

Definition 2.4. Let 𝑋 be a smooth, compact, complex three fold. A conifold transition of 𝑋,
denoted 𝑋 → 𝑋 ⇝ 𝑋𝑡 consists of a holomorphic map 𝜋 ∶ 𝑋 → 𝑋 and family 𝜇 ∶  → Δ with
𝜇−1(0) = 𝑋 such that

(1) 𝜋 ∶ 𝑋 → 𝑋 contracts a collection of disjoint (−1, −1) curves 𝐶1, … , 𝐶𝑘 to isolated, ordi-
nary double point singularities 𝑝1, … , 𝑝𝑘 ∈ 𝑋, and 𝜋 is a biholomorphism 𝑋 ⧵ ∪𝑖𝐶𝑖 → 𝑋 ⧵

{𝑝1, … , 𝑝𝑘}.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 291

(2) 𝜇 ∶  → Δ is a holomorphic smoothing of 𝑋 = 𝜇−1(0) and 𝑋𝑡 = 𝜇−1(𝑡).

Said informally, a conifold transition consists of contracting a collection of disjoint (−1, −1)
curves followed by smoothing the resulting double point singularities. At the level of topology,
removing a neighborhood of the singular points of 𝑋 leaves a boundary 𝑆2 × 𝑆3, and either side
of the transition corresponds topologically to gluing 𝑆2 × 𝐵4 or 𝐵3 × 𝑆3 along this boundary (see,
e.g. [75] for details). Thus conifold transitions allow travel between Calabi-Yau threefolds of dif-
ferent topology by degenerating two-cycles and introducing three-cycles. By the above discussion,
Theorem 2.3 gives necessary and sufficient conditions for the existence of conifold transitions.

2.1 Metric geometry of the conifold

Let us turn now to the discussion of some aspects of the metric geometry of conifold transitions.
Recall that the conifold (2.2) can be viewed as the cone over ℙ1 × ℙ1 in the negative line bun-
dle 𝑝∗1ℙ1(−1) ⊗ 𝑝∗2ℙ1(−1). Since ℙ1 × ℙ1 is Kähler-Einstein with positive Ricci curvature, it is
well-known that the conifold admits a conical Calabi-Yau metric. Explicitly, let

ℎ𝐹𝑆 =

4∑
𝑖=1

|𝑋𝑖|2
denote the Fubini-Study metric on ℙ3(−1). By direct computation we have

𝜄∗ℎ𝐹𝑆 = ℎ𝐾𝐸 (2.5)

where ℎ𝐾𝐸 = 𝑝∗1ℎ𝐹𝑆 ⊗ 𝑝∗2ℎ𝐹𝑆 and 𝑝
∗
𝑖
ℎ𝐹𝑆 is the pull-back of the Fubini-Study metric on ℙ1 for

𝑖 = 1, 2. Define a function

𝑟 ∶ 𝑝∗1ℙ1(−1) ⊗ 𝑝∗2ℙ1(−1) → ℝ≥0

in the following way. If 𝑥 ∈ ℙ1 × ℙ1, and 𝜎 is a local section of
𝑝∗1ℙ1(−1) ⊗ 𝑝∗2ℙ1(−1), then define

𝑟(𝑥, 𝜎(𝑥))2 =
(|𝜎|2

ℎ𝐾𝐸

)2∕3
.

Clearly 𝑟−1(0) is precisely the zero section of 𝑝∗1ℙ1(−1) ⊗ 𝑝∗2ℙ1(−1), and hence 𝑟 defines a
function on the conifold (2.2). From the observation (2.5), we can write this function in terms of
the coordinates on ℂ4 as

𝑟2 = ‖𝑧‖4∕3, ‖𝑧‖2 ∶= 4∑
𝑖=1

|𝑧𝑖|2.
An easy calculation shows that

𝜔𝑐𝑜,0 ∶=
3

2

√
−1𝜕𝜕𝑟2
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292 COLLINS et al.

defines a conical Calabi-Yau metric 𝑔𝑐𝑜,0 on 𝑉0; note that the factor of
3

2
is a harmless scaling, but

we have included it to be consistent with [35]. More precisely, the Ricci-flat Kähler metric 𝑔𝑐𝑜,0 is
a cone metric over the link 𝐿 ∶= {𝑟 = 1} ⊂ 𝑉0 and can be written as

𝑔𝑐𝑜,0 =
3

2

(
𝑑𝑟2 + 𝑟2𝑔𝐿

)
where 𝑔𝐿 is (the pullback of) a Sasaki-Einstein metric on 𝐿 ∶= {𝑟 = 1} ⊂ 𝑉0. The cone (𝑉0, 𝑔𝑐𝑜,0)
has a natural rescaling action generated by the vector field 𝑟 𝜕

𝜕𝑟
. The vector field

𝜉 = 𝐽

(
𝑟
𝜕

𝜕𝑟

)
is tangent the level sets or 𝑟 and defines the Reeb vector field of the Sasaki structure on the link.
We will use frequently the holomorphic vector field

𝜉ℂ ∶= 𝑟
𝜕

𝜕𝑟
−

√
−1𝜉.

Explicitly, the vector field 𝜉ℂ generates the ℂ∗ action on 𝑉0 given by

𝜆 ⋅ (𝑧1, 𝑧2, 𝑧3, 𝑧4) =
(
𝜆3∕2𝑧1, 𝜆

3∕2𝑧2, 𝜆
3∕2𝑧3, 𝜆

3∕2𝑧4
)
,

and one can easily check that the cone metric 𝑔𝑐𝑜,0 is homogeneous of degree 2 under this action.
In particular, we have

Lemma 2.5. The conical Calabi-Yaumetric 𝑔𝑐𝑜,0 on the conifold has the following property: for every
𝑘 ∈ ℤ≥0 there is a constant 𝐶𝑘 so that

|∇𝑘Rm|𝑔𝑐𝑜,0 (𝑝) ≤ 𝐶𝑘𝑟(𝑝)−2−𝑘.
2.2 Metric geometry of the local smoothings

Candelas-de la Ossa [10] and independently Stenzel [80] constructed Calabi-Yau metrics on the
smoothings of the conifold (2.3) using ODE techniques. These metrics will play an important role
for us.

Proposition 2.6 Candelas-de la Ossa, [10]. Consider the smoothing of the conifold given by (2.3),
and set 𝑉𝑡 = {𝑧21 + 𝑧

2
2 + 𝑧

2
3 + 𝑧

2
4 = 𝑡} ⊂ ℂ

4. Let ‖𝑧‖2 = ∑4

𝑖=1
|𝑧𝑖|2, and, for each 𝑡 ∈ Δ, set

𝑓𝑡(𝑠) = 2
−
1

3 |𝑡|2∕3 ∫ cosh
−1
(
𝑠|𝑡| )

0

(sinh(2𝜏) − 2𝜏)
1

3 𝑑𝜏 (2.6)

Then

𝜔𝑐𝑜,𝑡 ∶=
√
−1𝜕𝜕𝑓𝑡(‖𝑧‖2)
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 293

defines a smooth Calabi-Yau metric 𝑔𝑐𝑜,𝑡 on 𝑉𝑡 whose tangent cone at infinity is the conifold
(𝑉0, 𝑔𝑐𝑜,0).

Wenote that ‖𝑧‖2 ≥ |𝑡| on𝑉𝑡, and the set {‖𝑧‖2 = |𝑡|}, which is topologically 𝑆3, will sometimes
be called the vanishing cycle.
Let denote themodel smoothing (2.3) and let 𝜇 ∶  → ℂ be the projection to the 𝑡 coordinate.

There is a natural ℂ∗ action on the family  , given by
𝑆𝜆(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑡) ∶= (𝜆

3∕2𝑧1, 𝜆
3∕2𝑧2, 𝜆

3∕2𝑧3, 𝜆
3∕2𝑧4, 𝜆

3𝑡). (2.7)

so that 𝑆𝜆 ∶ 𝑉𝑡 → 𝑉𝜆3𝑡. Under this ℂ∗ action we have

𝑆∗
𝜆
𝑓𝜆3𝑡0 (‖𝑧‖2) = |𝜆|2𝑓𝑡0(‖𝑧‖2)

and so, in particular, we have

𝑔𝑐𝑜,𝑡 = |𝑡|2∕3(𝑆𝑡−1∕3)∗𝑔𝑐𝑜,1. (2.8)

Note that, strictly speaking, we should fix a branch of log in the above expression, but since the
COmetric is manifestly 𝑆1 invariant such a distinction is irrelevant. It follows that the COmetrics
𝑔𝑐𝑜,𝑡 are generated by theℂ∗ action on  , up to rescaling. In particular, this shows (cf. [35, Lemma
5.1])

Lemma 2.7. For each 𝑘 ∈ ℤ≥0, and 𝐴 > 0 there is a constant 𝐶𝑘,𝐴 > 0, independent of 𝑡, so that
the Calabi-Yau metrics 𝑔𝑐𝑜,𝑡 satisfy

sup‖𝑧‖2≤𝐴|𝑡| |∇𝑘Rm(𝑔𝑐𝑜,𝑡)|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑘,𝐴|𝑡|−2

3
(2+𝑘)

.

It will be important for us to understand the rate atwhich theCOmetric converges to its tangent
cone at infinity. Consider the map

Φ𝑡(𝑧) ∶ 𝑉0 ⧵

{‖𝑧‖2 ≤ |𝑡|
2

}
⟶ 𝑉𝑡 ⧵ {‖𝑧‖2 = |𝑡|},

𝑧⟼ 𝑧 +
𝑡𝑧̄

2‖𝑧‖2 .
(2.9)

Tracing the definitions one can check that ‖𝑧‖2 ≤ ‖Φ𝑡(𝑧)‖2 ≤ 2‖𝑧‖2 and
Φ𝑡 = 𝑆𝑡1∕3◦Φ1◦𝑆𝑡−1∕3 . (2.10)

We have

Lemma 2.8 Conlon-Hein [18], Proposition 5.9. Under the identification Φ1 we have that, for all
𝑘 ∈ ℤ≥0, there is a constant 𝐶𝑘 such that

|∇𝑘𝑔𝑐𝑜,0 (Φ∗1𝑔𝑐𝑜,1 − 𝑔𝑐𝑜,0)|𝑔𝑐𝑜,0 ≤ 𝐶𝑘𝑟−3−𝑘.
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294 COLLINS et al.

Combining Lemma 2.8 with (2.8) and (2.10) we obtain estimates for the decay rate of 𝑔𝑐𝑜,𝑡
towards 𝑔𝑐𝑜,0.

Corollary 2.9. For all 𝑘 ∈ ℤ≥0 there is a uniform constant 𝐶𝑘 , independent of 𝑡, so that

|∇𝑘𝑔𝑐𝑜,0Φ∗𝑡 𝑔𝑐𝑜,𝑡 − 𝑔𝑐𝑜,0|𝑔𝑐𝑜,0 ≤ 𝐶𝑘|𝑡|𝑟−3−𝑘.
Proof. From (2.8) and (2.10) we have

Φ∗𝑡 𝑔𝑐𝑜,𝑡 = |𝑡|2∕3(𝑆𝑡−1∕3)∗Φ∗1𝑔𝑐𝑜,1.
It follows that, if 𝑥 ∈ 𝑉0, then, from Lemma 2.8 we get

|∇𝑘𝑔𝑐𝑜,0 (Φ∗𝑡 𝑔𝑐𝑜,𝑡 − 𝑔𝑐𝑜,0)|𝑔𝑐𝑜,0 (𝑥) = |𝑡|2∕3|∇𝑘𝑔𝑐𝑜,0Φ∗𝑡 𝑔𝑐𝑜,𝑡 − 𝑔𝑐𝑜,0||𝑡|2∕3𝑔𝑐𝑜,0 (𝑆𝑡−1∕3(𝑥))
≤ 𝐶𝑘|𝑡|2∕3|𝑡|−23 ⋅2 + 𝑘2 𝑟(𝑆

−1∕3
𝑡 (𝑥))−3−𝑘

= 𝐶𝑘|𝑡|𝑟(𝑥)−3−𝑘
□

One application of this result will be to transplanting estimates for tensors on𝑉0 to estimates on
the smooth varieties 𝑉𝑡. The following lemma follows from Corollary 2.9 and ‖𝑧‖2 ≤ ‖Φ(𝑧)‖2 ≤
2‖𝑧‖2.
Lemma 2.10. There is a constant 𝑅 > 0 depending only on the constant 𝐶0 in Corollary 2.9, such
that, if 𝑇 is a contravariant tensor on some subset of 𝑉0 ∩ {𝑟3 > 𝑅

|𝑡|
2
} satisfying the estimate

|∇𝑘𝑔𝑐𝑜,0𝑇|𝑔𝑐𝑜,0 ≤ 𝑀𝑘𝑟
𝜆−𝑘

for some 𝑘 ∈ ℤ≥0, constant𝑀𝑘 > 0 and some 𝜆, then (Φ−1𝑡 )
∗𝑇 defines a tensor on𝑉𝑡 ∩ {𝑟3 ≥ 𝑅2+1

2𝑅
|𝑡|}

satisfying the estimate

|∇𝑘𝑔𝑐𝑜,𝑡 (Φ−1𝑡 )∗𝑇|𝑔𝑐𝑜,𝑡 ≤ 𝑀′
𝑘
𝑟𝜆−𝑘

for constants𝑀′
𝑘
> 0 depending only on𝑀𝑘 and the the constants 𝐶𝑘 appearing in Corollary 2.9.

We also note that the estimate from Corollary 2.9 implies the following estimate on 𝑉𝑡

||∇𝑘𝑔𝑐𝑜,𝑡 [(Φ−1𝑡 )∗𝑔𝑐𝑜,0 − 𝑔𝑐𝑜,𝑡]||𝑔𝑐𝑜,𝑡 ≤ 𝐶|𝑡|𝑟−3−𝑘. (2.11)

It will be useful later in the paper to have a well adapted system of coordinates in which to
carry out our analysis. The following, which we refer to as “holomorphic cylindrical coordinates”
were used in [16]. For completeness, we recall these coordinates and prove their existence in the
following
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 295

Lemma 2.11. There are uniform constants 𝜌 > 0 and 𝐶𝑘 > 0, 𝑘 ∈ ℤ≥0 with the following effect:
If 𝑧̂ ∶= (𝑧̂1, … , 𝑧̂4) ∈ 𝑉𝑡 and 𝑧̂ ≠ 0, then there is an open neighborhood 𝑈𝑧̂ ∋ 𝑧̂ and a holomorphic
embedding 𝜓 ∶ 𝐵𝜌(0) → 𝑈𝑧̂ such that, if (𝑤1, … ,𝑤3) denote the local holomorphic coordinates on
𝐵𝜌(0), then, setting 𝑟 = 𝑟(𝑧̂) we have

(i) We have 1
4
𝑟 ≤ 𝑟(𝑤) ≤ 4𝑟 on 𝐵𝜌, and

|𝜕𝑘𝑟|𝑔𝑒𝑢𝑐 (𝑤) ≤ 𝐶𝑘𝑟
where 𝑔𝑒𝑢𝑐 denotes the Euclidean metric on 𝐵𝜌.

(ii) In these coordinates we have

𝐶−10 𝑔𝑒𝑢𝑐 ≤ 𝑟−2𝑔𝑐𝑜,𝑡 ≤ 𝐶0𝑔𝑒𝑢𝑐
and

|𝜕𝑘(𝑟−2𝑔𝑐𝑜,𝑡)|𝑔𝑒𝑢𝑐 ≤ 𝐶𝑘
Proof. We begin by constructing some candidate coordinates. Fix 𝑧̂ ∶= (𝑧̂1, … , 𝑧̂4) ∈ 𝑉𝑡. Clearly|𝑧̂𝑖| > 1

100
‖𝑧̂‖ for some 1 ≤ 𝑖 ≤ 4, and hence, without loss of generality we may assume 𝑖 = 4.

We claim that 𝑤𝑖 = 𝑧𝑖 − 𝑧̂𝑖 , for 1 ≤ 𝑖 ≤ 3 form a coordinate system near 𝑧̂. Indeed, consider the
function

𝐹𝑡(𝑧1, 𝑧2, 𝑧3, 𝑧4) =

4∑
𝑖=1

𝑧2
𝑖
− 𝑡.

By the implicit function theorem, the coordinates (𝑧1, 𝑧2, 𝑧3) form local coordinates on {𝐹𝑡 = 0}
whenever 𝜕𝐹

𝜕𝑧4
= 2𝑧4 ≠ 0. Let us examine these coordinates. Since 𝑟2 = ‖𝑧‖4∕3 one can easily show

that 3
2

√
−1𝜕𝜕𝑟2 is a globally defined, smooth metric on ℂ4 ⧵ {0}, which we still denote by 𝑔𝑐𝑜,0.

We claim that, up to scaling and translating, the estimates in (𝑖) always hold in these coordinates.
Indeed, from the scaling relation 𝑟(𝜆 ⋅ 𝑧) = |𝜆|𝑟(𝑧) we may as well assume that ‖𝑧̂‖ = 1. It is easy
to see that, for any multi-index 𝛼 = (𝑘1, 𝑘2, 𝑘3, 𝑘4) ∈ ℤ4≥0 we have

sup
{
1

8
<‖𝑧‖<8}

||||𝜕|𝛼|𝜕𝑧𝛼
𝑟
||||𝑔𝑒𝑢𝑐,𝑧 ≤ 𝐶(𝛼).

Since 10−3 < |𝑧4| < 10 on this region, the estimates in (𝑖) will follow from comparing 𝑔𝑒𝑢𝑐,𝑧 =∑4

𝑖=1 |𝑑𝑧𝑖|2 to the Euclidean metric in the coordinates
(𝑤1, 𝑤2, 𝑤3) = (𝑧1 − 𝑧̂1, 𝑧2 − 𝑧̂2, 𝑧3 − 𝑧̂3).

Using the definition of the coordinates we have

𝑔𝑒𝑢𝑐,𝑧 =

3∑
𝑖=1

|𝑑𝑤𝑖|2 + |∑3

𝑖=1
𝑧𝑖(𝑤)𝑑𝑤𝑖|2|𝑧4(𝑤)|2 .
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296 COLLINS et al.

For clarity, let us denote by 𝑔𝑒𝑢𝑐,𝑤 =
∑3

𝑖=1
|𝑑𝑤𝑖|2 the Euclideanmetric in the𝑤 coordinates. Then,

from the Cauchy-Schwarz inequality, together with |𝑧4| ≥ 1

100
‖𝑧̂‖ = 1

100
we have

𝑔𝑒𝑢𝑐,𝑤 ≤ 𝑔𝑒𝑢𝑐,𝑧 ≤ 103𝑔𝑒𝑢𝑐,𝑤.
Noting that { 1

8
< ‖𝑧‖ < 8} implies that { 𝑟

4
< 𝑟(𝑧) < 4𝑟} we see that (𝑖) holds in these coordinates.

Next, we address (𝑖𝑖) in the special case 𝑡 = 0. In this case the desired estimates follow
immediately from a scaling argument and the above estimates for 𝑟, since rescaling preserves
𝑉0.
It only remains to determine a bound for 𝜌 such that {

∑3

𝑖=1 |𝑤| < 𝜌} implies { 1
8
< ‖𝑧(𝑤)‖ < 8}.

From the definition of the coordinates we have

‖𝑧(𝑤)‖2 = 3∑
𝑖=1

|𝑤𝑖 + 𝑧̂𝑖|2 + ||||||
3∑
𝑖=1

(𝑤𝑖 + 𝑧̂𝑖)
2

|||||| .
On the one hand, we have

3∑
𝑖=1

|𝑤𝑖 + 𝑧̂𝑖|2 ≥ 1

2

3∑
𝑖=1

|𝑧̂𝑖|2 − 3∑
𝑖=1

|𝑤𝑖|2,
while on the other hand||||||

3∑
𝑖=1

(𝑤𝑖 + 𝑧̂𝑖)
2

|||||| ≥
||||||
3∑
𝑖=1

𝑧̂2
𝑖

|||||| − 5
3∑
𝑖=1

|𝑤𝑖|2 − 1

4

3∑
𝑖=1

|𝑧̂𝑖|2.
Thanks to the fact that 1 =

∑3

𝑖=1 |𝑧̂𝑖|2 + |∑3

𝑖=1 𝑧̂
2
𝑖
| we get

‖𝑧(𝑤)‖2 ≥ 1

4
− 6

3∑
𝑖=1

|𝑤𝑖|2 > 1

64

provided
∑3

𝑖=1
|𝑤𝑖|2 < 𝜌 ≤ 1

8
. The upper bound is similar.

Next we consider the case when 𝑧̂ ∈ 𝑉1 and {‖𝑧̂‖2 > 𝑅} for some large constant 𝑅 ≥ 2 to be
determined. In this region we will also use coordinates constructed from (𝑧1, 𝑧2, 𝑧3), assuming as
before that |𝑧̂4| > 1

100
‖𝑧̂‖. Since we have already established the estimates (𝑖) in these coordinates,

it suffices to prove (𝑖𝑖). Let 𝑦̂ ∈ 𝑉0 with ‖𝑦̂‖2 > 1

2
be defined by

Φ1(𝑦̂) = 𝑧̂ ∈ 𝑉1.

Note that from the definition (2.9) of Φ1 we have ‖𝑦̂‖2 > 𝑅∕2. Define coordinates (𝑥1, 𝑥2, 𝑥3) on
𝑉1, near 𝑧̂ by

𝑧𝑖 = |𝑧̂|𝑥𝑖 + 𝑧̂𝑖
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 297

and let (𝑤1, 𝑤2, 𝑤3) be the coordinates on 𝑉0, centered at 𝑤̂ constructed above.
Explicitly,

𝑧𝑖 = |𝑦̂|𝑤𝑖 + 𝑦̂𝑖, 1 ≤ 𝑖 ≤ 3
where

∑3

𝑖=1
|𝑤𝑖|2 < 1

8
. The map Φ1 is given in these coordinates by

𝑤𝑖 ⟼
‖𝑦̂‖‖𝑧̂‖

(
𝑤𝑖 +

𝑤𝑖‖𝑦̂‖ + 𝑦̂𝑖
2‖𝑦̂‖ ⋅ ‖𝑧(𝑤)‖2 − 𝑦̂𝑖

2‖𝑦̂‖ ⋅ ‖𝑧̂‖2
)

(2.12)

where

‖𝑧(𝑤)‖2 = 3∑
𝑖=1

|‖𝑦̂‖ ⋅ 𝑤𝑖 + 𝑦̂𝑖|2 + ||||||
3∑
𝑖=1

(‖𝑦̂‖ ⋅ 𝑤𝑖 + 𝑦̂𝑖|)2|||||| .
When ‖𝑦‖2 > 1

2
we have 1 ≤ ‖Φ1(𝑦)‖2‖𝑦‖2 ≤ 2 and so

1

2
𝑟(Φ1(𝑦)) < 𝑟(𝑦) < 𝑟(Φ1(𝑦)). (2.13)

From (2.12) it follows that there is a constant 𝑐 ∈ [1
2
, 1] such that

𝜕

𝜕𝑤𝑗
𝑥𝑖◦Φ1 = 𝑐𝛿

𝑖
𝑗
+ 𝑂(𝑅−1),

𝜕

𝜕𝑤̄𝑗
𝑥𝑖◦Φ1 = 𝑂(𝑅

−1),

and, for all multi-indices 𝛼 with |𝛼| ≥ 2,
𝜕|𝛼|
𝜕𝑤𝛼

𝑥𝑖◦Φ1 = 𝑂(𝑅
−1),

𝜕|𝛼|
𝜕𝑤̄𝛼

𝑥𝑖◦Φ1 = 𝑂(𝑅
−1). (2.14)

Thus, by choosing 𝑅 sufficiently large we can ensure that

1

2
𝑔𝑤 < Φ

∗
1𝑔𝑥 < 2𝑔𝑤. (2.15)

where 𝑔𝑥 denotes the Euclidean metric in 𝑥 coordinates, and 𝑔𝑤 denotes the Euclidean
metric in 𝑤 coordinates. Furthermore, (2.14) implies that, for all multi-indices 𝛼 ≠ 0 we
have

𝜕|𝛼|
𝜕𝑤𝛼

Φ∗1𝑔𝑥 = 𝑂(𝑅
−1).

By Lemma 2.8 and (2.13) we can choose 𝑅 sufficiently large so that

1

2
𝑔𝑐𝑜,0 ≤ Φ∗1𝑔𝑐𝑜,1 ≤ 2𝑔𝑐𝑜,0. (2.16)
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298 COLLINS et al.

Combining (2.15), (2.16) and (2.13) we deduce the estimates in (𝑖𝑖) from Lemma 2.8 and the
estimates for 𝑔𝑐𝑜,0 in the 𝑤 coordinates. For example, we have

|∇𝑔𝑥𝑟(𝑧̂)−2𝑔𝑐𝑜,1|𝑔𝑥 = |∇Φ∗
1
𝑔𝑥 𝑟(𝑧̂)

−2Φ∗1𝑔𝑐𝑜,1|Φ∗1𝑔𝑥
≤ 𝐶(|∇𝑔𝑤𝑟(𝑧̂)−2Φ∗1𝑔𝑐𝑜,1|𝑔𝑤 + |𝑂(𝑅−1)𝑟(𝑦̂)−2𝑔𝑐𝑜,0|𝑔𝑤)
≤ 𝐶(|∇𝑔𝑐𝑜,0 (Φ∗1𝑔𝑐𝑜,1 − 𝑔𝑐𝑜,0)|𝑔𝑐𝑜,0 + |𝑟(𝑦̂)−2𝜕𝑔𝑐𝑜,0|𝑔𝑤 + 1)
≤ 𝐶1.

Higher order derivatives follow similarly by induction. Note that if 𝑅 is sufficiently large then
Φ1({𝑤 ∶

∑3

𝑖=1 |𝑤𝑖|2 < 1

8
}) ⊃ {𝑥 ∶

∑3

𝑖=1 |𝑥𝑖|2 < 1

10
} and so again, 𝜌 can be chose uniformly.

The portion of 𝑉1 given by {𝑧 ∈ 𝑉1 ∶ ‖𝑧‖2 < 2𝑅} is compact and hence the desired coordinates
can be constructed by a covering argument. It only remains to construct the coordinates on𝑉𝑡 for
0 < |𝑡| < 1. But for 𝑡 ≠ 0 we can use the holomorphic rescaling map (2.7) to induce holomorphic
coordinates on𝑉𝑡 from those on𝑉1. By (2.8) themetrics 𝑔𝑐𝑜,𝑡 are generated, up to a scaling param-
eter, by the holomorphic rescaling map. On the other hand, the estimates in (𝑖), (𝑖𝑖) are invariant
under this rescaling, and hence the lemma follows. □

Remark 2.12. Note that the construction in Lemma 2.11 shows that there is a constant 𝑅 > 0 such
that, 𝑧̂ ∈ {‖𝑧‖2 ≥ 𝑅|𝑡|} and |𝑧̂4| > 1

100
‖𝑧̂‖, then the holomorphic cylindrical coordinates can be

taken to be

(𝑤1, 𝑤2, 𝑤3) =
1‖𝑧̂‖ (𝑧1 − 𝑧̂1, 𝑧2 − 𝑧̂2, 𝑧3 − 𝑧3)

Before moving on from this local discussion we state a lemma regarding extending some of the
local objects introduced above.

Lemma 2.13. If 𝜇 ∶  → Δ is a global smoothing of a Calabi-Yau variety 𝑋0 = 𝜇−1(0) with
ordinary double point singularities at points {𝑝1, … , 𝑝𝑘}, then there are disjoint open sets 𝑈𝑖 ⊂  ,
with 𝑝𝑖 ∈ 𝑈𝑖 such that 𝑈𝑖 is biholomorphic to a neighborhood of 0 in the model smoothing (2.3)
and,

(i) there is a globally defined function 𝑟 ∶  → ℝ≥0 such that, after identifying 𝑈𝑖 with the model
smoothing, 𝑟2|𝑈𝑖 = ‖𝑧‖4∕3, and 𝑟−1(0) = {𝑝1, … , 𝑝𝑘}.

(ii) There is a collection of closed sets 𝑈′
𝑖
⊂ 𝑈𝑖 , and closed sets 𝐶𝑡

𝑖
⊂ 𝑋𝑡 smooth map Φ𝑡 ∶ 𝑋0 ⧵

∪𝑖𝑈
′
𝑖
→ 𝜇−1(𝑡) ⧵ 𝐶𝑡

𝑖
such that, after identifying𝑈𝑖 with the model smoothing we have

𝑈′
𝑖
=

{‖𝑧‖2 ≤ |𝑡|
2

}
, 𝐶𝑡

𝑖
= {‖𝑧‖2 = |𝑡|}

and Φ𝑡|𝑈𝑖 is the map 𝑧 ↦ 𝑧 +
𝑡𝑧̄

2‖𝑧‖2 .
Proof. We only sketch the proof, since it is straightforward. Given a choice of the open sets𝑈𝑖 we
extend the locally defined functions ‖𝑧‖4∕3 on to globally defined positive functions which only
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 299

vanish that the singular points 𝑝𝑖 . This establishes (𝑖). To prove (𝑖𝑖)we just observe that the locally
definedmaps are given by the flow of a vector field which lifts 𝜕

𝜕𝑡
. We can extend this map globally

by using a partition function to glue with any lift of 𝜕

𝜕𝑡
to  ⧵ 𝑈𝑖 (eg. by choosing a Riemannian

metric on ). □

2.3 Balanced metrics on conifold transitions

We now review the work of Fu-Li-Yau [35] who constructed balanced metrics on non-Kähler
Calabi-Yau threefolds using conifold transitions and gluing.

Definition 2.14. Let (𝑋, 𝑔) be a complex manifold of complex dimension 𝑛 with a hermitian
metric. The metric 𝑔 is said to be balanced if the associated (1,1) form 𝜔 satisfies

𝑑𝜔𝑛−1 = 0.

We have the following theorem

Theorem 2.15 Fu-Li-Yau [35], Theorem 1.2. Let 𝑋 be a smooth, Kähler, Calabi-Yau threefold,
and suppose that 𝑋 → 𝑋 ⇝ 𝑋𝑡 is a conifold transition. Then, for |𝑡| sufficiently small 𝑋𝑡 admits
a balanced metric 𝜔FLY,𝑡 .

We will need to recall some aspects of the proof of Theorem 2.15 as they will play an important
role in subsequent sections. The first step [35] is to construct a balanced metric on 𝑋

𝑟𝑒𝑔
by appro-

priately gluing a Calabi-Yau metric on 𝑋 with the conical Calabi-Yau metric on the conifold. To
fix notation, for each ordinary double point 𝑝𝑖 ∈ 𝑋 we fix an identification of a neighborhood of
𝑝𝑖 with a neighborhood of the singular point in the conifold. Define

𝑈𝑖(𝜀) =

{
(𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ ℂ

4 ∶

4∑
𝑖=1

𝑧2
𝑖
= 0, and ‖𝑧‖2 ≤ 𝜀}

and let 𝑈(𝜀) =
⋃
𝑖
𝑈𝑖(𝜀). We state the following result of Fu-Li-Yau [35]; for the reader’s

convenience we have given a self-contained proof in Appendix A.

Proposition 2.16 Fu-Li-Yau [35], Proposition 2.6.With the above notation, for every 0 < 𝜀 ≪ 1 suf-
ficiently small there is a constant𝑀0 > 0 such that there exists a hermitian metric 𝑔0 on 𝑋𝑟𝑒𝑔 whose
associated (1,1) form 𝜔0 has the following properties

(i) On 𝑋 ⧵ 𝑈(1) we have 𝜔0 = 𝜔𝐶𝑌 where 𝜔𝐶𝑌 is a Calabi-Yau metric on 𝑋.
(ii) On𝑈(𝜀) ∩ 𝑋

𝑟𝑒𝑔
we have 𝜔0 = 𝑀

1∕2
0 𝜀−1∕3𝜔𝑐𝑜,0.

(iii) On𝑈(1) ⧵ 𝑈(𝜀), 𝜔20 is
√
−1𝜕𝜕-exact.

In particular, 𝑔0 is balanced on 𝑋𝑟𝑒𝑔.
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300 COLLINS et al.

For the remainder of the paper, 𝜀 > 0 is fixed and we will use the corresponding metric 𝑔0. It
will be useful to use to have a comparison of 𝜔𝐶𝑌 with 𝜔0 on𝑋, away from the contracted rational
curves. In a neighborhood of the curves, the metric 𝜔𝐶𝑌 is uniformly equivalent to the smooth
reference metric 𝜔𝑠𝑚 =

√
−1𝜕𝜕𝑟3 + 𝜋∗

ℙ1
𝜔𝐹𝑆 (where we recall that 𝑟3 = ‖𝑧‖2). For 0 < 𝜆 < 1, we

can rescale by 𝑆𝜆 ∶ {1 ≤ 𝑟 ≤ 2} → {𝜆 ≤ 𝑟 ≤ 2𝜆} with 𝑆𝜆(𝑧) = 𝜆3∕2𝑧. This gives
𝑆∗
𝜆
𝜔𝑠𝑚 = 𝜆

3
√
−1𝜕𝜕𝑟3 + 𝜋∗

ℙ1
𝜔𝐹𝑆, 𝑆∗

𝜆
𝜔𝑐𝑜,0 = 𝜆

2𝜔𝑐𝑜,0,

and by the uniform equivalence of metrics 𝐶−1𝜔𝑠𝑚 ≤ 𝜔𝑐𝑜,0 ≤ 𝐶𝜔𝑠𝑚 on {1 ≤ 𝑟 ≤ 2}, we obtain
𝐶−1𝜆2𝑆∗

𝜆
𝜔𝑠𝑚 ≤ 𝑆∗

𝜆
𝜔𝑐𝑜,0 ≤ 𝐶𝜆−1𝑆∗𝜆𝜔𝑠𝑚. Thus

𝐶−1𝑟2𝜔𝐶𝑌 ≤ 𝜔0 ≤ 𝐶𝑟−1𝜔𝐶𝑌 (2.17)

on {0 < 𝑟 < 1}.
The next step in the proof of Theorem 2.15 is to construct approximately balanced metrics on

the smooth fibers 𝑋𝑡. Let 𝑈(
1

2
) ⊂  be a small open set containing the singular points 𝑝𝑖 . Note

that 𝑋 ⧵ 𝑈(1
2
) is diffeomorphic to 𝑋𝑡 ⧵ 𝑈(

1√
2
) by the map Φ𝑡 constructed in Lemma 2.13. If 𝜔20 is

the metric from Proposition 2.16, then (Φ∗𝑡 𝜔
2
0)
(2,2) is positive definite for |𝑡| sufficiently small and

can be glued to the Candelas-de la Ossa metric 𝜔2𝑐𝑜,𝑡 to obtain a positive (2,2) form. The following
result can be extracted from Fu-Li-Yau [35, Section 3], see, for example [35, equation (3.4)].

Proposition 2.17 Fu-Li-Yau [35]. With notation as above, for 𝜀, |𝑡| sufficiently small and 𝑀0

sufficiently large there is a hermitian metric 𝑔𝑡 on 𝑋𝑡 such that the associated (1,1) form 𝜔𝑡 has

(i) 𝜔𝑡 = 𝑀
1∕2
0 𝜀−1∕3𝜔𝑐𝑜,𝑡 is Kähler Ricci-flat in𝑈(𝜀) ∩ 𝑋𝑡 .

(ii) There is a constant 𝐶𝑘 , independent of |𝑡| so that |𝑑𝜔2𝑡 |𝐶𝑘(𝑋𝑡,𝜔𝑡) ≤ 𝐶𝑘|𝑡|.
(iii) As |𝑡|→ 0, Φ∗𝑡 𝜔𝑡 converges smoothly, in compact subsets of 𝑋 ⧵ {𝑝1, … , 𝑝𝑘} to the balanced

metric 𝜔0 of Proposition 2.16.

With this result, Theorem 2.15 is obtained by solving a fourth -th order linear equation with
estimates in order to perturb the approximately balancedmetric𝜔𝑡 of Proposition 2.17 to a genuine
balanced metric 𝜔FLY,𝑡 for |𝑡| sufficiently small.
2.4 Balanced metrics on the small resolution

The space 𝑋 can be viewed as a small resolution of the singular space 𝑋, obtained by replacing
the ordinary double points with (−1, −1) rational curves. It will be useful to us to have a sequence
of degenerating balanced metrics on 𝑋.
Consider the total space 𝜋ℙ1 ∶ ℙ1(−1)⊕2 → ℙ1. Let ℎ𝐹𝑆 denote the standard Fubini-Study

metric on ℙ1(−1). If 𝑧 ∈ ℙ1, and (𝑢, 𝑣) ∈ 𝜋−1ℙ1 (𝑧) denotes a point in the fiber over 𝑧, we define

𝑟(𝑢, 𝑣, 𝑧)2 =
(|𝑢|2

ℎ𝐹𝑆
+ |𝑣|2

ℎ𝐹𝑆

)2∕3
.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 301

It is easy to check that 𝑟2 is the pull-back toℙ1(−1)⊕2 of the potential for the conical Calabi-Yau
metric on the conifold. Candelas-de la Ossa [10] constructed asymptotically conical Calabi-Yau
metrics on the resolved conifold via the ansatz

𝜔𝑐𝑜,𝑎 ∶=
√
−1𝜕𝜕𝑓𝑎(𝑟

3) + 4𝑎2𝜋∗
ℙ1
𝜔𝐹𝑆

where𝜔𝐹𝑆 =
√
−1𝜕𝜕 log ℎ𝐹𝑆 is the Fubini-Studymetric onℙ1. Thismetric is Calabi-Yau provided

𝑓𝑎(𝑥) satisfies the differential equation

(𝑥𝑓′𝑎(𝑥))
3 + 6𝑎2(𝑥𝑓′𝑎(𝑥))

2 = 𝑥2, 𝑓′𝑎(𝑥) ≥ 0
for 𝑥 ≥ 0. From this expression it is straightforward to check that

𝑓𝑎(𝑥) = 𝑎
2𝑓1

( 𝑥
𝑎3

)
.

In particular we see that

𝜔𝑐𝑜,𝑎 = 𝑎
2𝑆∗
𝑎−1
𝜔𝑐𝑜,𝑎=1 (2.18)

where 𝑆𝑎(𝑢, 𝑣, 𝑧) = (𝑎3∕2𝑢, 𝑎3∕2𝑣, 𝑧) is the scaling generated by the holomorphic Reeb vector field
on the conifold. The argument of Fu-Li-Yau carries over to give the following proposition; for the
reader’s convenience, we have provided the details in Appendix A.

Proposition 2.18 Fu-Li-Yau [35], Proposition 2.6. For every 0 < 𝜀 ≪ 1 sufficiently small there is a
constant 𝑀0,𝑀1 > 0 such that there exists a sequence of balanced hermitian metric 𝜔𝑎 on 𝑋 with
𝑎 → 0 which has the following properties:

(i) On 𝑋 ⧵ 𝑈(1) we have 𝜔𝑎 = 𝜔𝐶𝑌 where 𝜔𝐶𝑌 is a Calabi-Yau metric on 𝑋.
(ii) On𝑈(𝜀) ∩ 𝑋 we have 𝜔𝑎 = 𝑀

1∕2
0 𝜀−1∕3𝜔𝑐𝑜,𝑎 .

(iii) On𝑈(1) ⧵ 𝑈(𝜀), 𝜔2𝑎 is
√
−1𝜕𝜕-exact.

(iv) As 𝑎 → 0, 𝜔𝑎 converges smoothly to 𝜔0 on compact subsets of 𝑋∖{𝐶1, … , 𝐶𝑘}.
(v) There is an estimate𝑀−1

1 ≤ Vol(𝑋, 𝑔𝑎) ≤ 𝑀1.
(vi) We have [𝜔2𝑎] = [𝜔2𝐶𝑌] ∈ 𝐻

4(𝑋,ℝ).

Remark 2.19. Regarding notation, following the conventions of [16], we will use 𝜔𝑐𝑜,𝑎 to denote
the Candelas-de la Ossa metric on the small resolution of the conifold, while reserving 𝜔𝑐𝑜,𝑡 for
the Candelas-de la Ossa metric on the smoothing of the conifold.

2.5 Notation

Before beginning the construction, we establish notation and conventions that will be used
throughout the paper. Throughout the paper 𝑇1,0𝑋 will denote the holomorphic tangent bundle
to 𝑋, and we will write the components of a hermitian metric𝐻 on 𝑇1,0𝑋 as𝐻 = 𝐻𝑘̄𝑗 𝑑𝑧

𝑗 ⊗ 𝑑𝑧̄𝑘,
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302 COLLINS et al.

and we will denote the inner product by

⟨𝑉,𝑊⟩𝐻 = 𝐻𝑘̄𝑗𝑉𝑗𝑊𝑘, 𝑉 = 𝑉𝑖
𝜕

𝜕𝑧𝑖
, 𝑊 = 𝑊𝑖 𝜕

𝜕𝑧𝑖
.

The hermitian condition in this convention is 𝐻𝑘̄𝑗 = 𝐻𝑗̄𝑘. The inverse of 𝐻 will be denoted 𝐻𝑝𝑞̄,
so that matrix multiplication is 𝐻𝑗𝑝̄𝐻𝑝̄𝑘 = 𝛿

𝑗
𝑘. A hermitian metric 𝐻 induces metrics on all the

associated bundles in the usual fashion.
An endomorphism 𝐴 ∶ 𝑇1,0𝑋 → 𝑇1,0𝑋 has an adjoint 𝐴† defined by

⟨𝐴𝑉,𝑊⟩𝐻 = ⟨𝑉,𝐴†𝑊⟩𝐻.
When the dependence on the metric is emphasized, we will write this as𝐴†𝐻 . An endomorphism
is𝐻-self-adjoint when 𝐴† = 𝐴. Note that, in this notation, the inner-product on endomorphisms
is given by

⟨𝐴, 𝐵⟩𝐻 = Tr(𝐴𝐵†)
The curvature 𝐹𝐻 of the Chern connection of the metric𝐻 will follow the convention

(𝐹𝐻)𝑗𝑘̄
𝑝
𝑞 = −𝜕𝑘̄(𝐻

𝑝𝑟𝜕𝑗𝐻𝑟𝑞).

From two hermitian metrics 𝐻̂ and 𝐻 we can form the relative endomorphism denoted ℎ =
𝐻̂−1𝐻, or in index notation denoted

ℎ𝑝𝑞 = 𝐻̂
𝑝𝑟𝐻𝑟𝑞.

A formula which is the starting point for many computations is for the difference of the curvature
tensors of 𝐻̂ and𝐻.

(𝐹𝐻)𝑗𝑘̄ − (𝐹𝐻̂)𝑗𝑘̄ = −𝜕𝑘̄(ℎ
−1∇𝐻̂

𝑗
ℎ). (2.19)

Here the 𝑝, 𝑞 endomorphism indices are omitted for ease of notation, and ∇𝐻̂ denotes the Chern
connection of 𝐻̂ acting on ℎ ∈ Γ(End𝑇1,0𝑋) by

∇𝐻̂
𝑗
ℎ = 𝜕𝑗ℎ + [𝐻̂

−1𝜕𝑗𝐻̂, ℎ].

In this paper, 𝑔 will typically denote a balanced hermitian metric with associated form 𝜔 =√
−1𝑔𝑘̄𝑗 𝑑𝑧

𝑗 ∧ 𝑑𝑧̄𝑘. The contraction operator Λ𝜔 acts on 𝐹𝐻 by

(√
−1Λ𝜔𝐹𝐻

)𝑝
𝑞 = 𝑔

𝑗𝑘̄(𝐹𝐻)𝑗𝑘̄
𝑝
𝑞.

The curvature of 𝑔 will be denoted (𝑅𝑔)𝑗𝑘̄𝑝𝑞 = −𝜕𝑘̄(𝑔𝑝𝑟𝜕𝑗𝑔𝑟𝑞). Since 𝑔 is not Kähler, it will have
non-zero torsion, which we denote by

(𝑇𝑔)
𝑟
𝑖𝑗 = (𝐴𝑔)𝑖

𝑟
𝑗 − (𝐴𝑔)𝑗

𝑟
𝑖 (2.20)
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 303

where (𝐴𝑔)𝑖
𝑝
𝑞 = 𝑔

𝑝𝑛̄𝜕𝑖𝑔𝑛̄𝑞 is the Chern connection of 𝑔. We will denote the (𝑛, 𝑛) form
corresponding to 𝑔 by

𝑑vol𝑔 =
𝜔𝑛

𝑛!
.

We will denote the complex Laplacian acting on functions by Δ𝑔𝑓 = 𝑔𝑗𝑘̄𝜕𝑗𝜕𝑘̄𝑓. The balanced
condition 𝑑𝜔𝑛−1 = 0 allows us to integrate by parts so that

∫
𝑋

𝜓Δ𝑔𝜑 𝑑vol𝑔 = ∫
𝑋

𝜑Δ𝑔𝜓 𝑑vol𝑔

for any 𝜓, 𝜑 ∈ 𝐶∞(𝑋). Lastly, we note that when obtaining estimates, we will use the convention
where𝐶 denotes a positive constant depending on known quantities whichmay vary line-by-line.

3 HERMITIAN-YANG-MILLSMETRICS ON THE CENTRAL FIBER

In this section, we construct a Hermitian-Yang-Mills metric on the tangent bundle of the singular
space 𝑋 with respect to the Fu-Li-Yau balanced metric 𝜔0. We will prove:

Theorem 3.1. There exists a hermitian metric𝐻0 on 𝑇𝑋𝑟𝑒𝑔 satisfying

𝐹𝐻0 ∧ 𝜔
2
0 = 0

where𝜔0 is the Fu-Li-Yaumetric of Proposition 2.16 and𝐹𝐻0 is the curvature of the Chern connection
of𝐻0. For each 𝑘 ∈ ℤ≥0, there is a constant 𝐶𝑘 > 0 such that the metric𝐻0 satisfies the estimates

|𝐻0|𝑔0 + |𝐻−1
0 |𝑔0 ≤ 𝐶0, |∇𝑘𝑔0𝐻0|𝑔0 ≤ 𝐶𝑘𝑟−𝑘. (3.1)

Here 𝑟 ∶ 𝑋 → ℝ≥0 is as in Lemma 2.13.

We will produce 𝐻0 by extracting a limit from a sequence {(𝜔𝑎,𝐻𝑎)} of Hermitian-Yang-
Mills metrics with respect to the degenerating sequence of background metrics {𝜔𝑎} from
Proposition 2.18. A similar approach is taken in [16].
Let 𝑋 be a simply-connected, compact Kähler manifold of dimension 𝑛 = 3with trivial canon-

ical bundle. By Yau’s theorem [94], the bundle 𝑇1,0𝑋 has a Ricci-flat metric 𝜔CY , and therefore
𝑇1,0𝑋 is polystable with respect to [𝜔CY]. In fact,𝑇1,0𝑋 is stable because it cannot holomorphically
split. As noted in [95] , the de Rham decomposition theorem implies that if the tangent bundle to
Calabi-Yau manifold splits holomorphically, then the manifold itself splits holomorphically and
metrically as a product. In dimension 𝑛 = 3, at least one factor in this decomposition must be
1-dimensional, and hence a torus. When 𝑋 is simply connected, this is impossible.
Thus, (𝑋, [𝜔𝐶𝑌]) satisfies the stability condition

1

rk(𝐹) ∫𝑋 𝑐1(𝐹) ∧ 𝜔
2
CY < 0
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304 COLLINS et al.

for all torsion-free, coherent subsheaves 𝐹 ⊆ 𝑇1,0𝑋 of rank 1 or 2. It follows from Proposition 2.18
that the same inequality holds if we replace 𝜔𝐶𝑌 by 𝜔𝑎 for any 𝑎 > 0.
Therefore 𝑇1,0𝑋 is stable with respect to the balanced classes [𝜔2𝑎] ∈ 𝐻2,2(𝑋,ℝ). By the Li-

Yau [57] generalization to Gauduchon metrics of the Donaldson-Uhlenbeck-Yau theorem [21, 91],
there exists a family of metrics𝐻𝑎 on 𝑇1,0𝑋 such that

𝐹𝐻𝑎 ∧ 𝜔
2
𝑎 = 0.

Our goal is to obtain a limiting metric𝐻0 as 𝑎 → 0.

3.1 Reference metrics

To study the sequence (𝑔𝑎,𝐻𝑎), we will use a sequence of reference metrics 𝐻̂𝑎, given by

𝐻̂𝑎 = 𝑒
𝜓𝑎𝑔𝑎

where 𝜓𝑎 satisfies

Δ𝑔𝑎𝜓𝑎 =
1

3
Tr

√
−1Λ𝜔𝑎𝐹𝑔𝑎 , ∫

𝑋

𝜓𝑎 𝑑vol𝑔𝑎 = 0. (3.2)

The solvability of (3.2) follows from the balanced condition since Tr 𝐹𝑔𝑎 is exact. The advantage
of 𝐻̂𝑎 is that these metrics now have the property that

TrΛ𝜔𝑎𝐹𝐻̂𝑎 = 0.

This follows from √
−1Λ𝜔𝑎𝐹𝐻̂𝑎 = −(Δ𝑔𝑎𝜓𝑎) 𝐼 +

√
−1Λ𝜔𝑎𝐹𝑔𝑎 . (3.3)

If we form the relative endomorphism ℎ̂𝑎 = 𝐻̂
−1
𝑎 𝐻𝑎, then (2.19) implies

Δ𝑔𝑎 log det ℎ̂𝑎 = Tr
√
−1Λ𝜔𝑎𝐹𝐻𝑎 − Tr

√
−1Λ𝜔𝑎𝐹𝐻̂𝑎 = 0.

Therefore, det ℎ̂𝑎 is constant, and we will choose a normalization for𝐻𝑎 such that

det ℎ̂𝑎 ≡ 1.
We prove a uniform 𝐶0 estimate for the conformal factor.

Lemma 3.2. The sequence {𝜓𝑎} satisfies a uniform bound

‖𝜓𝑎‖𝐿∞(𝑋) ≤ 𝐶.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 305

Proof. Let 𝑈(𝛿) = {𝑟 < 𝛿}. Since 𝑔𝑎 = 𝑅𝑔𝑐𝑜,𝑎 on 𝑈(𝜀), we have Λ𝜔𝑎𝐹𝑔𝑎 = 0 on 𝑈(𝜀) and

Δ𝑔𝑎𝜓𝑎 = 0 on 𝑈(𝜀).

By the maximum principle,

sup
𝑈(𝜀)

|𝜓𝑎| ≤ sup
𝜕𝑈(𝜀)

|𝜓𝑎|.
Define

𝜑𝑎(𝑧) = sup
𝑋
𝜓𝑎 − 𝜓𝑎(𝑧).

Let 𝑝 ∈ 𝑋 be a point where 0 = 𝜑𝑎(𝑝) = inf𝑋 𝜑𝑎. By the above estimate, we may assume 𝑝 ∈
𝑋∖𝑈(𝜀). Fix a finite open cover {𝑉𝑖} of coordinate charts of 𝐾 = 𝑋 ⧵ 𝑈(𝜀) such that the eigen-
values of (𝑔𝑎)𝑖𝑗̄ are uniformly bounded above and below on each chart. Denote by 𝐵𝑖 coordinate
balls each compact contained in 𝑉𝑖 which still cover 𝐾. Note that since the metrics 𝑔𝑎 converge
smoothly and uniformly on 𝑋 ⧵ 𝑈(𝜀) to the metric 𝑔0 the sets 𝐵𝑖, 𝑉𝑖 can be chosen independent
of 𝑎.
Suppose 𝑝 ∈ 𝐵1 so that inf𝐵1 𝜑 = 0. By the Harnack inequality for elliptic PDE (e.g. [46,

Theorem 5.10]),

sup
𝐵1

𝜑𝑎 ≤ 𝐶
(
inf
𝐵1
𝜑𝑎 + ‖Δ𝑔𝑎𝜑𝑎‖𝐿∞) = 𝐶‖Δ𝑔𝑎𝜑𝑎‖𝐿∞.

From Proposition 2.18, the function TrΛ𝜔𝑎𝐹𝑔𝑎 is supported on 𝑈(1)∖𝑈(𝜀) and is bounded
uniformly, independent of 𝑎. Therefore

sup
𝑋

|Δ𝑔𝑎𝜑𝑎| ≤ 𝐶.
It follows that sup𝐵1 𝜑𝑎 ≤ 𝐶. Let 𝐵2 be another coordinate ball with 𝐵1 ∩ 𝐵2 ≠ ∅. By the Harnack
inequality,

sup
𝐵2

𝜑𝑎 ≤ 𝐶
(
inf
𝐵1∩𝐵2

𝜑𝑎 + ‖Δ𝑔𝑎𝜑𝑎‖𝐿∞) ≤ 𝐶
(
sup
𝐵1

𝜑𝑎 + 1

)
≤ 𝐶.

Continuing this process for each 𝐵𝑖 , we conclude

sup
𝐾
𝜑𝑎 ≤ 𝐶,

and hence sup𝑋 𝜑𝑎 ≤ 𝐶. This gives a bound on the oscillation
sup
𝑋
𝜓𝑎 − inf

𝑋
𝜓𝑎 ≤ 𝐶.
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306 COLLINS et al.

Since ∫
𝑋
𝜓𝑎 𝑑vol𝑔𝑎 = 0, there is a point 𝑞 ∈ 𝑋 where 𝜓𝑎(𝑞) = 0. Therefore

sup
𝑋

|𝜓𝑎| ≤ 𝐶
where 𝐶 is independent of 𝑎 > 0. □

We record some corollaries of this estimate.

Corollary 3.3. Let𝐻𝑎, 𝐻̂𝑎, 𝑔𝑎, ℎ𝑎, 𝜓𝑎 be as above, for 0 < 𝑎 ≪ 1. Then we have

(i) Let 𝑍 = ∪𝑖𝐶𝑖 be the union of all (−1, −1) curves contracted during the conifold transi-
tion. On compact sets 𝐾 ⊂ 𝑋 ⧵ 𝑍, the metrics 𝐻̂𝑎 converge smoothly to a limiting metric
𝐻̂0 = 𝑒

𝜓0𝑔0.
(ii) For all 0 ≤ 𝑎 ≪ 1, the metrics 𝐻̂𝑎 are uniformly equivalent to the background metrics 𝑔𝑎 . That

is, there is a uniform constant 𝐶, independent of 𝑎 such that

𝐶−1𝑔𝑎 ≤ 𝐻̂𝑎 ≤ 𝐶𝑔𝑎.
In particular, since det 𝐻̂−1

𝑎 𝐻𝑎 = 1, the endomorphism ℎ𝑎 = 𝑔
−1
𝑎 𝐻𝑎 = 𝑒

𝜓
𝑎 𝐻̂

−1
𝑎 𝐻𝑎 satisfies

𝐶−1 ≤ det ℎ𝑎 ≤ 𝐶
for a uniform constant 𝐶, independent of 0 ≤ 𝑎 ≪ 1.

(iii) The Hermitian-Yang-Mills tensor is bounded along the sequence

sup
𝑋

|√−1Λ𝜔𝑎𝐹𝐻̂𝑎 |𝐻̂𝑎 ≤ 𝐶.
The full curvature of the limiting 𝐻̂0 satisfies |𝐹𝐻̂0 |𝐻̂0 ≤ 𝐶𝑟−2 on 𝑋𝑟𝑒𝑔.

Proof. To prove convergence of 𝐻̂𝑎 on a compact set 𝐾, we cover 𝐾 by finitely many coor-
dinate charts and apply interior estimates for the Laplace equation (3.2) to 𝜓𝑎. On 𝐾, the
metrics 𝑔𝑎 converge uniformly to 𝑔0, and hence after a subsequence 𝐻̂𝑎 = 𝑒𝜓𝑎𝑔𝑎 converges
to a limiting metric 𝐻̂0. The uniform bounds for 𝐻̂𝑎 and det ℎ𝑎 follow from the 𝐶0 estimate‖𝜓𝑎‖𝐿∞ ≤ 𝐶.
On a neighborhood 𝑈(𝜀) containing the holomorphic curves, we have Λ𝜔𝑎𝐹𝑔𝑎 = 0 and

Λ𝜔𝑎𝐹𝐻̂𝑎 = 0. Outside of 𝑈(𝜀), the metrics (𝐻̂𝑎, 𝜔𝑎) are uniformly bounded, hence |Λ𝜔𝑎𝐹𝐻̂𝑎 |𝐻̂𝑎 ≤
𝐶.
The full curvature 𝐹𝐻̂0 does not vanish on 𝑈(𝜀), however in this neighborhood |𝑅𝑚𝑔0 |𝑔0 ≤

𝐶𝑟−2. In 𝑈(𝜀) we have Δ𝑔0𝜓0 = 0, and estimates for the Laplacian in cylindrical coordinates
imply

|𝜕2𝜓0|𝑔𝑒𝑢𝑐 ≤ 𝐶
and hence |∇2𝑔0𝜓0|𝑔0 ≤ 𝐶𝑟−2 by Lemma 2.11. It follows that |𝐹𝐻̂0 |𝐻̂0 ≤ 𝐶𝑟−2 since 𝑔0 and 𝐻̂0 are
uniformly equivalent. □
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 307

3.2 Uhlenbeck-Yau 𝑪𝟎 estimate

In this section, we derive the following estimate:

Proposition 3.4. Along the sequence of endomorphisms ℎ𝑎 = 𝑔−1𝑎 𝐻𝑎, we have the uniform 𝐶0

estimate

𝐶−1𝐼 ≤ ℎ𝑎 ≤ 𝐶𝐼 (3.4)

where 𝐼 denotes the identity endomorphism.

We will prove this by following the argument of Uhlenbeck-Yau [91]. Thanks to the estimate
𝐶−1 ≤ det ℎ𝑎 ≤ 𝐶, it suffices to show

Tr ℎ𝑎 ≤ 𝐶. (3.5)

Rather than ℎ𝑎 = 𝑔−1𝑎 𝐻𝑎, we will work with the reference metric 𝐻̂𝑎 = 𝑒𝜓𝑎𝑔𝑎 from the previ-
ous section and relative endomorphism ℎ̂𝑎 = 𝐻̂

−1
𝑎 𝐻𝑎. The estimate ‖𝜓𝑎‖𝐿∞(𝑋) ≤ 𝐶 in Lemma 3.2

shows that a bound Tr ℎ̂𝑎 ≤ 𝐶 implies (3.5).
To prove (3.5), suppose on the contrary that Tr ℎ̂𝑎 → ∞ as 𝑎 → 0. Let

ℎ̃𝑎 =
ℎ̂𝑎

sup𝑋 Tr ℎ̂𝑎
.

The starting point in the proof of the 𝐶0 estimate of Uhlenbeck-Yau is the following inequality
(see [91, equation (4.6)]);

Lemma 3.5. Fix 0 < 𝜎 ≤ 1, and any two metrics 𝐻̂, 𝐻 on 𝑇1,0𝑋 → 𝑋. Let ℎ = 𝐻̂−1𝐻, and let 𝑔 be
a Hermitian metric on 𝑋. Then we have

|ℎ−𝜎∕2∇̂ℎ𝜎|2
𝐻̂,𝑔

≤ 𝑔𝑗𝑘̄⟨ℎ−1∇̂𝑗ℎ, ∇̂𝑘ℎ𝜎⟩𝐻̂ (3.6)

where ∇̂ is the Chern connection of 𝐻̂.

We rewrite (3.6) using the identity

𝜕𝑗Tr ℎ
𝜎 = 𝜎⟨ℎ−1∇̂𝑖ℎ, ℎ𝜎⟩𝐻̂ , (3.7)

which implies

1

𝜎
Δ𝑔Tr ℎ

𝜎 = 𝑔𝑗𝑘̄𝜕𝑘̄⟨ℎ−1∇̂𝑗ℎ, ℎ𝜎⟩𝐻̂ .
Therefore, (3.6) is equivalent to

|ℎ−𝜎∕2∇̂ℎ𝜎|2
𝐻̂,𝑔

−
1

𝜎
Δ𝑔Tr ℎ

𝜎 ≤ 𝑔𝑗𝑘̄⟨ℎ−1∇̂𝑗ℎ, ∇̂𝑘ℎ𝜎⟩𝐻̂ − 𝑔𝑗𝑘̄𝜕𝑘̄⟨ℎ−1∇̂𝑗ℎ, ℎ𝜎⟩𝐻̂
= −𝑔𝑗𝑘̄⟨𝜕𝑘̄(ℎ−1∇̂𝑗ℎ), ℎ𝜎⟩𝐻̂ . (3.8)
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308 COLLINS et al.

We will make use of inequality (3.8) by relating the right-hand side to the curvature tensor. With
the same notation as Lemma 3.5, the difference between curvatures of the Chern connections
(2.19) defined by 𝐻, 𝐻̂ shows that the key inequality (3.8) can be written as

|ℎ−𝜎∕2∇̂ℎ𝜎|2
𝐻̂,𝑔

−
1

𝜎
Δ𝑔Tr ℎ

𝜎 ≤ ⟨(√−1Λ𝜔𝐹 −√
−1Λ𝜔𝐹̂), ℎ

𝜎⟩𝐻̂ .
In our case, applying this inequality to the Hermitian-Yang-Mills metric 𝐻𝑎 and the reference
metric 𝐻̂𝑎, we obtain

|ℎ̃−𝜎∕2𝑎 ∇̂ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎 − 1

𝜎
Δ𝜔𝑎Tr ℎ̃

𝜎
𝑎 ≤ −⟨√−1Λ𝜔𝑎𝐹𝐻̂𝑎 , ℎ̃𝜎𝑎⟩𝐻̂𝑎 . (3.9)

Corollary 3.3 gives the bound |Λ𝜔𝑎𝐹𝐻̂𝑎 |𝐻̂𝑎 ≤ 𝐶 which together with and 0 < ℎ̃𝑎 ≤ 𝐼 yields the
estimate

|ℎ̃−𝜎∕2𝑎 ∇ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎 − 1

𝜎
Δ𝑔𝑎Tr ℎ̃

𝜎
𝑎 ≤ 𝐶, (3.10)

where 𝐶 is independent of 𝑎, 𝜎. Integrating both sides using the balanced condition
gives

∫
𝑋

|ℎ̃−𝜎∕2𝑎 ∇̂ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎 𝑑vol𝑔𝑎 ≤ 𝐶 (3.11)

by Proposition 2.18 (𝑣). Since 0 ≤ ℎ̃𝑎 ≤ 𝐼, this implies

∫
𝑋

|∇̂ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎 𝑑vol𝑔𝑎 ≤ 𝐶. (3.12)

Let 𝐾 be a compact set which is the closure of an open set 𝐾𝑜 satisfying 𝐾𝑜 ∩ 𝑍 = ∅, where 𝑍 =
∪𝑘
𝑖=1
𝐶𝑖 is the union of all (−1, −1) curves being contracted. The metrics (𝑔𝑎, 𝐻̂𝑎) are uniformly

equivalent to (𝑔1, 𝐻̂1) on 𝐾. Then

∫
𝐾

|∇̂ℎ̃𝜎𝑎 |2𝐻̂1,𝑔1 𝑑vol𝑔1 ≤ 𝐶𝐾, (3.13)

where∇ iswith respect to 𝑔1. For each 0 < 𝜎 ≤ 1, wehaveweak convergence ℎ̃𝜎𝑎𝑘 ⇀ ℎ̃𝜎∞ in𝑊1,2(𝐾)

along a subsequence; here𝑊1,2(𝐾) denotes the Sobolev space defined by (𝑔1, 𝐻̂1). By a diagonal
argument, there is a subsequence 𝑎𝑖 → 0 satisfying

ℎ̃𝜎𝑎𝑖 ⇀ ℎ̃𝜎∞

in 𝑊1,2(𝐾) for all 𝜎 ∈ {1∕𝑛 ∶ 𝑛 ∈ ℕ}. By semicontinuity of weak convergence, we have the
estimate

∫
𝐾

|∇ℎ𝜎∞|2𝑔1𝑑vol𝑔1 ≤ lim sup
𝑖 ∫

𝐾

|∇ℎ̃𝜎𝑎𝑖 |2𝑔1 𝑑vol𝑔1 ≤ 𝐶𝐾.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 309

Let 𝜎𝑖 = 1∕𝑖, and define 𝜋 ∈ 𝑊1,2(𝐾) by

(𝐼 − ℎ
𝜎𝑖
∞) ⇀ 𝜋

in the weak limit 𝑖 → ∞ in𝑊1,2(𝐾). Exhausting 𝑋∖𝑍 with compact sets 𝐾, we obtain an endo-
morphism 𝜋 ∈ Γ(𝑋 ⧵ 𝑍, End𝑇1,0𝑋) with regularity 𝜋 ∈ 𝑊1,2

𝑙𝑜𝑐
(𝑋 ⧵ 𝑍). The definition of 𝜋 is such

that it is the projection onto Ker ℎ∞, and it satisfies 𝜋 = 𝜋
†𝐻̂0 = 𝜋2 almost everywhere.

We need to verify

Lemma 3.6. The projection 𝜋 is not trivial, in the sense that it is neither the identity nor the
zero projection.

Proof. We show that ℎ∞ is not identically zero. We will use repeatedly the following inequality,
which is a consequence of (3.9) with 𝜎 = 1;

Δ𝑔𝑎Tr ℎ̃𝑎 ≥ ⟨√−1Λ𝜔𝑎𝐹𝐻̂𝑎 , ℎ̃𝑎⟩𝐻̂𝑎 . (3.14)

By its normalization, we haveTr ℎ̃𝑎 ≤ 1 and there exists 𝑥𝑎 ∈ 𝑋 such that (Tr ℎ̃𝑎)(𝑥𝑎) = 1. In𝑈(𝜀),
we have Λ𝜔𝑎𝐹𝐻̂𝑎 = 0 and hence

Δ𝑔𝑎Tr ℎ̃𝑎 ≥ 0, in 𝑈(𝜀).

In particular, by the maximum principle, sup𝑈(𝜀) Tr ℎ̃𝑎 ≤ sup𝜕𝑈(𝜀) Tr ℎ̃𝑎. Thus, we may assume
𝑥𝑎 ∈ {𝑟 ≥ 𝜀}.
The metrics 𝑔𝑎 are uniformly equivalent on {𝑟 ≥ 𝜀∕2}. In particular, we can fix a uniform num-

ber 0 < 𝛿 ≪ 1 such that there is a coordinate ball 𝐵𝛿(𝑥𝑎) ⊆ {𝑟 ≥ 𝜀∕2} and, in local coordinates on
𝐵𝛿(𝑥𝑎) there is a uniform constant 𝑀, independent of 𝑎, such that the eigenvalues of (𝑔𝑎)𝑘̄𝑗 are
bounded above by𝑀 and below by𝑀−1.
From (3.14) we obtain the estimate

Δ𝑔𝑎Tr ℎ̃𝑎 − 𝐶 Tr ℎ̃𝑎 ≥ 0.
Applying the Moser iteration (e.g. [46, Theorem 4.1]) gives

1 = sup
𝐵𝛿(𝑥𝑎)

Tr ℎ̃𝑎 ≤ 𝐶‖Tr ℎ̃𝑎‖𝐿1({𝑟≥𝜀∕2},𝑑vol𝑔1 )
for a uniform constant 𝐶. Let 𝐾 = {𝑟 ≥ 𝜀∕2}. By (3.13) and Rellich’s theorem, we have ℎ̃𝑎 → ℎ∞ in
𝐿1(𝐾, 𝑑vol𝑔1) and

‖Tr ℎ∞‖𝐿1(𝐾,𝑑vol𝑔1 ) ≥ 𝐶−1,
therefore ℎ∞ is not identically zero.
Finally, note that since ℎ̃𝑎 converges to ℎ∞ pointwise almost everywhere on 𝐾, and det ℎ̃𝑎 =

(sup𝑋 Tr ℎ̂𝑎)
−3 → 0 we see that ℎ∞ has a non-trivial kernel almost everywhere on 𝐾. Hence

𝜋 ≠ 0. □
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310 COLLINS et al.

We have thus constructed a nontrivial projection 𝜋 which projects onto the kernel of ℎ∞.
To obtain a holomorphic subbundle, we need a further holomorphic condition on 𝜋. Following
Uhlenbeck-Yau [91] we have,

Lemma 3.7. The projection 𝜋 satisfies (𝐼 − 𝜋)𝜕̄𝜋 = 0 on 𝑋 ⧵ 𝑍.

Proof. Following [91], rather than work with (𝐼 − 𝜋)𝜕̄𝜋, we differentiate (𝐼 − 𝜋)𝜋 = 0 to obtain

|(𝐼 − 𝜋)𝜕̄𝜋|2
𝐻̂0,𝑔0

= |𝜕̄(𝐼 − 𝜋)𝜋|2
𝐻̂0,𝑔0

.

Taking the adjoint with respect to 𝐻̂0 and using 𝜋† = 𝜋 and (∇̂𝑖𝑠)
† = 𝜕𝑖𝑠 for self-adjoint

endomorphisms 𝑠, we obtain

|(𝐼 − 𝜋)𝜕̄𝜋|2
𝐻̂0,𝑔0

= |𝜋∇̂(𝐼 − 𝜋)|2
𝐻̂0,𝑔0

where ∇̂ is the covariant derivative with respect to 𝐻̂0. We approximate the integral of the quantity
on the right-hand side by

∫
𝑋

|(𝐼 − ℎ̃𝑠𝑎)∇𝐻̂𝑎 ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎𝑑vol𝑔𝑎 .
The elementary inequality

ℎ̃−𝜎∕2 ≥ 2𝑠 +
1

2
𝜎

𝑠
(𝐼 − ℎ̃𝑠𝑎)

and inequality (3.11) implies

∫
𝑋

|(𝐼 − ℎ̃𝑠𝑎)∇𝐻̂𝑎 ℎ̃𝜎𝑎 |2𝐻̂𝑎,𝑔𝑎𝑑vol𝑔𝑎
≤

⎛⎜⎜⎝
𝑠

2𝑠 +
1

2
𝜎

⎞⎟⎟⎠
2

∫
𝑋

|ℎ−𝜎∕2𝑎 ∇𝐻̂𝑎ℎ
𝜎
𝑎 |2𝐻̂𝑎,𝑔𝑎𝑑vol𝑔𝑎 ≤ 𝐶⎛⎜⎜⎝

𝑠

2𝑠 +
1

2
𝜎

⎞⎟⎟⎠
2

. (3.15)

Let 𝑈𝛿 = {𝑟 > 𝛿}. Then since ℎ̃𝑠𝑎 → ℎ̃𝑠∞ in 𝐿2(𝑈𝛿) by (3.13) and Rellich’s theorem, and ℎ̃𝑠𝑎 ⇀ ℎ̃𝑠∞
weakly in𝑊1,2(𝑈𝛿), we have that

(𝐼 − ℎ̃𝑠𝑎)∇𝐻̂𝑎 ℎ̃
𝜎
𝑎 ⇀ (𝐼 − ℎ̃𝑠∞)∇̂ℎ̃

𝜎
∞ weakly in 𝐿2(𝑈𝛿).

We let 𝑎 → 0 and use semi-continuity of weak convergence to obtain

∫
𝑈𝛿

|(𝐼 − ℎ̃𝑠∞)∇̂ℎ̃𝜎∞|2
𝐻̂0,𝑔0

𝑑vol𝑔0 ≤ 𝐶
⎛⎜⎜⎝

𝑠

2𝑠 +
1

2
𝜎

⎞⎟⎟⎠
2

.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 311

We now let 𝑠 → 0, which implies

∫
𝑈𝛿

|𝜋∇̂ℎ̃𝜎∞|2
𝐻̂0,𝑔0

𝑑vol𝑔0 ≤ 0,

and then taking 𝜎 → 0, we conclude

∫
𝑈𝛿

|𝜋∇̂(𝐼 − 𝜋)|2
𝐻̂0,𝑔0

𝑑vol𝑔0 = 0,

using semi-continuity of weak convergence. □

Altogether, we have produced an endomorphism 𝜋 ∈ Γ(End𝑇1,0𝑋|𝑋⧵𝑍) such that
∙ 𝜋 ∈ 𝑊1,2

𝑙𝑜𝑐
(𝑋 ⧵ 𝑍) with respect to the norms (𝐻̂0, 𝑔0).

∙ 𝜋 = 𝜋† = 𝜋2, where † is with respect to 𝐻̂0.
∙ (𝐼 − 𝜋)𝜕̄𝜋 = 0

We will need a more precise 𝐿2 bound on |∇̂𝜋|2.
Lemma 3.8. For any 𝛿 > 0, we can estimate

∫
{𝑟>𝛿}

|∇̂𝜋|2
𝐻̂0,𝑔0

𝑑vol𝑔0 ≤ ∫
{𝑟>𝛿}

(TrΛ𝜔0𝐹𝐻̂0𝜋)𝑑vol𝑔0 .

Proof. Wework on the set𝑈𝛿 = {𝑟 > 𝛿}where 𝐼 − ℎ̃
𝜎𝑖
𝑎𝑖
convergesweakly as 𝑖 → ∞ to𝜋 in𝑊1,2(𝑈𝛿)

and 𝐻̂𝑎 converges to 𝐻̂0 in 𝐶∞(𝑈𝛿).

∫
𝑈𝛿

(
Tr

√
−1Λ𝜔0𝐹𝐻̂0𝜋

)
𝑑vol𝑔0 = ∫

𝑈𝛿

Tr
[√
−1Λ𝜔0𝐹𝐻̂0(𝜋 − 𝐼)

]
𝑑vol𝑔0

= − lim
𝑖→∞∫

𝑈𝛿

Tr
(√

−1Λ𝜔𝑖𝐹𝐻̂𝑖 ℎ̃
𝜎𝑖
𝑖

)
𝑑vol𝑔𝑖 (3.16)

In the first equality we used TrΛ𝜔0𝐹𝐻̂0 = 0. Using the formula (2.19) for the difference between
the curvature tensors 𝐹𝐻̂ and 𝐹𝐻 , we obtain

∫
𝑈𝛿

(
TrΛ𝜔0𝐹𝐻̂0𝜋

)
𝑑vol𝑔0 = − lim𝑖→∞∫

𝑈𝛿

Tr 𝑔𝑗𝑘̄𝜕𝑘̄(ℎ̃
−1
𝑖
∇̂𝑗ℎ̃𝑖)ℎ̃

𝜎𝑖
𝑖
)𝑑vol𝑔𝑖 .

The inequality (3.6) can be written as

|ℎ−𝜎∕2∇̂ℎ𝜎|2
𝐻̂,𝑔

−
1

𝜎
Δ𝑔Tr ℎ

𝜎 ≤ −𝑔𝑗𝑘̄⟨𝜕𝑘̄(ℎ−1∇̂𝑗ℎ), ℎ𝜎⟩𝐻̂ .
Since ℎ† = ℎ (with respect to 𝐻̂) and ⟨𝑢, 𝑣⟩𝐻̂ = Tr(𝑢𝑣†), we obtain

∫
𝑈𝛿

(TrΛ𝜔0𝐹𝐻̂0𝜋)𝑑vol𝑔0 ≥ lim
𝑖→∞∫

𝑈𝛿

|ℎ̃−𝜎∕2
𝑖

∇̂ℎ̃
𝜎𝑖
𝑖
|2
𝐻̂𝑖 ,𝑔𝑖

𝑑vol𝑔𝑖 − lim
𝑖→∞∫

𝑈𝛿

1

𝜎
Δ𝜔𝑖Tr ℎ̃

𝜎
𝑖
𝑑vol𝑔𝑖 .
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312 COLLINS et al.

By the balanced condition, this is

∫
𝑈𝛿

(TrΛ𝜔0𝐹𝐻̂0𝜋)𝑑vol𝑔0 ≥ lim
𝑖→∞∫

𝑈𝛿

|ℎ̃−𝜎∕2
𝑖

∇̂ℎ̃
𝜎𝑖
𝑖
|2
𝐻̂𝑖 ,𝑔𝑖

𝑑vol𝑔𝑖 + lim
𝑖→∞∫

{𝑟<𝛿}

1

𝜎
Δ𝜔𝑖Tr ℎ̃

𝜎
𝑖
𝑑vol𝑔𝑖 .

Let 0 < 𝛿 < 𝜀, where 𝜀 is the transition radius in the construction of 𝜔𝑎, so that Λ𝜔𝑎𝐹𝐻̂𝑎 = 0 on
{𝑟 < 𝛿}. It follows from (3.9) that

1

𝜎
Δ𝜔𝑖Tr ℎ̃

𝜎
𝑖
≥ 0, on {𝑟 < 𝛿}.

Combining this with |∇̂ℎ̃𝜎|2 ≤ |ℎ̃−𝜎∕2∇̂ℎ̃𝜎|2, we obtain
∫
𝑈𝛿

(TrΛ𝜔0𝐹𝐻̂0𝜋)𝑑vol𝑔0 ≥ lim
𝑖→∞∫

𝑈𝛿

|∇̂ℎ̃𝜎𝑖
𝑖
|2
𝐻̂𝑖 ,𝑔𝑖

𝑑vol𝑔𝑖 .

We conclude by semi-continuity of weak convergence. □

We now apply the work of Uhlenbeck-Yau [91] (see also [72]) to conclude that, at least over
𝑋 ⧵ 𝑍, the projection 𝜋 defines a coherent subsheaf  ⊂ 𝑇1,0𝑋|𝑋⧵𝑍 , which is locally free outside
of a complex codimension 2 set. Let 𝑘 > 0 be the generic rank of  . We can view  as defining a
meromorphic map

𝜇 ∶ 𝑋 ⧵ 𝑍 → Gr(𝑘, 𝑇1,0𝑋)

to the Grassmann bundle of 𝑘-planes in 𝑇1,0𝑋. Locally near a point in 𝑍 we can trivialize 𝑇1,0𝑋
and, by taking Plücker coordinates on Gr(𝑘, 𝑇1,0𝑋), we view 𝜇 as a collection of meromorphic
functions defined on the complement of 𝑍. On the other hand, since 𝑍 has complex codimension
2, a classical result of Levi [56] (see also [20, Chapter 2]) implies that 𝜇 extends over 𝑍. It follows
that  extends over 𝑍 to a coherent sheaf (also denoted by ) by taking the direct image of the
tautological bundle overGr(𝑘, 𝑇1,0𝑋). We have thus produced a coherent sheaf  ⊂ 𝑇1,0𝑋, locally
free outside a codimension 2 set 𝑍′. We will show that this sheaf contradicts the stability of 𝑇1,0𝑋.
To contradict stability, we need to show that

𝑐1() ⋅ [𝜔CY]2 ≥ 0.
The only reason this does not follow immediately from the standard argument is that the metrics
𝐻̂0 and 𝜔0 are not smooth on 𝑋. Thus we need to show that the singularities do not contribute.
Denote by 𝐻̂′

0 the metric induced by 𝐻̂0 on the subbundle |𝑋⧵𝑍′ ⊂ 𝑇1,0𝑋|𝑋⧵𝑍′ . We begin by
computing the slope defined by 𝐻̂′

0 and 𝜔0. Let us introduce the notation

𝑐1( , 𝐻̂′
0) ⋅ 𝜔

2
0 = ∫

𝑋⧵𝑍′
Tr

√
−1𝐹𝐻̂′

0
∧
𝜔20
2
.

The identity for the curvature of the induced connection on a subbundle defined by a projection
𝜋 is (see, e.g. [91, equation (4.16)])

Tr
√
−1Λ𝜔0𝐹𝐻̂′0

= Tr
√
−1Λ𝜔0𝐹𝐻̂0𝜋 − |∇̂𝜋|2

𝐻̂0,𝑔0
.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 313

Therefore

𝑐1( , 𝐻̂′
0) ⋅ 𝜔

2
0 = ∫

𝑋⧵𝑍′

[(
Tr

√
−1Λ𝜔0𝐹𝐻̂0𝜋

)
− |∇̂𝜋|2

𝐻̂0,𝑔0

]
𝑑vol𝑔0 .

By letting 𝛿 → 0 in Lemma 3.8, we see that

𝑐1( , 𝐻̂′
0) ⋅ 𝜔

2
0 ≥ 0.

We note that this quantity is finite. We can estimate the endomorphism Λ𝜔0(𝐹𝐻̂0𝜋) by using that|𝐹𝐻̂0 |𝐻̂0,𝑔0 ≤ 𝐶𝑟−2, thanks to Corollary 3.3, and |𝜋|𝐻̂0 ≤ 𝐶 since 𝜋 = 𝜋†𝐻̂0 = 𝜋2. Therefore
||||∫𝑋⧵𝑍

(
Tr

√
−1Λ𝜔0𝐹𝐻̂0𝜋

)
𝑑vol𝑔0

|||| ≤ 𝐶 ∫
𝑋⧵𝑍

𝑟−2𝑑vol𝑔0 ≤ 𝐶,

using that, near {𝑟 = 0}, the metric 𝑔0 is a cone over a five-dimensional link.
The next step is to show that 𝑐1( , 𝐻̂′

0) ⋅ 𝜔
2
0 is equal to 𝑐1() ⋅ [𝜔𝐶𝑌]2. Recall that  defines a

line bundle 𝐿 = det , and if 𝑒𝜑 is a smooth metric on 𝐿 then 𝛽 = −√−1𝜕𝜕𝜑 is a representative of
𝑐1(). For concreteness, we let 𝛽 be the curvature form associated to the metric 𝑔𝐶𝑌| . We write
the difference as

𝑐1() ∧ [𝜔CY]2 − 𝑐1( , 𝐻̂′
0).𝜔

2
0

= ∫
𝑋⧵𝑍′

(
𝛽 −

√
−1Tr𝐹𝐻̂′

0

)
∧ 𝜔20 + ∫

𝑋⧵𝑍

𝛽 ∧
(
𝜔2CY − 𝜔

2
0

)
∶= (I) + (II).

We will treat each term individually. Recall 𝑍′ is a codimension 2 analytic set containing the
singularities of  (which contains 𝑍 = ∪𝐶𝑖). Let 𝜂𝛿 be a cutoff function such that 𝜂𝛿 ≡ 1 on
{dist𝑔𝐶𝑌 (𝑍

′, ⋅) > 2𝛿} and 𝜂𝛿 ≡ 0 on {dist𝑔𝐶𝑌 (𝑍′, ⋅) < 𝛿} with |√−1𝜕𝜕𝜂𝛿|𝑔𝐶𝑌 ≤ 𝐶𝛿−2.
∙ Term (I). Working near a point where  is locally free we have

𝛽 −
√
−1Tr𝐹𝐻̂′

0
= −

√
−1𝜕𝜕 log

(
det 𝑔𝐶𝑌||
det 𝐻̂0||

)
.

Note that by the AM-GM inequality we have

(
det 𝑔𝐶𝑌||
det 𝐻̂0||

) 1

rk()
≤ 1

rk()Tr
(
𝐻̂0||−1 𝑔𝐶𝑌||) ≤ 1

rk()Tr
(
𝐻̂−1
0 𝑔𝐶𝑌

)
where in the second inequality we used that 𝐻̂−1

0 𝑔𝐶𝑌 is positive definite. Similarly we have

(
det 𝐻̂0||
det 𝑔𝐶𝑌||

) 1

rk()
≤ 1

rk()Tr
(
𝑔−1
𝐶𝑌
𝐻̂0

)
.
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314 COLLINS et al.

On the other hand from (2.17) we have

dist𝑔𝐶𝑌 (𝑍, ⋅)
4∕3𝑔𝐶𝑌 ≤ 𝑔0 ≤ dist𝑔𝐶𝑌 (𝑍, ⋅)−2∕3𝑔𝐶𝑌

since 𝑟3 = ‖𝑧‖2 ∼ dist2𝑔𝐶𝑌 (𝑍, ⋅) near the singular points. Hence the same estimates hold for 𝐻̂0
and so we have

|||| log
(
det 𝑔𝐶𝑌||
det 𝐻̂0||

)|||| ≤ −𝐶 log dist𝑔𝐶𝑌 (𝑍, ⋅) + 𝐶
for a uniform constant 𝐶. Integrating by parts gives

∫
𝑋⧵𝑍′

𝜂𝛿

(
𝛽 −

√
−1Tr𝐹𝐻̂′

0

)
∧ 𝜔20 = ∫

𝑋⧵𝑍′
log

(
det 𝑔𝐶𝑌||
det 𝐻̂0||

)√
−1𝜕𝜕𝜂𝛿 ∧ 𝜔

2
0.

From the definition of 𝜂𝛿 and the bound 𝜔0 ≤ dist𝑔𝐶𝑌 (𝑍, ⋅)−2∕3𝜔𝐶𝑌 we get
||||∫𝑋⧵𝑍′ 𝜂𝛿

(
𝛽 −

√
−1Tr𝐹𝐻̂′

0

)
∧ 𝜔20

|||| ≤ 𝐶𝛿4−2−4∕3(− log(𝛿))
since Vol𝑔𝐶𝑌 ({𝑥 ∈ 𝑋 ∶ 𝛿 < dist𝑔𝐶𝑌 (𝑍

′, 𝑥) < 2𝛿}) ∼ 𝛿4. It follows that term (I) vanishes.
∙ Term (II). By Proposition 2.18,

(II) = ∫
𝑈∖𝑍

𝛽 ∧
(
𝜔2
𝐶𝑌
− 𝜔20

)
where 𝑈 is a tubular neighborhood of 𝑍, which is a disjoint union of tubular neighborhoods
of the (−1, −1) rational curves. Since 𝑈 retracts onto 𝑍, which has complex dimension 1 (and
hence𝐻4(𝑈) = 0) we can write

𝜔2
𝐶𝑌
= 𝑑Φ

for a smooth 3-form Φ. On the other hand, by Proposition 2.18 𝜔2𝑐𝑜 =
√
−1𝜕𝜕Φ′ where, Φ′ is

smooth in 𝑈 ⧵ 𝑍 and near each (−1, −1) curve 𝐶𝑖 there is a constant 𝜆𝑖 > 0 such that we have

Φ′ = 𝜆𝑖𝑟
2
√
−1𝜕𝜕𝑟2 = 𝜆𝑖𝑟

2𝜔0

where we recall that 𝑟2 = ‖𝑧‖4∕3. Thus, we have
∫
𝑋⧵𝑍

𝜂𝛿𝛽 ∧
(
𝜔2
𝐶𝑌
− 𝜔20

)
= ∫

𝑈

𝑑𝜂𝛿 ∧ 𝛽 ∧ Φ − ∫
𝑈⧵𝑍

√
−1𝜕𝜕𝜂𝛿 ∧ 𝛽 ∧ Φ

′.

The first integral is easily seen to be of order 𝛿3. For the second integral, we use the bound
𝑔0 ≤ dist𝑔𝐶𝑌 (𝑍, ⋅)−2∕3𝑔𝐶𝑌 together with the definition of 𝜂𝛿 and 𝑟 to conclude

||∫
𝑈⧵𝑍

√
−1𝜕𝜕𝜂𝛿 ∧ 𝛽 ∧ Φ

′|| ≤ 𝐶𝛿4−2+ 4

3
−
2

3 .
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 315

It follows that term (II) vanishes, and hence

𝑐1( , 𝐻̂′
0) ⋅ 𝜔

2
0 = 𝑐1() ⋅ [𝜔𝐶𝑌]2

and hence 𝑐1() ⋅ [𝜔CY]2 ≥ 0, which contradicts the stability of 𝑇1,0𝑋. We conclude that
sup𝑋 Tr ℎ̂𝑎 ≤ 𝐶 as 𝑎 → 0, which proves the 𝐶0 estimate (3.4).

3.3 Gradient estimate

In this section, wewill show that, along the sequence (𝑔𝑎,𝐻𝑎), there holds an estimate of the form

|∇𝑔𝑎𝐻𝑎|𝑔𝑎 ≤ 𝐶𝑟−1. (3.17)

We will use the ideas from Calabi’s 𝐶3 estimate [6], as applied in complex geometry by Yau [94]
and further developed by Phong-Sesum-Sturm [71] (for other applications of this technique, see,
e.g. [26, 77, 89]). We will work with the quantity

𝑆 = |∇𝐻𝑎ℎ𝑎ℎ−1𝑎 |2𝑔𝑎,𝐻𝑎 ,
where ℎ𝑎 = 𝑔−1𝑎 𝐻𝑎 and by the mixed norms we mean

|∇ℎ𝑎ℎ−1𝑎 |2𝑔𝑎,𝐻𝑎 = (𝑔𝑎)𝑗𝑘̄(𝐻𝑎)𝛽𝛼(𝐻𝑎)𝜇𝜈̄(∇𝑗ℎ𝑎ℎ−1𝑎 )𝛼𝜇(∇𝑘ℎ𝑎ℎ−1𝑎 )𝛽𝜈.
The quantity 𝑆 can be understood as the difference of connections by the formula

∇𝐻ℎℎ
−1 = 𝐴𝐻 − 𝐴𝑔, (3.18)

where

𝐴𝐻 = 𝐻
−1𝜕𝐻, 𝐴𝑔 = 𝑔

−1𝜕𝑔.

For ease of notation, in this sectionwe omit the sequence subscript 𝑎. Wewill obtain the following
estimate.

Proposition 3.9. Let (𝑋, 𝑔) be a compact Hermitian complex manifold with smooth function 𝑟 ∶
𝑋 → [0,∞) satisfying |∇𝑟|𝑔 ≤ Λ for Λ > 0. Let𝐻 be a second Hermitian metric on 𝑇1,0𝑋 satisfying
𝑔𝑗𝑘̄(𝐹𝐻)𝑗𝑘̄

𝛼
𝛽 = 0 and 𝐶−10 𝑔 ≤ 𝐻 ≤ 𝐶0𝑔. Let 𝜀 > 0. Suppose that on {𝑟 ≤ 𝜀}, the metric 𝑔 is Kähler

Ricci-flat, and satisfies

|𝑅𝑚𝑔|𝑔 ≤ 𝐶1𝑟−2.
Suppose on the set {𝑟 > 𝜀}, we have the estimate

|𝑇𝑔| + |𝑅𝑚𝑔| + |∇𝑔𝑅𝑚𝑔| ≤ Λ,
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316 COLLINS et al.

where 𝑇𝑔 is the torsion of 𝑔 and 𝑅𝑚𝑔 is the curvature of 𝑔. Then

𝑟2|∇𝐻ℎℎ−1|2𝑔,𝐻 ≤ 𝐶(𝐶0, 𝐶1, Λ, 𝜀) (3.19)

where ℎ = 𝑔−1𝐻 and ∇𝐻 is the Chern connection of𝐻.

The sequence (𝑔𝑎,𝐻𝑎) satisfies the hypothesis of the proposition on 𝑋 with a function 𝑟 which
is an extension of ‖𝑧‖2∕3 from𝑈(1∕2) to all of𝑋 with 𝑟−1(0) = ∪𝐶𝑖 , and the constants are uniform
in 𝑎. Indeed, the uniform bounds

|𝑅𝑚𝑔𝑎 |𝑔𝑎 ≤ 𝐶𝑟−2, |∇𝑟|𝑔𝑎 ≤ 𝐶
can be seen by a scaling argument. First, the bounds hold on {𝑟 ≥ 𝜀} since the geometry of 𝑔𝑎 is
uniform there. Second, on {𝑟 < 𝜀} these bounds hold when 𝑎 = 1, and to obtain uniform bounds
for all 𝑎 we work in coordinates (𝑢, 𝑣, 𝑧) used previously on ℙ1(−1)⊕2 and use the scaling map
𝑆𝑎−1(𝑢, 𝑣, 𝑧) = (𝑎

−3∕2𝑢, 𝑎−3∕2𝑣, 𝑧). Since 𝑟3 = (1 + |𝑧|2)(|𝑢|2 + |𝑣|2), we have 𝑆∗
𝑎−1
𝑟 = 𝑎−1𝑟, and

we also have 𝑆∗
𝑎−1
𝜔𝑐𝑜,1 = 𝑎

−2𝜔𝑐𝑜,𝑎, see, for example (2.18). Pulling back |𝑅𝑚𝑔1 |𝑔1 ≤ 𝐶𝑟−2 gives the
uniform estimate in 𝑎, and similarly for |∇𝑟|.
Therefore, by proving Proposition 3.9, we can conclude the gradient estimate (3.17). Indeed

|∇𝑔𝑎𝐻𝑎|𝑔𝑎 = |(∇𝑔𝑎 − ∇𝐻𝑎)𝐻𝑎|𝑔𝑎 = |(∇𝐻𝑎ℎ𝑎ℎ−1𝑎 )𝐻𝑎|𝑔𝑎 ≤ 𝐶𝑟−1,
since the 𝐶0 estimate (3.4) is 𝐶−1𝑔𝑎 ≤ 𝐻𝑎 ≤ 𝐶𝑔𝑎.

3.3.1 Laplacian of 𝑆

The proof of Proposition 3.9will occupy the remainder of this section. To estimate 𝑆 = |∇ℎℎ−1|2𝑔,𝐻 ,
we start by differentiating it once

∇𝑘̄𝑆 = ⟨∇𝑘̄(∇ℎℎ−1), ∇ℎℎ−1⟩𝑔,𝐻 + ⟨∇ℎℎ−1,∇𝑘(∇ℎℎ−1)⟩𝑔,𝐻.
The covariant derivative ∇𝑘 here is the Chern connection of 𝐻 on indices measured with 𝐻, and
the Chern connection of 𝑔 on indices measured with 𝑔. Concretely, we mean

∇𝑘(∇𝑗ℎℎ
−1)𝛼𝛽 = 𝜕𝑘(∇𝑗ℎℎ

−1)𝛼𝛽 − (∇𝑟ℎℎ
−1)𝛼𝛽(𝐴𝑔)𝑘

𝑟
𝑗

+(𝐴𝐻)𝑘
𝛼
𝛾(∇𝑗ℎℎ

−1)𝛾𝛽 − (∇𝑗ℎℎ
−1)𝛼𝛾(𝐴𝐻)𝑘

𝛾
𝛽. (3.20)

Differentiating 𝑆 twice gives

𝑔𝑗𝑘̄∇𝑗∇𝑘̄𝑆 = |∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻
+ 𝑔𝑗𝑘̄⟨∇𝑗∇𝑘̄(∇ℎℎ−1), ∇ℎℎ−1⟩𝑔,𝐻
+ ⟨∇ℎℎ−1, 𝑔𝑘𝑗̄∇𝑗̄∇𝑘(∇ℎℎ−1)⟩𝑔,𝐻
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where

|∇(∇ℎℎ−1)|2𝑔,𝐻 = 𝑔𝑗𝑘̄𝐻𝑝𝑞̄𝐻𝜇𝜈̄𝐻𝛽𝛼∇𝑗(∇𝑝ℎℎ
−1)𝛼𝜇∇𝑘(∇𝑞ℎℎ−1)𝛽𝜈.

Our curvature conventions imply the commutator relations

[∇𝑗, ∇𝑘̄]𝑉
𝛼 = 𝐹𝑗𝑘̄

𝛼
𝛾𝑉

𝛾, [∇𝑗, ∇𝑘̄]𝑉𝛼 = −𝑉𝛾𝐹𝑗𝑘̄
𝛾
𝛼,

which gives

∇𝑗̄∇𝑘(∇𝑟ℎℎ
−1)𝛼𝛽 = ∇𝑘∇𝑗̄(∇𝑟ℎℎ

−1)𝛼𝛽 + (∇𝑠ℎℎ
−1)𝛼𝛽(𝑅𝑔)𝑘𝑗̄

𝑠
𝑟

−𝐹𝑘𝑗̄
𝛼
𝛾(∇𝑟ℎℎ

−1)𝛾𝛽 + (∇𝑟ℎℎ
−1)𝛼𝛾𝐹𝑘𝑗̄

𝛾
𝛽. (3.21)

Since Λ𝜔𝐹𝐻 = 0 and we write 𝑔𝑗𝑘(𝑅𝑔)𝑘̄𝑗𝑠𝑟 = (𝑅𝑔)𝑠𝑟, we have

𝑔𝑘𝑗̄∇𝑗̄∇𝑘(∇𝑟ℎℎ
−1)𝑝𝑞 = 𝑔

𝑗𝑘̄∇𝑗∇𝑘̄(∇𝑟ℎℎ
−1)𝑝𝑞 + (∇𝑠ℎℎ

−1)𝛼𝛽(𝑅𝑔)
𝑠
𝑟.

Therefore

Δ𝑔𝑆

= 2Re ⟨𝑔𝑗𝑘̄∇𝑗∇𝑘̄(∇ℎℎ−1), ∇ℎℎ−1⟩ + |∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻
+ 𝑔𝑠𝑟𝐻𝛽𝛼𝐻

𝜇𝜈̄(∇𝑠ℎℎ
−1)𝛼𝜇(∇𝑝ℎℎ−1)𝛽𝜈(𝑅𝑔)𝑝𝑟.

We relate the highest order terms of order ∇3ℎ to the curvatures 𝑅𝑔, 𝐹𝐻 and their derivatives.

Lemma 3.10. The following identity holds:

𝑔𝑗𝑘̄∇𝑗∇𝑘̄(∇𝑖ℎℎ
−1)𝛼𝛽 = 𝑔

𝑗𝑘̄∇
𝑔
𝑗
(𝑅𝑔)𝑖𝑘̄

𝛼
𝛽 + 𝑔

𝑗𝑘̄(∇𝑗ℎℎ
−1)𝛼𝛾(𝑅𝑔)𝑖𝑘̄

𝛾
𝛽

− 𝑔𝑗𝑘̄(𝑅𝑔)𝑖𝑘̄
𝛼
𝛾(∇𝑗ℎℎ

−1)𝛾𝛽

+ 𝑔𝑗𝑘̄𝜕𝑘̄(∇𝑟ℎℎ
−1)𝛼𝛽(𝑇𝑔)

𝑟
𝑖𝑗 − 𝑔

𝑗𝑘̄(𝑅𝑔)𝑟𝑘̄
𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗, (3.22)

where ∇𝑔𝑅𝑔 is the covariant derivative of the curvature tensor of 𝑔 with respect to the Chern
connection of 𝑔 (in particular the connection of𝐻 is not involved in this term).

Proof. By (3.18),

𝜕𝑘̄(∇𝑖ℎℎ
−1) = (𝑅𝑔)𝑖𝑘̄ − (𝐹𝐻)𝑖𝑘̄. (3.23)

Therefore

𝑔𝑗𝑘̄∇𝑗∇𝑘̄(∇𝑖ℎℎ
−1)𝛼𝛽 = 𝑔

𝑗𝑘̄∇𝑗(𝑅𝑔)𝑖𝑘̄
𝛼
𝛽 − 𝑔

𝑗𝑘̄∇𝑗(𝐹𝐻)𝑖𝑘̄
𝛼
𝛽. (3.24)
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318 COLLINS et al.

Recall that our notation (3.20) is such that∇ acts by the Chern connection of𝐻 on 𝛼, 𝛽, 𝛾 indices
and acts by the Chern connection of 𝑔 on 𝑖, 𝑗, 𝑘 indices. The Bianchi identity is

∇𝑗(𝐹𝐻)𝑖𝑘̄
𝛼
𝛽 = ∇𝑖(𝐹𝐻)𝑗𝑘̄

𝛼
𝛽 + (𝐹𝐻)𝑟𝑘̄

𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗 (3.25)

where 𝑇𝑔 is the torsion (2.20) of the metric 𝑔.
Contracting (3.25) and using Λ𝜔𝐹𝐻 = 0, we obtain

𝑔𝑗𝑘̄∇𝑗(𝐹𝐻)𝑖𝑘̄
𝛼
𝛽 = 𝑔

𝑗𝑘̄(𝐹𝐻)𝑟𝑘̄
𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗.

Substituting this into (3.24) gives

𝑔𝑗𝑘̄∇𝑗∇𝑘̄(∇𝑖ℎℎ
−1)𝛼𝛽 = 𝑔

𝑗𝑘̄∇𝑗(𝑅𝑔)𝑖𝑘̄
𝛼
𝛽 − 𝑔

𝑗𝑘̄(𝐹𝐻)𝑟𝑘̄
𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗. (3.26)

Our notation (3.20) means that∇𝑗(𝑅𝑔)𝑖𝑘̄𝛼𝛽 involves connection terms𝐻−1𝜕𝐻 on the 𝛼, 𝛽 indices.
We will now convert the Chern connection of 𝐻 into the Chern connection of 𝑔 via

∇𝑗(𝑅𝑔)𝑖𝑘̄
𝛼
𝛽 = ∇

𝑔
𝑗
(𝑅𝑔)𝑖𝑘̄

𝛼
𝛽 + [(𝐴𝐻)𝑗

𝛼
𝛾 − (𝐴𝑔)𝑗

𝛼
𝛾](𝑅𝑔)𝑖𝑘̄

𝛾
𝛽

− (𝑅𝑔)𝑖𝑘̄
𝛼
𝛾[(𝐴𝐻)𝑗

𝛾
𝛽 − (𝐴𝑔)𝑗

𝛾
𝛽].

By (3.18), equation (3.26) becomes

𝑔𝑗𝑘̄∇𝑗∇𝑘̄(∇𝑖ℎℎ
−1)𝛼𝛽 = 𝑔

𝑗𝑘̄∇
𝑔
𝑗
(𝑅𝑔)𝑖𝑘̄

𝛼
𝛽 + 𝑔

𝑗𝑘̄(∇𝑗ℎℎ
−1)𝛼𝛾(𝑅𝑔)𝑖𝑘̄

𝛾
𝛽

− 𝑔𝑗𝑘̄(𝑅𝑔)𝑖𝑘̄
𝛼
𝛾(∇𝑗ℎℎ

−1)𝛾𝛽 − 𝑔
𝑗𝑘̄(𝐹𝐻)𝑟𝑘̄

𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗. (3.27)

Using (3.23), we obtain the statement in the lemma. □

Altogether, the Laplacian of 𝑆 is

Δ𝑔𝑆 = |∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻
+ 2Re [(I) + (II) + (IIIa) + (IIIb)] (3.28)

where

(I) = 𝑔𝑖𝓁̄𝐻𝜇̄𝛼𝐻
𝛽𝜈̄𝑔𝑗𝑘̄𝜕𝑘̄(∇𝑟ℎℎ

−1)𝛼𝛽(𝑇𝑔)
𝑟
𝑖𝑗(∇𝓁ℎℎ−1)𝜇𝜈,

(II) = 𝑔𝑖𝓁̄𝐻𝜇̄𝛼𝐻
𝛽𝜈̄[𝑔𝑗𝑘̄∇

𝑔
𝑗
(𝑅𝑔)𝑖𝑘̄

𝛼
𝛽 − 𝑔

𝑗𝑘̄(𝑅𝑔)𝑟𝑘̄
𝛼
𝛽(𝑇𝑔)

𝑟
𝑖𝑗](∇𝓁ℎℎ−1)𝜇𝜈

(IIIa) = 𝑔𝑖𝓁̄𝐻𝜇̄𝛼𝐻
𝛽𝜈̄[𝑔𝑗𝑘̄(∇𝑗ℎℎ

−1)𝛼𝛾(𝑅𝑔)𝑖𝑘̄
𝛾
𝛽](∇𝓁ℎℎ−1)𝜇𝜈

− 𝑔𝑗𝑘̄(𝑅𝑔)𝑖𝑘̄
𝛼
𝛾(∇𝑗ℎℎ

−1)𝛾𝛽(∇𝓁ℎℎ−1)𝜇𝜈

(IIIb) = 𝑔𝑖𝓁̄𝐻𝜇̄𝛼𝐻
𝛽𝜈̄(∇𝑖ℎℎ

−1)𝛼𝛽(𝑅𝑔)𝓁̄
𝑝̄(∇𝑝ℎℎ−1)𝜇𝜈

Recall 𝜀 > 0 divides the manifold into two regions {𝑟 ≤ 𝜀} and {𝑟 > 𝜀}.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 319

∙ On {𝑟 > 𝜀}, the geometry (𝑋, 𝑔) is uniformly bounded by a constant Λ. The 𝐶0 estimate 𝐶−10 𝑔 ≤
𝐻 ≤ 𝐶0𝑔 allows us to use norms with respect to 𝑔 or 𝐻 interchangeably up to the cost of
constant. Hence on {𝑟 > 𝜀} we have

||||(I) + (II) + (IIIa) + (IIIb)||||
≤ 𝐶Λ,𝐶0

[|∇̄(∇ℎℎ−1)|𝑔,𝐻|∇ℎℎ−1|𝑔,𝐻 + |∇ℎℎ−1|𝑔,𝐻 + |∇ℎℎ−1|2𝑔,𝐻]
and ||||(I) + (II) + (IIIa) + (IIIb)||||

≤ 1

4

(|∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻) + 𝐶(𝑆 + 1) (3.29)

where 𝐶 depends on 𝐶0 and Λ.
∙ On {𝑟 < 𝜀}, the metric 𝑔 is Kähler Ricci-flat. Term (I) vanishes since the torsion 𝑇𝑔 = 0. Term
(II) vanishes by the Bianchi identity

𝑔𝑗𝑘̄∇𝑗𝑅𝑖𝑘̄
𝛼
𝛽 = 𝑔

𝑗𝑘̄∇𝑖𝑅𝑗𝑘̄
𝛼
𝛽 = 0

combined with the Ricci-flat condition. Term (IIIb) also vanishes and we are left with

Δ𝑔𝑆 = |∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻 + 2Re (IIIa).
By uniform equivalence of the metrics 𝑔 and𝐻, we may estimate this as

|(IIIa)| ≤ 𝐶(𝐶0)|𝑅𝑚𝑔|𝑔𝑆.
By the estimate |𝑅𝑚𝑔| ≤ 𝐶1𝑟−2, we see that on the entirety of 𝑋 we can estimate

||||(I) + (II) + (IIIa) + (IIIb)||||
≤ 1

4
(|∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻) + 𝐶𝑟−2(𝑆 + 1) (3.30)

where 𝐶 depends on 𝐶0, 𝐶1, Λ, 𝜀.

3.3.2 Test function

To construct a test function to control 𝑆, we will use Tr ℎ. Contracting the formula (2.19) for the
difference of curvature tensors and using Λ𝜔𝐹𝐻 = 0, we see that√

−1Λ𝜔𝑅𝑚𝑔 = −𝑔
𝑗𝑘̄𝜕𝑘̄(ℎ∇

𝐻
𝑗
ℎ−1) = 𝑔𝑗𝑘̄𝜕𝑘̄(∇

𝐻
𝑗
ℎℎ−1).
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320 COLLINS et al.

Therefore

Tr (
√
−1Λ𝜔𝑅𝑚𝑔)ℎ = Δ𝑔Trℎ − 𝑔𝑗𝑘̄Tr∇𝑗ℎℎ−1∇𝑘̄ℎ.

We note that since Λ𝜔𝑅𝑚𝑔 = 0 in {𝑟 ≤ 𝜀}, we have the bound
|Λ𝜔𝑅𝑚𝑔| ≤ 𝐶(Λ).

Let 𝛿 > 0. Let 𝜁(𝑠) ∶ [0,∞) → [0, 1] be a cutoff function satisfying 𝜁(𝑠) ≡ 1when 𝑠 ≥ 2 and 𝜁(𝑠) ≡
0 when 𝑠 ≤ 1, and |𝜁′|2 ≤ 9𝜁. We will use the test function

𝑃(𝑧) = 𝜁𝛿(𝑧)𝑆(𝑧) +
𝐴

𝛿2
Tr ℎ(𝑧), 𝜁𝛿(𝑧) = 𝜁

(
𝑟(𝑧)

𝛿

)
,

for 𝐴(Λ, 𝐶0, 𝐶1) ≫ 1 to be chosen later. Then

Δ𝑔𝑃 = 𝜁𝛿Δ𝑔𝑆 + 𝑆Δ𝑔𝜁𝛿 + 2Re 𝑔
𝑗𝑘̄𝜕𝑗𝜁𝛿𝜕𝑘̄𝑆 + 𝐴𝛿

−2Δ𝑔Tr ℎ.

By (3.28),

Δ𝑔𝑃 = 𝜁𝛿(|∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻) + 𝐴𝛿−2𝑔𝑗𝑘̄Tr ∇𝑗ℎℎ−1∇𝑘̄ℎ
+ 2𝜁𝛿Re [(I) + (II) + (III)] + (IV) + (V) + (VI) (3.31)

where

(IV) = 𝑆Δ𝑔𝜁𝛿

(V) = 2Re 𝑔𝑗𝑘̄𝜕𝑗𝜁𝛿[⟨∇𝑘̄(∇ℎℎ−1), ∇ℎℎ−1⟩ + ⟨∇ℎℎ−1,∇𝑘(∇ℎℎ−1)⟩]
(VI) = 𝐴𝛿−2Tr (

√
−1Λ𝑅𝑚𝑔)ℎ

We want to show that 𝑃 is bounded by 𝐶(𝐶0, 𝐶1, Λ)𝛿−2. If 𝑃 attains a maximum on {𝑟 ≤ 𝛿}, then
𝜁𝛿 = 0 and 𝑃 is bounded by𝐴𝛿−2 sup𝑋 Tr ℎ. Suppose 𝑃 attains a maximum at a point 𝑥 ∈ {𝑟 > 𝛿}.
Our good term will be

𝐴𝛿−2𝑔𝑗𝑘̄Tr ∇𝑗ℎℎ
−1∇𝑘̄ℎ ≥ 𝐴

𝛿2𝐶(𝐶0)
|∇ℎℎ−1|2𝑔,𝐻 = 𝐴

𝐶𝛿2
𝑆 (3.32)

using 𝐶−10 𝑔 ≤ 𝐻 ≤ 𝐶0𝑔 and ℎ† = ℎ. For the term (V),

|(V)| ≥ −𝐶𝑆1∕2|∇𝜁𝛿|𝑔(|∇(∇ℎℎ−1)|𝑔,𝐻 + |∇(∇ℎℎ−1)|𝑔,𝐻).
We have

|∇𝜁𝛿|𝑔 = 𝛿−1|𝜁′||∇𝑟|𝑔 ≤ 𝐶(Λ)𝛿−1|𝜁′|.

 10970312, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22135 by U

niversity O
f Toronto Librarie, W

iley O
nline Library on [06/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 321

Since |𝜁′| ≤ 3|𝜁|1∕2, we have
|(V)| ≥ −𝐶𝛿−1𝑆1∕2|𝜁𝛿|1∕2(|∇(∇ℎℎ−1)| + |∇(∇ℎℎ−1)|)

Using 2𝑎𝑏 ≤ 𝑎2 + 𝑏2, we can estimate

|(V)| ≥ −1
4
|𝜁𝛿|(|∇(∇ℎℎ−1)|2 + |∇(∇ℎℎ−1)|2) − 𝐶𝛿−2𝑆.

In (3.30), we showed the estimate

2𝜁𝛿Re [(I) + (II) + (III)] ≥ −14 |𝜁𝛿|(|∇(∇ℎℎ−1)|2 + |∇(∇ℎℎ−1)|2) − 𝐶|𝜁𝛿|𝑟−2𝑆.
We are working in the region where 𝑟−2 < 𝛿−2, hence we obtain at 𝑥 the inequality

0 ≥ Δ𝑃(𝑥)
≥ 𝜁𝛿
2
(|∇(∇ℎℎ−1)|2𝑔,𝐻 + |∇̄(∇ℎℎ−1)|2𝑔,𝐻) + 𝐴

𝐶
𝛿−2𝑆 − 𝐶𝛿−2𝑆 − 𝐶𝐴𝛿−2.

For 𝐴 ≫ 1 depending on 𝐶0, 𝐶1, Λ, we obtain

𝑆(𝑥) ≤ 𝐶.
It follows that 𝑃(𝑥) is bounded by 𝐶𝛿−2. From the bound of 𝑃, we obtain a bound for 𝑆 on {𝑟 ≥ 2𝛿}
since 𝜁 ≡ 1 there.

sup
{𝑟≥2𝛿}

𝑆 ≤ 𝐶𝛿−2.

It follows that for any point 𝑥 ∈ 𝑋, we have the estimate

𝑆(𝑥) ≤ 𝐶𝑟(𝑥)−2.
This completes the proof of Proposition 3.9.

3.4 Higher estimates

By combining the 𝐶0 and 𝐶1 estimates along the degenerating sequence (𝑔𝑎,𝐻𝑎), we can apply
regularity theory of elliptic equations to obtain higher order estimates and obtain a limit as 𝑎 → 0.

Proof of Theorem 3.1. To extract a limit from (𝑔𝑎,𝐻𝑎), we fix 𝛿 > 0 and work on the set𝑈𝛿 = {𝑟 >
𝛿}. Since 𝑔𝑎 → 𝑔0 smoothly uniformly on 𝑈𝛿, we can cover 𝑈𝛿 by finitely many charts where the
matrices representing the metrics 𝑔𝑎 satisfy

Λ−1
𝛿
𝛿𝑘𝑗 ≤ (𝑔𝑎)𝑘̄𝑗 ≤ Λ𝛿𝛿𝑘𝑗, ‖(𝑔𝑎)𝑘̄𝑗‖𝐶𝑘 ≤ Λ𝛿,𝑘.
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322 COLLINS et al.

The 𝐶0 estimate (3.4) for 𝐻𝑎 implies that on this cover of 𝑈𝛿, the local matrices
satisfy

𝐶−1𝛿𝑘𝑗 ≤ (𝐻𝑎)𝑘̄𝑗 ≤ 𝐶𝛿𝑘𝑗.
The 𝐶1 estimate (3.17) gives a uniform bound

‖𝜕(𝐻𝑎)𝜇̄𝜈‖𝐿∞(𝑈𝛿) ≤ 𝐶
uniform in 𝑎 on the local matrices (𝐻𝑎)𝜇̄𝜈. The equation Λ𝜔𝑎𝐹𝐻𝑎 = 0 is given in local charts
as

(𝑔𝑎)
𝑗𝑘̄𝜕𝑗𝜕𝑘̄(𝐻𝑎)𝜇̄𝜈 = (𝑔𝑎)

𝑗𝑘̄𝜕𝑘̄(𝐻𝑎)𝜇̄𝛾(𝐻𝑎)
𝛾𝛼̄𝜕𝑗(𝐻𝑎)𝛼̄𝜈.

The right-hand side is bounded in𝐿∞. By the local𝐶1,𝛼 estimate for elliptic PDE, the localmatrices
(𝐻𝑎)𝜇̄𝜈 satisfy

‖(𝐻𝑎)𝜇̄𝜈‖𝐶1,𝛼(𝑈𝛿) ≤ 𝐶.
By the local Schauder estimates, we can take a smooth limit of the sequence (𝑔𝑎,𝐻𝑎) on 𝑈𝛿 as
𝑎 → 0. The limiting metric𝐻0 satisfies

Λ𝜔0𝐹𝐻0 = 0

on 𝑈𝛿. We can now let 𝛿 → 0 to obtain a limiting metric 𝐻0 on 𝑋𝑟𝑒𝑔. The 𝐶
0 and 𝐶1 estimates

imply

|𝐻0|𝑔0 + |𝐻−1
0 |𝑔0 + 𝑟|∇𝑔0𝐻0|𝑔0 ≤ 𝐶. (3.33)

To obtain higher estimates, we work near the singularities of 𝑋, which can be identified with a
neighborhood of𝑉0 with 𝑔0 = 𝑔𝑐𝑜,0. In holomorphic cylindrical coordinates (see Lemma 2.11), we
have 𝑟2𝑔−1𝑐𝑜,0 = 𝑂(𝐼) (notation 𝑂(𝐼) is used for a matrix uniformly equivalent to the identity) and
the equation

𝑟2(𝑔𝑐𝑜,0)
𝑗𝑘̄𝜕𝑗𝜕𝑘̄(𝐻0)𝜇̄𝜈 = 𝑟

2(𝑔𝑐𝑜,0)
𝑗𝑘̄𝜕𝑘̄(𝐻0)𝜇̄𝛾(𝐻0)

𝛾𝛼̄𝜕𝑗(𝐻0)𝛼̄𝜈.

Estimate (3.33) in these coordinates is 𝐻 = 𝑟2𝑂(𝐼) and 𝜕𝐻 = 𝑟2𝑂(1). Therefore this local
equation is of the form

𝑎𝑖𝑗̄𝜕𝑖𝜕𝑗̄𝐻0 = 𝑓, 𝑓 = 𝑟2𝑂(1), 𝑎𝑖𝑗̄ = 𝑂(𝐼).

Local 𝐶1,𝛼 estimates for elliptic PDE imply

‖(𝐻0)𝜇̄𝜈‖𝐶1,𝛼(𝐵1∕2,𝑔𝑒𝑢𝑐) ≤ 𝐶(‖𝐻𝜇̄𝜈‖𝐿∞(𝐵1,𝑔𝑒𝑢𝑐) + ‖𝑓‖𝐿∞(𝐵1)) ≤ 𝐶𝑟2.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 323

Local Schauder estimates then imply ‖(𝐻0)𝜇̄𝜈‖𝐶𝑘,𝛼(𝐵1∕2,𝑔𝑒𝑢𝑐) ≤ 𝐶𝑘𝑟2. Converting these local
estimates to norms using 𝑔𝑐𝑜,0 gives estimates of the form

|∇𝑘𝑔𝑐𝑜,0𝐻0|𝑔𝑐𝑜,0 ≤ 𝐶𝑘𝑟−𝑘
for each 𝑘 ∈ ℤ≥0. This completes the estimate.

4 QUANTITATIVE CONVERGENCE TO THE TANGENT CONE

In this section we show that the estimates for the Hermitian-Yang-Mills metric𝐻0 constructed in
Theorem 3.1 can be improved to obtain the decay of 𝐻0 towards the Candelas-de la Ossa metric.
This will be an essential ingredient in the perturbation argument later in the paper. Themain goal
of this section is to prove

Theorem 4.1. Let (𝑉0, 𝑔𝑐𝑜,0) denote the conifold equipped with Candelas-de la Ossa Ricci-flat
Kähler cone metric, and let 0 ∈ 𝑉0 denote the tip of the cone. Suppose 𝐻 is a Hermitian-
Yang-Mills metric on 𝑇1,0𝑉0 over 𝐵1(0) ⧵ {0}. Assume that there is a constant 𝐶 > 0 so that 𝐻
satisfies

𝐶−1𝑔𝑐𝑜,0 < 𝐻 < 𝐶𝑔𝑐𝑜,0.

Then there are constants 𝑐0 > 0, 𝜆 ∈ (0, 1), and for each 𝑘 ∈ ℤ≥0 a constant 𝐶𝑘 > 0, such that the
following estimate holds

|∇𝑘𝑔𝑐𝑜,0(𝐻 − 𝑐0𝑔𝑐𝑜,0
)|𝑔𝑐𝑜,0 ≤ 𝐶𝑘𝑟𝜆−𝑘,

where, as usual, 𝑟(𝑥) = 𝑑𝑔𝑐𝑜,0(𝑥, 0) is the distance to 0 ∈ 𝑉0 with respect to 𝑔𝑐𝑜,0.

The proof of Theorem 4.1 follows closely the work of Jacob-Sá Earp-Walpuski [51] who stud-
ied related quantitative convergence results in the case of punctured balls in ℂ𝑛. Related results
for stationary Yang-Mills connections were obtained by Yang using a Łojasiewicz inequality [92].
Chen-Sun [12–15] obtained a general characterization tangent cones ofHermitian-Yang-Mills con-
nections on reflexive sheaves on the ball inℂ𝑛 without estimates for the convergence rate. For our
applications, the polynomial decay rate, as well as the convergence at the level of metrics (rather
than connections) obtained in Theorem 4.1 is crucial.
The first step towards establishing Theorem 4.1 is to prove the following Poincaré inequality.

Lemma 4.2. Let (𝑉0, 𝑔𝑐𝑜,0) be the conifold equipped with the Candelas-de la Ossa metric. There
is a uniform constant 𝐶 > 0 with the following property: for any 𝜌 ∈ (0, 1] and any 𝑠 ∈ 𝐶∞({𝑟 =
𝜌},

√
−1𝔰𝔲(𝑇1,0𝑉0, 𝑔𝑐𝑜,0)) we have

∫
{𝑟=𝜌}

|𝑠|2𝑔𝑐𝑜,0𝑑𝑆(𝜌)𝑔𝑐𝑜,0 ≤ 𝐶𝜌2 ∫
{𝑟=𝜌}

|∇𝑔𝑐𝑜,0 𝑠|2𝑔𝑐𝑜,0𝑑𝑆(𝜌)𝑔𝑐𝑜,0
where 𝑑𝑆(𝜌)𝑔𝑐𝑜,0 denotes the surface measure on {𝑟 = 𝜌} induced by 𝑔𝑐𝑜,0.
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324 COLLINS et al.

Proof. The result follows from standard elliptic theory and scaling provided we can show that
there are no parallel sections of

√
−1𝔰𝔲(𝑇1,0𝑉0, 𝑔𝑐𝑜,0) on the link of the cone {𝑟 = 1}.

To begin, recall from Section 2 that 𝑉0 can be identified with the complement of the zero
section in 𝜄∗ℙ3(−1) where

𝜄 ∶ ℙ1 × ℙ1 → ℙ3

is the Segre embedding. In particular, there is a projection𝜋 ∶ 𝑉0 ⧵ {0} → ℙ1 × ℙ1whose fibers are
orbits of the holomorphic Reeb vector field. Let 𝐸 → ℙ1 × ℙ1 be the holomorphic vector bundle
generated by the invariant sections of 𝑇1,0𝑉0, so that 𝑇1,0𝑉0 = 𝜋∗𝐸. We can describe 𝐸 explicitly;
if  ⊂ 𝑇1,0𝑉0 denotes the trivial line bundle generated by the non-vanishing holomorphic Reeb
field, then we have an exact sequence

0 → → 𝑇1,0𝑉0 → 𝜋∗𝑇1,0
(
ℙ1 × ℙ1

)
→ 0.

Note that the -valued (1,0) form on 𝑉0 given by 𝜉 ⊗ 𝜕 log 𝑟 is precisely the orthogonal projection
𝑇1,0𝑉0 →  given by the Calabi-Yau metric 𝑔𝑐𝑜,0. Therefore the second fundamental form of  ⊂
𝑇1,0𝑉0 is represented by

𝜉 ⊗
√
−1𝜕𝜕 log 𝑟 = 𝜉 ⊗ 𝜋∗𝜔𝐾𝐸

where 𝜔𝐾𝐸 is the Kähler-Einstein metric on ℙ1 × ℙ1 satisfying

Ric(𝜔𝐾𝐸) = 3𝜔𝐾𝐸.

Since  is trivial, we can view 𝐸 as the bundle corresponding to 1

3
𝑐1(ℙ

1 × ℙ1) under the
isomorphisms

Ext1(𝑇1,0(ℙ1 × ℙ1),ℙ1×ℙ1) ≅ 𝐻1(𝑇1,0(ℙ1 × ℙ1)∨) ≅ 𝐻1,1(ℙ1 × ℙ1, ℂ)

Thus 𝐸 sits in an exact sequence

0 → ℙ1×ℙ1 → 𝐸 → 𝑇1,0(ℙ1 × ℙ1) → 0. (4.1)

Furthermore, since 𝑔𝑐𝑜,0 is Calabi-Yau on the cone, one can easily show that 𝐸 admits a natural
Hermitian-Yang-Mills metric with respect to the Kähler class 𝑐1(𝑝∗1ℙ1(1) ⊗ 𝑝∗2ℙ1(1)), see for
example [86] for related discussion.
It is easy to show, by direct calculation, that any parallel section of 𝑠 ∈ 𝐶∞({𝑟 =

𝜌},
√
−1𝔰𝔲(𝑇1,0𝑉0, 𝑔𝑐𝑜,0)) descends to a trace-free, global holomorphic section 𝑠0 ∈ 𝐻

0(ℙ1 ×

ℙ1, End(𝐸)). Thus, it suffices to show that the only global holomorphic endomorphisms of 𝐸 are
multiples of the identity map. This will follow from the usual result for stable vector bundles
provided we can show that 𝐸 is indecomposable [83]. Let 𝐻𝐸 denote the Hermitian-Yang-Mills
connection on 𝐸 and let 𝜔 = 𝑝∗1𝜔𝐹𝑆 + 𝑝

∗
2𝜔𝐹𝑆 where 𝜔𝐹𝑆 denotes the Fubini-Study metric on ℙ

1.
By the exact sequence (4.1), the slope of 𝐸 is given by

𝜇(𝐸) =
𝑐1(𝐸) ∪ [𝜔]

rk(𝐸)
=
2 ∫

ℙ1×ℙ1
𝜔2

3
=
4

3
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 325

Now suppose that 𝐸 can be holomorphically decomposed as 𝐸 = 𝐸1 ⊕ 𝐸2 where rk(𝐸1) = 1, 2.
A standard computation shows that the decomposition 𝐸 = 𝐸1 ⊕ 𝐸2 is orthogonal with respect
to the Hermitian-Yang-Mills metric and the restriction𝐻𝐸|𝐸1 is Hermitian-Yang-Mills with slope
𝜇(𝐸1) = 𝜇(𝐸) [83]. Thus we have

𝑐1(𝐸1) ∪ [𝜔] =
4

3
rk(𝐸1).

However, since 𝑐1(𝐸1), [𝜔] ∈ 𝐻2(ℙ1 × ℙ1,ℤ) this implies that 4

3
rk(𝐸1) ∈ ℤ, which is impos-

sible since rk(𝐸1) = 1, 2. Therefore 𝐸 is indecomposable and hence stable. The result
follows. □

In the remainder of this section we will show that Lemma 4.2 implies Theorem 4.1. Much of
the argument is based on the following well-known formula: if 𝐻, 𝐻̂ are Hermitian metrics on a
holomorphic vector bundle 𝐸, then the positive definite, hermitian (with respect to either 𝐻, 𝐻̂)
endomorphism ℎ = 𝐻̂−1𝐻 satisfies

𝐹𝑗𝑘̄ − 𝐹̂𝑗𝑘̄ = −𝜕𝑘̄(ℎ
−1∇̂𝑗ℎ) (4.2)

where 𝐹 (resp. 𝐹̂) denotes the curvature of the Chern connection∇ (resp. ∇̂) defined with respect
to 𝐻 (resp. 𝐻̂). In our case we will take 𝐻̂ = 𝑔 to be the Calabi-Yau cone metric on 𝑉0. We begin
with the following lemma, which shows that, at least at the level of the determinant, the metric
𝐻 decays towards 𝑔𝑐𝑜,0.

Lemma 4.3. Let (𝑉0, 𝑔) be a Calabi-Yau cone of real dimension 𝑛 > 2. Suppose 𝐻 is a Hermitian-
Yang-Mills metric on 𝑇1,0𝑉0 → 𝐵1(0) ⧵ {0} with slope 0. Suppose there is a constant 𝐶 > 0 such that
the ℎ = 𝑔−1𝐻 satisfies 𝐶−1𝐼𝑑 < ℎ < 𝐶𝐼𝑑. Then, there are constants 𝐶𝑘, 𝐶∗, 𝛾 > 0, with 𝛾 depending
only on (𝑉0, 𝑔𝑐𝑜,0) so that, for each 𝑘 ∈ ℕ we have

||||∇𝑘𝑔(log (det ℎ) − 𝐶∗)||||𝑔 ≤ 𝐶𝑘𝑟𝛾−𝑘
Proof. Since 𝑔 is Ricci flat, and 𝐻 is Hermitian-Yang-Mills with slope 0, it follows from (4.2)
that

𝑔𝑗𝑘̄𝜕𝑗𝜕𝑘̄ log det ℎ = −𝑔
𝑗𝑘̄𝐹𝑗𝑘̄ = 0.

On the other hand, since log det ℎ is bounded the result follows from separation of variables. To
see this recall that if 𝜑𝜆 is a function on the link 𝐿 ∶= 𝜕𝐵1(0) ⊂ 𝑉0 satisfying

Δ𝑔𝐿𝜑𝜆 + 𝜆𝜑𝜆 = 0

with 𝜆 ≥ 0, then we can produce harmonic functions 𝑢±
𝜆
on 𝑉0 given by

𝑢±
𝜆
= 𝑟𝑎(𝜆)±𝜑𝜆
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326 COLLINS et al.

where 2𝑎(𝜆)± = −(𝑛 − 2) ±
√
(𝑛 − 2)2 + 4𝜆 (since 𝑛 > 2). Fixing an orthonormal basis of eigen-

functions {𝜑𝜆}𝜆∈Spec(Δ𝑔𝐿 ), standard elliptic theory says we can write

log det ℎ||𝐿 = ∑
𝜆∈Spec(Δ𝑔𝐿 )

𝑐𝜆𝜑𝜆

for constant 𝑐𝜆. Now, we claim that since log det ℎ is bounded we have

log det ℎ =
∑

𝜆∈Spec(Δ𝑔𝐿 )

𝑐𝜆𝑢
+
𝜆
∶= 𝑢.

This follows from the Caccioppoli inequality; let 𝜂 be a standard, smooth cut-off function on
ℝ with 𝜂(𝑥) = 0 for 𝑥 ≤ 1, and 𝜂(𝑥) = 1 for 𝑥 ≥ 2. Consider 𝜂𝜀(𝑦) = 𝜂(𝜀−1𝑑𝑔(𝑦, 0)). Since 𝑢̂ ∶=
log det ℎ − 𝑢 is harmonic, bounded and vanishes on the link 𝐿 we have

0 = −∫
𝐵1

𝜂2𝜀 𝑢̂Δ𝑔𝑢̂𝑑vol𝑔 = ∫
𝐵1

⟨∇(𝜂2𝜀 𝑢̂), ∇𝑢̂⟩𝑑vol𝑔
Applying Cauchy-Schwarz we obtain

∫
𝐵1

𝜂2𝜀 |∇𝑢̂|2 ≤ 𝐶 ∫
𝐵2𝜀⧵𝐵𝜀

|∇𝜂𝜀|2𝑢̂2.
Now we have |∇𝜂𝜀|2 ≤ 𝐶𝜀−2, while |𝐵2𝜀 ⧵ 𝐵𝜀| ≤ 𝐶𝜀𝑛 and so, since 𝑛 > 2 we can take the limit as
𝜀 → 0 to obtain |∇𝑢̂| ≡ 0 and the claim follows.
Now the result for 𝑘 = 0 follows from the fact that the only harmonic function on the link

{𝑟 = 1} is a constant. Combining this with standard estimates for harmonic functions and scaling,
we obtain the result for 𝑘 ≥ 1. □

Next we prove that the relative endomorphism ℎ = 𝑔−1𝑐𝑜,0𝐻 is𝑊1,2 on the cone.

Lemma 4.4. With ℎ = 𝑔−1𝑐𝑜,0𝐻 as above, we have |∇𝑔𝑐𝑜,0ℎ|𝑔𝑐𝑜,0 ∈ 𝐿2(𝐵1(0), 𝑔𝑐𝑜,0).
Proof. To ease notation let us denote 𝑔 = 𝑔𝑐𝑜,0 and ∇ = ∇𝑔𝑐𝑜,0 . To prove the 𝐿

2 bound, observe
that (4.2) implies

𝑔𝑗𝑘̄𝜕𝑗𝜕𝑘̄Trℎ = 𝑔𝑗𝑘̄Tr (𝜕𝑘̄ℎℎ−1∇𝑗ℎ).

On the other hand, since ℎ is hermitian and bounded we have

𝐶−1|∇ℎ|2𝑔 ≤ 𝑔𝑗𝑘̄Tr (𝜕𝑘̄ℎℎ−1∇𝑗ℎ) ≤ 𝐶|∇ℎ|2𝑔.
This implies an 𝐿2 estimate for |∇ℎ|𝑔. To see this, let 𝜂(𝑥) be a standard cut-off function such that
𝜂(𝑥) ≡ 1 for 𝑥 ∈ [0, 1], 𝜂(𝑥) ≡ 0 for 𝑥 ∈ [2,∞) and |𝜂′| + |𝜂′′| < 10. For 𝑦 > 0we set 𝜂𝑦 = 𝜂(𝑦−1𝑟).
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 327

Since Trℎ is uniformly bounded we have

∫
𝐵1

𝑔𝑗𝑘̄Tr (𝜕𝑘̄ℎℎ−1∇𝑗ℎ)𝑑vol𝑔 ≤ lim
𝜀→0 ∫𝐵2(1 − 𝜂𝜀)

2(𝜂1)
2𝑔𝑗𝑘̄Tr (𝜕𝑘̄ℎℎ−1∇𝑗ℎ)𝑑vol𝑔

= lim
𝜀→0 ∫𝐵2(1 − 𝜂𝜀)

2𝜂21(Δ𝑔Trℎ)𝑑vol𝑔

= lim
𝜀→0 ∫𝐵2

(
Δ𝑔(1 − 𝜂𝜀)

2𝜂21
)
Trℎ𝑑vol𝑔

≤ 𝐶 lim
𝜀→0

𝜀−2Vol𝑔(𝐵2𝜀 ⧵ 𝐵𝜀) + 𝐶

and the result follows since 𝜀−2Vol𝑔(𝐵2𝜀 ⧵ 𝐵𝜀) ≤ 𝐶𝜀4. □

The next step is to establish some decay for the endomorphism ℎ = 𝑔−1𝑐𝑜,0𝐻.

Lemma 4.5. Define a hermitian endomorphism 𝑠 by

𝑒𝑠 =

(
det 𝑔𝑐𝑜,0

det𝐻

) 1

3

⋅ 𝑔−1𝑐𝑜,0𝐻.

Then are constants 𝐶 > 0, 𝛼 ∈ (0, 1) depending on (𝑉0, 𝑔𝑐𝑜,0) and |𝑠|𝐿∞(𝐵1(0)) such that
𝜇(𝜏) ∶= ∫

𝐵𝜏

𝑟2−2𝑛|∇𝑔𝑐𝑜,0 𝑠|2𝑔𝑐𝑜,0 𝑑vol𝑔𝑐𝑜,0 ≤ 𝐶𝜏2𝛼
for all 𝜏 ≤ 1.
Proof. Again, we denote 𝑔 = 𝑔𝑐𝑜,0 and ∇ = ∇𝑔𝑐𝑜,0 to ease notation. It is not hard to check that

⟨𝑒−𝑠∇𝑗𝑒𝑠, 𝑠⟩𝑔 = ⟨∇𝑗𝑠, 𝑠⟩𝑔.
Therefore, from (4.2) we have

𝑔𝑗𝑘̄𝜕𝑗𝜕𝑘̄|𝑠|2𝑔 = 𝑔𝑗𝑘̄𝜕𝑘̄(⟨∇𝑗𝑠, 𝑠⟩𝑔 + 𝑔𝑗𝑘̄⟨𝑠, 𝜕𝑗̄𝑠⟩𝑔)
= 𝑔𝑗𝑘̄𝜕𝑘̄(⟨𝑒−𝑠∇𝑗𝑒𝑠, 𝑠⟩𝑔 + 𝑔𝑗𝑘̄⟨𝑠, 𝑒−𝑠𝜕𝑗̄𝑒𝑠⟩𝑔)
= 𝑔𝑗𝑘̄⟨𝑒−𝑠∇𝑗𝑒𝑠, ∇𝑘𝑠⟩𝑔 + 𝑔𝑗𝑘̄⟨𝜕𝑘̄𝑠, 𝑒−𝑠𝜕𝑗̄𝑒𝑠⟩𝑔.

Note that the bound 𝐶−1𝑔 < 𝐻 < 𝐶𝑔 implies that |𝑠| < 𝐶. Thanks to [91, Lemma 2.1] there is a
uniform constant 𝐴 > 0 depending only on 𝐶 so that

𝑔𝑗𝑘̄⟨𝑒−𝑠∇𝑗𝑒𝑠, ∇𝑘𝑠⟩𝑔 + 𝑔𝑗𝑘̄⟨𝜕𝑘̄𝑠, 𝑒−𝑠𝜕𝑗̄𝑒𝑠⟩𝑔 ≥ 𝐴−1|∇𝑠|2.
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328 COLLINS et al.

In summation, we have show that

Δ|𝑠|2𝑔 ≥ 𝐴−1|∇𝑠|2𝑔. (4.3)

We now show that 𝜇(𝜏) < 𝐶 for some constant 𝐶 independent of 𝜏. Let 𝜂𝜏(𝑟) be the cut-off
function fromLemma 4.3. First note that, for any 𝜀 > 0, integration by parts using (4.3),Δ𝑔𝑟2−2𝑛 =
0 and |Δ𝑔𝜂𝜏| ≤ 𝐶𝜏−2, together with the bound for |𝑠| yields

∫
𝐵𝜏⧵𝐵2𝜀

𝑟2−2𝑛|∇𝑠|2𝑔𝑑vol𝑔 ≤ 𝐴 ∫
𝐵2𝜏⧵𝐵𝜀

(1 − 𝜂𝜀)𝜂𝜏𝑟
2−2𝑛Δ|𝑠|2𝑔𝑑vol𝑔

≤ 𝐴′
(
𝜀−2𝑛 ∫

𝐵2𝜀⧵𝐵𝜀

|𝑠|2𝑑𝑉𝑔 + ∫
𝐵2𝜏⧵𝐵𝜏

𝑟−2𝑛|𝑠|2𝑑vol𝑔) (4.4)

which is bounded thanks to the𝐿∞ bound for 𝑠. To improve the estimatewe decompose the second
integral appearing on the right of (4.4) as

∫
𝐵2𝜏⧵𝐵𝜏

|𝑠|2𝑑vol𝑔 ≤ (
∫

2𝜏

𝜏

𝑑𝑟 ⋅ ∫
𝜕𝐵𝑟(0)

|𝑠|2𝑑𝑆𝑔(𝑟))

where 𝑑𝑆𝑔(𝑟) denotes the surface measure on 𝜕𝐵𝑟. Since 𝑠 is trace free we can apply the Poincaré
inequality in Lemma 4.2 to get

∫
𝜕𝐵𝑟

|𝑠|2𝑑𝑆𝑔(𝑟) ≤ 𝐶𝑟2 ∫
𝜕𝐵𝑟(0)

|∇𝑇𝑠|2𝑑𝑆𝑔(𝑟) ≤ 𝐶𝑟2 ∫
𝜕𝐵𝑟

|∇𝑠|2𝑑𝑆𝑔(𝑟)
where we wrote ∇𝑇 for the covariant derivative tangent to 𝜕𝐵𝑟. Thus, we have

∫
𝐵2𝜏⧵𝐵𝜏

𝑟−2𝑛|𝑠|2𝑑vol𝑔 ≤ 𝐶 ∫
𝐵2𝜏⧵𝐵𝜏

𝑟2−2𝑛|∇𝑠|2𝑑vol𝑔 = 𝐶(𝜇(2𝜏) − 𝜇(𝜏))
Arguing similarly for the first term yields

∫
𝐵2𝜀⧵𝐵𝜀

𝜀−2𝑛|𝑠|2𝑑vol𝑔 ≤ 𝐶𝜇(2𝜀)
All together this implies

𝜇(𝜏) ≤ 𝐶

𝐶 + 1
(𝜇(2𝜏) + 𝜇(2𝜀)).

Since this estimate holds for all 𝜀 > 0 and, thanks to Lemma 4.4, 𝜇(𝜀) → 0 by the dominated
convergence theorem, we conclude

𝜇(𝜏) ≤ 𝐶

𝐶 + 1
𝜇(2𝜏).

The lemma follows by a standard iteration argument. □
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 329

Theorem 4.1 will now follow from Lemma 4.5 together with the regularity theory for the
Hermitian-Yang-Mills equation, which we recall below. The regularity theory is originally due to
Bando-Siu [3, Proposition 1], but we refer the reader to the paper of Jacob-Walpuski [50, Theorem
C.1] for the precise statement which implies the one below.

Proposition 4.6. Let (𝑌, 𝑔, 𝐽) be a Kähler manifold of dimension 𝑛 with bounded geometry, and
let 𝐸 → 𝑌 be a holomorphic vector bundle. If 𝐻0,𝐻 are hermitian metrics on 𝐸, 𝐻 is Hermitian-
Yang-Mills and 𝑠 ∶= log(𝐻−1

0 𝐻) ∈ 𝐶∞(𝑌,
√
−1𝔰𝔲(𝐸,𝐻0)), then, for all 𝑘 ∈ ℕ and𝑝 ∈ (1,∞) there

is a function 𝑓𝑘,𝑝(𝑦) > 0 depending only on 𝑘, 𝑝 and the geometry of (𝑌, 𝑔) such that 𝑓𝑘,𝑝(0) = 0
and

𝑟
𝑘+2−

2𝑛

𝑝 ‖∇𝑘+2𝐻0
𝑠‖𝐿𝑝(𝐵𝑟(𝑥)) ≤ 𝑓𝑘,𝑝

(‖𝑠‖𝐿∞(𝐵2𝑟(𝑥)) + 𝑘∑
𝑖=0

𝑟2+𝑖‖∇𝑖𝐻0𝐹𝐻0‖𝐿∞(𝐵2𝑟(𝑥))
)
.

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let 𝐻 be as in the statement of the theorem, and set 𝑔 = 𝑔𝑐𝑜,0. Throughout
the proof 𝐶 will denote a constant which can change from line to line, but depends only on (𝑉0, 𝑔)
and the positive upper and lower bounds for 𝑔−1𝐻. Define 𝑠 by

𝑒𝑠 =

(
det 𝑔𝑐𝑜,0

det𝐻

) 1

3

⋅ 𝑔−1𝑐𝑜,0𝐻.

so that 𝑠 ∈ 𝐶∞(𝑉0,
√
−1𝔰𝔲(𝑇1,0𝑉0, 𝑔)).

Fix 0 < 𝑅 ≪ 1 and consider the annulus 𝐵4𝑅 ⧵ 𝐵𝑅∕4. Let 𝑚𝑅 ∶ 𝑉0 → 𝑉0 be the map 𝑚𝑅(𝑝) =

𝑅−1 ⋅ 𝑝 where ⋅ denotes the natural scaling action on the cone. Let 𝑠 = 𝑚∗
𝑅𝑠. From the scale

invariance of 𝜇(𝜏) we have

∫
𝐵4⧵𝐵 1

4

|∇𝑠|2𝑔𝑑vol𝑔 ≤ 𝐶𝑅2𝛼
while the Poincaré inequality proved in Lemma 4.2 implies

∫
𝐵4⧵𝐵 1

4

|𝑠|2 ≤ 𝐶 ∫
𝐵4⧵𝐵 1

4

|∇𝑠|2 ≤ 𝐶𝑅2𝛼. (4.5)

Note that the 𝐿∞ bound for 𝑠 together with the interior estimates, Proposition 4.6, yield

‖∇𝑘+2𝑠‖𝐿𝑝(𝐵4⧵𝐵1∕4) ≤ 𝐶𝑘,𝑝
and hence, by the Sobolev imbedding theorem we get

‖𝑠‖𝐶𝑘(𝐵3⧵𝐵1∕2) ≤ 𝐶𝑘. (4.6)
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330 COLLINS et al.

To improve this bound to a decay estimate we appeal to the Hermitian-Yang-Mills equation.
From (4.2), we have

𝑔𝑗𝑘̄∇𝑘̄∇𝑗𝑠 + 𝐵(∇𝑠 ⊗ ∇𝑠) = 0 (4.7)

where 𝐵(⋅) is linear with coefficients depending on 𝑠, but not on any of its derivatives. The
result now follows from standard elliptic regularity and bootstrapping. By elliptic regularity we
have

‖𝑠‖𝑊2,2(𝐵2.5⧵𝐵3∕4) ≤ 𝐶
(‖Δ𝑠‖𝐿2(𝐵3⧵𝐵1∕2) + ‖𝑠‖𝐿2(𝐵3⧵𝐵1∕2)).

On the other hand, from (4.7) we have

‖Δ𝑠‖𝐿2(𝐵3⧵𝐵1∕2) ≤ 𝐶
(
∫
𝐵3⧵𝐵1∕2

|∇𝑠|4)
1

2

≤ 𝐶
(
∫
𝐵3⧵𝐵1∕2

|∇𝑠|2)
1

2

where, in the second inequality, we used (4.6) with 𝑘 = 2. From (4.5) we conclude that

‖𝑠‖𝑊2,2(𝐵2.5⧵𝐵3∕4) ≤ 𝐶𝑅𝛼,
for a uniform constant 𝐶 > 0. By differentiating (4.7) a straightforward boot-strapping argument
yields

‖𝑠‖𝑊𝑘,2(𝐵2⧵𝐵1)
≤ 𝐶𝑘𝑅𝛼

for uniform constants 𝐶𝑘 > 0. All together we obtain

|𝑠|𝐶𝑘(𝐵2⧵𝐵1) ≤ 𝐶𝑘𝑅𝛼
from the Sobolev imbedding theorem. Rescaling yields

|𝑠|𝐶𝑘(𝐵2𝑅⧵𝐵𝑅) ≤ 𝐶𝑘𝑅𝛼−𝑘. (4.8)

Finally, Theorem 4.1 follows from this estimate together with Lemma 4.3. □

Remark 4.7. In the setting where we apply Theorem 4.1, where the metric 𝐻0 obtained as a
limit of (𝐻𝑎, 𝑔𝑎), we can apply Theorem 3.1 to obtain (4.6) bypassing the Bando-Siu regularity
theorem.

5 APPROXIMATE HERMITIAN-YANG-MILLSMETRICS

In the previous section, we started from a Calabi-Yau metric 𝜔CY on a simply connected Kähler
Calabi-Yau threefold (𝑋,Ω) and constructed a pair of hermitian metrics (𝑔0,𝐻0) on a singular
space 𝑋 obtained by contracting (−1, −1) curves 𝐶𝑖 . These metrics satisfy 𝑑𝜔20 = 0 and Λ𝜔0𝐹𝐻0 =
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 331

0. Let {𝑝𝑖} denote the nodal points of 𝑋0. There are constants 𝑐𝑖, 𝑅𝑖, 𝜆 > 0 such that we have the
following local description near the nodes:

∙ The Fu-Li-Yau construction gives

𝑔0 = 𝑅𝑖𝑔𝑐𝑜,0, near node 𝑝𝑖.

∙ By (4.8) and Lemma 4.3, for 𝑘 ∈ ℤ≥0 there exists𝑀𝑘 > 1 such that

|∇𝑘𝑔𝑐𝑜,0 (𝐻0 − 𝑐𝑖𝑔𝑐𝑜,0)|𝑔𝑐𝑜,0 ≤ 𝑀𝑘𝑟
𝜆−𝑘, near node 𝑝𝑖. (5.1)

For ease of notation, in this section we will work at a single node point with scale constants
𝑐1 = 𝑅1 = 1. Themetric𝐻0 on𝑋 has conical singularities whichwewill desingularize by gluing in
the asymptotically conicalmetric 𝑔𝑐𝑜,𝑡 on𝑉𝑡. For otherwork in geometry using this technique, see,
for example [11, 52, 53, 61]. The gluedmetric𝐻𝑡 will approximately solve theHermitian-Yang-Mills
equation on the smoothings 𝑋𝑡 for 𝑡 sufficiently small.
Recall that under the assumption of Theorem 2.3 there is a smoothing𝜇 ∶  → Δwith𝜇−1(𝑡) =

𝑋𝑡, 𝜇−1(0) = 𝑋, and the family is locally described by {(𝑧, 𝑡) ∶ 𝑧 ∈ 𝑉𝑡} near the nodes, with𝑉𝑡 =
{
∑4

𝑖=1 𝑧
2
𝑖
= 𝑡} ⊂ ℂ4. We will show there exists 𝛾, 𝜀 ∈ (0, 1) and 𝐶 > 1 such that the approximate

solution 𝐻𝑡 satisfies

‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
𝛽−2

≤ 𝐶|𝑡|𝛾
for all 0 < |𝑡| ≤ 𝜀, and for suitably defined weighted Hölder spaces with 𝛽 ∈ [−2, 0], and 0 < 𝑎 <
1; see Section 5.2 below for a precise definition. We recall that we denote by 𝜔𝑡 the Hermitian
metric from Proposition 2.17 constructed by Fu-Li-Yau, which satisfies 𝜔𝑡 = 𝜔𝑐𝑜,𝑡 near the nodes
and converges back to the balanced metric 𝜔0 on compact sets as 𝑡 → 0.

5.1 Definition of the approximate solution

To construct a Hermitian metric 𝐻𝑡 on 𝑋𝑡 which approximately solves the Hermitian-Yang-
Mills equation, we will glue 𝑔𝑐𝑜,𝑡 to a deformation of the singular metric 𝐻0 on the annulus
region

{|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 2|𝑡|𝛼} ⊂ 𝑉𝑡.
Here 0 < 𝛼 < 1, and specifically we will take 𝛼 = (1 + 𝜆∕3)−1 where 𝜆 > 0 is the rate in (5.1). Let

𝜒(𝑧) = 𝜁(|𝑡|−𝛼‖𝑧‖2)
be a cutoff function on this annulus region, that is, the function 𝜁 ∶ [0,∞) → [0, 1] satisfies 𝜁 ≡ 1
on [0,1] and 𝜁 ≡ 0 on [2,∞). Our glued Hermitian metric on 𝑋𝑡 is

𝐻𝑡 = 𝜒𝑔𝑐𝑜,𝑡 + (1 − 𝜒)𝐾𝑡, (5.2)
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332 COLLINS et al.

where

𝐾𝑡 = [(Φ
−1
𝑡 )

∗𝐻0]
1,1

is the 𝐽𝑡-invariant part of the pullback (Φ−1𝑡 )
∗𝐻0. Explicitly, we define (𝐴1,1)𝛼𝛽 =

1

2
(𝐴𝛼𝛽 +

𝐽𝜇𝛼𝐴𝜇𝜈𝐽
𝜈
𝛽) for a symmetric 2-tensor 𝐴. Recall Φ𝑡 is defined in Lemma 2.13, and note that 𝐾𝑡

is defined on 𝑋𝑡∖{‖𝑧‖2 = |𝑡|} and so𝐻𝑡 is defined on all of 𝑋𝑡.
We will need estimates on the glued metric𝐻𝑡 which are uniform in 𝑡.

Lemma 5.1. There exists 𝜀 > 0 such that for any 𝑘 ∈ ℤ≥0 there exists 𝐶𝑘 > 1 such that for all 0 <|𝑡| < 𝜀 we have
𝐶−10 𝑔𝑡 ≤ 𝐻𝑡 ≤ 𝐶0𝑔𝑡, |∇𝑘𝑔𝑡𝐻𝑡|𝑔𝑡 ≤ 𝐶𝑘𝑟−𝑘. (5.3)

Proof. We work region-by-region.

∙ Region {‖𝑧‖2 ≤ |𝑡|𝛼}. Here𝐻𝑡 = 𝑔𝑡 = 𝑔𝑐𝑜,𝑡 so the estimates are trivial.
∙ Region {|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 1}. Here 𝑔𝑡 = 𝑔𝑐𝑜,𝑡 and ‖𝑧‖2 ≫ |𝑡| for all 𝑡 small enough. The estimate
(3.1) reads |𝐻0|𝑔𝑐𝑜,0 ≤ 𝐶 and |𝐻−1

0 |𝑔𝑐𝑜,0 ≤ 𝐶, and so pulling back by byΦ−1𝑡 and using Lemma 2.10
gives

𝐶−1𝑔𝑐𝑜,𝑡 ≤ (Φ−1𝑡 )∗𝐻0 ≤ 𝐶𝑔𝑐𝑜,𝑡.
Since |[(Φ−1𝑡 )∗𝐻0]1,1|𝑔𝑐𝑜,𝑡 ≤ |(Φ−1𝑡 )∗𝐻0|𝑔𝑐𝑜,𝑡 and similarly for 𝐻−1

0 , this proves that 𝐶−1𝑔𝑐𝑜,𝑡 ≤
𝐻𝑡 ≤ 𝐶𝑔𝑐𝑜,𝑡. Next, pulling back |∇𝑘𝑔𝑐𝑜,0𝐻0| ≤ 𝐶𝑘𝑟−𝑘 by Lemma 2.10 gives

|∇𝑘𝑔𝑐𝑜,𝑡𝐾𝑡|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−𝑘.
This proves (5.3) in the region {2|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 1} where 𝐻𝑡 = 𝐾𝑡 = [(Φ−1𝑡 )∗𝐻0]1,1. In the
transition region {|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 2‖𝑡‖𝛼} we have,

∇𝐻𝑡 = (∇𝜒)(𝑔𝑐𝑜,𝑡 − 𝐾𝑡) + (1 − 𝜒)∇𝐾𝑡

and

|∇𝑔𝑡𝐻𝑡|𝑔𝑡 ≤ 𝐶|∇𝜒|𝑔𝑡 + 𝐶|∇𝑔𝑡𝐾𝑡|𝑔𝑡 .
We estimate

|∇𝜒|𝑔𝑡 ≤ 𝐶|𝑡|−𝛼|∇𝑟3|𝑔𝑡 ≤ 𝐶|𝑡|−𝛼𝑟2 ≤ 𝐶𝑟−1. (5.4)

Here we used |∇𝑟|𝑔𝑡 ≤ 𝐶 and 𝑟3 = ‖𝑧‖2 ≤ 2|𝑡|𝛼 in the transition region. Thus
|∇𝑔𝑐𝑜,𝑡𝐻𝑡|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−1 (5.5)

and the higher order estimates are similar.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 333

∙ Region {1 ≤ 𝑟}. Here𝐻𝑡 = [(Φ−1𝑡 )∗𝐻0]1,1 and the metrics Φ∗𝑡 𝑔𝑡 converge smoothly uniformly to
𝑔0 as 𝑡 → 0 by Lemma 2.17. The estimates for 𝐻𝑡 follow from pulling back the estimates for 𝐻0
obtained in Theorem 3.1. □

5.2 Weighted Hölder spaces

In the upcoming analysis wewill work inweightedHölder spaces on𝑋𝑡 using theweight function
𝑟, the metric 𝑔𝑡 which is equal to the model metric 𝑔𝑐𝑜,𝑡 near the nodes, and the glued metric 𝐻𝑡.
We will use the connection∇𝐻𝑡 when differentiating. For endomorphisms ℎ ∈ Γ(End𝑇

1,0𝑋𝑡), we
use the norm

‖ℎ‖𝐶𝑘
𝛽
(𝑔𝑡,𝐻𝑡)

=

𝑘∑
𝑖=0

sup
𝑋𝑡

|𝑟−𝛽+𝑖∇𝑖𝐻𝑡ℎ|𝑔𝑡 .
For Φ ∈ Γ((𝑇𝑋𝑡)𝑝 ⊗ (𝑇∗𝑋𝑡)

𝑞), we define the semi-norm

[Φ]
𝐶
0,𝑎
𝛽
= sup

𝑥≠𝑦

[
min(𝑟(𝑥), 𝑟(𝑦))−𝛽

|Φ(𝑥) − Φ(𝑦)|𝑔𝑡
𝑑(𝑥, 𝑦)𝑎

]
where the sup is taken over points 𝑥, 𝑦 with distance less than the injectivity radius and Φ(𝑥) −
Φ(𝑦) is understood by ∇𝑔𝑡 -parallel transport along the minimal 𝑔𝑡 geodesic connecting 𝑥 and 𝑦.
The weighted Hölder norms are then

‖ℎ‖
𝐶
𝑘,𝑎
𝛽
(𝑔𝑡,𝐻𝑡)

= ‖ℎ‖𝐶𝑘
𝛽
(𝑔𝑡,𝐻𝑡)

+
[
∇𝑘𝐻𝑡

ℎ
]
𝐶
0,𝑎
𝛽−𝑘−𝑎

.

This definition is well adapted to work on annuli𝑈𝑟 = {(1∕2)𝑟 ≤ 𝑟(𝑧) ≤ 2𝑟} at a given scale 𝑟 > 0.
The norm over 𝑈𝑟 is equivalent to

‖ℎ‖
𝐶
0,𝑎
𝛽
(𝑈𝑟)

= 𝑟−𝛽

[
sup
𝑈𝑟

‖ℎ‖𝐶0(𝑟−2𝑔𝑡) + sup
𝑥,𝑦∈𝑈𝑟

|ℎ(𝑥) − ℎ(𝑦)|𝑟−2𝑔𝑡
𝑑𝑟−2𝑔𝑡 (𝑥, 𝑦)

𝑎

]
, (5.6)

where norms on the endomorphism ℎ ∈ Γ(End𝑇1,0𝑋𝑡) are now all with respect to the rescaled
metric 𝑟−2𝑔𝑡. We will often estimate global Hölder norms by estimating them on local annuli 𝑈𝑟.

Lemma 5.2. Let 𝛽 ≤ 0 and ℎ ∈ Γ(End𝑇1,0𝑋𝑡). Suppose there is a uniform bound on the local esti-
mates ‖ℎ‖

𝐶
0,𝑎
𝛽
(𝑈𝑟)

≤ 𝐾 for all 𝑟 > 0, where 𝑈𝑟 = {(1∕2)𝑟 ≤ 𝑟 ≤ 2𝑟} ⊂ 𝑋𝑡 . Then ‖ℎ‖
𝐶
0,𝑎
𝛽
(𝑋𝑡)

≤ 𝐶𝐾 for

a constant 𝐶 > 1 which is independent of 𝑡 .

Proof. The local bounds imply ‖ℎ‖𝐶0
𝛽
(𝑋𝑡)

≤ 𝐾, so we need to estimate the global Hölder semi-
norm. Let 𝑥, 𝑦 ∈ 𝑋𝑡 and suppose 𝑟(𝑥) ≤ 𝑟(𝑦). If 𝑦 lies in the set 𝑈 = {(1∕2)𝑟(𝑥) < 𝑟 < 2𝑟(𝑥)}, the
estimate is assumed. If 𝑟(𝑥) ≥ 𝜀 > 0, the geometry is uniform in 𝑡 and the estimate holds for 𝐶(𝜀).
In the remaining case, we assume 𝑥, 𝑦 ∈ 𝑉𝑡 with 2𝑟(𝑥) < 𝑟(𝑦) and 𝑔𝑡 = 𝑔𝑐𝑜,𝑡 and we claim that

𝑑𝑔𝑡 (𝑥, 𝑦) ≥ 𝐶−1𝑟(𝑥)
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334 COLLINS et al.

for 𝐶 > 1 independent of 𝑡. Indeed, this inequality holds at 𝑡 = 1 for a constant 𝐶 > 1, and the
uniform bound in 𝑡 follows from the bound when 𝑡 = 1 by scaling 𝑆(𝑧) = 𝑡−1∕2𝑧 with 𝑆∗𝑔𝑐𝑜,1 =|𝑡|−2∕3𝑔𝑐𝑜,𝑡 and 𝑆∗𝑟 = |𝑡|−1∕3𝑟. Therefore

𝑟(𝑥)−𝛽+𝑎
|ℎ(𝑥) − ℎ(𝑦)|
𝑑𝑔𝑡 (𝑥, 𝑦)

𝑎

is bounded by 𝐶‖ℎ‖𝐶0
𝛽
(𝑋𝑡)

since 𝛽 ≤ 0. □

We end this discussion with the following remark: if

𝑟−𝛽|ℎ|𝑔𝑡 + 𝑟−𝛽+1|∇𝑔𝑡ℎ|𝑔𝑡 ≤ 𝐾,
then for 0 < 𝑎 < 1 we can estimate ‖ℎ‖

𝐶
0,𝑎
𝛽
(𝑋𝑡)

≤ 𝐶𝐾 where 𝐶 is independent of 𝑡. This can be

seen for example from expression (5.6), since 𝑟−2𝑔𝑡 is uniformly (in 𝑡) equivalent to the Euclidean
metric in holomorphic cylindrical coordinates (Lemma 2.11). Also, the difference of connec-
tions satisfies the bound 𝑟|𝐴𝑔𝑡 − 𝐴𝐻𝑡 |𝑔𝑡 ≤ 𝐶 by Lemma 5.1, so to estimate ‖ℎ‖

𝐶
0,𝑎
𝛽
(𝑋𝑡)

we could

equivalently estimate 𝑟−𝛽+1|∇𝐻𝑡ℎ|𝐻𝑡 instead of 𝑟−𝛽+1|∇𝑔𝑡ℎ|𝑔𝑡 .
5.3 Smallness of the approximate solution

The main objective of this section is to show that the glued metric𝐻𝑡 has small Hermitian-Yang-
Mills tensor.

Proposition 5.3. Let 𝐻𝑡 be the glued metric as in (5.2). There exists 𝐶 > 0 and 𝜀 > 0 such that for
any 0 < 𝑎 < 1, and any 𝑡 ∈ ℂ∗ with |𝑡| ≤ 𝜀 we have

‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2

≤ 𝐶|𝑡| 𝛼𝜆3 , (5.7)

where 𝜆 > 0 is the rate in (5.1) (see Theorem 4.1), and 𝛼 = (1 + 𝜆

3
)−1.

The approximate solution will be estimated in four regions.

∙ Region {‖𝑧‖2 ≤ |𝑡|𝛼}. Here𝐻𝑡 = 𝑔𝑐𝑜,𝑡 and Λ𝜔𝑡𝐹𝐻𝑡 = 0.
∙ Region { 1

4
|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 4|𝑡|𝛼}. This contains the transition region, and we will show that here

‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2

≤ 𝐶|𝑡|(𝛼𝜆)∕3
in Lemma 5.4 below.

∙ Region {2|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 2}. In this region, 𝐻𝑡 = [(Φ−1𝑡 )
∗𝐻0]

1,1 and we need to control the
Hermitian-Yang-Mills tensor of [(Φ−1𝑡 )

∗𝐻0]
1,1. We will estimate

‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2

≤ 𝐶|𝑡|1−𝛼
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 335

in this region in Lemma 5.5 below.
∙ Region {𝑟 ≥ 1}. In this region the geometry is smoothly varying, and so since Λ𝜔0𝐹𝐻0 = 0
then

‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2

≤ 𝐶|𝑡|.
By Lemma 5.2, it suffices to check the Hölder estimate on these local pieces to obtain

the global estimate. We start by estimating the Hermitian-Yang-Mills tensor in the transition
region.

Lemma 5.4. With notation as in Proposition 5.3, the estimate ‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2
(𝑈)

≤ 𝐶|𝑡| 𝛼𝜆3 holds in

the region𝑈 = {
1

4
|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 4|𝑡|𝛼}.

Proof. If we decompose

𝐻0 = 𝑔𝑐𝑜,0 + 𝐸0,

then the glued metric is

𝐻𝑡 = 𝑔𝑐𝑜,𝑡 + (1 − 𝜒)
[[
(Φ−1𝑡 )

∗𝐸0
]1,1

+
[
(Φ−1𝑡 )

∗𝑔𝑐𝑜,0
]1,1

− 𝑔𝑐𝑜,𝑡

]
.

Since Λ𝜔𝑡𝐹𝑔𝑐𝑜,𝑡 = 0, the formula (2.19) for the difference of curvature tensors gives√
−1Λ𝜔𝑡𝐹𝐻𝑡 = −(𝑔𝑐𝑜,𝑡)

𝑗𝑘̄𝜕𝑘̄(ℎ
−1
𝑡 (∇𝑔𝑐𝑜,𝑡 )𝑗ℎ𝑡) (5.8)

where

ℎ𝑡 = 𝐼 + (1 − 𝜒)
[
𝑔−1𝑐𝑜,𝑡

[
(Φ−1𝑡 )

∗𝐸0
]1,1

+ 𝑔−1𝑐𝑜,𝑡

([
(Φ−1𝑡 )

∗𝑔𝑐𝑜,0
]1,1

− 𝑔𝑐𝑜,𝑡

)]
∶= 𝐼 + (1 − 𝜒) . (5.9)

During this proof, we simply write ∇ = ∇𝑔𝑐𝑜,𝑡 . We claim that

𝐶−1𝐼 ≤ ℎ𝑡 ≤ 𝐶𝐼, |∇𝑘ℎ𝑡|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−𝑘|𝑡|𝜆𝛼∕3. (5.10)

Assuming this, (5.8) and |𝑡|𝜆𝛼∕3 < 1 imply
|Λ𝜔𝑡𝐹𝐻𝑡 |𝑔𝑐𝑜,𝑡 ≤ |ℎ−1∇ℎ|2𝑔𝑐𝑜,𝑡 + 𝐶|ℎ−1∇2ℎ𝑡|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−2|𝑡|𝜆𝛼∕3.

Similarly

|∇Λ𝜔𝑡𝐹𝐻𝑡 |𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−3|𝑡|𝜆𝛼∕3
and this proves the estimate |Λ𝜔𝑡𝐹𝐻𝑡 |𝐶𝑎−2(𝑈) ≤ 𝐶|𝑡|𝜆𝛼∕3.
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336 COLLINS et al.

We now prove the claim (5.10). Estimate (5.1) implies |∇𝑘𝐸0|𝑔𝑐𝑜,0 ≤ 𝐶𝑘𝑟𝜆−𝑘, which by
Lemma 2.10 and (2.11) yields

|∇𝑘(Φ−1𝑡 )∗𝐸0|𝑔𝑐𝑜,𝑡 + |∇𝑘[(Φ−1𝑡 )∗𝑔𝑐𝑜,0 − 𝑔𝑐𝑜,𝑡]|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−𝑘(𝑟𝜆 + |𝑡|𝑟−3).
Since 𝑟3 ∼ |𝑡|𝛼, this implies

|∇𝑘|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−𝑘(|𝑡|𝜆𝛼∕3 + |𝑡|1−𝛼).
We choose 𝛼 such that 𝜆𝛼∕3 = 1 − 𝛼, so that || ≤ 𝐶|𝑡|𝜆𝛼∕3 and

|ℎ𝑡 − 𝐼|𝑔𝑐𝑜,𝑡 ≤ 𝐶|𝑡|𝜆𝛼∕3 ≪ 1

which implies 𝐶−1𝐼 ≤ ℎ𝑡 ≤ 𝐶𝐼. Taking a derivative gives
∇ℎ𝑡 = −∇𝜒 + (1 − 𝜒)∇ .

Since || ≤ 𝐶|𝑡|𝜆𝛼∕3, |∇| ≤ 𝐶𝑟−1|𝑡|𝜆𝛼∕3 and |∇𝜒| ≤ 𝐶𝑟−1 (e.g. (5.4)), we obtain
|∇ℎ𝑡| ≤ 𝐶𝑟−1|𝑡|𝜆𝛼∕3.

The higher order estimates in the claim (5.10) are similar. □

We now consider the next region past the transition zone.

Lemma 5.5. Let 𝐹𝐾𝑡 be the curvature of 𝐾𝑡 = [(Φ
−1
𝑡 )

∗𝐻0]
1,1. Then on 𝐷 = {|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 2}, we

can estimate

‖Λ𝜔𝑡𝐹𝐾𝑡‖𝐶0,𝑎
−2
(𝐷)

≤ 𝐶|𝑡|1−𝛼. (5.11)

Proof. Let (𝑧̂1, 𝑧̂2, 𝑧̂3, 𝑧̂4, 𝑡) be a point in  = {(𝑧, 𝑡) ∶
∑4

𝑖=1
𝑧2
𝑖
= 𝑡} with ‖𝑧̂‖2 ≥ |𝑡|𝛼, and sup-

pose without loss of generality that 𝑧̂4 ≠ 0. Let 𝜆 = ‖𝑧̂‖ and 𝑟 = 𝜆2∕3. We take local coordinates
on 𝑈𝑟 = {

1

2
𝜆 ≤ ‖𝑧‖ ≤ 2𝜆} ⊂ 𝑋𝑡 given by 𝑤𝑖 = 1

𝜆
𝑧𝑖 . These coordinates land in {

1

4
≤ |𝑤| ≤ 4} ⊂ ℂ3

where |𝑤| = |(𝑤1, 𝑤2, 𝑤3)| is the Euclidean norm on ℂ3. The formula for the curvature on 𝑉𝑡 in
coordinates is

(𝐹𝐾𝑡 )𝑗𝑘̄ = −𝐾
−1
𝑡 𝜕𝑗𝜕𝑘̄𝐾𝑡 + 𝐾

−1
𝑡 𝜕𝑗𝐾𝑡𝐾

−1
𝑡 𝜕𝑘̄𝐾𝑡.

We showed in Lemma 2.11 that in {𝑤𝑖} coordinates, we have 𝑔𝑡 = 𝑟2𝑂(𝐼), and by Lemma 5.1 the
metric 𝐾𝑡 = 𝑟2𝑂(𝐼). Here we write 𝑂(𝐼) for a matrix which is positive-define with positivity and
derivative bounds independent of 𝑡, 𝜆. Therefore

|𝐹𝐾𝑡 |𝑔𝑡 = 𝑟−2𝑂(1), (5.12)

where 𝑂(1) denotes a function with smooth bounds independent of 𝑡, 𝜆.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 337

∙ We claim:

𝜕

𝜕𝑡

[
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄

]
= 𝑟−5𝑂(1). (5.13)

Here [(Φ−1𝑡 )
∗𝑔𝑐𝑜,0]

𝑗𝑘̄ are the local matrix entries of the inverse of (Φ−1𝑡 )
∗𝑔𝑐𝑜,0 (not the raised

indices with respect to 𝑔𝑡). Assuming this for now, we complete the proof of the lemma. Since
at 𝑡 = 0 we have [(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄ = 0, this implies

[(Φ−1𝑡 )
∗𝑔𝑐𝑜,0]

𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄ = 𝑡𝑟
−5𝑂(1).

We can then write√
−1Λ𝜔𝑡𝐹𝐾𝑡 = [(Φ

−1
𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄ +

[
𝑔
𝑗𝑘̄
𝑐𝑜,𝑡 − [(Φ

−1
𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄
]
(𝐹𝐾𝑡 )𝑗𝑘̄,

and by (2.11) and (5.12) we have √
−1Λ𝜔𝑡𝐹𝐾𝑡 = 𝑡𝑟

−5𝑂(1)

in {𝑤𝑖} coordinates. Therefore

|∇(√
−1Λ𝜔𝑡𝐹𝐾𝑡

)|𝑔𝑡 = |𝑡|𝑟−6𝑂(1).
Then for any 0 < 𝑎 < 1,

‖Λ𝜔𝑡𝐹𝐾𝑡‖𝐶0,𝑎
−2
(𝑈𝑟)

≤ 𝐶|𝑡|𝑟−3 ≤ 𝐶|𝑡|1−𝛼
using that |𝑡|𝛼 ≤ 𝜆2 ≤ 1 and 𝜆2 = 𝑟3. By Lemma 5.2, this gives the Hölder estimate on all of
𝐷 = {|𝑡|𝛼 ≤ ‖𝑧‖2 ≤ 1}.

∙ We now prove the claimed (5.13). We start with the variation of 𝐾𝑡. The metric 𝐻0 is defined
on𝑉0 = {

∑
𝑖 𝑥
2
𝑖
= 0} and here we use coordinates (𝑥1, 𝑥2, 𝑥3) given by 𝑥𝑖 = 1‖𝑥̂‖𝑥𝑖 where 𝑥̂ ∈ 𝑉0

is the point such that Φ𝑡(𝑥̂) = 𝑧̂. The map Φ𝑡 (defined in (2.9)) appears in coordinates {𝑥𝑖} and
{𝑤𝑖} as

Φ𝑖𝑡(𝑥) =

(
𝑥𝑖 +

𝑡

2‖𝑥̂‖2 𝑥̄𝑖∑3

𝑖=1
|𝑥𝑖|2 + |∑3

𝑖=1
(𝑥𝑖)2|

)‖𝑥̂‖
𝜆
. (5.14)

Recall that ‖𝑥‖2 ≤ ‖Φ𝑡(𝑥)‖2 ≤ 2‖𝑥‖2, and so ‖𝑥̂‖ ∼ 𝜆 and coordinates 𝑧𝑖 are in the range
{
1

4
≤ |𝑧| ≤ 4} ⊂ ℂ3. We may assume the coordinates 𝑥𝑖 on 𝑉0 are in the range { 1

2
≤ |𝑥| ≤ 2} ⊂

ℂ3. Abusing notation, we simply write 𝑤𝑖 = 𝑤𝑖◦Φ𝑡(𝑥). The change of coordinates is of the
form

𝜕𝑤𝑖

𝜕𝑥𝑗
=

‖𝑥̂‖
𝜆
𝛿𝑖𝑗 +

𝑡

𝜆2
𝑂(1)
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338 COLLINS et al.

and hence

𝜕

𝜕𝑡

𝜕𝑤𝑖

𝜕𝑥𝑗
= 𝜆−2𝑂(1),

1

4
𝛿𝑖𝑗 ≤ 𝜕𝑤𝑖

𝜕𝑥𝑗
≤ 4𝛿𝑖𝑗. (5.15)

Differentiating the inverse Jacobian then also gives

𝜕

𝜕𝑡

𝜕𝑥𝑖

𝜕𝑤𝑗
= 𝜆−2𝑂(1).

Wenow compute the variation of𝐾𝑡 in these coordinates. In components𝐾𝑡 = (𝐾𝑡)𝑘̄𝑗 𝑑𝑤𝑗 ⊗ 𝑑𝑤̄𝑘,
we have

𝜕

𝜕𝑡
(𝐾𝑡)𝑘̄𝑗(𝑤) =

𝜕

𝜕𝑡

[
𝜕𝑥𝑝

𝜕𝑤𝑘
(𝐻0)𝑝̄𝑞(𝑥(𝑤))

𝜕𝑥𝑞

𝜕𝑤𝑗

]
.

We note

𝜕

𝜕𝑡
[(𝐻0)(𝑥(𝑤))] =

𝜕𝐻0
𝜕𝑥𝑖

(𝑥(𝑤))
𝜕𝑥𝑖

𝜕𝑤𝑝
𝜕𝑤𝑝

𝜕𝑡
= 𝑂(𝜆−2)

𝜕𝐻0
𝜕𝑥𝑖

.

Recall that in these coordinates, we have that 𝐻0 = 𝑟(𝑥̂)2𝑂(𝐼), and we noted earlier that 𝑟(𝑥̂) ∼
𝑟(𝑧̂) = 𝑟. Putting everything together, we have

𝜕

𝜕𝑡
(𝐾𝑡)𝑘̄𝑗(𝑤) = 𝑟

2𝜆−2𝑂(1). (5.16)

Since 𝐾𝑡 = 𝑟2𝑂(𝐼) in these coordinates, it follows that

𝜕

𝜕𝑡
(𝐹𝐾𝑡 )𝑗𝑘̄ = 𝜆

−2𝑂(1).

Thus

𝜕

𝜕𝑡

[
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄

]

=

[
𝜕

𝜕𝑡
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄

]
+

[
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄ 𝜕

𝜕𝑡
(𝐹𝐾𝑡 )𝑗𝑘̄

]

=

[
𝜕

𝜕𝑡
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄

]
+ 𝜆−2𝑟−2𝑂(1). (5.17)

Here we used (2.11) and 𝑔−1𝑐𝑜,𝑡 = 𝑟
−2𝑂(𝐼) in these coordinates. The same computation as (5.16)

gives

𝜕

𝜕𝑡
((Φ−1𝑡 )

∗𝑔𝑐𝑜,0)𝑘̄𝑗(𝑤) = 𝑟
2𝜆−2𝑂(1)
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 339

and therefore

𝜕

𝜕𝑡

[
[(Φ−1𝑡 )

∗𝑔𝑐𝑜,0]
𝑗𝑘̄(𝐹𝐾𝑡 )𝑗𝑘̄

]
= 𝜆−2𝑟−2𝑂(1).

Since 𝜆2 = 𝑟3, this completes the proof of (5.13). □

6 PERTURBATION

At this stage in the construction, we have a pair of metrics (𝑔𝑡, 𝐻𝑡) on the smoothing 𝑋𝑡 such that
both of these metrics agree with a scaling of 𝑔𝑐𝑜,𝑡 near the vanishing cycles {‖𝑧‖2 = 𝑡}. The met-
ric 𝜔𝑡 is not balanced on all of 𝑋𝑡 and the metric 𝐻𝑡 is not Hermitian-Yang-Mills with respect to
𝜔𝑡 away from the vanishing cycles, but by the construction they are close to solving these equa-
tions. In this sectionwewill perturb (𝑔𝑡, 𝐻𝑡) to a pair (𝑔FLY,𝑡, 𝐻̌𝑡) solving theHermitian-Yang-Mills
equation. We will prove:

Theorem 6.1. There exists 𝜀 > 0 such that for all 0 < |𝑡| < 𝜀, there exists on 𝑋𝑡 a pair of hermitian
metrics (𝑔FLY,𝑡, 𝐻̌𝑡) solving

𝑑𝜔2FLY,𝑡 = 0, 𝐹𝐻̌𝑡 ∧ 𝜔
2
FLY,𝑡 = 0.

Near the vanishing cycles, these metrics have the following local description. There exists 𝜆, 𝑐𝑖, 𝑑𝑖 > 0
such that for any 𝑘 ∈ ℤ≥0, there exists 𝐶𝑘 > 0 such that for all |𝑡| < 𝜀

|∇𝑘𝑔𝑐𝑜,𝑡 (𝑔FLY,𝑡 − 𝑐𝑖𝑔𝑐𝑜,𝑡)|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑘|𝑡|2∕3𝑟−𝑘 (6.1)

and

|∇𝑘𝑔𝑐𝑜,𝑡 (𝐻̌𝑡 − 𝑑𝑖𝑔𝑐𝑜,𝑡)|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑘|𝑡|𝜆𝑟−𝑘 (6.2)

in the region

𝜆 =

{|𝑡| ≤ ‖𝑧‖2 ≤ |𝑡| 3

3+𝜆

}
.

Remark 6.2. The decay estimates (6.1) and (6.2) imply that, at an appropriate scale, the Hermitian-
Yang-Mills metrics𝐻𝑡 converge smoothly to a multiple of the CO metric 𝑔𝑐𝑜,0 as |𝑡|→ 0.

6.1 The 𝜽-perturbed Fu-Li-Yau metric

We recall the construction of Fu-Li-Yau [35] which perturbs 𝜔𝑡 to a balanced metric 𝜔FLY,𝑡. The
Fu-Li-Yau balanced metric is obtained via the ansatz

𝜔2FLY,𝑡 = 𝜔
2
𝑡 + 𝜃𝑡 + 𝜃̄𝑡. (6.3)
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340 COLLINS et al.

The (2,2) form 𝜃𝑡 is constructed to satisfy

𝜕𝜃𝑡 = 0, 𝜕̄𝜃𝑡 = −𝜕̄𝜔
2
𝑡 .

More specifically, the correction 𝜃𝑡 is of the form

𝜃𝑡 = 𝜕𝜕̄
†𝜕†𝛾𝑡

where adjoints are with respect to 𝑔𝑡 and 𝛾𝑡 ∈ Λ2,3(𝑋𝑡) satisfies 𝜕𝛾𝑡 = 0. Estimates for 𝛾𝑡 and 𝜃𝑡
were obtained by Fu-Li-Yau [35]. We will use the versions stated in [16]. [16, Proposition 3.8] states
that

|𝜃𝑡|𝑔𝑡 ≤ 𝐶‖𝑧‖−2∕3|𝑡|,
which using ‖𝑧‖2 ≥ |𝑡| implies

|𝜃𝑡|𝑔𝑡 ≤ 𝐶|𝑡|2∕3. (6.4)

The proof of [16, Proposition 3.8] uses

∫
𝑋𝑡

|𝛾𝑡|2𝑔𝑡 ≤ 𝐶|𝑡|2. (6.5)

We will need the following higher estimate on ∇𝜃.

Lemma 6.3.

|∇𝑘𝜃𝑡|𝑔𝑡 ≤ 𝐶𝑘|𝑡|2∕3𝑟−𝑘.
Proof. This is similar to [16, Proposition 3.7]. We first show the estimate on a compact set𝐾 which
does not intersect the vanishing cycles. The operator 𝐸𝑡 given by

𝐸𝑡 = 𝜕𝜕̄𝜕̄
†𝜕† + 𝜕†𝜕̄𝜕̄†𝜕 + 𝜕†𝜕,

where † is with respect to 𝑔𝑡, is a 4th order elliptic operator. The form 𝛾𝑡 satisfies

𝐸𝑡(𝛾) = 𝜕̄𝜔
2
𝑡 .

In fact, it is obtained in [35] by solving this equation. On 𝐾, the geometry is uniform in 𝑡, hence
by elliptic estimates we have

‖𝛾‖𝐶4(𝐾) ≤ 𝐶(‖𝛾‖𝐿2(𝐾) + ‖𝜕̄𝜔2𝑡 ‖𝑊𝑘,𝑝(𝐾))

for some 𝑘, 𝑝 > 1. As noted in Lemma 2.17, the construction of 𝜔𝑡 is such that

|𝜕̄𝜔2𝑡 |𝐶𝑘(𝑋𝑡,𝑔𝑡) ≤ 𝐶𝑘|𝑡|. (6.6)
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 341

By (6.6) and (6.5), we have ‖𝛾‖𝐶4(𝐾) ≤ 𝐶|𝑡| and hence ‖∇𝜃𝑡‖𝐿∞(𝐾) ≤ 𝐶|𝑡|. Similarly, |∇𝑘𝜃𝑡‖𝐿∞(𝐾) ≤
𝐶𝑘|𝑡|.
We now prove the estimate stated in the lemma on a set 𝑈(𝜀) ∩ 𝑋𝑡 containing the vanishing

cycles and assume 𝑔𝑡 = 𝑅0𝑔𝑐𝑜,𝑡. Here 𝜕̄𝜃 = 𝜕̄𝜔2𝑐𝑜,𝑡 = 0, and we also have

𝜕̄†𝜃 = 𝜕̄†𝜕𝜕̄†𝜕†𝛾𝑡 = 0

since 𝜕 and 𝜕̄† commute because 𝑔𝑡 is Kähler on this set. Therefore

Δ𝜕̄𝜃𝑡 = 0.

Working in holomorphic cylindrical coordinates (see Lemma 2.11), we can verify that the coeffi-
cients of the equation 𝑟2Δ𝜕̄𝜃𝑡 = 0 are uniformly bounded in 𝐶𝛼. Indeed, by the Bochner-Kodaira
formula,

Δ𝜕̄𝜃 = −𝑔
𝑖𝑗̄
𝑡 𝜕𝑖𝜕𝑗̄𝜃 + Γ ∗ 𝜕𝜃 + 𝜕Γ ∗ 𝜃 + Γ ∗ Γ ∗ 𝜃 + 𝑅𝑚𝑔𝑡 ∗ 𝜃,

and the uniform boundedness of the coefficients of 𝑟2Δ𝜕̄ follows from Lemma 2.11. By the
Schauder estimates in this coordinate chart, we obtain

sup
𝐵1∕2

|𝜕𝜃𝑡|𝑔𝑒𝑢𝑐 ≤ 𝐶 sup
𝐵1

|𝜃𝑡|𝑔𝑒𝑢𝑐 .
Using 𝑔𝑐𝑜,𝑡 = 𝑟2𝑂(𝐼) in these coordinates, we obtain

|∇𝜃𝑡|𝑔𝑡 ≤ 𝐶𝑟−1 sup
𝑋𝑡

|𝜃𝑡|𝑔𝑡 .
Since |𝜃𝑡|𝑔𝑡 ≤ 𝐶|𝑡|2∕3, we obtain the lemma for 𝑘 = 1 and higher 𝑘 ≥ 1 are similar. □

We now note some general facts on (2,2) forms constructed via the ansatz 𝜔̃2 = 𝜔2 + 𝜃 + 𝜃̄.

Lemma 6.4. On a complex manifold of dimension 𝑛, the equation

𝜔𝑛−1 = Ψ > 0

has solution

𝑔𝑘̄𝑗 = (det Ψ)
1∕(𝑛−1)(Ψ−1)𝑘̄𝑗,

where 𝜔 =
√
−1𝑔𝑘̄𝑗 𝑑𝑧

𝑗 ∧ 𝑑𝑧̄𝑘 and Ψ is written as∑
𝑘,𝑗

𝑐𝑘𝑗Ψ
𝑘𝑗̄𝑑𝑧1 ∧ 𝑑𝑧̄1 ∧⋯ ∧ 𝑑𝑧𝑘 ∧ 𝑑𝑧̄𝑘 ∧⋯ ∧ 𝑑𝑧𝑗 ∧ 𝑑𝑧̄𝑗 ∧⋯ ∧ 𝑑𝑧𝑛 ∧ 𝑑𝑧̄𝑛

with 𝑐𝑘𝑗 = (
√
−1)𝑛−1(𝑛 − 1)!𝑠𝑔𝑛(𝑘, 𝑗).
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342 COLLINS et al.

Proof. See for example [59] or [66]. Direct computation of 𝜔𝑛−1 gives (det 𝑔)𝑔𝑗𝑘̄ = Ψ𝑗𝑘̄ and the
result follows from taking the determinant of both sides and solving for 𝑔. □

Lemma 6.5. Let ∇ be the Chern connection with respect to a Hermitian metric 𝜔. Let 𝜂 =√
−1𝜂𝑘̄𝑗 𝑑𝑧

𝑗 ∧ 𝑑𝑧̄𝑘 be a positive (1,1) form solving 𝜂2 = 𝜔2 + 𝜃 + 𝜃̄, where

𝜃 =
1

4
𝜃𝑠𝑟𝑗𝑘̄ 𝑑𝑧

𝑠 ∧ 𝑑𝑧̄𝑟 ∧ 𝑑𝑧𝑗 ∧ 𝑑𝑧̄𝑘.

Then

∇𝑖𝜂𝑘̄𝑗 = −
1

2
𝜂𝑠𝑟(∇𝑖𝜃𝑠𝑟𝑗𝑘̄ + ∇𝑖𝜃̄𝑠𝑟𝑗𝑘̄) +

1

8

[
𝜂𝑝𝑞̄𝜂𝑠𝑟(∇𝑖𝜃𝑠𝑟𝑗𝑘̄ + ∇𝑖𝜃̄𝑠𝑟𝑝𝑞̄)

]
𝜂𝑘̄𝑗.

Proof. A similar computation can be found in [67]. In components, the equation 𝜂2 = 𝜔2 + 𝜃 + 𝜃̄
is

−2𝜂𝑟𝑠𝜂𝑘̄𝑗 + 2𝜂𝑟𝑗𝜂𝑘̄𝑠 = (𝜔
2 + 𝜃 + 𝜃̄)𝑠𝑟𝑗𝑘̄.

Differentiating this equation leads to

−∇𝑖𝜂𝑟𝑠𝜂𝑘̄𝑗 − 𝜂𝑟𝑠∇𝑖𝜂𝑘̄𝑗 + ∇𝑖𝜂𝑟𝑗𝜂𝑘̄𝑠 + 𝜂𝑟𝑗∇𝑖𝜂𝑘̄𝑠 =
1

2
(∇𝑖𝜃𝑠𝑟𝑗𝑘̄ + ∇𝑖𝜃̄𝑠𝑟𝑗𝑘̄)

Contracting by 𝜂𝑠𝑟 gives

−(𝜂𝑠𝑟∇𝑖𝜂𝑟𝑠)𝜂𝑘̄𝑗 − ∇𝑖𝜂𝑘̄𝑗 =
1

2
𝜂𝑠𝑟(∇𝑖𝜃𝑠𝑟𝑗𝑘̄ + ∇𝑖𝜃̄𝑠𝑟𝑗𝑘̄)

Contracting again by 𝜂𝑗𝑘̄ gives

−4𝜂𝑠𝑟∇𝑖𝜂𝑟𝑠 =
1

2
𝜂𝑗𝑘̄𝜂𝑠𝑟(∇𝑖𝜃𝑠𝑟𝑗𝑘̄ + ∇𝑖𝜃̄𝑠𝑟𝑗𝑘̄).

Combining the previous two identities proves the lemma. □

Using what we have obtained so far in this subsection, we can derive the main esti-
mate of this subsection which shows that the difference between 𝑔−1𝑡 and (𝑔FLY,𝑡)

−1 is
small.

Lemma 6.6. There exists 𝐶𝑘 > 0 and 𝜀 > 0 with the following property. For all 0 < |𝑡| < 𝜀, the 𝜃-
perturbed Fu-Li-Yau metric 𝑔FLY,𝑡 satisfies the estimates:

2−1𝑔𝑡 ≤ 𝑔FLY,𝑡 ≤ 2𝑔𝑡,
and

|∇𝑘𝑔𝑡 (𝑔FLY,𝑡 − 𝑔𝑡)|𝑔𝑡 ≤ 𝐶𝑘|𝑡|2∕3𝑟−𝑘,
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 343

for 𝑘 ∈ ℤ≥0. Furthermore, we have

‖𝜔−1FLY,𝑡 − 𝜔−1𝑡 ‖
𝐶
0,𝛼
0

≤ 𝐶0|𝑡|2∕3.
Proof. If |𝜃𝑡 + 𝜃̄𝑡|𝑔𝑡 ≤ 1

100
, then by Lemma 6.4 we have

|𝑔FLY,𝑡|𝑔𝑡 ≤ 2, |𝑔−1FLY,𝑡|𝑔𝑡 ≤ 2.
Next, we write the difference of metrics as

𝜔FLY,𝑡 − 𝜔𝑡 = ∫
1

0

𝑑

𝑑𝑠
𝜂𝑠 𝑑𝑠

where 𝜂𝑠 solves 𝜂2𝑠 = 𝜔2𝑡 + 𝑠(𝜃𝑡 + 𝜃̄𝑡). By the variation formula in Lemma 6.5, we have

𝑑

𝑑𝑠
(𝜂𝑠)𝑘̄𝑗 = −

1

2
𝜂𝑠𝑟𝑠 (𝜃 + 𝜃̄)𝑠𝑟𝑗𝑘̄ +

1

8

[
𝜂
𝑝𝑞̄
𝑠 𝜂

𝑠𝑟
𝑠 (𝜃 + 𝜃̄)𝑠𝑟𝑝𝑞̄

]
(𝜂𝑠)𝑘̄𝑗.

The same argument as above shows that |𝜂𝑠|𝑔𝑡 ≤ 𝐶 and |𝜂−1𝑠 |𝑔𝑡 ≤ 𝐶 for 𝑠 ∈ [0, 1]. Therefore
|𝑔FLY,𝑡 − 𝑔𝑡|𝑔𝑡 ≤ 𝐶|𝜃𝑡|𝑔𝑡 ≤ 𝐶|𝑡|2∕3

by (6.4). Next, by Lemma 6.5 and Lemma 6.3, we have

|∇𝑔𝑡 (𝑔FLY,𝑡)|𝑔𝑡 ≤ 𝐶|∇𝑔𝑡𝜃|𝑔𝑡 ≤ 𝐶|𝑡|2∕3𝑟−1.
Higher order estimates for |∇𝑘𝑔𝑡 (𝑔FLY,𝑡)|𝑔𝑡 are similar.
It remains to estimate the difference, which can be done by:

‖𝜔−1FLY,𝑡 − 𝜔−1𝑡 ‖
𝐶
0,𝛼
0
= ‖𝜔−1FLY,𝑡(𝜔FLY,𝑡 − 𝜔𝑡)𝜔−1𝑡 ‖

𝐶
0,𝛼
0

≤ ‖𝜔−1FLY,𝑡‖𝐶0,𝛼
0

‖𝜔FLY,𝑡 − 𝜔𝑡‖𝐶0,𝛼
0

‖𝜔−1𝑡 ‖
𝐶
0,𝛼
0
. (6.7)

Since |∇𝜔−1FLY,𝑡|𝑔𝑡 ≤ 𝐶|𝑡|2∕3𝑟−1, we have
‖𝜔−1FLY,𝑡‖𝐶0,𝛼

0
≤ 𝐶(1 + 𝑟|∇𝜔−1FLY,𝑡|𝑔𝑡 ) ≤ 𝐶.

The estimate

|𝜔FLY,𝑡 − 𝜔𝑡| + 𝑟|∇𝑔𝑡 (𝜔FLY,𝑡 − 𝜔𝑡)| ≤ 𝐶|𝑡|2∕3
implies

‖𝜔FLY,𝑡 − 𝜔𝑡‖𝐶0,𝛼
0

≤ 𝐶|𝑡|2∕3
which proves the lemma. □
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344 COLLINS et al.

6.2 Uniform weighted Hölder estimates

Let 𝑔𝑡 be the metric constructed by Fu-Li-Yau which satisfies 𝑔𝑡 = 𝑔𝑐𝑜,𝑡 near the vanishing cycles
(for ease of notation, in this section we assume that the constant𝑀1∕2

0 𝜀−1∕3 in Proposition 2.17 is
equal to 1). Let𝐻𝑡 be themetric on𝑋𝑡 constructed in the previous section, that is, the glued approx-
imate solution to the Hermitian-Yang-Mills equation. We will use a linear operator 𝐿𝑡 which acts
on endomorphisms ℎ ∈ Γ(End𝑇1,0𝑋𝑡) by

𝐿𝑡ℎ = (𝑔𝑡)
𝑗𝑘̄𝜕𝑘̄∇

𝐻𝑡
𝑗
ℎ +

1

2

[√
−1Λ𝜔𝑡𝐹𝐻𝑡 , ℎ

]
.

The motivation for this operator is that it is close to the linearization of the Hermitian-Yang-
Mills equation

√
−1Λ𝜔FLY,𝑡𝐹𝐻 = 0 at the approximate solution 𝐻𝑡, the difference being the use

of 𝑔𝑡 instead of 𝑔FLY,𝑡. We start by proving uniform Schauder estimates independent of 𝑡 on the
deformations 𝑋𝑡.

Proposition 6.7. Let 𝛽 ≤ 0. There exists 𝐶 > 1 and 𝑎 ∈ (0, 1) such that for all 𝑡 ∈ ℂ∗ and ℎ ∈
Γ(End𝑇1,0𝑋𝑡), we can estimate

‖ℎ‖
𝐶
2,𝑎
𝛽
(𝑋𝑡)

≤ 𝐶(‖ℎ‖𝐶0
𝛽
(𝑋𝑡)

+ ‖𝐿𝑡ℎ‖𝐶0,𝑎
𝛽−2

(𝑋𝑡)
)

where the weighted Hölder norms are defined in Section 5.2 using (𝑔𝑡, 𝐻𝑡).

Proof. On𝑋𝑡 ∩ {𝑟 > 1}, the geometry is uniform in 𝑡 and the estimate holds by the usual Schauder
estimates. Let 𝑥̂ ∈ 𝑋𝑡 ∩ {𝑟(𝑥) ≤ 1}. We denote the scale of this point by the constant 𝑟 ∶= 𝑟(𝑥̂). We
will work in holomorphic cylindrical coordinates {𝑤𝑖} given in Lemma 2.11 on the set

𝑈𝑟 = {(1∕4)𝑟 < 𝑟 < 4𝑟}.

By Lemma 2.11 and Lemma 5.1, the operator 𝑟2𝐿𝑡 is uniformly elliptic with uniform derivative esti-
mates in coordinates {𝑤𝑖}. The standard Schauder estimates applied to each matrix entry 𝑟−𝛽ℎ𝑖𝑗
imply

‖𝑟−𝛽ℎ‖
𝐶
2,𝛼
𝑔euc

(𝐵1∕2)
≤ 𝐶(‖𝑟−𝛽ℎ‖𝐶0𝑔euc (𝐵1) + ‖𝑟2𝐿𝑡(𝑟−𝛽ℎ)‖𝐶𝛼𝑔euc (𝐵1))

with usual (non-scaled) norms

‖𝑢‖𝐶𝑘𝑔euc (𝐵1) = 𝑘∑
𝑖=0

sup
𝐵1

|𝐷𝑖𝑢|, [𝑢]𝐶𝛼𝑔euc (𝐵1)
= sup

𝑥≠𝑦
|𝑢(𝑥) − 𝑢(𝑦)||𝑥 − 𝑦|𝛼 .

As observed in (5.6), since 𝑟−2𝑔𝑡 is uniformly and smoothly equivalent to 𝑔euc in coordinates {𝑤𝑖},
the weighted Hölder norms are equivalent to these local Euclidean norms, and we have

‖ℎ‖
𝐶
2,𝑎
𝛽
(𝑈𝑟)

≤ 𝐶(‖ℎ‖𝐶0
𝛽
(𝑈𝑟)

+ ‖𝐿𝑡ℎ‖𝐶𝑎
𝛽−2

(𝑈𝑟)).
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 345

The norm ‖ ⋅ ‖
𝐶
2,𝑎
𝛽
(𝑈𝑟)

involves connection terms from ∇𝐻𝑡 , but these are bounded in coordinates

{𝑤𝑖} by Lemma 5.3. By Lemma 5.2, these local estimates on sets 𝑈𝑟 imply the global bound. □

The next step is to improve this estimate for endomorphisms orthogonal to the identity. For a
related argument used in a gluing construction of Kähler-Einstein metrics on nodal surfaces, see
[79].

Proposition 6.8. Let 𝛽 ∈ (−2, 0). There exists 𝐶 > 1 and 𝛼 ∈ (0, 1)with the following property. Let
𝑡 ∈ ℂ with 0 < |𝑡| < 1 be arbitrary. We can estimate

‖ℎ‖
𝐶
2,𝛼
𝛽
(𝑋𝑡)

≤ 𝐶‖𝐿𝑡ℎ‖𝐶𝛼
𝛽−2

(𝑋𝑡),

for all ℎ ∈ Γ(End𝑇1,0𝑋𝑡) satisfying ℎ†𝐻𝑡 = ℎ and ∫𝑋𝑡 (Tr ℎ) 𝑑vol𝑔FLY,𝑡 = 0.
Proof. Suppose there exists a sequence of 𝑡𝑖 → 0 such that

‖ℎ𝑖‖𝐶2,𝛼
𝛽

≥ 𝑀𝑖‖𝐿𝑡𝑖ℎ𝑖‖𝐶𝛼𝛽−2
with𝑀𝑖 → ∞ and ℎ𝑖 defined on 𝑋𝑡𝑖 . Replacing ℎ𝑖 with ℎ𝑖∕‖ℎ𝑖‖𝐶2,𝛼

𝛽
, we have a sequence with

‖ℎ𝑖‖𝐶2,𝛼
𝛽
(𝑋𝑡𝑖 )

= 1, ‖𝐿𝑡𝑖ℎ𝑖‖𝐶𝛼𝛽−2(𝑋𝑡𝑖 ) → 0.

Let 𝐾 ⊂ 𝑋 be a compact set on the central fiber disjoint from the singular points. For all 𝑡 small
enough, we have a sequenceΦ∗𝑡𝑖ℎ𝑖 of tensors defined on 𝐾. Since 𝐶

−1𝑟(𝑥) ≤ 𝑟(Φ𝑡(𝑥)) ≤ 𝐶𝑟(𝑥), we
have a uniform bound on

‖Φ∗𝑡𝑖ℎ𝑖‖𝐶2,𝛼𝛽 (𝐾,Φ∗𝑡𝑖
𝑔𝑖 ,Φ

∗
𝑡𝑖
𝐻𝑖)

≤ 𝐶.

By Lemma 2.16,Φ∗𝑡𝑖 𝑔𝑡𝑖 → 𝑔0 smoothly uniformly on compact sets, and the definition of𝐻𝑡 implies
thatΦ∗𝑡𝑖𝐻𝑡𝑖 → 𝐻0 smoothly uniformly on compact sets. We can thus extract a limiting tensor ℎ0 ∈

𝐶
2,𝛼∕2

𝑙𝑜𝑐
(𝑋) which satisfies the growth estimates

|ℎ0|𝑔0 ≤ 𝐶𝑟𝛽, |∇𝐻0ℎ0|𝑔0 ≤ 𝐶𝑟𝛽−1.
By the construction ofΦ𝑡 in Lemma 2.13, the limit ℎ0 preserves 𝑇1,0𝑋 and is an endomorphism of
this bundle which satisfies the identities

(𝑔0)
𝑗𝑘̄𝜕𝑘̄∇

𝐻0
𝑗
ℎ0 = 0, ℎ†0 = ℎ0 (6.8)

where † is with respect to 𝐻0. We now show that

∫
𝑋

(Tr ℎ0) 𝑑vol𝑔0 = 0. (6.9)
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346 COLLINS et al.

For this, we let 𝛿 > 0, so that (Φ𝑡𝑖 )
∗ℎ𝑡𝑖 , (Φ𝑡𝑖 )

∗𝑔𝑡𝑖 converge uniformly on {𝑟 > 𝛿}. By Lemma 6.6, we
also have that (Φ𝑡𝑖 )

∗𝑔FLY,𝑡𝑖 → 𝑔0 uniformly in the 𝐶0 norm on {𝑟 > 𝛿}. Therefore

∫
𝑋∩{𝑟>𝛿}

(Tr ℎ0) 𝑑vol𝑔0 = lim𝑖 ∫
𝑋𝑡𝑖 ∩{𝑟>𝛿}

(Tr ℎ𝑖) 𝑑vol𝑔FLY,𝑡𝑖
.

Since ∫
𝑋𝑡𝑖
Tr ℎ𝑖 = 0, then

∫
𝑋

(Tr ℎ0) 𝑑vol𝑔0 = − lim𝛿→0
lim
𝑖 ∫

𝑋𝑡𝑖 ∩{𝑟<𝛿}

(Tr ℎ𝑖) 𝑑vol𝑔FLY,𝑡𝑖
. (6.10)

From 𝑑vol𝑔FLY,𝑡 ≤ 𝐶𝑑vol𝑔𝑡 (Lemma 6.6) and |ℎ𝑖| ≤ 𝑟𝛽 , we have
||||∫𝑋𝑡𝑖 ∩{𝑟<𝛿}(Tr ℎ𝑖) 𝑑vol𝑔FLY,𝑡𝑖

|||| ≤ 𝐶𝛿𝛽 ∫
𝑋𝑡𝑖 ∩{𝑟<𝛿}

𝑑vol𝑔𝑡𝑖

= 𝐶𝛿𝛽 ∫
𝑋1∩{𝑟<𝛿|𝑡𝑖|−1∕3} 𝑆

∗

𝑡1∕3
𝑑vol𝑔𝑡𝑖

= 𝐶𝛿𝛽 ∫
𝑋1∩{𝑟<𝛿|𝑡𝑖|−1∕3} |𝑡𝑖|2𝑑vol𝑔𝑐𝑜,1

where 𝑆𝑡1∕3 ∶ 𝑉1 → 𝑉𝑡, 𝑆𝑡1∕3(𝑧) = 𝑡1∕2𝑧 is the scaling action (2.7) which satisfies 𝑆∗
𝑡1∕3
𝑔𝑐𝑜,𝑡 =|𝑡|2∕3𝑔𝑐𝑜,1. We have Vol𝑔𝑐𝑜,1 ({𝑟 < 𝑅}) = 𝑂(𝑅

6) since 𝑔𝑐𝑜,1 is asymptotically conical, and
so

||||∫𝑋𝑡𝑖 ∩{𝑟<𝛿}(Tr ℎ𝑖) 𝑑vol𝑔FLY,𝑡𝑖
|||| ≤ 𝐶𝛿6+𝛽

which together with (6.10) proves (6.9).
Next, (6.8) implies that the identity

Δ𝑔0 |ℎ0|2𝐻0 = 2|∇ℎ0|2𝐻0,𝑔0
holds pointwise away from the nodes. Let 𝜂𝛿 be a cutoff function such that 𝜂𝛿 ≡ 0 on {𝑟 < 𝛿

2
},

𝜂𝛿 ≡ 1 on {𝑟 > 𝛿} and |Δ𝑔𝜂𝛿| ≤ 𝐶𝛿−2. Then
2∫

𝑈𝛿

|∇ℎ0|2𝐻0,𝑔0 𝑑vol𝑔0 ≤ ∫
𝑋

𝜂𝛿Δ𝑔0 |ℎ0|2𝐻0 𝑑vol𝑔0 .
Recall that 𝑔0 is balanced on 𝑋 and so we can integrate by parts.

2∫
𝑈𝛿

|∇ℎ0|2𝐻0,𝑔0 𝑑vol𝑔0 ≤ 𝐶𝛿−2 ∫
{
𝛿

2
<𝑟<𝛿}

|ℎ0|2𝐻0𝑑vol𝑔𝑐𝑜,0 .
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 347

Since ℎ0 ∈ 𝐶1𝛽 and 𝑑vol𝑔𝑐𝑜,0 = 𝑟
5𝑑𝑟𝑑vol𝑔𝐿 , then

2∫
𝑈𝛿

|∇ℎ0|2𝐻0,𝑔0 𝑑vol𝑔0 ≤ 𝐶𝛿−2+2𝛽+6
and we conclude that

lim sup
𝛿→0 ∫

𝑈𝛿

|∇ℎ0|2𝐻0 𝑑vol𝑔0 = 0
for 𝛽 ∈ (−2, 0). Therefore 𝜕ℎ0 = 0 on 𝑋, and ℎ0 is a holomorphic endomorphism. By
Hartogs’s theorem, ℎ0 extends across the holomorphic curves to the small resolution 𝑋.
Since 𝑇1,0𝑋 is stable with respect to 𝜔CY , it must be the case that ℎ0 = 𝑐 𝐼 is a multi-
ple of the identity. We showed in (6.9) that the integral of Tr ℎ0 is zero, so we conclude
that

ℎ0 ≡ 0.
The goal now is to obtain a contradiction to this by using that ‖ℎ𝑖‖𝐶2,𝛼

𝛽
= 1 along the sequence

𝑡𝑖 → 0. The uniform Schauder estimates in Proposition 6.7 imply

1 ≤ 𝐶(‖ℎ𝑖‖𝐶0
𝛽
+ 𝑀−1

𝑖
),

and hence

|𝑟−𝛽ℎ𝑖|(𝑧𝑖) ≥ 𝐶−1
for a sequence 𝑧𝑖 ∈ 𝑋𝑡𝑖 .

∙ Case 1: Suppose lim inf 𝑟(𝑧𝑖) > 0. It then follows that after taking a subsequence, we have 𝑧𝑖 →
𝑧0 ∈ 𝑋 with 𝑟(𝑧0) > 0. Then

|ℎ0(𝑧0)| ≥ 𝐶−1𝑟(𝑧0)𝛽 > 0
which contradicts ℎ0 ≡ 0.

∙ Case 2: Suppose 𝑟(𝑧𝑖) → 0. In this case, we can assume that all points 𝑧𝑖 are in the region of
𝑋𝑡 which can be identified with a subset of 𝑉𝑡 = {

∑
𝑧2
𝑖
= 𝑡} and where 𝑔𝑡 = 𝑔𝑐𝑜,𝑡. Define the

function 𝑢𝑖 ∶ 𝑉𝑡𝑖 ∩ {‖𝑧‖2 ≤ 1} → ℝ given by

𝑢𝑖 = |ℎ𝑖|2𝐻𝑡𝑖 .
The sequence {𝑢𝑖} satisfies the uniform growth estimate

‖𝑢𝑖‖𝐶2,𝛼
2𝛽
(𝑔𝑡)

≤ 𝐶, (6.11)
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348 COLLINS et al.

which written in full is

|𝑢| + 𝑟−1|∇𝑢|𝑔𝑐𝑜,𝑡 + 𝑟−2|∇2𝑔𝑐𝑜,𝑡𝑢|𝑔𝑐𝑜,𝑡 + [∇2𝑔𝑐𝑜,𝑡𝑢]𝐶0,𝑎
𝛽−2−𝑎

≤ 𝐶𝑟2𝛽.

This definition of ‖𝑢‖
𝐶
2,𝛼
2𝛽
(𝑔𝑡)

is slightly different than the weighted Hölder norms used previously

for ℎ𝑡, since we use ∇ with respect to 𝑔𝑡 (rather than 𝐻𝑡). These estimates for 𝑢𝑖 follow from‖ℎ𝑖‖𝐶2,𝛼
𝛽
(𝑔𝑡,𝐻𝑡)

≤ 1 and (5.3), which allow us to uniformly convert norms in𝐻𝑡 to norms in 𝑔𝑡.

Direct computation gives the identity

Δ𝑔𝑖𝑢𝑖 = 2Re ⟨𝐿𝑖ℎ𝑖, ℎ𝑖⟩𝐻𝑖 + 2|∇ℎ𝑖|2𝐻𝑖,𝑔𝑖 .
We are assuming ‖𝐿𝑡𝑖ℎ𝑖‖𝐶𝛼𝛽−2 ≤ 𝜀𝑖 with 𝜀𝑖 → 0, hence

Δ𝑔𝑖𝑢𝑖 ≥ −𝐶𝜀𝑖𝑟2𝛽−2. (6.12)

We will rescale the functions 𝑢𝑖 to take a limit. For ease of notation, we write 𝜆𝑖 = 𝑟(𝑧𝑖). We will
use the scaling map 𝑆𝜆𝑖 ∶ 𝑉𝑡𝑖𝜆−3𝑖 → 𝑉𝑡𝑖 from (2.7) given by 𝑆(𝑥) = 𝜆3∕2

𝑖
𝑥. We rescale and pullback

𝑢𝑖 via 𝑆𝜆𝑖 to obtain a function

𝑢̃𝑖 ∶ 𝑉𝑡𝑖𝜆−3𝑖
∩ {‖𝑥‖2 ≤ 𝜆−3

𝑖
} → ℝ

defined by

𝑢̃𝑖(𝑥) = 𝜆
−2𝛽
𝑖

𝑢(𝜆
3∕2

𝑖
𝑥).

The rescaling is setup so that the estimates for 𝑢𝑖 imply estimates for 𝑢̃𝑖 . For example, we have

Δ𝑔
𝑡𝑖𝜆
−3
𝑖

𝑢̃𝑖 ≥ −𝐶𝜀𝑖𝑟2𝛽−2. (6.13)

Indeed, pulling back the Laplacian gives

𝑆∗
𝜆𝑖
(Δ𝑔𝑡𝑖

𝑢𝑖) = 𝜆
2𝛽
𝑖
Δ𝑆∗𝑔𝑡𝑖

𝑢̃𝑖 = 𝜆
2𝛽
𝑖
𝜆−2
𝑖
Δ𝑔𝑡𝑖𝜆−3

𝑢̃𝑖

by using the rescaling relation 𝑆∗
𝜆
𝑔𝑡 = 𝜆

2𝑔𝑡𝜆−3 . Using 𝑟(𝜆3∕2𝑥) = 𝜆𝑟(𝑥), we obtain (6.13) from (6.12).
Similar computations show that

|𝑢̃𝑖| + 𝑟−1|∇𝑢̃𝑖|𝑔
𝑐𝑜,𝑡𝑖𝜆

−3
𝑖

+ 𝑟−2|∇2𝑢̃𝑖|𝑔
𝑐𝑜,𝑡𝑖𝜆

−3
𝑖

+ [∇2𝑢̃𝑖]𝐶0,𝑎
𝛽−2−𝑎

≤ 𝐶𝑟2𝛽. (6.14)

Recall that the points 𝑧𝑖 satisfy |ℎ𝑖|(𝑧𝑖) ≥ 𝐶−1𝜆𝛽𝑖 . Then the points 𝑥𝑖 = 𝜆−3∕2𝑖
𝑧𝑖 satisfy

𝑢̃𝑖(𝑥𝑖) ≥ 𝐶−1.
The sequence {𝑡𝑖𝜆−3𝑖 } lies in [0,1], since ‖𝑧‖2 ≥ |𝑡| implies 𝑟3(𝑧𝑖) ≥ |𝑡𝑖|. After taking a subsequence,
we have convergence 𝑡𝑖𝜆−3𝑖 → 𝜅 for 𝜅 ∈ [0, 1].
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 349

∙ Case 2a: 𝑡𝑖𝜆−3𝑖 → 𝜅 > 0. The points 𝑥𝑖 = 𝜆
−3∕2

𝑖
𝑧𝑖 satisfy ‖𝑥𝑖‖ = 1. We may assume

𝑥𝑖 → 𝑥∞ ∈ 𝑉𝜅, ‖𝑥∞‖ = 1.
We can take a limit of {𝑢̃𝑖} on compact sets and obtain a 𝐶

2,𝛼
𝑙𝑜𝑐

limiting function 𝑢∞ ≥ 0 on 𝑉𝜅
satisfying 𝑢∞ ≤ 𝐶𝑟2𝛽 and Δ𝑔𝜅𝑢∞ ≥ 0. By the maximum principle,

sup
𝑟≤𝑅 𝑢∞ ≤ sup

𝑟=𝑅
𝑢∞ ≤ 𝑅2𝛽.

Letting 𝑅 → ∞, we obtain that 𝑢∞ ≡ 0 since 𝛽 < 0. This contradicts 𝑢∞(𝑥∞) > 0.
∙ Case 2b: 𝑡𝑖𝜆−3𝑖 → 0. In this case, the points 𝑥𝑖 = 𝜆

−3∕2

𝑖
𝑧𝑖 converge after a subsequence to

𝑥𝑖 → 𝑥∞ ∈ 𝑉0, ‖𝑥∞‖ = 1.
Let 𝑣𝑖 ∶ {|𝑡𝑖|𝜆−3𝑖 < ‖𝑥‖2 < 1

2
𝜆−3
𝑖
} ∩ 𝑉0 → ℝ with 𝑣𝑖 = Φ∗𝑡𝑖𝜆−3𝑖

𝑢̃𝑖 be the corresponding sequence

of functions on the cone𝑉0 (recallΦ𝑡 is defined in (2.9)). Since ‖𝑥‖2 ≤ ‖Φ(𝑥)‖2 ≤ 2‖𝑥‖2, we have
the growth estimate

𝑣𝑖 ≤ 𝐶𝑟2𝛽.
By pulling-back (6.14), on compact sets 𝐾 we have the estimate

‖𝑣𝑖‖𝐶2,𝛼(𝐾,Φ∗𝑔
𝑡𝑖𝜆
−3
𝑖
) ≤ 𝐶(𝐾), ΔΦ∗𝑔

𝑡𝑖𝜆
−3
𝑖

𝑣𝑖 ≥ −𝜀𝑖𝐶(𝐾).

Corollary 2.9 implies Φ∗𝑔𝑡𝑖𝜆−3𝑖 → 𝑔𝑐𝑜,0 uniformly on 𝐾. Taking a limit of {𝑣𝑖} on compact sets

produces a 𝐶2,𝛼
𝑙𝑜𝑐

limiting function 𝑣∞ ≥ 0 on the cone 𝑉0 satisfying
Δ𝑔𝑐𝑜,0𝑣∞ ≥ 0, 𝑣∞ ≤ 𝐶𝑟2𝛽

for 𝛽 ∈ (−2, 0). Lemma 6.9 below implies that 𝑣∞ ≡ 0 which contradicts 𝑣∞(𝑥∞) > 0. □

Lemma 6.9. Let𝑉0 be a Riemannian cone of dimension 𝑛 > 2with metric 𝑔 = 𝑑𝑟2 + 𝑟2𝑔𝐿. Let 𝑢 be
a 𝐶2 function satisfying Δ𝑔𝑢 ≥ 0 and 𝑢 ≥ 0. Suppose there exists𝑀 > 0 such that 𝑢 ≤ 𝑀𝑟−𝛿 where
𝛿 ∈ (0, 𝑛 − 2). Then 𝑢 ≡ 0.
Proof. This is a standard PDE result (e.g. [46]), but we give the proof for completeness. Recall that
the real Laplacian is

Δ𝑔𝑢 = 𝜕𝑟𝜕𝑟𝑢 + (𝑛 − 1)𝑟
−1𝜕𝑟𝑢 + 𝑟

−2Δ𝑔𝐿𝑢.

Let 𝐵𝑅(0) = {𝑥 ∈ 𝑉0 ∶ 𝑟(𝑥) < 𝑅}. We start by noting that for any 𝜑 ∈ 𝐶2(𝜕𝐵𝑅(0), ℝ), there exists
ℎ ∈ 𝐶2(𝐵𝑅(0), ℝ) such that ℎ|𝜕𝐵𝑅(0) = 𝜑 and

Δ𝑔ℎ = 0, sup
𝐵𝑅(0)

|ℎ| ≤ sup
𝜕𝐵𝑅(0)

|𝜑|.
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350 COLLINS et al.

To obtain such a harmonic function ℎ, we start by expanding 𝜑|𝜕𝐵𝑅(0) = ∑
𝜆∈Spec(Δ𝑔𝐿 )

𝑐𝜆𝜓𝜆, where
𝜓𝜆 are an 𝐿2 orthogonal basis of eigenfunctions of Δ𝑔𝐿 on the link 𝐿 = {𝑟 = 1}, with eigenvalue
convention Δ𝐿𝜓𝜆 = −𝜆𝜓𝜆. We then let

ℎ =
∑

𝜆∈Spec(Δ𝑔𝐿 )

𝑐𝜆

( 𝑟
𝑅

)𝑎(𝜆)
𝜓𝜆

where 𝑎(𝜆) = 1

2
(−(𝑛 − 2) +

√
(𝑛 − 2)2 + 4𝜆) > 0. Direct computation gives Δ𝑔ℎ = 0, and by the

maximum principle

sup
𝐵𝑅∖𝐵𝜀

|ℎ| ≤ max{sup
𝜕𝐵𝑅

|𝜑|, sup
𝜕𝐵𝜀

|ℎ|}.

for any 𝜀 > 0. As 𝜀 → 0, we see that sup𝜕𝐵𝜀 |ℎ| selects the 𝜆 = 0mode 𝑐0𝜓0. This is a constant equal
to 1

Vol(𝐵𝑅)
∫
𝜕𝐵𝑅

𝜑, which is bounded by sup𝜕𝐵𝑅 |𝜑|.
We now prove that the subharmonic function 𝑢 given in the lemma is constant. Let 𝑅 > 1. Let

ℎ𝑅 be the harmonic function mentioned above with ℎ𝑅|𝜕𝐵𝑅 = 𝑢. Then
|ℎ𝑅| ≤ sup

𝜕𝐵𝑅

|𝑢| ≤ 𝑀𝑅−𝛿. (6.15)

Let 0 < 𝜀 < 1, and consider

𝑣 = 𝑢 − ℎ𝑅 − 2𝑀𝜀
𝑛−2−𝛿𝑟−(𝑛−2)

defined on 𝐵𝑅∖𝐵𝜀. Since Δ𝑔𝑟−(𝑛−2) = 0 we have that Δ𝑔𝑣 ≥ 0, and
𝑣|𝜕𝐵𝜀 ≤ |𝑢| + |ℎ𝑅| − 2𝑀𝜀−𝛿 ≤ 𝑀𝜀−𝛿 +𝑀𝑅−𝛿 − 2𝑀𝜀−𝛿 ≤ 0.

We also have

𝑣|𝜕𝐵𝑅 = −2𝑀𝜀𝑛−2−𝛿𝑅𝑛−2
< 0.

By the maximum principle, 𝑣 ≤ 0 in 𝐵𝑅∖𝐵𝜀. We now fix 𝑥 ∈ 𝐵𝑅∖𝐵𝜀. Then 𝑣(𝑥) ≤ 0 implies

𝑢(𝑥) ≤ ℎ𝑅(𝑥) + 2𝑀 𝜀𝑛−2−𝛿

𝑟𝑛−2(𝑥)
.

This holds true for all 0 < 𝜀 < 1, hence taking 𝜀 → 0 we obtain

𝑢(𝑥) ≤ ℎ𝑅(𝑥).
By (6.15), we conclude

𝑢(𝑥) ≤ 𝑀𝑅−𝛿.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 351

We now take 𝑅 → ∞ to conclude 𝑢 ≤ 0. Since 𝑢 ≥ 0 by assumption, we obtain that 𝑢 ≡ 0. □

6.3 Inverting the linearized operator

Let

𝑊𝑡 =

{
𝑢 ∈ Γ(End𝑇1,0𝑋𝑡) ∶ 𝑢

† = 𝑢, ∫
𝑋𝑡

(Tr 𝑢)𝑑vol𝑔FLY,𝑡 = 0

}
(6.16)

where † is the adjoint with respect to 𝐻𝑡. When linearizing the equation Λ𝜔FLY,𝑡𝐹𝐻 = 0 at the
approximate solution 𝐻𝑡 we obtain an operator  that acts on endomorphisms by

𝑢 = −(𝑔FLY,𝑡)𝑗𝑘̄𝜕𝑘̄∇𝐻𝑡𝑗 𝑢 − 1

2

[√
−1Λ𝜔FLY,𝑡𝐹𝐻𝑡 , 𝑢

]
.

This operator  involves 𝑔FLY,𝑡 rather than 𝑔𝑡, so it is a perturbation of the operator 𝐿 in
Proposition 6.8.
We note that  ∶ 𝑊𝑡 → 𝑊𝑡. Indeed, since 𝑢† = 𝑢, (

√
−1Λ𝐹)† =

√
−1Λ𝐹 and (𝑔𝑗𝑘̄∇𝑗∇𝑘̄𝑢)† =

𝑔𝑗𝑘̄∇𝑘̄∇𝑗𝑢, we have

(𝑢)† = −(𝑔FLY,𝑡)𝑗𝑘̄∇𝐻𝑡𝑗 𝜕𝑘̄𝑢 + 1

2

[√
−1Λ𝜔FLY,𝑡𝐹𝐻𝑡 , 𝑢

]
.

The commutator identity for [∇𝑗, ∇𝑘̄] now shows that (𝑢)† = 𝑢. Next, since 𝜔FLY,𝑡 is balanced,
we do have

∫
𝑋𝑡

(Δ𝑔FLY,𝑡Tr 𝑢) (𝜔FLY,𝑡)
3 = 0.

This verifies that  ∶ 𝑊𝑡 → 𝑊𝑡 preserves the subspace𝑊𝑡.
Having obtained the estimate ‖ℎ‖ ≤ 𝐶‖𝐿ℎ‖ from Proposition 6.8, we can invertwith a bound

on the inverse.

Lemma 6.10. Let  ∶ 𝐶2,𝛼
𝛽
(𝑊𝑡) → 𝐶0,𝛼

𝛽−2
(𝑊𝑡) for 𝛼 ∈ (0, 1) and 𝛽 ∈ (−2, 0). There exists |𝑡0| > 0

such that for all 0 < |𝑡| ≤ |𝑡0|, then  is invertible and the operator norm

‖−1‖ ≤ 𝐶 (6.17)

is bounded independent of 𝑡.

Proof. We start by discussing the uniform estimate. Let 𝐿 be the operator that was estimated in
Proposition 6.8. For 𝑢 ∈ 𝐶2,𝛼

𝛽
(𝑊𝑡), we have

‖𝑢‖
𝐶
2,𝛼
𝛽

≤ 𝐶‖𝐿𝑢‖
𝐶
0,𝛼
𝛽−2

≤ 𝐶‖((𝑔FLY)𝑗𝑘̄ − 𝑔𝑗𝑘̄𝑡 )
𝜕𝑘̄∇

𝐻𝑡
𝑗
𝑢‖

𝐶
0,𝛼
𝛽−2
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352 COLLINS et al.

+𝐶‖𝑔−1FLY − 𝑔−1𝑡 ‖
𝐶
0,𝛼
0

‖𝐹𝐻𝑡‖𝐶0,𝛼
−2

‖𝑢‖
𝐶
0,𝛼
𝛽
+ 𝐶‖𝑢‖

𝐶
0,𝛼
𝛽−2

≤ 𝐶|𝑡|2∕3‖𝑢‖
𝐶
2,𝛼
𝛽
+ 𝐶|𝑡|2∕3‖𝐹𝐻𝑡‖𝐶0,𝛼

−2
‖𝑢‖

𝐶
0,𝛼
𝛽
+ 𝐶‖𝑢‖

𝐶
0,𝛼
𝛽−2

by Lemma 6.6. By Lemma 5.3, we have 𝑟2|𝐹𝐻𝑡 |𝑔𝑡 + 𝑟3|∇𝑔𝑡𝐹𝐻𝑡 |𝑔𝑡 ≤ 𝐶 and hence
‖𝐹𝐻𝑡‖𝐶0,𝛼

−2
≤ 𝐶 (6.18)

uniformly in 𝑡. We conclude that for 𝑡 small enough, then

‖𝑢‖
𝐶
2,𝛼
𝛽

≤ 𝐶‖𝑢‖
𝐶
0,𝛼
𝛽−2
, 𝑢 ∈ 𝑊𝑡. (6.19)

The proof of the lemma now follows from standard elliptic PDE theory on the smooth compact
manifold 𝑋𝑡. We will use the space of sections denoted by

 =

{
𝑢 ∈ Γ(End𝑇1,0𝑋𝑡) ∶ 𝑢

† = 𝑢

}
with 𝐿2 inner product

⟨𝑠, ℎ⟩𝐿2 = ∫
𝑋

⟨𝑠, ℎ⟩𝐻𝑡 𝑑vol𝑔FLY,𝑡 , 𝑠, ℎ ∈ .

Then we can orthogonally decompose  = 𝑊 ⊕ℂ𝐼. We consider 𝑃 ∶ 𝐶2,𝛼() → 𝐶0,𝛼() with
𝑃𝑢 = 𝑢. From (6.19), we see that ℂ𝐼 = ker 𝑃. Furthermore, by the balanced condition of 𝜔FLY,𝑡
we see that

im𝑃 ⊆ 𝑊.

Therefore (ker 𝑃†)⟂ ⊆ 𝑊 and so ℂ𝐼 ⊆ ker 𝑃†. We will show ℂ𝐼 = ker 𝑃†.
An integration by parts argument using the balanced property shows that the operator Δ =

(𝑔FLY,𝑡)
𝑗𝑘̄𝜕𝑘̄∇

𝐻𝑡
𝑗
is 𝐿2 self-adjoint and so has degree zero. Thus 𝑃 also has degree zero. Therefore

dimker 𝑃† = 1 and ℂ𝐼 = ker 𝑃†. It follows that im𝑃 = 𝑊. Hence  ∶ 𝑊 → 𝑊 is invertible, and
the bound on the inverse in weighted norms is (6.19). □

6.4 Fixed point theorem

In this section, we perturb the glued metric 𝐻𝑡 to a solution of the Hermitian-Yang-Mills equa-
tion

√
−1Λ𝜔FLY,𝑡𝐹𝐻 = 0 on the smoothing 𝑋𝑡 via a fixed point theorem. The general approach of

constructing an approximate solution and deforming it to a true solution to solve equations in dif-
ferential geometry goes back to Taubes [85] and is now widely used; in this section we will follow
the notation used in [84].
Our space of deformations will be the space𝑊𝑡 defined in (6.16). We introduce the operator

 ∶ 𝑊𝑡 → 𝑊𝑡
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 353

given

(𝑢) = 𝑒𝑢∕2(√−1Λ𝜔FLY,𝑡𝐹𝑢)𝑒−𝑢∕2, (6.20)

where 𝐹𝑢 is the curvature of the metric𝐻𝑡,𝑢 = 𝐻𝑡𝑒𝑢.
We note that  ∶ 𝑊𝑡 → 𝑊𝑡. Indeed, for 𝑢 ∈ 𝑊𝑡, we have ∫ Tr(𝑢) = 0 since

∫
𝑋𝑡

𝑐1(𝑇
1,0𝑋𝑡) ∧ 𝜔

2
FLY,𝑡 = 0

as 𝑋𝑡 has trivial canonical bundle. The adjoint action of 𝑒𝑢∕2 in (6.20) is added to ensure that
(𝑢)† = (𝑢). Indeed, √−1Λ𝐹𝐻𝑡,𝑢 is self-adjoint with respect to the metric 𝐻𝑡,𝑢. In coordinates
where𝐻𝑡 = 𝐼 and 𝑒𝑢 is diagonal, it is straight-forward to check that(

𝑒𝑢∕2
(√

−1Λ𝜔FLY,𝑡𝐹𝑢

)
𝑒−𝑢∕2

)†
= 𝑒𝑢∕2

(√
−1Λ𝜔FLY,𝑡𝐹𝑢

)
𝑒−𝑢∕2

where † is the adjoint with respect to 𝐻𝑡.
A well-known computation gives the linearization of 𝐹𝑢.

𝛿(𝐹𝑢) = 𝜕̄𝜕𝐻𝑡,𝑢 (𝑒
−𝑢𝛿𝑒𝑢).

The linearization of  is then

(𝛿)|𝑢(𝛿𝑢) = −𝑒𝑢∕2[(𝑔FLY,𝑡)𝑗𝑘̄𝜕𝑘̄∇𝐻𝑡,𝑢𝑗
(𝑒−𝑢𝛿𝑒𝑢)

]
𝑒−𝑢∕2

+ (𝛿𝑒𝑢∕2)
(√

−1Λ𝜔FLY,𝑡𝐹𝑢

)
𝑒−𝑢∕2

+ (𝑒𝑢∕2)
(√

−1Λ𝜔FLY,𝑡𝐹𝑢

)
𝛿𝑒−𝑢∕2.

Let  be the linearization (𝛿𝐹)|0 at 𝑢 = 0. That is,  ∶ 𝑊𝑡 → 𝑊𝑡 with

𝑤 = −(𝑔𝐹𝐿𝑌,𝑡)𝑗𝑘̄𝜕𝑘̄∇𝐻𝑡𝑗 𝑤 − 1

2

[√
−1Λ𝜔𝐹𝐿𝑌,𝑡𝐹𝐻𝑡 , 𝑤

]
.

We previously inverted  and gave a bound on the inverse −1 uniform in 𝑡. We can write

(𝑢) = (0) + (𝑢) +(𝑢)
where by definition

(𝑢) = (𝑢) − (0) − (𝑢). (6.21)

We define

 ∶ 𝐶2,𝛼
𝛽
(𝑊) → 𝐶2,𝛼

𝛽
(𝑊)
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354 COLLINS et al.

given by

 (𝑢) = −1(−(0) −(𝑢)).
To solve (𝑢) = 0, it is equivalent to find a fixed point

 (𝑢) = 𝑢.

Proposition 6.11. Let 𝑎 ∈ (0, 1). There exists 𝜀 > 0 and 𝛽 ∈ (−1, 0)with the following property. Let

𝑡 =

{
𝑢 ∈ 𝐶2,𝑎

𝛽
(𝑊(𝑋𝑡)) ∶ ‖𝑢‖

𝐶
2,𝑎
𝛽
< |𝑡|(2∕3)|𝛽|}.

Then for all 0 < |𝑡| < 𝜀, the mapping preserves𝑡 and satisfies

‖ (𝑢) − (𝑣)‖
𝐶
2,𝑎
𝛽

≤ 1

2
‖𝑢 − 𝑣‖

𝐶
2,𝑎
𝛽

(6.22)

for all 𝑢, 𝑣 ∈ 𝑡 .

Proof. We start by assuming (6.22) and prove that preserves𝑡. We have

(0) = √
−1Λ𝜔FLY,𝑡𝐹𝐻𝑡

and we can estimate

‖(0)‖
𝐶
0,𝑎
−2

≤ ‖Λ𝜔𝑡𝐹𝐻𝑡‖𝐶0,𝑎
−2
+ ‖𝜔−1𝑡 − 𝜔−1FLY,𝑡‖𝐶0,𝑎

0
‖𝐹𝐻𝑡‖𝐶0,𝑎

−2
.

Proposition 5.3, Lemma 6.6 and (6.18) imply

‖(0)‖
𝐶
0,𝑎
−2

≤ 𝐶(|𝑡|2∕3 + |𝑡||𝛼𝜆|∕3).
The contribution |𝑡||𝛼𝜆|∕3 is the slowest rate. For any 𝛽 ∈ (−1, 0), we therefore have

‖(0)‖
𝐶
0,𝑎
𝛽−2

≤ 𝐶|𝑡||𝛼𝜆|∕3.
Since ‖−1‖ ≤ 𝐶 by (6.17), it follows that

‖ (0)‖
𝐶
2,𝑎
𝛽

≤ 𝐶|𝑡||𝛼𝜆|∕3,
and hence (6.22) implies that for 𝑢 ∈ 𝑡 then

‖ (𝑢)‖ ≤ ‖ (𝑢) − (0)‖ + ‖ (0)‖ ≤ 1

2
|𝑡|(2∕3)|𝛽| + 𝐶|𝑡||𝛼𝜆|∕3 < |𝑡|(2∕3)|𝛽|

for 𝛽 = −1

4
|𝛼𝜆| and 𝑡 small enough.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 355

Thus it remains to prove (6.22). By definition

 (𝑢) − (𝑣) = −1((𝑣) −(𝑢)).
Since ‖−1‖ ≤ 𝐶 by (6.17), we have

‖ (𝑢) − (𝑣)‖
𝐶
2,𝑎
𝛽

≤ 𝐶‖(𝑢) −(𝑣)‖
𝐶
0,𝑎
𝛽−2
. (6.23)

So we need to estimate (𝑢) −(𝑣). One way to write this is

(𝑢) −(𝑣) = ∫
1

0

𝑑

𝑑𝑠
(𝑤𝑠) 𝑑𝑠

where 𝑤𝑠 = 𝑠𝑢 + (1 − 𝑠)𝑣. By the definition (6.21) of , its variation is
𝑑

𝑑𝑠
(𝑤𝑠) = (𝛿)|𝑤𝑠 (𝑢 − 𝑣) − (𝑢 − 𝑣).

We claim that the approximate linearized operator  is close enough to the actual linearization
𝛿 , so that for all 𝑤, 𝑠 ∈  then

‖(𝛿)|𝑤(𝑠) − (𝑠)‖
𝐶
0,𝑎
𝛽−2

≤ 𝐶‖𝑤‖
𝐶
2,𝑎
0

‖𝑠‖
𝐶
2,𝑎
𝛽
. (6.24)

Assuming this, we conclude

‖(𝑢) −(𝑣)‖
𝐶
0,𝑎
𝛽−2

≤ 𝐶(‖𝑢‖
𝐶
2,𝑎
0
+ ‖𝑣‖

𝐶
2,𝑎
0
)‖𝑢 − 𝑣‖

𝐶
2,𝑎
𝛽
.

By (6.23), we see that

‖ (𝑢) − (𝑣)‖
𝐶
2,𝑎
𝛽

≤ 𝐶(‖𝑢‖
𝐶
2,𝑎
0
+ ‖𝑣‖

𝐶
2,𝑎
0
)‖𝑢 − 𝑣‖

𝐶
2,𝑎
𝛽
.

If 𝑢 ∈  , then ‖𝑢‖
𝐶
2,𝑎
𝛽
< |𝑡| 23 |𝛽|, and since 𝑟3 ≥ |𝑡|, we have

‖𝑢‖
𝐶
2,𝑎
0

≤ 1

min𝑋𝑡 𝑟
|𝛽| ‖𝑢‖𝐶2,𝑎𝛽 ≤ 1|𝑡||𝛽|∕3 |𝑡|(2∕3)|𝛽| ≤ 𝜀|𝛽|∕3.

Thus if 𝜀 is small enough, then is a contraction map. The proof is complete given (6.24), which
is proved in the following lemma. □

Lemma 6.12. There exists𝐶 > 1 such that for all 𝑡 ∈ ℂ∗ and 𝑢, 𝑠 ∈ 𝑊𝑡 with ‖𝑢‖
𝐶
2,𝑎
0
(𝑋𝑡)

≤ 1, we can
estimate

‖(𝛿)|𝑢(𝑠) − (𝑠)‖
𝐶
0,𝑎
𝛽−2

(𝑋𝑡)
≤ 𝐶‖𝑢‖

𝐶
2,𝑎
0
(𝑋𝑡)

‖𝑠‖
𝐶
2,𝑎
𝛽
(𝑋𝑡)
.
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356 COLLINS et al.

Proof. To simplify notation, for this estimate we will write 𝑔 = 𝑔FLY,𝑡, 𝐻0 = 𝐻𝑡 and 𝐻𝑢 = 𝐻𝑡,𝑢.
The linearization was computed in (6.21), and the difference is explicitly given by

(𝛿)|𝑢(𝑠) − (𝑠)

= [[𝛿 exp]|𝑢(𝑠∕2)](√−1Λ𝜔𝐹𝐻𝑢)𝑒−𝑢∕2 − 1

2
𝑠(
√
−1Λ𝜔𝐹𝐻0)

+ (𝑒𝑢∕2)
(√

−1Λ𝜔𝐹𝐻𝑢

)
[[𝛿 exp]|𝑢(−𝑠∕2)] + 1

2

(√
−1Λ𝜔𝐹𝐻0

)
𝑠

− 𝑒𝑢∕2
[
𝑔𝑗𝑘̄𝜕𝑘̄∇

𝐻𝑢
𝑗
𝑒−𝑢[𝛿 exp]|𝑢(𝑠)]𝑒−𝑢∕2 + 𝑔𝑗𝑘̄𝜕𝑘̄∇𝐻0𝑗 𝑠

= (I) + (II) + (III),

where (I), (II), (III) denotes the terms on each line and the derivative of the matrix exponential is
given by the formula

[𝛿 exp]|𝑢(𝛿𝑢) = ∫
1

0

𝑒𝜆𝑢(𝛿𝑢)𝑒(1−𝜆)𝑢𝑑𝜆.

∙ Terms (I) and (II). These two terms are estimated in the same way, so we only give the estimate
for (I). We start by writing

(I) = [𝛿 exp]|𝑢(𝑠∕2)(√−1Λ𝜔𝐹𝐻𝑢)𝑒−𝑢∕2 − 1

2
𝑠(
√
−1Λ𝜔𝐹𝐻0)

= ∫
1

0

𝑑

𝑑𝛾

[
[𝛿 exp]|𝛾𝑢(𝑠∕2)(√−1Λ𝜔𝐹𝐻𝛾𝑢)𝑒−(𝛾∕2)𝑢]𝑑𝛾. (6.25)

There are three terms depending on where 𝑑

𝑑𝛾
lands. The first is

(Ia)𝛾 =

[
𝑑

𝑑𝛾
[𝛿 exp]|𝛾𝑢(𝑠∕2)](√−1Λ𝜔𝐹𝐻𝛾𝑢)𝑒−(𝛾∕2)𝑢.

This can be estimated as

‖(Ia)𝛾‖𝐶0,𝑎
𝛽−2

≤ 𝐶‖𝐹𝐻𝛾𝑢‖𝐶0,𝑎
−2

‖𝑢‖
𝐶
0,𝑎
0

‖𝑠‖
𝐶
0,𝑎
𝛽

Next, we consider

(Ib)𝛾 = [𝛿 exp]|𝛾𝑢(𝑠∕2)[ 𝑑𝑑𝛾 (√−1Λ𝜔𝐹𝐻𝛾𝑢)
]
𝑒−(𝛾∕2)𝑢.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 357

Since 𝑑

𝑑𝛾
𝐹𝐻𝛾𝑢 = 𝜕̄𝜕𝐻𝛾𝑢𝑢, we have

‖(Ib)𝛾‖𝐶0,𝑎
𝛽−2

≤ 𝐶‖𝜕̄∇𝐻𝛾𝑢𝑢‖𝐶0,𝑎
−2

‖𝑠‖
𝐶
0,𝑎
𝛽
.

The other term is

(Ic)𝛾 = [𝛿 exp]|𝛾𝑢(𝑠∕2)(√−1Λ𝜔𝐹𝐻𝛾𝑢)[ 𝑑𝑑𝛾 𝑒−(𝛾∕2)𝑢
]

and can be estimated by

‖(Ic)𝛾‖𝐶0,𝑎
𝛽−2

≤ 𝐶‖𝐹𝐻𝛾𝑢‖𝐶0,𝑎
−2

‖𝑢‖
𝐶
0,𝑎
0

‖𝑠‖
𝐶
0,𝑎
𝛽
.

Altogether, using ‖𝑢‖
𝐶
2,𝑎
0

≤ 1, the formula for the difference of connections 𝐴𝐻𝛾𝑢 − 𝐴𝐻0 =
𝑒−𝛾𝑢∇𝐻0𝑒

𝛾𝑢 which gives a formula for 𝐹𝐻𝛾𝑢 , and ‖𝐹𝐻0‖𝐶0,𝑎
−2

≤ 𝐶, we have
‖(I)‖

𝐶
0,𝑎
𝛽−2

≤ 𝐶‖𝑢‖
𝐶
2,𝑎
0

‖𝑠‖
𝐶
0,𝑎
𝛽

∙ Term (III). We write

(III) = −∫
1

0

𝑑

𝑑𝛾

[
𝑒(𝛾∕2)𝑢

[
𝑔𝑗𝑘̄𝜕𝑘̄∇

𝐻𝛾𝑢
𝑗
𝑒−𝛾𝑢[𝛿 exp]𝛾𝑢(𝑠)

]
𝑒−(𝛾∕2)𝑢

]
𝑑𝛾.

Using ‖𝑢‖
𝐶
2,𝑎
0

≤ 1, from here we can derive the estimate

‖(III)‖
𝐶
0,𝑎
𝛽−2

≤ 𝐶‖𝑢‖
𝐶
2,𝑎
0

‖𝑠‖
𝐶
2,𝑎
𝛽
.

To do this, the covariant derivative∇𝐻𝛾𝑢 can be converted to∇𝐻0 via∇𝐻𝛾𝑢 − ∇𝐻0 = 𝑒
−𝛾𝑢∇𝐻0𝑒

𝛾𝑢

and we can use the variational formula 𝑑

𝑑𝛾
∇𝐻𝛾𝑢 = ∇𝐻𝛾𝑢𝑢. □

By Proposition 6.11 and the Banach fixed point theorem, there exists 𝑢̌ ∈ 𝐶2,𝑎
𝛽
(𝑊(𝑋𝑡)) with‖𝑢̌‖

𝐶
2,𝑎
𝛽
< |𝑡|(2∕3)𝛽 such that (𝑢̌) = 𝑢̌, meaning that Λ𝜔FLY,𝑡𝐹𝑢̌ = 0 where 𝐹𝑢 is the curvature of

𝐻𝑡𝑒
𝑢. This proves the existence of a pair solving

𝑑𝜔2FLY,𝑡 = 0, 𝐹𝐻̌𝑡 ∧ 𝜔
2
FLY,𝑡 = 0

on 𝑋𝑡. To complete the proof of the main theorem, we describe the behavior of (𝑔FLY,𝑡, 𝐻̌𝑡) near
the vanishing cycles.

Proof (Theorem 6.1). The local estimate (6.1) follows from Lemma 6.6 since 𝑔𝑡 = 𝑐𝑖𝑔𝑐𝑜,𝑡 in a fixed
neighborhood of the vanishing cycles. The Hermitian-Yang-Mills metric is given by 𝐻̌𝑡 = 𝐻𝑡𝑒𝑢̌
where 𝑢̌ is the fixed-point solving  (𝑢̌) = 𝑢̌ and satisfying ‖𝑢̌‖

𝐶
2,𝑎
𝛽

≤ |𝑡|(2∕3)|𝛽|. Near the nodes,
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358 COLLINS et al.

by the gluing construction (see (5.2)) we have 𝐻̌𝑡 = 𝑑𝑖𝑔𝑐𝑜,𝑡𝑒𝑢̌ in the region

𝜆 =

{|𝑡| ≤ ‖𝑧‖2 ≤ |𝑡| 3

3+𝜆

}
,

which implies

|𝐻̌𝑡 − 𝑑𝑖𝑔𝑐𝑜,𝑡|𝑔𝑐𝑜,𝑡 ≤ 𝐶𝑟−|𝛽||𝑡|(2∕3)|𝛽| ≤ 𝐶|𝑡||𝛽|∕3
since 𝑟3 ≥ |𝑡|. We obtain similar estimates for ∇𝑘𝐻̌𝑡 for 𝑘 = 1 and 𝑘 = 2. For the higher order
estimates, we write the equation 𝑔𝑗𝑘̄(𝐹𝐻̌)𝑗𝑘̄ = 0 in holomorphic cylindrical coordinates as

𝑟2(𝑔FLY,𝑡)
𝑗𝑘̄𝜕𝑗𝜕𝑘̄𝐻̌𝑡 = 𝑟

2(𝑔FLY,𝑡)
𝑗𝑘̄𝜕𝑗𝐻̌𝑡𝐻̌

−1
𝑡 𝜕𝑘̄𝐻̌𝑡.

Note that since 𝑔𝑡 = 𝑟2𝑂(𝐼) (see Lemma 2.11), by (6.1) we also have 𝑔FLY,𝑡 = 𝑟2𝑂(1) for small 𝑡.
Schauder estimates and a bootstrap argument imply

|𝜕𝓁𝐻̌𝑘̄𝑗|𝑔𝑒𝑢𝑐 ≤ 𝐶𝓁|𝑡||𝛽|∕3.
Converting 𝑔𝑒𝑢𝑐 in holomorphic cylindrical coordinates to 𝑔𝑐𝑜,𝑡 gives the stated estimate with 𝜆 =|𝛽|∕3. □

Remark 6.13. To simultaneously solve the Hermitian-Yang-Mills and the conformally balanced
equations

𝑑(‖Ω𝑡‖𝜔̌𝑡 𝜔̌2𝑡 ) = 0, 𝐹𝐻̌𝑡 ∧ 𝜔̌
2
𝑡 = 0,

we can set

𝜔̌𝑡 = ‖Ω𝑡‖−2𝜔FLY,𝑡𝜔FLY,𝑡
so that ‖Ω𝑡‖𝜔̌𝑡 𝜔̌2𝑡 = 𝜔2FLY,𝑡. HereΩ𝑡 is a holomorphic volume formon𝑋𝑡, whose existence through
conifold transitions is proved in [32], normalized by ∫

𝑋𝑡

√
−1Ω𝑡 ∧ Ω𝑡 = 1. It is straightforward to

show that this conformally balanced metric 𝑔̌𝑡 associated to 𝜔̌𝑡 satisfies a decay estimate near
the vanishing cycles. Namely, near any ODP 𝑝𝑖 ∈ 𝑋 there is a constant 𝑐𝑖 such that we have the
estimates

|∇𝑘𝑔𝐹𝐿𝑌,𝑡 (𝑔̌𝑡 − 𝑐𝑖𝑔FLY,𝑡)|𝑔FLY,𝑡 ≤ 𝐶𝑘𝑟 32−𝑘,
for all 𝑘 ∈ ℤ≥0. Note that, unlike Lemma 6.6, one can no longer expect decay in |𝑡| for fixed 𝑟.
This is due to the the fact that, near the ODP singularities, the holomorphic volume formΩ𝑡 will
not necessarily converge to a constant multiple of the natural equivariant holomorphic volume
form on the conifold. Nevertheless, these estimates still imply that there is a constant 𝑑𝑖 > 0 so
that at a suitable scale the pair (𝑔̌𝑡, 𝐻̌𝑡) converges smoothly to the pair (𝑔𝑐𝑜,0, 𝑑𝑖𝑔𝑐𝑜,0) as |𝑡|→ 0.
In particular, at suitably small scales, the pair (𝑔̌𝑡, 𝐻̌𝑡) converges to a solution of the Strominger
system near the ODP singularities as 𝑡 → 0.
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Corollary 6.14. For all |𝑡|≪ 1 sufficiently small, the tangent bundle 𝑇1,0𝑋𝑡 is stable.

Proof. We showed that the bundle 𝑇1,0𝑋𝑡 admits a Hermitian-Yang-Mills metric. This implies that
the bundle is polystable with respect to the Fu-Li-Yau balanced metric. To show 𝑇1,0𝑋𝑡 is stable,
we must show that it cannot split holomorphically as a product 𝑇1,0𝑋𝑡 = 𝐸𝑡 ⊕ 𝐹𝑡.
Suppose there exists a sequence 𝑡𝑖 → 0 such that 𝑇1,0𝑋𝑡𝑖 splits. Let ℎ𝑡 be the holomorphic

endomorphism of 𝑇1,0𝑋𝑡 which is the identity on 𝐸𝑡 and zero on 𝐹𝑡. Note that ℎ𝑡 satisfies

𝜕̄ℎ𝑡 = 0, Tr ℎ𝑡 = 𝑟𝑘 𝐸𝑡, det ℎ𝑡 = 0.

By the compactness of holomorphic functions, we can take a subsequential limit on compact sets
to obtain a limit ℎ0 ∈ Γ(End(𝑇1,0𝑋0)) such that 𝜕̄ℎ0 = 0 and ℎ0 is non-zero and not a multiple
of the identity. By Hartogs’s theorem, ℎ0 extends to the small resolution 𝑋. Since 𝑇1,0𝑋 is sta-
ble, it does not admit holomorphic endomorphisms other than multiples of the identity. This is
a contradiction.
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APPENDIX A: THE FU-LI-YAU GLUING CONSTRUCTION
In this appendixwewill explain the gluing result of Fu-Li-Yau, which establishes Propositions 2.16
and 2.18. Before beginning, we recall the notation. We are primarily interested in the small reso-
lution of the conifold, given by 𝑝 ∶ ℙ1(−1)⊕2 → ℙ1. Let ℎ𝐹𝑆 denote the Fubini-Study metric onℙ1(−1). Let

𝜋 ∶ ℙ1(−1)⊕2 → 𝑉0

be the map contracting ℙ1. The pull-back radial function of the conical Calabi-Yau metric on 𝑉0
is given by

𝑟2 =
(|𝑢|2

ℎ𝑓𝑠
+ |𝑣|2

ℎ𝑓𝑠

)2∕3
where (𝑢, 𝑣) are fiber coordinates on ℙ1(−1)⊕2. The holomorphic Reeb field on 𝑉0 induces a
holomorphic ℂ∗ action given by

𝑆𝜆(𝑥, 𝑢, 𝑣) = (𝑥, 𝜆
3∕2𝑢, 𝜆3∕2𝑣).
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where 𝑥 ∈ ℙ1. Unless otherwise specified, we will consider the restriction to 𝜆 ∈ ℝ>0 ⊂ ℂ∗. Note
that we have

𝑆∗
𝜆
𝑟2 = 𝜆2𝑟2.

We define a smooth Kähler metric on (−1)⊕2 by
𝜔𝑠𝑚 =

√
−1𝜕𝜕𝑟3 + 𝑝∗𝜔𝐹𝑆.

We will consider also the cone metric

𝜔𝑐𝑜,0 =
3

2

√
−1𝜕𝜕𝑟2.

It will be important for us to compare 𝜔2𝑐𝑜,0 and 𝜔
2
𝑠𝑚.

Lemma A.1. There is a uniform constant 𝐶 > 0 such that following estimates hold

(i) If 0 < 𝑟 < 1, then we have

𝑟2𝐶−1𝜔2𝑐𝑜,0 ≤ 𝜔2𝑠𝑚 ≤ 𝐶𝑟−1𝜔2𝑐𝑜,0
(ii) If 0 < 𝑟 < 1 then

𝐶−1𝑟2𝜔2𝑐𝑜,0 ≤ 𝜔𝑠𝑚 ∧ 𝜔𝑐𝑜,0 ≤ 𝑟−1𝜔2𝑐𝑜,0
Proof. First, since 𝜔𝑐𝑜,0 and 𝜔𝑠𝑚 define smooth Kähler metrics on the compact set {1 ≤ 𝑟 ≤ 2} we
can fix a constant 𝐴 such that

𝐴−1𝜔𝑐𝑜,0 ≤ 𝜔𝑠𝑚 ≤ 𝐴𝜔𝑐𝑜,0.
Consider

𝑆𝜆 ∶ {1 ≤ 𝑟 ≤ 2} → {𝜆 ≤ 𝑟 ≤ 2𝜆}.
From the homogeneity of 𝑟 we have

𝑆∗
𝜆
𝜔2𝑐𝑜,0 = 𝜆

4𝜔2𝑐𝑜,0.

On the other hand,

𝑆∗
𝜆
𝜔𝑠𝑚 = 𝜆

3
√
−1𝜕𝜕𝑟3 + 𝑝∗𝜔𝐹𝑆,

and so

𝑆∗
𝜆
𝜔2𝑠𝑚 = 𝜆

6(
√
−1𝜕𝜕𝑟3)2 + 2𝜆3

√
−1𝜕𝜕𝑟3 ∧ 𝑝∗𝜔𝐹𝑆
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using that 𝑝∗𝜔2
𝐹𝑆
= 0. If 𝜆 ≤ 1 then we get

𝜆6𝜔2𝑠𝑚 ≤ 𝑆∗
𝜆
𝜔2𝑠𝑚 ≤ 𝜆3𝜔2𝑠𝑚

From the definition of 𝐴 we have

𝑆∗
𝜆
𝜔2𝑠𝑚 ≤ 𝜆3𝜔2𝑠𝑚 ≤ 𝜆3𝐴2𝜔2𝑐𝑜,0 ≤ 𝜆−1𝐴2𝑆∗𝜆𝜔2𝑐𝑜,0

and similarly

𝑆∗
𝜆
𝜔2𝑠𝑚 ≥ 𝜆6𝜔2𝑠𝑚 ≥ 𝜆2𝐴−2𝑆∗

𝜆
𝜔2𝑐𝑜,0.

Since 𝜆 ≤ 𝑟 ≤ 2𝜆, proves (𝑖). The proof of (𝑖𝑖) is similar. □

Consider the four form

Ω ∶=
√
−1𝜕𝜕

(
𝜒(𝑟2)

√
−1𝜕𝜕𝑟2

)
where 𝜒(⋅) is some smooth function to be determined. We compute

Ω = 𝜒′′(𝑟2)
√
−1𝜕𝑟2 ∧ 𝜕𝑟2 ∧

√
−1𝜕𝜕𝑟2 + 𝜒′(𝑟2)𝜔2𝑐𝑜,0.

To understand the first term write√
−1𝜕𝜕𝑟2 = 4

√
−1𝜕𝑟 ∧ 𝜕𝑟 + 𝑟2

√
−1𝜕𝜕 log 𝑟2.

from which it follows that(√
−1𝜕𝜕𝑟2

)2
= 8𝑟2

√
−1𝜕𝑟 ∧ 𝜕𝑟 ∧

√
−1𝜕𝜕 log 𝑟2 +

(
𝑟2
√
−1𝜕𝜕 log 𝑟2

)2
and also √

−1𝜕𝑟 ∧ 𝜕𝑟 ∧
√
−1𝜕𝜕𝑟2 = 𝑟2

√
−1𝜕𝑟 ∧ 𝜕𝑟 ∧

√
−1𝜕𝜕 log 𝑟2.

Since
√
−1𝜕𝜕 log 𝑟2 ≥ 0 we conclude

Lemma A.2. The following estimate holds everywhere on ℙ1(−1)⊕2√
−1𝜕𝑟2 ∧ 𝜕𝑟2 ∧

√
−1𝜕𝜕𝑟2 ≤ 𝑟2

2
(
√
−1𝜕𝜕𝑟2)2.

In particular, whenever 𝜒′′ < 0 we have the lower bound

Ω ≥
(
𝜒′(𝑟2) +

𝑟2

2
𝜒′′(𝑟2)

)
𝜔2𝑐𝑜,0
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 365

Fix 𝑅 ≫ 1. Our goal is to find 𝑅 ≫ 1, and a constant 𝐶𝑅 > 0 such that we can glue

Ω𝑅 ∶= 𝐶
2
𝑅𝑆

∗
𝑅

√
−1𝜕𝜕(𝜒(𝑟2)

√
−1𝜕𝜕𝑟2)

to the Calabi-Yau metric 𝜔2
𝐶𝑌
. This will require carefully choosing 𝜒, and the constant 𝐶𝑅. We are

going to assume that

𝜒(𝑠) = 𝑠

for 𝑠 ∈ [0, 4], so that Ω𝑅 agrees with a rescaling of 𝜔2𝑐𝑜,0 on {0 ≤ 𝑟 ≤ 2

𝑅
}. More precisely, we have

𝐶2𝑅𝑆
∗
𝑅

√
−1𝜕𝜕(𝜒(𝑟2)

√
−1𝜕𝜕𝑟2) = 𝐶2𝑅𝑅

4𝜔2𝑐𝑜,0 {0 < 𝑟 < 2𝑅−1}.

In the remainder of the appendix we will determine conditions on 𝜒, 𝐶𝑅, 𝑅 for this to be possible.
We now consider the Calabi-Yau metric 𝜔𝐶𝑌 . Consider the set 𝑈 = {𝑟 < 4} ⊂ 𝑋. Since 𝑈 is

contractible onto ℙ1, we can write

𝜔𝐶𝑌 = 𝜆𝑝
∗𝜔𝐹𝑆 + 𝜕𝛽 + 𝜕𝛽

for some (1,0) form 𝛽 on𝑈, and some 𝜆 > 0. To simplify notation, let us assume 𝜆 = 1. By solving
the 𝜕-equation we can write

𝜔𝐶𝑌 = 𝑝
∗𝜔 +

√
−1𝜕𝜕𝜑

where 𝜔 is a Kähler form on ℙ1, with [𝜔] = [𝜔𝐹𝑆] ∈ 𝐻1,1(ℙ1,ℝ) and 𝜑 ∶ 𝑈 → ℝ a smooth func-
tion with 𝜑|ℙ1 = 0; see [35, Lemma 2.4]. Let ℎ1 denote the degree 3

2
part of 𝜑 under 𝑆𝜆 (recall that

𝑆𝜆 corresponds to scaling with weight
3

2
along the fibers), so that |𝜑 − ℎ1| ∼ 𝑂(|𝑢|2 + |𝑣|2), or in

other words

|𝜑 − ℎ1| ≤ 𝐶𝑟3.
Let 𝜎(𝑥) be a positive cut-off function with 0 ≤ 𝜎(𝑥) ≤ 1 and 𝜎(𝑥) = 1 for 𝑥 ∈ [0, 1] and 𝜎(𝑥) =

0 for 𝑥 ≥ 8. Define
Ψ𝑅 = 𝜔

2
𝐶𝑌
−

√
−1𝜕𝜕Γ𝑅

Γ𝑅 =
√
−1𝜕𝜕

(
𝜎(𝑅3𝑟3)

(
(𝜑 − ℎ1)(2𝑝

∗𝜔 +
√
−1𝜕𝜕(𝜑 + ℎ1)) + ℎ1

√
−1𝜕𝜕ℎ1

))
where, as before, 𝑅 ≫ 1 is a parameter to be determined. From the definition of 𝜎 we have

Ψ𝑅 = 𝜔
2
𝐶𝑌

if {𝑟 > 2𝑅−1}

We claim that

Ψ𝑅 = 0 if {𝑟 < 𝑅−1}.
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366 COLLINS et al.

To see this, note that if 𝑥, 𝑦, 𝑤 are commutative variables satisfying 𝑦𝑤 = 0, then

(𝑥 − 𝑦)(2𝑤 + (𝑥 + 𝑦)) = 𝑥(2𝑤 + 𝑥) + 𝑥𝑦 − 2𝑤𝑦 − 𝑥𝑦 − 𝑦2 = 𝑥(2𝑤 + 𝑥) − 𝑦2.

We apply this formula with 𝑥 =
√
−1𝜕𝜕𝜑, 𝑦 =

√
−1𝜕𝜕ℎ1, 𝑤 = 𝑝

∗𝜔 and product being the wedge
product. We only need to check that

√
−1𝜕𝜕ℎ1 ∧ 𝑝

∗𝜔𝐹𝑆 =
√
−1𝜕𝜕ℎ21 = 0, but this is clear since√

−1𝜕𝜕ℎ1 is linear along the fibers of ℙ1(−1)⊕2 → ℙ1.
The main task is to find a lower bound for Ψ𝑅 in terms of 𝜔2𝑐𝑜,0 in the transition region {𝑅

−1 <

𝑟 < 2𝑅−1}. To do this we expand

Ψ𝑅 = (1 − 𝜎)𝜔
2
𝐶𝑌
− (I) − (II) − (III)

where

(I) = 2Re
(
(
√
−1𝜎′(𝑅3𝑟3)𝑅3𝜕𝑟3 ∧ 𝜕(𝜑 − ℎ1) ∧ (2𝑝

∗𝜔 +
√
−1𝜕𝜕(𝜑 + ℎ1))

)
+ 2Re

(
𝜎′(𝑅3𝑟3)𝑅3𝜕𝑟3 ∧ 𝜕ℎ1 ∧

√
−1𝜕𝜕ℎ1

)
(II) = 𝜎′′(𝐿3𝑟3)𝐿6

√
−1𝜕𝑟3 ∧ 𝜕𝑟3 ∧

(
(𝜑 − ℎ1)(2𝑝

∗𝜔 +
√
−1𝜕𝜕(𝜑 + ℎ1)) + ℎ1

√
−1𝜕𝜕ℎ1

)
(III) = 𝜎′(𝐿3𝑟3)𝐿3

√
−1𝜕𝜕𝑟3 ∧

(
(𝜑 − ℎ1)(2𝑝

∗𝜔 +
√
−1𝜕𝜕(𝜑 + ℎ1)) + ℎ1

√
−1𝜕𝜕ℎ1

)
.

Our goal is to estimate each term from below by 𝜔2𝑐𝑜,0. Each term will be treated differently,
depending on whether it is homogeneous or not.

∙ Term (I). Observe that

𝜕𝑟3 ∧ 𝜕(𝜑 − ℎ1) ∼ 𝑟
3𝜔𝑠𝑚

To see this recall that, in coordinates we have

𝑟3 = |𝑢|2
ℎ𝐹𝑆

+ |𝑣|2
ℎ𝐹𝑆

so that, in coordinates where 𝜕ℎ𝐹𝑆 = 0, we have

𝜕𝑟3 = 𝑢̄𝑑𝑢 + 𝑣𝑑𝑣.

On the other hand, since ℎ1 is linear along the fibers of 𝑝 ∶ ℙ1(−1)⊕2 → ℙ1 we have

𝜕(𝜑 − ℎ1) = 𝑂(𝑢, 𝑣)(𝑑𝑢̄ + 𝑑𝑣)

and so

𝜕𝑟3 ∧ 𝜕(𝜑 − ℎ1) ≤ 𝐶𝑟3𝜔𝑠𝑚.

 10970312, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/cpa.22135 by U

niversity O
f Toronto Librarie, W

iley O
nline Library on [06/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 367

Thus, by Lemma A.1, the first term in (I) can be controlled by 𝑟3𝜔2𝑠𝑚 ≤ 𝑟2𝜔2𝑐𝑜,0.
To analyze the second term in (I) we observe that

𝑆∗
𝜆
(𝜕𝑟3 ∧ 𝜕ℎ1 ∧

√
−1𝜕𝜕ℎ1) = 𝜆

6𝜕𝑟3 ∧ 𝜕ℎ1 ∧
√
−1𝜕𝜕ℎ1,

which, by the homogeneity of 𝜔𝑐𝑜,0, implies

𝜕𝑟3 ∧ 𝜕ℎ1 ∧
√
−1𝜕𝜕ℎ1 ≤ 𝐶𝑟2𝜔2𝑐𝑜,0.

In total, we have

(I) ≤ 𝐶𝑟2𝜔2𝑐𝑜,0
∙ Term (II). Again, by homogeneity we have

0 ≤ √
−1𝜕𝑟3 ∧ 𝜕𝑟3 ≤ 𝐶𝑟2𝜔𝑐𝑜,0,

while the bound |𝜑 − ℎ1| ≤ 𝐶𝑟3 yields a bound for the first term in (II)√
−1𝜕𝑟3 ∧ 𝜕𝑟3 ∧

(
(𝜑 − ℎ1)(2𝑝

∗𝜔 +
√
−1𝜕𝜕(𝜑 + ℎ1)

) ≤ 𝑟2𝜔𝑐𝑜,0 ∧ 𝑟3𝜔𝑠𝑚
≤ 𝐶𝑟4𝜔2𝑐𝑜,0

where we used Lemma A.1, (𝑖𝑖). The second term in (II) can be treated directly by scaling. We
have √

−1𝜕𝑟3 ∧ 𝜕𝑟3 ∧ ℎ1
√
−1𝜕𝜕ℎ1 ≤ 𝐶𝑟3𝜔2𝑐𝑜,0.

In total, we have

(II) ≤ 𝐶𝑟3𝜔2𝑐𝑜,0
∙ Term (III) can be treated similarly to term (II). The first term can be estimated as√

−1𝜕𝜕𝑟3 ∧ (𝜑 − ℎ1)(2𝑝
∗𝜔 +

√
−1𝜕𝜕(𝜑 + ℎ1)) ≤ 𝐶𝑟3𝜔2𝑠𝑚 ≤ 𝐶𝑟2𝜔2𝑐𝑜,0,

thanks to Lemma A.1 (𝑖) again. The homogeneous term is easily estimated as√
−1𝜕𝜕𝑟3 ∧ ℎ1

√
−1𝜕𝜕ℎ1 ≤ 𝐶𝑟2𝜔2𝑐𝑜,0.

In summation, we have proved

Lemma A.3. There is a constant 𝐶 > 0 so that on the region {𝑅−1 < 𝑟 < 2𝑅−1} we have

Ψ𝑅 ≥ −𝐶𝑅3𝑟2𝜔2𝑐𝑜,0 ≥ −𝐶𝑅𝜔2𝑐𝑜,0.
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368 COLLINS et al.

At this point we consider

Ψ𝑅 + 𝐶0𝐶
2
𝑅𝑆

∗
𝑅Ω.

In order for this form to be positive we need to show that 𝐶0, 𝐶𝑅 can be chosen consistently. To
do this we consider the conditions for positivity in four different regions. In the following 𝐶 will
denote a uniform constant which can change from line to line, but depends only on the fixed
background data and is, in particular, independent of 𝑅, 𝐶0, 𝐶𝑅.

∙ Region {0 < 𝑟 < 𝑅−1}.
In this region we have Ψ𝑅 = 0 and 𝑆∗𝑅𝜒(𝑟

2) = 𝑅2𝑟2, so that

Ψ𝑅 + 𝐶0𝐶
2
𝑅𝑆

∗
𝑅Ω =

4

9
𝐶0𝐶

2
𝑅𝑅

4𝜔2𝑐𝑜,0 > 0

so this region contributes no restriction.
∙ Region {𝑅−1 < 𝑟 < 2𝑅−1}.

Thanks to Lemma A.3, and the fact that 𝜒(𝑠) = 𝑠 for 𝑠 ∈ [0, 4] we have

Ψ𝑅 ≥ −𝐶𝑅𝜔2𝑐𝑜,0 𝐶0𝐶
2
𝑅𝑆

∗
𝑅Ω =

4

9
𝐶0𝐶

2
𝑅𝑅

4𝜔2𝑐𝑜,0.

Thus, in order to ensure positivity we need 𝐶0 > 3𝐶, 𝐶2𝑅𝑅
4 = 𝑅, so we must take 𝐶2𝑅 = 𝑅

−3.
∙ Region {2𝑅−1 < 𝑟 < 1}.

By definition we have

Ψ𝑅 = 𝜔
2
𝐶𝑌

≥ 𝐶𝜔2𝑠𝑚.
On the other hand whenever 𝜒′′ < 0, Lemma A.2 gives the estimate

𝐶0𝐶
2
𝑅𝑆

∗
𝑅Ω ≥ 4

9
𝐶0𝑅(2𝜒

′(𝑅2𝑟2) + (𝑅𝑟)2𝜒′′(𝑅2𝑟2))𝜔2𝑐𝑜,0.

Now, from Lemma A.1 we have 𝜔2𝑐𝑜,0 ≤ 𝐶𝑟−2𝜔2𝑠𝑚 and so we can ensure positivity provided

4

9
𝐶0𝑅𝑟

−2(2𝜒′(𝑅2𝑟2) + (𝑅𝑟)2𝜒′′(𝑅2𝑟2)) ≥ −𝐶.
If we can choose 𝜒 so that 𝜒′ ≥ 0, then when 𝜒′′ ≥ 0 we have 𝑆∗𝑅Ω ≥ 0 so no additional
restriction is contributed from this case.

∙ Region {1 < 𝑟}.
In this region we take 𝜒(𝑠) = const., and so, by definition

Ψ𝑅 + 𝐶0𝐶
2
𝑅𝑆

∗
𝑅Ω = 𝜔

2
𝐶𝑌

In summary, Ψ𝑅 + 𝐶0𝐶2𝑅𝑆
∗
𝑅Ω will be positive definite provided we can construct a cut-off

function 𝜒(𝑠) (upon defining 𝑠 = 𝑅2𝑟2) with the following properties: for 0 < 𝜀 ≪ 1 given, we
have
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 369

∙ 𝜒(𝑠) = 𝑠 for 𝑠 ∈ [0, 4], and 𝜒′(𝑠) ≥ 0,
∙ 𝜒(𝑠) is constant for 𝑠 ≥ 𝑅2,
∙ 𝜒(𝑠) satisfies

1

𝑠

(
2𝜒′(𝑠) + 𝑠𝜒′′(𝑠)

) ≥ − 𝜀

𝑅3

for 𝑠 ∈ [4, 𝑅2]

A cut-off function with these properties is constructed in [35, Lemma 2.2], but for the readers
convenience we give a slightly different proof here.

Lemma A.4. For 𝑅 ≫ 1 sufficiently large there exists a smooth function 𝜒(𝑠) with the following
properties

(i) 𝜒(𝑠) = 𝑠 for 𝑠 ∈ [0, 4], and 𝜒′(𝑠) ≥ 0.
(ii) 𝜒(𝑠) is constant for 𝑠 > 𝑅2,
(iii) there is a uniform constant 𝐶′ such that

1

𝑠

(
2𝜒′(𝑠) + 𝑠𝜒′′(𝑠)

) ≥ −𝐶′
𝑅4

Proof. Let 𝑣 = 𝜒′. Then we need to find 𝑣 such that 𝑣(𝑠) = 1 for 𝑠 ∈ [0, 4], 𝑣(𝑠) = 0 for 𝑠 > 𝑅2, and

1

𝑠2
𝑑

𝑑𝑠
(𝑠2𝑣) ≥ −𝐶′

𝑅4
.

Consider

𝑣(𝑠) =

⎧⎪⎨⎪⎩
1, 𝑠 ∈ [0, 5]

𝑎𝑠−3 + 𝑏𝑠−2 + 𝑐𝑠2 + 𝑑, 𝑠 ∈ [5, 𝑅2 − 1]

0, 𝑠 ≥ 𝑅2 − 1.
Demanding that 𝑣(𝑠) is𝐶1 gives a systemof 4 equations in the unknowns𝑎, 𝑏, 𝑐, 𝑑, whose solutions
are given by

𝑎 = −250 + 𝑂(𝑅−2), 𝑏 = 75 + 𝑂(𝑅−2), 𝑐 = 75𝑅−8 + 𝑂(𝑅−10), 𝑑 = −150𝑅−4 + 𝑂(𝑅−6).

On the other hand, if 𝑤(𝑠) = 𝐶𝛼𝑠𝛼, then

1

𝑠2
𝑑

𝑑𝑠
(𝑠2𝑤) = (𝛼 + 2)𝐶𝛼𝑠

𝛼−1 =

⎧⎪⎨⎪⎩
≥ 0 if 𝛼 > −2, and 𝐶𝛼 ≥ 0
0 if 𝛼 = −2
≥ 0 if 𝛼 < −2, and 𝐶𝛼 ≤ 0.

Since the terms corresponding to 𝑎, 𝑏, 𝑐 fall into one of these cases, it follows that

1

𝑠2
𝑑

𝑑𝑠
(𝑠2𝑣) ≥ −300

𝑅4
+ 𝑂(𝑅−6).
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370 COLLINS et al.

It only remains to check that 𝑣(𝑠) ≥ 0 for 𝑠 ∈ [4, 𝑅2]. To see this, observe that
0 = 𝑣′(𝜆𝑅2)⟺ 𝜆5 − 𝜆 = 𝑂(𝑅−2).

Since the equation 𝜆5 − 𝜆 = 0 has only three real solutions 𝜆 = ±1, 0, it follows that for 𝑅 suffi-
ciently large 𝑣′(𝑠) = 0 has only two real solutions on [4, 𝑅2]. Since these solutions are given by
𝑠 = 4 and 𝑠 = 𝑅2 − 1, it follows that 𝑣′(𝑠) ≠ 0 in (4, 𝑅2 − 1), and hence 𝑣 does not have an interior
minimum in [4, 𝑅2]. This immediately implies 𝑣(𝑠) ≥ 0.
Finally, let 𝑣 be the result of convolving 𝑣 with a positive, symmetric mollifier with sufficiently

small support. Then 𝑣 is smooth and has the same properties as 𝑣. Integrating 𝑣 yields 𝜒. □

Now let us explain the extension of this construction to themetrics𝜔𝑐𝑜,𝑎 on the small resolution.
For this, recall that

𝜔𝑐𝑜,𝑎 =
√
−1𝜕𝜕𝑓𝑎(‖𝑧‖2) + 4𝑎2𝜋∗𝜔𝐹𝑆

where 𝑓𝑎(𝑥) = 𝑎2𝑓1(
𝑥

𝑎3
) and 𝑓1 satisfies

(𝑥𝑓′1)
3 + 6(𝑥𝑓′1)

2 = 𝑥2.

Rewriting this equation in terms of the variable 𝑧 defined by 𝑥 = 𝑧−3∕2 and applying standard
ODE techniques we obtain the following result, whose proof we leave to the reader

Lemma A.5. For 𝑥 ≫ 1, the function 𝑓1(𝑥) has a convergent expansion

𝑓1(𝑥) =
3

2
𝑥2∕3 − 2 log(𝑥) +

∞∑
𝑛=0

𝑐𝑛𝑥
−2𝑛∕3.

In particular, 𝑓𝑎(𝑥) →
3

2
𝑥2∕3 smoothly and uniformly on any compact set as 𝑎 → 0.

We now describe how to glue 𝜔𝑐𝑜,𝑎 to the Calabi-Yau metric 𝜔𝐶𝑌 to obtain a balanced metric.
We first recall that

Ω𝑅 = 𝐶0𝑅
−3

√
−1𝜕𝜕(𝜒(𝑅2𝑟2)𝑅2

√
−1𝜕𝜕𝑟2) = 𝐶0𝑅

−1
√
−1𝜕𝜕(𝜒(𝑅2𝑟2)

√
−1𝜕𝜕𝑟2)

On the other hand, we have

𝜔2𝑐𝑜,𝑎 = (
√
−1𝜕𝜕𝑓𝑎(‖𝑧‖2))2 + 8𝑎2√−1𝜕𝜕𝑓𝑎(‖𝑧‖2) ∧ 𝜋∗𝜔𝐹𝑆

=
√
−1𝜕𝜕

(
𝑓𝑎(‖𝑧‖2)(√−1𝜕𝜕𝑓𝑎(‖𝑧‖2) + 8𝑎2𝜋∗𝜔𝐹𝑆))

This suggests that we define

Ω𝑅,𝑎 = 𝐶0
2𝑅−1

3

√
−1𝜕𝜕

(
𝜒

(
2𝑅2

3
𝑓𝑎(‖𝑧‖2))(√

−1𝜕𝜕𝑓𝑎(‖𝑧‖2) + 8𝑎2𝜋∗𝜔𝐹𝑆))
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Lemma A.6. For 0 ≤ 𝑎 ≪ 1 sufficiently small there is an open set 𝑈 containing the (−1, −1)
rational curve such that

Ω𝑅,𝑎 = 𝐶0𝑅𝜔
2
𝑐𝑜,𝑎

Proof. We only need to observe that the formula holds whenever

2𝑅2

3
𝑓𝑎(‖𝑧‖2) ≤ 4.

Now since 𝑓𝑎(‖𝑧‖2) converges uniformly to 3

2
𝑟2 on compact sets away from the (−1, −1) rational

curve, this inequality will hold for 𝑎 sufficiently small provided 𝑟 < 2𝑅−1. □

Next, recall that the gluing of 𝜔𝑐𝑜,0 and 𝜔𝐶𝑌 depending on only two estimates.

∙ The bounds

Ψ𝑅 ≥ −𝐶𝑅𝜔2𝑐𝑜,0, 𝐶0𝑅
−3𝑆∗𝑅Ω =

4𝐶0
9
𝑅𝜔2𝑐𝑜,0

in the region {𝑅−1 < 𝑟 < 2𝑅−1}. SinceΩ𝑅,𝑎 converges uniformly to𝜔2𝑐𝑜,0 on this region, the same
bound holds with 𝜔𝑐𝑜,0 replaced by 𝜔2𝑐𝑜,𝑎, after possibly changing the constants.

∙ The bound

𝜔2𝑐𝑜,0 ≤ 𝐶𝑟−2𝜔2𝑠𝑚
in the region {2𝑅−1 < 𝑟 < 1}. Again, from the uniform convergence of 𝜔𝑐𝑜,𝑎 to 𝜔𝑐𝑜,0 this bound
holds, up to possibly increasing 𝐶 for 𝜔2𝑐𝑜,𝑎 as well, from the uniform convergence.

It follows that the gluing procedure used to glue 𝜔2𝑐𝑜,0 to 𝜔
2
𝐶𝑌

carries over in exactly the same
way to glue 𝜔2𝑐𝑜,𝑎 to 𝜔2𝐶𝑌 for 0 < 𝑎 ≪ 1. Furthermore, from Lemma A.5 we obtain the smooth,
uniform convergence of 𝜔𝑎 to 𝜔0 on compact sets away from the (−1, −1) rational curves.
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