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1 | INTRODUCTION

Let X be a compact, Kdhler, Calabi-Yau threefold with trivial canonical bundle. Around 1985,
Clemens described a general procedure for constructing new, possibly non-Kihler complex mani-
folds with trivial canonical bundle by contracting a collection of disjoint (—1, —1) curves and then
smoothing the resulting ordinary double point (ODP) singularities. Such a geometric transition
is now called a conifold transition and we denote it by X — X ~ X,, where X is a singular vari-
ety with ODP singularities. Reid’s fantasy conjectures [74] that all complex threefolds with trivial
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canonical bundle can be connected by a sequence of conifold transitions. The goal of this paper,
motivated in part by equations from heterotic string theory, is to show that the tangent bundle
T'9X, admits a Hermitian-Yang-Mills metrics H; with respect to a class of balanced metrics con-
structed by Fu-Li-Yau [35], and to study the geometry of these metrics as |[t| — 0. In order to put
our work in context, we recall the origins of Calabi-Yau geometry in theoretical physics.

If X is a compact Kéhler manifold with ¢;(X) = 0 then the third author’s solution of the Calabi
conjecture [94] implies the existence of a unique Ricci-flat Kdhler metric in any Kihler class on X.
This result, which can be viewed as a higher dimensional analog of the Uniformization Theorem,
yields a plethora of examples of compact Riemannian manifolds with zero Ricci curvature and
holonomy contained in SU(n).

Following the solution of the Calabi conjecture, Candelas-Horowitz-Strominger-Witten [9]
showed that compact Kdhler manifolds with holonomy SU(3), in particular, Calabi-Yau manifolds
of complex dimension 3, are fundamental building blocks in torsion-free superstring compactifi-
cations. Precisely, [9] constructed superstring compactifications with the Standard Model gauge
group from a Calabi-Yau threefold together with a holomorphic vector bundle E — X admit-
ting a Hermitian-Yang-Mills connection and satisfying the topological constraints c¢;(E) =0,
and c,(E) = c,(X). Of course, the natural choice to make is E = T"*X, but more generally the
Donaldson-Uhlenbeck-Yau theorem [21, 91] implies that any slope stable vector bundle satisfying
the topological constraints is admissible. In total, these works lead to an abundance of a priori
distinct superstring compactifications.

Shortly thereafter, the possibility of superstring compactifications with torsion was investi-
gated. In this case, the compactifying manifold is a complex threefold X with a non-vanishing
holomorphic (3,0)-form Q (so that canonical bundle is trivial) equipped with a holomorphic vec-
tor bundle E — X satisfying the topological constraints ¢;(E) = 0 = ¢;(X) and ¢,(E) = ¢,(X). In
order for this data to give rise to a supersymmetric compactification, X must admit a hermitian
metric g, with associated (1,1)-form w, and E must admit a hermitian metric H solving the follow-
ing system of equations, called the Strominger system [81]. The first equation is is formulated as
in [58].

d(||Qll, @) =0, (L.1)
w?> AFy =0, 1.2)

— a/
V—100w — T (TrRmg ARmg — TrFyy AFp) = 0. 1.3)

Here o’ > 0 is the inverse string tension, Fy denotes the curvature of the Chern connection of
(E,H), and ||Q||? is the norm of Q with respect to g. It is natural to view Rm as the curvature of
the Chern connection on T*X, though other choices of connection are admissible as proposed by
Hull [49] and further discussed in, for example [19, 28, 37]. Note that if g is Kdhler, so that dw = 0,
then (1.1) implies that w solves the Monge-Ampere equation and is hence Ricci-flat, while (1.2)
is the Hermitian-Yang-Mills equation for H, with respect to w. Finally, in the Kihler case, the
anomaly cancellation equation (1.3) dictates that

TrRm ARm — TrFy; AFy = 0.
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This coupling between the Hermitian-Yang-Mills equation and the Calabi-Yau equation is highly
non-trivial, but it is automatically satisfied provided E = T'X. Thus, we can view the sys-
tem (1.1), (1.2), (1.3) as a generalization of the Calabi-Yau equation to the setting of non-Kihler
complex manifolds. In particular, the Strominger system provides a set of equations for uniformiz-
ing non-Kéhler complex threefolds with trivial canonical bundle which can be viewed as natural
generalizations of the Calabi-Yau equation.

This system from heterotic string theory has recently generated a great deal of interest in
mathematics, both for its applications to the study of non-Kdhler Calabi-Yau manifolds and its
connections to theoretical physics. Li-Yau [58] constructed solutions on Kihler Calabi-Yau three-
folds by deforming the complex structure of T}°X @ C’. Deformations of Kihler solutions to more
general bundles were considered by Andreas-Garcia-Fernandez [1, 2]. Fu-Yau [34] constructed
solutions to the Strominger system on Calabi-Eckmann-Goldstein-Prokushkin fibrations by using
a certain ansatz to reduce the system to a non-linear PDE of Monge-Ampére type on a K3 sur-
face. Higher dimensional versions of the Fu-Yau construction have recently been considered in
[17, 30, 48, 63, 64, 69, 70]. Further geometric constructions of solutions, in both the compact and
non-compact cases, can be found in, for example [22-24, 27-29, 36, 38, 60]. Very recently, Phong,
Zhang and the second author have introduced [66] a parabolic approach via the Anomaly flow
and obtained a new proof of the Fu-Yau result; see [4, 25, 26, 65, 67, 68] and the references therein.
We refer the reader to [37, 39, 40, 62, 90] and the references therein for more on this very active
area of research.

While the plethora of solutions to (1.1), (1.2), (1.3) is interesting from a mathematical point of
view, the lack of a unique vacuum for the heterotic string is a fundamental problem for the pre-
dictive power of string theory. A conjectural resolution of this problem was put forth by Reid [74],
inspired by work of Clemens and Friedman. Reid’s fantasy proposes that all complex three folds
with trivial canonical bundle are connected by a sequence of contractions and smoothings. Recall
that a conifold transition

X - XwX, (1.4)
consists of a contraction followed by a smoothing, where the contraction map X — X contracts

a collection of disjoint rational curves C; C X, with normal bundle Op:1(—1)®2 (called (-1, —1)
curves) to ordinary double point (ODP) singularities, given locally by equations

4
{sz =o} c C4. (1.5)
i=1
By work of Friedman [31], under appropriate assumptions there is a smoothing

X - A, A={teC: |t]<1} (1.6)

such that x~1(0) = X, and p~1(¢) = X, is a smooth complex threefold with trivial canonical bun-
dle; see Section 2 for a more thorough discussion of conifold transitions. Locally near the ODP
singularities, this smoothing is given by

4
{szzt}cc“xo (1.7)
i=1
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Note that in general, X; will no longer be Kihler (even topologically), even if the initial mani-
fold X is projective; see [31] for an example of this phenomenon with initial manifold a quintic
in P*. Thus conifold transitions may take us out of Kihler geometry, and a theme of this work
is to understand the geometric structures appearing on the other side. For an introduction to
Calabi-Yau transitions, see [75]. Though non-Kéhler, [33] proved that X, generically satisfies the
99-Lemma.

Green-Hiibsch [42, 43] and Candelas-Green-Hiibsch [7, 8] argued that conifold transitions
could be used to connect any two Calabi-Yau manifolds realized as complete intersections in prod-
ucts of projective spaces. As we move along in the moduli of string vacua, string physics should
smoothly interpolate through topological changes. For Type II strings, this problem was studied
in [44, 82]. Here we consider heterotic strings, and in order to resolve the vacuum degeneracy
problem for these compactifications it is essential to understand the solvability of the system (1.1),
(1.2), (1.3) through conifold transitions. In fact, the third author has advocated that the solvability
of the Strominger system may provide a useful tool for studying Reid’s fantasy as it provides a
uniformization of non-Kéhler Calabi-Yau threefolds.

The study of the Strominger system through conifold transitions was initiated by Fu-Li-Yau
[35] who established the existence of metrics w, on X, solving (1.1) assuming the input manifold X
in (1.4) is a compact, Kdhler Calabi-Yau. Chuan [16] showed that if E — X is a holomorphic vector
bundle which is Mumford-Takemoto stable with respect to some Kéhler class, holomorphically
trivial in a neighborhood of the curves contracted by the map X — X, and (X, E) can be smoothed
to a family of holomorphic bundles (X, E;), then stability can be passed through the transition
in the following sense: there is a hermitian metric H, on E; solving the Hermitian-Yang-Mills
equation (1.2) with respect to the Fu-Li-Yau metric. We remark that it is unclear whether such
bundles E — X can be constructed so that, ¢,(E) = ¢,(X) in H>(X, R) and in addition c,(E,) =
c,(X,) in H*(X,,R) after the conifold transition. Such a situation would be necessary in order
to pass solutions of the full Strominger system through conifold transitions. In any event, the
metric H, constructed by Chuan is approximately flat in a neighborhood of the vanishing cycles
of the smooth X w X;, while the Fu-Li-Yau metric is modeled on a non-flat, Kdhler Calabi-Yau
cone metric.

In this work we initiate the study of the Strominger system through conifold transitions
in the case when the gauge bundle E is taken to be T'°X. Our main theorem is the
following:

Theorem 1.1. Let X be a Kihler simply connected Calabi-Yau threefold. Let X — X ~ X, be a coni-
fold transition, with X; as in (1.6). Equip X, with the Fu-Li-Yau balanced metric g, with associated
(11) form w,. Then, for all |t| < 1 sufficiently small there exists a hermitian metric H, on T*X,
solving

w; AFy, =0.
Furthermore, there exists A > 0 such that if p; € X is a ODP singularity, then after identifying a

neighborhood of p; € X with the model smoothing (1.7), there are constant c;, d; > 0 such thaton a
neighborhood of the vanishing cycles given by

3
Ry = {IIZII2 < Itlm} c X,
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foreach k € Z there is a constant Cy, such that

PR
< Celtl*lzll 57,
8co,t

’ Vlgccw (gt - cigco,t)

A=k
S Celtl*lizll -

‘VSCD,I(HI - digco,t) g
co,t

Here ||z||?> = Z?:l |z;|?> and 8co, is the explicit Kihler Ricci-flat metric on the smoothing (1.7)
constructed by Candelas-de la Ossa.

Remark 1.2. The existence of a metric H, on T'°X; solving w? A Fy, = 0 implies that the tangent
bundle TCX, is stable with respect to the Fu-Li-Yau balanced class [«;]* (Corollary 6.14). In the
case when X, is topologically #,S* x S* [31, 45], the stability of the tangent bundle was noted in

[5].

Remark 1.3. Since both g, and H; are locally modeled on the Candelas-de la Ossa explicit K&h-
ler Ricci-flat metric g.,, near the vanishing cycles, we see that the local metric description of
conifold transitions given by Candelas-de la Ossa [10] accurately describes global non-Kéhler
conifold transitions of heterotic strings near the vanishing cycles. Our estimates give convergence,
after a suitable local rescaling, of the pair (g;, H;) to a solution of the anomaly cancellation equa-
tion (1.3) near the ordinary double points of X as t — 0. For related work on Calabi-Yau metrics
(g; = H;) in the case when both sides are Kihler, see for example [47, 76, 78, 88] and references
therein.

Remark 1.4. A similar result holds if we replace the balanced Fu-Li-Yau metric g, with the
conformally balanced metric g, obtained by conformally rescaling g,. In particular, the pair
(g;, H;) simultaneously solves (1.1) and (1.2), and satisfies an estimate similar to Theorem 1.1; see
Remark 6.13. This implies that near the ODP singularities, at a suitable scale, the pair (g;, H,)
converges to the Calabi-Yau solution of the Strominger system on the conifold as |¢| — 0.

The third author has conjectured [93] that if X is any complex threefold with trivial canonical
bundle admitting a pair of metrics (w, H) solving the conformally balanced equation (1.1) and the
Hermitian-Yang-Mills equation (1.2), then there is a solution of the full Strominger system. We
hope to return to this problem, in the setting of conifold transitions, in future work.

The outline of this paper is as follows. In Section 2 we discuss some background material,
including the basic geometric properties of conifold transitions that will be important for our
work. In Section 3 we construct a metric H, on the tangent bundle of TX — X . More pre-
cisely, the metric H,, is Hermitian-Yang-Mills with respect to a smooth, balanced metric g, on
X reg and, near the singular points of X, is uniformly equivalent to the Candelas-de la Ossa Ricci-
flat Kdhler metric on the conifold (1.5). Furthermore, we show that H,, also satisfies scale invariant
higher-order estimates. The metric H serves as the model metric for the Hermitian-Yang-Mills
metric on X;, at least away from the vanishing cycles. In Section 4 we establish quantitative,
polynomial decay of H, towards a multiple of the Candelas-de la Ossa metric on the conifold.
In Section 5 we use H, to construct an approximately Hermitian-Yang-Mills metric H; on X,
with an explicit estimate for the decay rate, with respect to |¢|, towards a Hermitian-Yang-Mills
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metric. Finally, in Section 6 we show that, for |¢| <« 1 sufficiently small, H, can be perturbed to
a genuine Hermitian-Yang-Mills metric on T'°X,. For the reader’s convenience we have pro-
vided an appendix detailing the aspects of the Fu-Li-Yau construction which are important for
our work.

2 | THE GEOMETRY OF CONIFOLD TRANSITIONS

In this section we will discuss the basic geometry of conifold transitions. We begin with the
following definition, which fixes the notion of Calabi-Yau manifold to be considered in this paper.

Definition 2.1. A smooth Calabi-Yau threefold is a smooth complex threefold with finite
fundamental group and trivial canonical bundle

The primary aim of this paper is to understand the solvability of the Hermitian-Yang-Mills
equation on the tangent bundle to a Calabi-Yau threefold as it passes through a conifold transition.

Definition 2.2. A (—1,—1) curve C C X is a smooth rational curve C ~ P! such that the normal
bundle NC/X >~ OD:D] (—1)62

From [41, Satz 7] there is an open neighborhood U of C in X such that U is biholomorphic to
a neighborhood of the zero section in the total space of Op1(—1) @ Op:1(—1). In particular, this
implies the existence of a contraction map

ﬂC:X—))_(

to a singular complex space X with an ordinary double point singularity at p such that
e : X\ C - X\ {p} and nc(C) = p. Concretely, if [X; : X,] denote homogeneous coordi-
nates on P!, then any non-zero point in the total space Op1(—1)®? can be written uniquely
as (w; X, w1 X5, WX, w,X,). This defines a biholomorphism from the complement of the zero
section in Op1(—1)®? to the complement of the origin in the conifold

VO = {2122 - 2324 = 0} C (:4. (21)
This map can clearly be extended holomorphically over the zero section of Op1(—1)®? by sending
P! to the origin in C*. After a unitary change of coordinates we can rewrite (2.1) as the standard
conifold

Vo:i={z]+2z;+2z;+2z; =0} c C". (2.2)

We now describe another realization of the affine variety (2.2). Consider the Fano surface P! x P
Denote by

pi i PxP! > P! fori=1,2

the projection onto the i-th factor. The conifold can be realized as the blow-down of the zero sec-
tion in the total space of p7Op1(—1) ® p;Op:1(—1). Explicitly, the global holomorphic sections of
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P;Op1(1) ® p;Op1(1) define an embedding
(i PIxPlo p3
which is precisely the Segre embedding
(P' X PY ={XX, - X3X, =0|[X; : X, : X3 : Xy4] € P3}.

Taking the cone over this projective variety yields (2.1).
The singular affine variety V|, given in (2.2) admits an explicit smoothing given by

V={zl+z;+z;+z; =t} cC*xC. (2.3)

We denote by u : ¥ — C the projection u(z, t) = t, and let V, = u~'(¢) be the fiber over ¢.

Now suppose that X is a Calabi-Yau threefold and let Cy, ..., C; C X be a collection of disjoint
(=1,—1) curves. Let 7 : X — X be the map contracting the C;, so that X is a compact complex
space with ordinary double point singularities at p; = 7(C;). We have the following well-known
result of Friedman [31, 32]

Theorem 2.3 Friedman, [31]. There is a first order deformation of X smoothing p; if and only if
there is a relation

M=

i=1

where each A; # 0.

When X is Kdhler (or more generally, satisfies the \/—_165-1emma) Kawamata [55], building on
work of Ran [73], and independently Tian [87] showed that the first order smoothings in The-
orem 2.3 integrate to genuine smoothings. Furthermore, by [32, Lemma 8.2] if X is a Kéhler,
Calabi-Yau threefold in the sense of Definition 2.1 then the fibers of smooth u : X — A are again
Calabi-Yau. In particular, assuming (2.4) holds, there is a holomorphic family

u:X->A:={teC:|t|<1}

such that £=(¢) = X, is smooth for ¢ # 0 and «~(0) = X. By a result of Kas-Schlessinger [54] the
family & is locally biholomorphic to the model smoothing V near each ordinary double point.
We make the following definition.

Definition 2.4. Let X be a smooth, compact, complex three fold. A conifold transition of X,
denoted X — X ~ X, consists of a holomorphic map 7 : X — X and family u : X —» A with
«~1(0) = X such that

(1) m : X - X contracts a collection of disjoint (—1,—1) curves Cy,...,Cy to isolated, ordi-
nary double point singularities p, ..., p € X, and 7 is a biholomorphism X \ U;C; - X \
{p1, s i}
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(2) u : X = Aisaholomorphic smoothing of X = u~1(0) and X, = u~1(¢).

Said informally, a conifold transition consists of contracting a collection of disjoint (—1,—1)
curves followed by smoothing the resulting double point singularities. At the level of topology,
removing a neighborhood of the singular points of X leaves a boundary S? X S°, and either side
of the transition corresponds topologically to gluing S? x B* or B> x S* along this boundary (see,
e.g. [75] for details). Thus conifold transitions allow travel between Calabi-Yau threefolds of dif-

ferent topology by degenerating two-cycles and introducing three-cycles. By the above discussion,
Theorem 2.3 gives necessary and sufficient conditions for the existence of conifold transitions.

2.1 | Metric geometry of the conifold
Let us turn now to the discussion of some aspects of the metric geometry of conifold transitions.
Recall that the conifold (2.2) can be viewed as the cone over P! x P! in the negative line bun-

dle p;Op1(—1) @ p;Op1(—1). Since P' x P! is Kihler-Einstein with positive Ricci curvature, it is
well-known that the conifold admits a conical Calabi-Yau metric. Explicitly, let

4
hps = Z 1 1°
i=1
denote the Fubini-Study metric on Op3(—1). By direct computation we have

[*hFS = hKE (25)

where hgp = pihps ® pyhps and p;hpg is the pull-back of the Fubini-Study metric on P! for
i =1, 2. Define a function

r. pik@um(—l) 024 p;OPl(—l) - Ry

in the following way. If x € P! X P!, and ¢ is a local section of
P1Op1(=1) ® p;Op1(—1), then define

r(x,o(x))? = (lalflKE>2/3.

Clearly r~1(0) is precisely the zero section of P;Op1(=1) ® p;Op1(—1), and hence r defines a
function on the conifold (2.2). From the observation (2.5), we can write this function in terms of
the coordinates on C* as

4

2 4 2. 2

r2= 1z 2l =) Izl
i=1

An easy calculation shows that

3 —
Weo,0 - = z V —166}’2
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defines a conical Calabi-Yau metric g., o on V; note that the factor of % is a harmless scaling, but
we have included it to be consistent with [35]. More precisely, the Ricci-flat Kihler metric g, o is
a cone metric over the link L := {r = 1} C V,, and can be written as

3
8co0 = z(drz + rsz)

where g; is (the pullback of) a Sasaki-Einstein metric on L := {r = 1} C V.. The cone (V, g.,0)
has a natural rescaling action generated by the vector field rai. The vector field
r

(3)

is tangent the level sets or r and defines the Reeb vector field of the Sasaki structure on the link.
We will use frequently the holomorphic vector field

0
éc = '3 V-1§.
r
Explicitly, the vector field ¢ generates the C* action on V|, given by
A-(21,22,23,24) = (/13/221,13/222,/13/223,13/224),

and one can easily check that the cone metric g, o is homogeneous of degree 2 under this action.
In particular, we have

Lemma 2.5. The conical Calabi-Yau metric g, , on the conifold has the following property: for every
k € Z there is a constant Cy so that

|VKRmlg (p) < Cir(p)=>F.

2.2 | Metric geometry of the local smoothings

Candelas-de la Ossa [10] and independently Stenzel [80] constructed Calabi-Yau metrics on the
smoothings of the conifold (2.3) using ODE techniques. These metrics will play an important role
for us.

Proposition 2.6 Candelas-de la Ossa, [10]. Consider the smoothing of the conifold given by (2.3),
and setV, = {z} + z5 + z; + z; =t} C C* Let | z||* = E?:l |z;|2, and, for each t € A, set

cosh_l(i)

£i(s) =273t / " (sinh(27) — 20)3 dr (2.6)

0

Then

Weor 1= V—133£,(l1I?)
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defines a smooth Calabi-Yau metric g.,; on V, whose tangent cone at infinity is the conifold
(VO’ 8co O)-

We note that ||z]|> > |t] on V;, and the set {||z||? = |t|}, which is topologically S*, will sometimes
be called the vanishing cycle.

Let V denote the model smoothing (2.3)and let 4 : ¥ — C be the projection to the ¢ coordinate.
There is a natural C* action on the family V, given by

S/l(zl » 225,23, 24, t) = (/‘13/221 s 13/2Z23 13/2239 13/2Z4’ 13[) (27)
so that S; : V;, — V;3,. Under this C* action we have

S3 fas, (1211 = 1412 1, (llz11%)
and so, in particular, we have

8cot = |[|2/3(Sr1/3)*gco,1- (2-8)

Note that, strictly speaking, we should fix a branch of log in the above expression, but since the
CO metric is manifestly S invariant such a distinction is irrelevant. It follows that the CO metrics
8co, are generated by the C* action on V, up to rescaling. In particular, this shows (cf. [35, Lemma
5.1])

Lemma 2.7. For each k € Z5, and A > 0 there is a constant Cy_4 > 0, independent of t, so that
the Calabi-Yau metrics g, ; satisfy

2
Sup |VkRm(gco,t)|gco,[ < Ck,A|t| 3
lIzlI2<A]¢|

(2+k)

It will be important for us to understand the rate at which the CO metric converges to its tangent
cone at infinity. Consider the map

®(2) 1 Vo )\ {nznz < @} — Vo2l = 1B,

(2.9)
zZ—zZ+ [z
2||z|?”
Tracing the definitions one can check that ||z]|?> < ||®,(2)||* < 2||z||* and
D, = S;1730D108,-1/3. (2.10)

We have

Lemma 2.8 Conlon-Hein [18], Proposition 5.9. Under the identification ®; we have that, for all
k € Z, there is a constant C, such that

K —3—k
|Vgco,0(¢ig00,l - gCO,O)lgw’O < Ckl" .
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Combining Lemma 2.8 with (2.8) and (2.10) we obtain estimates for the decay rate of g.,,
towards g, o.

Corollary 2.9. Forall k € Z there is a uniform constant Cy, independent of t, so that

k . —3—k
1V o0 Pr 8ot — 8eo0lgeno < CrltlFr™".

Proof. From (2.8) and (2.10) we have
q)?gco,t = |t|2/3(5[—1/3)*q)1kgco,1~
It follows that, if x € V, then, from Lemma 2.8 we get

|V§w’0(q}jgco,t - gco,o)lgmyo(x) = |t|2/3lvlgcw,0q);¢gco,t - gco,Ol|t|2/3gw,0(st—1/3 (x))

22+k
<CltPRlel 37 2 r(s; )3k

= Crltlr(x)—*7*
(|

One application of this result will be to transplanting estimates for tensors on V, to estimates on
the smooth varieties V;. The following lemma follows from Corollary 2.9 and ||z||?> < ||®(2)]|* <
2||z|I>.

Lemma 2.10. There is a constant R > 0 depending only on the constant C in Corollary 2.9, such
that, if T is a contravariant tensor on some subset of Vi, N {r’ > Rlizl} satisfying the estimate

k A—k
| Vgco,o T | gco,O S Mkr

A ) R*+1
forsomek € Z, constant M, > 0 and some A, then (P, Y“T defines a tensoronV, N {r* > 2—; [t]}
satisfying the estimate

k -1 ! A—k
|V (q)t )*Tlgco,t S Mkr

8co,t

for constants M 1’{ > 0 depending only on M, and the the constants C) appearing in Corollary 2.9.

‘We also note that the estimate from Corollary 2.9 implies the following estimate on V,

|V (@) 800 = Beoull, < Clelr™7. (211)

8co,
It will be useful later in the paper to have a well adapted system of coordinates in which to
carry out our analysis. The following, which we refer to as “holomorphic cylindrical coordinates”
were used in [16]. For completeness, we recall these coordinates and prove their existence in the
following
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Lemma 2.11. There are uniform constants p > 0 and Cy > 0,k € Z with the following effect:
Ifz :=(2y,...,24) €V, and 2 # O, then there is an open neighborhood U; > Z and a holomorphic
embedding ¢ : B,(0) — U; such that, if (w,, ..., ws) denote the local holomorphic coordinates on
B,(0), then, setting f = r(2) we have

(i) Wehave -7 < r(w) < 47 on B,, and

E el

1657|g,,, (W) < CyF

where g,,,. denotes the Euclidean metric on B,,.
(ii) In these coordinates we have

-1 A—2
CO 8euc =T 8eo,t < COgeuc

and

|ak(f_2gco,t)|geuc <Cg

Proof. We begin by constructing some candidate coordinates. Fix 2 := (24, ...,24) € V;. Clearly
|Z;] > ﬁlléll for some 1 <i <4, and hence, without loss of generality we may assume i = 4.
We claim that w; = z; — 2;, for 1 <i < 3 form a coordinate system near Z. Indeed, consider the
function

4

2
Ft(Zl,Zz,Z3,Z4) = 2 zZ; — t.
i=1

By the implicit function theorem, the coordinates (z;, z,, z3) form local coordinates on {F;, = 0}
whenever ;—F = 2z, # 0. Let us examine these coordinates. Since r? = l|z||*/? one can easily show
24

that %\/—_165;'2 is a globally defined, smooth metric on C* \ {0}, which we still denote by g, .
We claim that, up to scaling and translating, the estimates in (i) always hold in these coordinates.
Indeed, from the scaling relation r(4 - z) = |1|r(z) we may as well assume that ||Z|| = 1. It is easy
to see that, for any multi-index a = (kq, k,, k3, ky) € Zio we have

fex|
——r < C(a).

geuc Z

sup
{5 <lizll<8}

Since 1073 < |z,| < 10 on this region, the estimates in (i) will follow from comparing g, , =
4 . . .
Zi:l |dz;|? to the Euclidean metric in the coordinates

(W, wy, w3) = (21 — 21,25 — 2,23 — Z3).
Using the definition of the coordinates we have

3
| iy zi(w)dw; |

|zs(w)I?

3
2
8euc,z = Z |dwi| +
i=1
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296 | COLLINS ET AL.

For clarity, let us denote by g,,,c.,, = Z?zl |dw; | the Euclidean metric in the w coordinates. Then,

from the Cauchy-Schwarz inequality, together with |z,| > ﬁ 2] = ﬁ we have

3
8euc,w < 8euc,z <10 8euc,w-

Noting that {% < |lz|l < 8} implies that {2 < r(z) < 47} we see that (i) holds in these coordinates.
Next, we address (ii) in the special case t = 0. In this case the desired estimates follow
immediately from a scaling argument and the above estimates for r, since rescaling preserves
Vo.
It only remains to determine a bound for p such that {21,3:1 |lw| < p}implies {% < |lz(w)|l < 8}.
From the definition of the coordinates we have

3 3
lZ@)II? = Y lw; + 2> + | D (w; + 2|
i=1 i=1

On the one hand, we have

3 3 3
~2 1 .12
2wzl 23 Y gl = Y wil,
i=1 i=1 i=1
while on the other hand

3 3 3 1 3
PR EANEAREDA P WEE
i=1 i=1 i=1 i=1

Thanks to the fact that 1 = 213:1 1212 + | 2?21 27| we get
1 < 1
2> 26wl > —
llz@ll” 2 7 2 |wi|* > =

provided 213:1 lwi|> < p < % The upper bound is similar.

Next we consider the case when 2 € V; and {||2]|> > R} for some large constant R > 2 to be
determined. In this region we will also use coordinates constructed from (z, z,, z3), assuming as
before that |2,| > % [|Z]]. Since we have already established the estimates (i) in these coordinates,

it suffices to prove (ii). Let § € V,, with ||P]|* > % be defined by
o,(P)=2€V.

Note that from the definition (2.9) of ®; we have ||p||> > R/2. Define coordinates (x;, X, X3) on
V1, near Z by

Z; = |2|xi +2l
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N

and let (w;,w,,w;) be the coordinates on V|, centered at W constructed above.
Explicitly,

zi=[Plwi+ 9, 1<i<3

where .3_ |lw;|? < 1 The ma ®, is given in these coordinates b
=1 Wi s p g y

Il willPll + 9 9
w'l—>f w+ ~ - ~ ~ (212)
NN T T 2190 Izl 2090 - 12112

where
3 3
~ A2 A~ ~
IZ@)I> = YT HDI - wi + 911+ | DA - w; +9:D?|.
i=1 i=1

2
9O 5o eo

When [|y||> > - we have 1 < <
2 lIylI?

Sr@,()) < () < @ () @13)

From (2.12) it follows that there is a constant ¢ € [%, 1] such that

3 ; e}
—x;00; =8’ + O(R™Y), —x;0®; = O(R™D),
6wj ! J 6w] !

and, for all multi-indices o with || > 2,

glel 1 gl X
ﬁxiOd)l = O(R_ ), ﬁxiotbl = O(R_ ) (214)

Thus, by choosing R sufficiently large we can ensure that

1 *

58w < ®ig, <2gy. (2.15)
where g, denotes the Euclidean metric in x coordinates, and g, denotes the Euclidean

metric in w coordinates. Furthermore, (2.14) implies that, for all multi-indices a # 0 we
have

glel

qufgx = O(R_l)

By Lemma 2.8 and (2.13) we can choose R sufficiently large so that

1 .
Egco,o < (I)igco,l < 2gco,O- (2-16)
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Combining (2.15), (2.16) and (2.13) we deduce the estimates in (ii) from Lemma 2.8 and the
estimates for g., o in the w coordinates. For example, we have

IV 7(2) *8eonlg, = Ve, r(2) 7280, | oig
< C(1V g, "2 2P 8e01lg, + ORI genol, )
= C<|Vgco,o(q’igco,1 ~ 8eo0)guo + 1T 2080015, + 1)
<cC,.

Higher order derivatives follow similarly by induction. Note that if R is sufficiently large then
®,({w : 2?21 lw;|? < %}) D{x: 2?21 |x;]% < %} and so again, p can be chose uniformly.

The portion of V; given by {z € V; : ||z||*> < 2R} is compact and hence the desired coordinates
can be constructed by a covering argument. It only remains to construct the coordinates on V, for
0 < |t] < 1. But for t # 0 we can use the holomorphic rescaling map (2.7) to induce holomorphic
coordinates on V; from those on V. By (2.8) the metrics g, , are generated, up to a scaling param-
eter, by the holomorphic rescaling map. On the other hand, the estimates in (i), (ii) are invariant
under this rescaling, and hence the lemma follows. O

Remark 2.12. Note that the construction in Lemma 2.11 shows that there is a constant R > 0 such
that, 2 € {||z||*> > R|t|} and |24] > ﬁ [IZ]|, then the holomorphic cylindrical coordinates can be
taken to be
1 N R A
(wy, wy, w3) = m(zl — 21,2y — 23,23 — Z3)
Before moving on from this local discussion we state a lemma regarding extending some of the
local objects introduced above.

Lemma 2.13. If u : X — A is a global smoothing of a Calabi-Yau variety X, = u~'(0) with
ordinary double point singularities at points {p,, ..., pr}, then there are disjoint open sets U; C X,
with p; € U; such that U; is biholomorphic to a neighborhood of 0 in the model smoothing (2.3)
and,

(i) there is a globally defined functionr : X — Ry such that, after identifying U; with the model
smoothing, r*|y. = ||z||*/3, and r=1(0) = {p, ..., pi}

(ii) There is a collection of closed sets Ui’ C U;, and closed sets Cit C X, smooth map @, : X, \
UiUi’ - u 'O\ Cl.‘ such that, after identifying U; with the model smoothing we have

1t
U{={|Iz||2$7 .=zl = el

tz

and @, |y isthemapz — z + .
! 2||z||2

Proof. We only sketch the proof, since it is straightforward. Given a choice of the open sets U; we
extend the locally defined functions ||z||*/ on X’ to globally defined positive functions which only
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vanish that the singular points p;. This establishes (i). To prove (ii) we just observe that the locally
defined maps are given by the flow of a vector field which lifts %. ‘We can extend this map globally
by using a partition function to glue with any lift of % to X \ U; (eg. by choosing a Riemannian
metric on X). O

2.3 | Balanced metrics on conifold transitions

We now review the work of Fu-Li-Yau [35] who constructed balanced metrics on non-Kihler
Calabi-Yau threefolds using conifold transitions and gluing.

Definition 2.14. Let (X, g) be a complex manifold of complex dimension n with a hermitian
metric. The metric g is said to be balanced if the associated (1,1) form w satisfies

do™ 1 =0.
We have the following theorem

Theorem 2.15 Fu-Li-Yau [35], Theorem 1.2. Let X be a smooth, Kdhler, Calabi-Yau threefold,
and suppose that X — X w X, is a conifold transition. Then, for |t| sufficiently small X, admits
a balanced metric wpry ;.

‘We will need to recall some aspects of the proof of Theorem 2.15 as they will play an important
role in subsequent sections. The first step [35] is to construct a balanced metric on X reg by appro-
priately gluing a Calabi-Yau metric on X with the conical Calabi-Yau metric on the conifold. To
fix notation, for each ordinary double point p; € X we fix an identification of a neighborhood of
p; with a neighborhood of the singular point in the conifold. Define

4

Ul'(g) = {(Z17Z2! Z3’Z4) € C4 . Zl'z = Oa and ”Z”2 < E}

i=1
and let U(e) = Ul. U;(e). We state the following result of Fu-Li-Yau [35]; for the reader’s

convenience we have given a self-contained proof in Appendix A.

Proposition 2.16 Fu-Li-Yau [35], Proposition 2.6. With the above notation, for every 0 < € < 1 suf-
ficiently small there is a constant M > 0 such that there exists a hermitian metric g, on X reg whose

associated (1,1) form w, has the following properties

(i) OnX \ U(1) we have w, = wcy where wcy is a Calabi-Yau metric on X.
(ii) On U(¢) nX, ., wehavew, = M;/2£_1/3a)c0,0.

(iii) OnUQQ) \ U(e), w; is \/—185-exact.

In particular, g, is balanced on X reg’
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300 | COLLINS ET AL.

For the remainder of the paper, € > 0 is fixed and we will use the corresponding metric g,. It
will be useful to use to have a comparison of w-y with wy on X, away from the contracted rational
curves. In a neighborhood of the curves, the metric wcy is uniformly equivalent to the smooth
reference metric w,,, = /—190r> + ﬂﬂ”;la)FS (where we recall that r* = ||z||?). For0 < 1 < 1, we
canrescaleby S, : {1 <r <2} = {1 <r < 21} with S;(z) = 13/2z. This gives

Siwgm = 1V =100r° + 70, wps,  S;we00 = AWeo

and by the uniform equivalence of metrics C™'wg, < w.o < Cwg, on {1 <r < 2}, we obtain
CTIA%S Wy < Siweo < CAT'S wgy,. Thus

C'r?wey < wy < Crlwcy (2.17)

on{0<r <1}
The next step in the proof of Theorem 2.15 is to construct approximately balanced metrics on
the smooth fibers X;. Let U(%) C X be a small open set containing the singular points p;. Note

that X U(l) is diffeomorphic to X, U(L) by the map ®, constructed in Lemma 2.13. If @? is
2 5 V2 0

the metric from Proposition 2.16, then ((cho(z))(z’z) is positive definite for |¢| sufficiently small and
can be glued to the Candelas-de la Ossa metric cofo’t to obtain a positive (2,2) form. The following
result can be extracted from Fu-Li-Yau [35, Section 3], see, for example [35, equation (3.4)].

Proposition 2.17 Fu-Li-Yau [35]. With notation as above, for ¢, |t| sufficiently small and M,
sufficiently large there is a hermitian metric g, on X, such that the associated (1,1) form w, has

() @, = M)/*e7w,,, is Kéhler Ricciflat in U(e) N X,.
(ii) There is a constant Cy, independent of |t| so that |dw12|Ck(Xl’w[) < Cgltl-
(iii) As |t| = 0, ®;w,; converges smoothly, in compact subsets of X \ {p1, ..., pr} to the balanced
metric w, of Proposition 2.16.

With this result, Theorem 2.15 is obtained by solving a fourth -th order linear equation with
estimates in order to perturb the approximately balanced metric w; of Proposition 2.17 to a genuine
balanced metric wgyy ; for |¢] sufficiently small.

2.4 | Balanced metrics on the small resolution

The space X can be viewed as a small resolution of the singular space X, obtained by replacing
the ordinary double points with (—1, —1) rational curves. It will be useful to us to have a sequence
of degenerating balanced metrics on X.

Consider the total space 7p1 : Opi1(—1)®? — P!. Let hyg denote the standard Fubini-Study
metric on Op1(—=1). If z € P!, and (u,v) € n@ll(z) denotes a point in the fiber over z, we define

2/3

2 2
r(w, 0,2 = (Jul}, + 108, )
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It is easy to check that r? is the pull-back to Op1(—1)®? of the potential for the conical Calabi-Yau
metric on the conifold. Candelas-de la Ossa [10] constructed asymptotically conical Calabi-Yau
metrics on the resolved conifold via the ansatz

Weoq i = V=183f () + 40Ty wps

where wrg = V/ —16510g hpg is the Fubini-Study metric on P'. This metric is Calabi-Yau provided
fa(x) satisfies the differential equation

(efa(0)) +6a*(xfo(x)* =x*  fu(x)20

for x > 0. From this expression it is straightforward to check that
— 25 (X
fato) = af1(35)-
In particular we see that
Weo,a = aZSan’co,a:l (2.18)

where S,(u, v, z) = (a®/?u, a®/?v, z) is the scaling generated by the holomorphic Reeb vector field
on the conifold. The argument of Fu-Li-Yau carries over to give the following proposition; for the
reader’s convenience, we have provided the details in Appendix A.

Proposition 2.18 Fu-Li-Yau [35], Proposition 2.6. For every 0 < ¢ < 1 sufficiently small there is a
constant My, M; > 0 such that there exists a sequence of balanced hermitian metric w, on X with
a — 0 which has the following properties:

(i) OnX \ U(1) we have w, = wcy where wcy is a Calabi-Yau metric on X.

(ii) On U(g) N X we have w, = Mé/zs_l/%ow,a.

(i) OnU(1)\ U(e), w? is \/—133-exact.

(iv) Asa — 0, w, converges smoothly to w, on compact subsets of X\{Cy, ..., Cy }.
(v) Thereis an estimate M;' < Vol(X,g,) < M;.

(vi) We have [w;] = [wg, ] € H*(X,R).

Remark 2.19. Regarding notation, following the conventions of [16], we will use w,, , to denote
the Candelas-de la Ossa metric on the small resolution of the conifold, while reserving w,, ; for
the Candelas-de la Ossa metric on the smoothing of the conifold.

2.5 | Notation

Before beginning the construction, we establish notation and conventions that will be used
throughout the paper. Throughout the paper T'°X will denote the holomorphic tangent bundle
to X, and we will write the components of a hermitian metric H on TOX asH =H kj dz) ® dz*,
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and we will denote the inner product by

— .0 .0
) H = i 5 = ) = o

(V,W)y = HiVIwWk, V=V W =w!
ozt ozt

The hermitian condition in this convention is H_kj = Hjy. The inverse of H will be denoted HPY,
so that matrix multiplication is H/P?H Pk = 8/}. A hermitian metric H induces metrics on all the
associated bundles in the usual fashion.
An endomorphism A : T'°X — T'°X has an adjoint A" defined by
(AV, W)y =(V,ATW).
When the dependence on the metric is emphasized, we will write this as A"#. An endomorphism
is H-self-adjoint when A" = A. Note that, in this notation, the inner-product on endomorphisms
is given by
(A,B)y = Tr(AB")
The curvature Fy of the Chern connection of the metric H will follow the convention

(Fr)jiPq = —0rp(HP 9, Hyy).

From two hermitian metrics H and H we can form the relative endomorphism denoted h =
H~1H, or in index notation denoted

A formula which is the starting point for many computations is for the difference of the curvature
tensors of A and H.

(Fr)je = Fg)je = =9 (h ™ VEh). (219)

Here the p, g endomorphism indices are omitted for ease of notation, and v denotes the Chern
connection of H acting on h € T(End T*°X) by

In this paper, g will typically denote a balanced hermitian metric with associated form w =
V-1gg; dz’/ A dz¥. The contraction operator A, acts on Fy; by

p e
< \'% _lAwFH) q= g/ (FH)jqu'

The curvature of g will be denoted (R,) x?q = —09;(gF"9;8r4). Since g is not Kihler, it will have
non-zero torsion, which we denote by

(Te)ij = (Ag)i"j — (Ag))" (2.20)
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where (Ag)¥, = gpﬁal-gﬁq is the Chern connection of g. We will denote the (n,n) form
corresponding to g by

w}’l

dvol, = o
We will denote the complex Laplacian acting on functions by A, f = gjka i0rf- The balanced
condition dew™ ! = 0 allows us to integrate by parts so that

/¢Ag¢dv01g=/goAg¢ dvol,
X b'e

for any ¥, ¢ € C®(X). Lastly, we note that when obtaining estimates, we will use the convention
where C denotes a positive constant depending on known quantities which may vary line-by-line.

3 | HERMITIAN-YANG-MILLS METRICS ON THE CENTRAL FIBER

In this section, we construct a Hermitian-Yang-Mills metric on the tangent bundle of the singular
space X with respect to the Fu-Li-Yau balanced metric w,. We will prove:

Theorem 3.1. There exists a hermitian metric Hy on TX reg satisfying
2 _
FH() A COO =0

where w is the Fu-Li-Yau metric of Proposition 2.16 and Fy is the curvature of the Chern connection
of Hy. For each k € Z,, there is a constant Cj, > 0 such that the metric H, satisfies the estimates

|Holg, + 1Hy g, < Cos |V Holg, < Cir™*. (3.1)
Herer : X — Ry isasin Lemma 2.13.

We will produce H, by extracting a limit from a sequence {(w,,H,)} of Hermitian-Yang-
Mills metrics with respect to the degenerating sequence of background metrics {w,} from
Proposition 2.18. A similar approach is taken in [16].

Let X be a simply-connected, compact Kihler manifold of dimension n = 3 with trivial canon-
ical bundle. By Yau’s theorem [94], the bundle T"°X has a Ricci-flat metric wcy, and therefore
T10X is polystable with respect to [wcy |. In fact, T'CX is stable because it cannot holomorphically
split. As noted in [95] , the de Rham decomposition theorem implies that if the tangent bundle to
Calabi-Yau manifold splits holomorphically, then the manifold itself splits holomorphically and
metrically as a product. In dimension n = 3, at least one factor in this decomposition must be
1-dimensional, and hence a torus. When X is simply connected, this is impossible.

Thus, (X, [wcy]) satisfies the stability condition

1
@/};Cl(F)/\CUéY <0
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for all torsion-free, coherent subsheaves F C T19X of rank 1 or 2. It follows from Proposition 2.18
that the same inequality holds if we replace wcy by w, for any a > 0.

Therefore T10X is stable with respect to the balanced classes [w?] € H>*(X,R). By the Li-
Yau [57] generalization to Gauduchon metrics of the Donaldson-Uhlenbeck-Yau theorem [21, 91],
there exists a family of metrics H, on T"°X such that

Fy, Awj =0.

Our goal is to obtain a limiting metric Hy as a — 0.

3.1 | Reference metrics

To study the sequence (g, H,,), we will use a sequence of reference metrics H,, given by

Ha = e¢aga
where 1, satisfies
1
Ay g = gTr V-1A, Fg /Xz,ba dvol, =0. (3.2)

The solvability of (3.2) follows from the balanced condition since Tr F,_is exact. The advantage
of H, is that these metrics now have the property that

Tr Ay, Fyy, = 0.
This follows from

V=1A, Fy = ~(Ag 91 + V-1, F, . (3.3)
If we form the relative endomorphism h, = H,;'H,, then (2.19) implies

Ag, logdeth, = Tr\/=1A,, Fy;, — Tt \/—1A, Fy =0.
Therefore, det &, is constant, and we will choose a normalization for H, such that
deth, = 1.

We prove a uniform C° estimate for the conformal factor.
Lemma 3.2. The sequence {1} satisfies a uniform bound

1P llreox) < C.
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Proof. Let U(S) = {r < &}. Since g, = Rgc,,, 0n U(), we have A, F, = 0on U(e) and
Ag Py =0o0n U(e).
By the maximum principle,

sup |, < sup [|Pgl.
U(e) aU(¢)

Define
®a(z) = supyp, — P,(2).
X

Let p € X be a point where 0 = ¢,(p) = infx ¢,. By the above estimate, we may assume p €
X\U(e). Fix a finite open cover {V;} of coordinate charts of K = X \ U(¢) such that the eigen-
values of (ga)ij are uniformly bounded above and below on each chart. Denote by B; coordinate
balls each compact contained in V; which still cover K. Note that since the metrics g, converge
smoothly and uniformly on X \ U(e) to the metric g, the sets B;, V; can be chosen independent
of a.

Suppose p € B; so that infp ¢ = 0. By the Harnack inequality for elliptic PDE (e.g. [46,
Theorem 5.10]),

SUp ¢q < C<iglf Pa + IIAga%Ile) = CllAg,®allre-

By

From Proposition 2.18, the function TrA, F, is supported on U(1)\U(e) and is bounded
uniformly, independent of a. Therefore

sup |Ag @4l < C.
X

It follows that SUpy ®a < C. Let B, be another coordinate ball with B; N B, # §J. By the Harnack
inequality,

sup @, < C( inf ¢, + ”Agagoa”L‘”) < C<sup Pa + 1) <C.
B, B1NB, By

Continuing this process for each B;, we conclude
supgp, <C,
K
and hence sup, ¢, < C. This gives a bound on the oscillation

supyp, —infy, <C.
X X
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Since fX Yqdvol, =0, there is a point g € X where §,(q) = 0. Therefore
sup || < C
X

where C is independent of a > 0. [
‘We record some corollaries of this estimate.
Corollary 3.3. Let H,,H,,g,, h,, %, be as above, for 0 < a < 1. Then we have

(i) Let Z = U;C; be the union of all (—1,—1) curves contracted during the conifold transi-
tion. On compact sets K C X \ Z, the metrics H, converge smoothly to a limiting metric
H, = e¥og,.

(ii) Forall0 < a < 1, the metrics H, are uniformly equivalent to the background metrics g,. That
is, there is a uniform constant C, independent of a such that

C'g, <H, < Cg,.
In particular, since det i H,, = 1, the endomorphism h, = g;'H, = " H; H,, satisfies
C-!<deth, <C

for a uniform constant C, independent of 0 < a < 1.
(iii) The Hermitian-Yang-Mills tensor is bounded along the sequence

sup |V—-1A, Fy |p < C.
X a a

The full curvature of the limiting H, satisfies |F |y, < Cr—*onX reg"
Proof. To prove convergence of H, on a compact set K, we cover K by finitely many coor-
dinate charts and apply interior estimates for the Laplace equation (3.2) to ¥,. On K, the
metrics g, converge uniformly to g,, and hence after a subsequence H, = e¥sg, converges
to a limiting metric H,. The uniform bounds for H, and deth, follow from the C° estimate
1all- < C.

On a neighborhood U(e) containing the holomorphic curves, we have A, Fy =0 and
Ay, Fp, = 0. Outside of U(¢), the metrics (H,, w,) are uniformly bounded, hence 1A, Fr,ln, <
C.

The full curvature Fp, does not vanish on U(e), however in this neighborhood [Rmy |4 <
Cr=2. In U(c) we have Ag o =0, and estimates for the Laplacian in cylindrical coordinates

imply

10*%olg,, <C

and hence | V3 lg, < Cr~? by Lemma 2.11. It follows that |Fy |, < Cr~2 since g, and H,, are
uniformly equivalent. O
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3.2 | Uhlenbeck-Yau C° estimate
In this section, we derive the following estimate:

Proposition 3.4. Along the sequence of endomorphisms h, = g;'H,, we have the uniform C°
estimate

clr<h,<cI (3.4)
where I denotes the identity endomorphism.

We will prove this by following the argument of Uhlenbeck-Yau [91]. Thanks to the estimate
C~! <deth, < C, it suffices to show

Trh, <C. (3.5
Rather than h, = g;'H,, we will work with the reference metric H, = e¥2g, from the previ-
ous section and relative endomorphism 1, = H -1H,. The estimate ||, || reo(x) < Cin Lemma 3.2

shows that a bound Tr /1, < C implies (3.5).
To prove (3.5), suppose on the contrary that Tr fza — ooasa — 0. Let

hq

]:ia =
supy Trh,

The starting point in the proof of the C° estimate of Uhlenbeck-Yau is the following inequality
(see [91, equation (4.6)]);

Lemma 3.5. Fix0 < 0 < 1, and any two metrics H,H on T"°X — X. Let h = H~'H, and let g be
a Hermitian metric on X. Then we have

|h‘U/2©h"Ifq’g < &MV, Vh®) g (3.6)
where V is the Chern connection of H.
We rewrite (3.6) using the identity
8, Trh? = o(h™'V;h,h%)y, (3.7)
which implies
SATER = g% (h ¥ b, K .
Therefore, (3.6) is equivalent to
|h—"/2©h°'|i1’g - %AgTr he < g* 1V 1,V h?)y — g%0p(h=V jh, )y

= —g/M (3 (k'Y jh), h%) . (3.8)
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We will make use of inequality (3.8) by relating the right-hand side to the curvature tensor. With
the same notation as Lemma 3.5, the difference between curvatures of the Chern connections
(2.19) defined by H, H shows that the key inequality (3.8) can be written as

/e 1 R
|h "/2Vh“|iig = —ATrh < ((W=1A,F — \V/=1A,F), h%)p.

In our case, applying this inequality to the Hermitian-Yang-Mills metric H, and the reference
metric H,, we obtain

g/2e

o - 1 -
|k, th@ o =8y, Trh < —(V=1Ay Fy , h) g - (3.9)

Corollary 3.3 gives the bound |A, Fy |y, < C which together with and 0 < h, < I yields the
estimate

o/~ 1 _

iV ie 2 = o8 TrhS <C, (3.10)

where C is independent of a,o. Integrating both sides using the balanced condition
gives

F—9/2¢ o2
/X|ha thl]:la?ga dvol, <C (1)
by Proposition 2.18 (v). Since 0 < ki, < I, this implies
75012
/X |Vha|Ha,ga dvol, <C. (3.12)

Let K be a compact set which is the closure of an open set K° satisfying K° N Z = §§, where Z =
uﬁ;lci is the union of all (—1,—1) curves being contracted. The metrics (g,, H,) are uniformly
equivalent to (g;, H;) on K. Then

7,02
/K VARG, dvoly, < Ck., (3.13)

where V iswith respect to g;. Foreach 0 < o < 1, we have weak convergence ﬁgk - hg, inWH(K)
along a subsequence; here W12(K) denotes the Sobolev space defined by (g;, H;). By a diagonal
argument, there is a subsequence a; — 0 satisfying

in WH2(K) for all o € {1/n : n € N}. By semicontinuity of weak convergence, we have the
estimate

/K|tho|§1dvolgl < limisup/K |Vh, |5, dvoly < C.
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Let o; = 1/i, and define 7 € W'?(K) by
I-hd)==

in the weak limit i — oo in W12(K). Exhausting X\ Z with compact sets K, we obtain an endo-
morphism 7 € T'(X \ Z, End T'°X) with regularity = € Wll(;i(X \ Z). The definition of 7 is such
that it is the projection onto Ker h,, and it satisfies 7 = 7' = 72 almost everywhere.

We need to verify

Lemma 3.6. The projection 7 is not trivial, in the sense that it is neither the identity nor the
zero projection.

Proof. We show that h, is not identically zero. We will use repeatedly the following inequality,
which is a consequence of (3.9) with o = 1;

Dg Trhg > (V=1A, Fp ,ho)p . (3.14)

By its normalization, we have Tr /1, < 1and there exists x, € X such that (Tr &, )(x,) = 1.In U(¢),
we have A, Fy = 0and hence

Ag Trh, >0, inU(e).

In particular, by the maximum principle, Supy () Tr h, < SUPs () TT h,. Thus, we may assume
x, €{r > ¢}

The metrics g, are uniformly equivalent on {r > £/2}. In particular, we can fix a uniform num-
ber 0 < § <« 1 such that there is a coordinate ball Bs(x,) C {r > €/2} and, in local coordinates on
Bs(x,) there is a uniform constant M, independent of a, such that the eigenvalues of (g,);; are
bounded above by M and below by M.

From (3.14) we obtain the estimate

Ay Trhy —CTrh, > 0.
Applying the Moser iteration (e.g. [46, Theorem 4.1]) gives

1= sup Trh, < CIITrhgllricgse/2pdvol

35(xa) gl)

for a uniform constant C. Let K = {r > £/2}. By (3.13) and Rellich’s theorem, we have i, — h, in
LYK, dvol, ) and

ITr Ao ll L1k dvol,, ) 2 c,

therefore h, is not identically zero.
Finally, note that since &, converges to h, pointwise almost everywhere on K, and det i, =
(supy Tr h,)~* — 0 we see that h,, has a non-trivial kernel almost everywhere on K. Hence

T #0. [l
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We have thus constructed a nontrivial projection z which projects onto the kernel of h,.
To obtain a holomorphic subbundle, we need a further holomorphic condition on 7. Following
Uhlenbeck-Yau [91] we have,

Lemma 3.7. The projection 7 satisfies (I — )0 = 0on X \ Z.

Proof. Following [91], rather than work with (I — 7r)d7, we differentiate (I — 77)7 = 0 to obtain

I—-m)drx|2 =0 -m)x|% .
I( ) |H0,g0 10( )lHo-go

Taking the adjoint with respect to H, and using 77 =7 and (V;s)" = ;s for self-adjoint
endomorphisms s, we obtain

I —nm)dn|:2 = |7aVd -7
I( ) lHo,go [V( )lHo,go

where V is the covariant derivative with respect to H,. We approximate the integral of the quantity
on the right-hand side by

P [0)2
/Xl(I - hz)vﬁahglﬁa’gadVOIga'
The elementary inequality

_ 2s+%a ~
Rl 2 —2— (1~ )

and inequality (3.11) implies

iy 012
/X T =BV, R, dvoly,
2 2

S —0/2 2 S
< T / |h, VHahg|H . dvolga <C
25 + EU X @ea

(3.15)

1
25+ -0
2

Let Us = {r > &8}. Then since h} — h, in L>(Us) by (3.13) and Rellich’s theorem, and i, — kS,
weakly in W'2(Uj), we have that

(I = h3)Vy hg = (I - hi)VAS,  weakly in L*(Uy).

We let a — 0 and use semi-continuity of weak convergence to obtain

S

| - RhS)VA )% dvol, <C
/Ua * * Ho-go g 2s + %o
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We now let s — 0, which implies

VR |2 dvol, <0,
/U5 | °°|H0,g0 &o

and then taking o — 0, we conclude

VI —m)%  dvol, =0,
/Uslﬂ( g, 608V %0

using semi-continuity of weak convergence. [l

Altogether, we have produced an endomorphism 7z € I'(End T'°X]| x\z) such that
s TE Wllo’i(X \ Z) with respect to the norms (Hy, 80)-
« 7 =nm' = 7%, where } is with respect to H,,.
s I-7m)Pdr =0

We will need a more precise L? bound on |V |?.

Lemma 3.8. Forany é > 0, we can estimate
/ Wﬂ'lz dvoly, < / (Tr Ay, Fp, m)dvoly,.
{r>8} 0-80 {r>6}

Proof. Wework ontheset Us = {r > 8} wherel — fzgf converges weakly asi — oo to 7 in W2(Uy)
and H, converges to H,, in C®(Uy).

/ <Tr Y% —lAwOFHon)dvolgo
Us

/ Tr [\/—_lAwOFHO(r[ - I)] dvoly,
Us

—lim [ Tr(V-1A, Fy % )dvol, (3.16)
it H;"% 8i

=0 U5

In the first equality we used Tr A, Fp = 0. Using the formula (2.19) for the difference between
the curvature tensors Fyy and Fp;, we obtain

/ <TrAwoFHOﬂ>dvolg0 = —_lim/ Tr g/k6p(R71V )R Ydvoly,.
Us Us

11— 00
The inequality (3.6) can be written as
e 1 o
|h "/2Vh"|12q,g = —ATrh < —g/*(Br(h™'V;h), k%) .
Since h' = h (with respect to H) and (u, v);; = Tr(uv"), we obtain

. ~—0/2¢ 20 . 1 r~
(Tr Ay, Fpg,w)dvolg, > zllglo /U |h; o/ Vhf |1%91,-,gidV01gf - zlirglo ; EACUiTr h dvolg,.
)

Us
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312 | COLLINS ET AL.

By the balanced condition, this is

—0/2
i

s . 1 ~
VA['I7,  dvolg + lim =N, Trh? dvoly,.

Tr A, Fy m)dvol, > lim h
( “o Hon) VOl T oo U5| I

Us

Let 0 < § < g, where ¢ is the transition radius in the construction of w,, so that AwaFHa =0on
{r < &}. It follows from (3.9) that

1 ~
EAQ,iTrhl.cr >0, onf{r<5éd}
Combining this with [VA°|? < |h=9/2Vh°|?, we obtain

; (Tr Ay, Fpy,m)dvolg, > ilirglo /U Wﬁiailzbgi dvol,.
) )

We conclude by semi-continuity of weak convergence. O

We now apply the work of Uhlenbeck-Yau [91] (see also [72]) to conclude that, at least over
X \ Z, the projection 7 defines a coherent subsheaf & C T*X |y, 7, which is locally free outside
of a complex codimension 2 set. Let k > 0 be the generic rank of £. We can view £ as defining a
meromorphic map

us + X\ Z - Gr(k, T"°X)

to the Grassmann bundle of k-planes in T'°X. Locally near a point in Z we can trivialize T1°X
and, by taking Pliicker coordinates on Gr(k, T'°X), we view u, as a collection of meromorphic
functions defined on the complement of Z. On the other hand, since Z has complex codimension
2, a classical result of Levi [56] (see also [20, Chapter 2]) implies that u extends over Z. It follows
that £ extends over Z to a coherent sheaf (also denoted by &) by taking the direct image of the
tautological bundle over Gr(k, T*°X). We have thus produced a coherent sheaf & c T*X, locally
free outside a codimension 2 set Z’. We will show that this sheaf contradicts the stability of T'°X.
To contradict stability, we need to show that

(&) - lwcy * 2 0.

The only reason this does not follow immediately from the standard argument is that the metrics
H, and w,, are not smooth on X. Thus we need to show that the singularities do not contribute.
Denote by H|, the metric induced by H, on the subbundle &|x\ C T"°X|x\ . We begin by
computing the slope defined by H{ and w. Let us introduce the notation

2

. w

¢ (&,H)) - o} =/ Tr\/—lFH(/)A?O.
x\z'

The identity for the curvature of the induced connection on a subbundle defined by a projection
7 is (see, e.g. [91, equation (4.16)])

Tr V=1Ay,Fpy = Tr V=1A, Fp 7 — Wn@wgo.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 313

Therefore
(&, H) - o} = / [(Tr vV _1Aco0FHO7T> - |v77,'|§{ ]dvolgO
x\z' 0,80

By letting 6 — 0 in Lemma 3.8, we see that
o (&,H)) - wf > 0.

We note that this quantity is finite. We can estimate the endomorphism A,, (Fy, 7) by using that

|Fp, < Cr~?, thanks to Corollary 3.3, and ||z, < C since 7 = 7'f0 = 72, Therefore

C/ r~2dvol, <C,
X\Z

using that, near {r = 0}, the metric g, is a cone over a five-dimensional link.
The next step is to show that ¢;(€, H)) - w; is equal to ¢;(€) - [wcy ] Recall that £ defines a

|H0,g0

‘ / (Tr V=144, Fp, 7 ) dvolg, | <
xX\zZ

line bundle L = det £, and if e? is a smooth metric on L then § = —+/ —165qo is a representative of
¢1(&€). For concreteness, we let 8 be the curvature form associated to the metric goy |s. We write
the difference as

c1(&) A lwey ? = e1(€, H)wj

= / (ﬁ—\/——lTrFH6>Aw(2)+/ ﬁA(coéY—wé)
xX\z/ X\Z
= (D + D).

We will treat each term individually. Recall Z’ is a codimension 2 analytic set containing the
singularities of £ (which contains Z = UC;). Let ns be a cutoff function such that ns =1 on

{dist,., (Z’,-) > 26} and 75 = 0 on {dist, . (Z',-) < &} with |\/—165775|gcy <Cs2.

8cy
* Term (I). Working near a point where & is locally free we have
etg
B — V—1TtFpy = —\/—183log detgevle )
0 detHy|,.

Note that by the AM-GM inequality we have

1
detgcy| e ) 1 N
e )™ (el <
<detH0|£ iy (ol el ) < gy (5 )
where in the second inequality we used that IfI(]_ g,y is positive definite. Similarly we have

1

detH0|g m 1 T IH
L < — - .
dethYLg = k(&) r (gCY 0)
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On the other hand from (2.17) we have
disty,, (Z,)*gey < go < distg,, (Z,-) > gey

since r® = ||z||?> ~ dist? (Z,-) near the singular points. Hence the same estimates hold for H,,

8cy
and so we have

detgcy
1og detgerle
detHy|,
for a uniform constant C. Integrating by parts gives

det —
/ 775(6 - \/—1TrFH/> Aw] = / log g—ACYLS V—180n5 A wy.
xX\z' 0 xX\7

detH0|€

< —Clogdist

8cy

z,H)+cC

From the definition of 75 and the bound w, < dist, . (Z, -)~*/3wcy we get

8cy

'/X\Z, 775(,8 — \/—_1TrFH(/)) /\cog

< C84243(~1og(8))

(fxeX :d<dist

ooy (Z', %) < 28}) ~ 8*. It follows that term (I) vanishes.

since Volg, .,
Term (II). By Proposition 2.18,

=] 8@t -
U\Z

where U is a tubular neighborhood of Z, which is a disjoint union of tubular neighborhoods
of the (—1, —1) rational curves. Since U retracts onto Z, which has complex dimension 1 (and
hence H*(U) = 0) we can write
2 _
Woy = dd

for a smooth 3-form ®. On the other hand, by Proposition 2.18 w2, = \/—133®' where, @ is
smooth in U \ Z and near each (—1, —1) curve C; there is a constant 4; > 0 such that we have

@' = A,r2\/—180r% = A;rw,

where we recall that r2 = ||z||*/3. Thus, we have
/ naﬁA(wéY—wg)=/dn5/\ﬁ/\<D—/ V—133ns ABAD'.
X\z U U\Z

The first integral is easily seen to be of order &°. For the second integral, we use the bound
go < disty,. (Z,-)"2/*gcy together with the definition of 75 and r to conclude

_ 4 2
|/ V—=100ns AN AD| <t
U\Z
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It follows that term (II) vanishes, and hence
c1(&,H) - o} = ¢1(€) - [wcy I
and hence ¢;(€) - [wcy]> > 0, which contradicts the stability of T°X. We conclude that
sup, Tr h, < C as a — 0, which proves the C° estimate (3.4).
3.3 | Gradient estimate
In this section, we will show that, along the sequence (g,, H,), there holds an estimate of the form
|Vg Hglg, <Cr 1. (3.17)
We will use the ideas from Calabi’s C* estimate [6], as applied in complex geometry by Yau [94]
and further developed by Phong-Sesum-Sturm [71] (for other applications of this technique, see,
e.g. [26, 77, 89]). We will work with the quantity
S =1Vu,haha'l3 4
where h, = g;'H, and by the mixed norms we mean
IVhaha' 2 41 = (@Y (Ha)go(Ho )" (V jhahg ) y(Vichahg P,
The quantity S can be understood as the difference of connections by the formula
VHhh_l = AH - Ag, (318)
where
Ay =H7'9H, A,=g'dg.

For ease of notation, in this section we omit the sequence subscript a. We will obtain the following
estimate.

Proposition 3.9. Let (X, g) be a compact Hermitian complex manifold with smooth function r :
X — [0, o) satisfying |Vr|g < A for A > 0. Let H be a second Hermitian metric on T1O0X satisfying

gJE(FH)ﬂg“ﬁ =0 and Co_lg < H < Cyg. Let € > 0. Suppose that on {r < €}, the metric g is Kdhler
Ricci-flat, and satisfies

[Rmg |y < Cir2.
Suppose on the set {r > €}, we have the estimate

T, | + [Rmg| + |VERm,| < A,

:sdy) SUONIPUO)) PUE SWIDT, A1 298 “[4707/80/90] U0 ATEIQIT AWIUQ A[1A OHEAGET OWOIOL JO ANSIATUN Aq S€1Z70d0/Z001°01/10p/W0oKo[Im ATeIquouI[u0;/5dNY WOy PApEO[uMoq ‘T “bT0Z ‘Z1€0L60T

pUB-swI01/ W02 KA1

25U00IT SUOWIWIOY) 2ANERI) d[qeardde o Aq PAUIAAS A1 SOOI VO SN JO SO[M 10] AIEAqIT SUIUO AS[1AN UO (SUO



316 | COLLINS ET AL.

where T, is the torsion of g and Rmy is the curvature of g. Then
r2|VHhh‘1|§’H < C(Cy, Cy, A €) (3.19)
where h = g~ H and V; is the Chern connection of H.

The sequence (g,, H,) satisfies the hypothesis of the proposition on X with a function r which
is an extension of ||z|%/3 from U(1,/2) to all of X with r~1(0) = UC;, and the constants are uniform
in a. Indeed, the uniform bounds

|IRmg |, <Cr=2, |Vrlg, <C

lg.

can be seen by a scaling argument. First, the bounds hold on {r > €} since the geometry of g, is
uniform there. Second, on {r < ¢} these bounds hold when a = 1, and to obtain uniform bounds
for all @ we work in coordinates (u, v, z) used previously on Op1(—1)®? and use the scaling map
Sg-1(u,v,2) = (@3/?u,a=3/%v, z). Since r* = (1 + |z|2)(Ju|? + |v]|?), we have St r= a~'r, and
we also have SZ_lcoCO’l = a "W, 4, see, for example (2.18). Pulling back [Rmyg, |, < Cr—2 gives the
uniform estimate in a, and similarly for |Vr]|.

Therefore, by proving Proposition 3.9, we can conclude the gradient estimate (3.17). Indeed

|VgaHa|ga = |(Vga - VHa)Halga = I(VHahahal)Halga < Cr_la

since the C° estimate (3.4)is C~'g, < H, < Cg,.

3.31 | Laplacian of S

2

The proof of Proposition 3.9 will occupy the remainder of this section. To estimate S = |[Vhh™! B

we start by differentiating it once
ViS = (Vi(Vhh™1),Vhh™), y + (Vhh™!, Vi (VRR™Y))g .

The covariant derivative V. here is the Chern connection of H on indices measured with H, and
the Chern connection of g on indices measured with g. Concretely, we mean

Vk(thh_l)aﬁ = 6k(thh‘1)“ﬁ - (Vrhh_l)aﬁ(Ag)krj
+(AH)kay(thh_1)y6 - (thh—l)ay(AH)k}’ﬁ' (3.20)
Differentiating S twice gives
g*V;VES = [V(VRR DI, + IV (VAR
+g/M(VVi(VhR™Y), VR, gy

+(Vhh™, g ViV (Vhh ™)) i
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 317

where
IV(VRh™D)I? | = g/*HPIH* Hp, V j(V phh ™), V1 (V ghh=1)F,.
Our curvature conventions imply the commutator relations
[Vj, Vilve = Fj,;“yVV, [Vj, VilV, = —V},Fﬂgya,
which gives

ViVi(V,hh 1) = Vi V3(V,hh™ )% + (Vi) 5(Ry k7,

—Fii%,(V,hh ™YY g + (V. hh ™))% Fyi7 5. (3.21)
Since A, Fy = 0 and we write gjk(Rg),gjsr = (R,)’,, we have
gkjvjvk(vrhh‘l)Pq = gjijV,;(Vrhh‘l)Pq + (Vshh 1) 5(R, ),
Therefore
AgS

= 2Re (g/"V;V(VhR™Y), VRR™!) + |V(th‘1)|§,H + W(th—l)@H

+ 8" Hpo H*(Vshh ™) ((V phh=1)B (Ry)P ..
We relate the highest order terms of order V3h to the curvatures Rg, Fyy and their derivatives.
Lemma 3.10. The following identity holds:
gV VE(Vih ™) = gR VAR % + 75 (V iR, (R
~ &/ R (V;hhY 5
+ R Op(V R p(T,) 1 — e F (R)e%p(T) iy, (3.22)

where VER, is the covariant derivative of the curvature tensor of g with respect to the Chern
connection of g (in particular the connection of H is not involved in this term).

Proof. By (3.18),
Or(Vihh™") = (Ry)ix — (Fp)ik- (3.23)
Therefore

&RV VR(Vihh )5 = g/FV j(R)ie% s — &5V (Fr) g% (3.24)
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318 | COLLINS ET AL.

Recall that our notation (3.20) is such that V acts by the Chern connection of H on «, 8, y indices
and acts by the Chern connection of g on i, j, k indices. The Bianchi identity is

ViFmit®s = VilFr)ji%p + )i ®p(Te) i) (3.25)

where Ty is the torsion (2.20) of the metric g.
Contracting (3.25) and using A,Fy = 0, we obtain

gﬂzvj(FH)il%aﬁ = ng(FH)rkaﬁ(Tg)rij-
Substituting this into (3.24) gives
gV VR(Vihh ™) = g1V j(Ro)ie®s — 87 (Fi) i ®p(Tg)" - (3.26)

Our notation (3.20) means that V ;j(R,);z* g involves connection terms H ~18H on the a, 8 indices.
We will now convert the Chern connection of H into the Chern connection of g via

ViR)i%p = V?(Rg)iléaﬁ + [(Am);%), — (Ag) % I(Re)ik” g
— (R %y [(Ap);" g — (Ag)i7 gl
By (3.18), equation (3.26) becomes
gV Ve(Vihh ™1 g = g VR + 87 (V i), Ry g
~ &/ R, (V jhh ™Y g — g FFr) i p(T) . (3:27)
Using (3.23), we obtain the statement in the lemma. O
Altogether, the Laplacian of S is
AgS = |V(VRRDIZ ;, + [V(VRRD2 |
+2Re [(I) + (ID) + (IITa) + (IIIb)] (3.28)
where
(D) = g7 Hyo HP g R85 (V. hh ™ (T )1y (V e kD)5,
(ID) = g Hy HP? [g7F VAR — 87F (R p(T)" i 1(V R,
(IlTa) = g Hy  HP [gF(V ;hh ™), (Ry)ie (Ve hh=1)F,
— g/ R (V jhh™1Y 5(V hR)F,
(I1Ib) = g Hyo HF7(V;hh ™) (R 7P (V yhh 1),

Recall € > 0 divides the manifold into two regions {r < €} and {r > €}.
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STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS | 319

* On{r > ¢}, the geometry (X, g) is uniformly bounded by a constant A. The C° estimate Cy lg <
H < Cyg allows us to use norms with respect to g or H interchangeably up to the cost of
constant. Hence on {r > ¢} we have

’(I) + (I1) + (IIIa) + (IHb)‘
<Chrg, [|V(th—1)|g,H|th—l|g,H + VAR gy + |th—1|§,H]
and
‘(I) + (I1) + (IlIa) + (IIIb)'
< 3 (IVOVRR 2 4 19TRR D2 ) +C(5 4 1) (329)

where C depends on Cy and A.
* On {r < ¢}, the metric g is Kdhler Ricci-flat. Term (I) vanishes since the torsion T, = 0. Term
(IT) vanishes by the Bianchi identity
g/*V Ry = g/ ViR = 0
combined with the Ricci-flat condition. Term (ITIb) also vanishes and we are left with
AS = |V(th‘1)|§,H + W(th—l)@H + 2Re (I1Ia).
By uniform equivalence of the metrics g and H, we may estimate this as

|(IITa)] < C(Co)IRmy|,S.

By the estimate [Rmg| < C; r~2, we see that on the entirety of X we can estimate
(D) + (II) + (I1Ia) + (I1Ib)

1 182 = —1y,2 -2
< 3AVOVRR DL + 19(VRRDE )+ Cr(S +1) (330)

where C depends on Cy, Cy, A, €.

3.3.2 | Test function

To construct a test function to control S, we will use Tr h. Contracting the formula (2.19) for the
difference of curvature tensors and using A, Fy = 0, we see that

V—1A,Rm, = —gﬂ%a,;(hvf ) = gﬂ%a,;(vf hh™).
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Therefore
Tr (V=1A,Rmph = A Trh — gi*Tr V ,hh =V k.
We note that since A,Rm, = 0in {r < €}, we have the bound
|A,Rmg| < C(A).

Letd > 0. Let {(s) : [0, 0) — [0,1] be a cutoff function satisfying {(s) = 1 when s > 2 and {(s) =
0Owhen s < 1,and |¢’]? < 9¢. We will use the test function

P(z) = {s(2)S(z) + % Trh(z), ¢s5(z) = g(%)

for A(A, Cy, Cq) > 1 to be chosen later. Then

AP = {50,S + SALs + 2Re g/K0,¢501S + AS A, Tr h.

By (3.28),
AgP = ¢s(IV(VRRDIZ 4+ [V(VRRDIZ ) + AS2g/*Tr V;hh ™' Vh
+2¢sRe [(D) + (ID) + (IID)] + AV) + (V) + (VD) (3.31)
where
(IV) = A5

(V) = 2Re g/*9,¢5[(Vi(VRR™Y), VhR™') + (VhR™, V,(VhR™))]
(VD) = A6~2Tr (V—1ARmy)h

We want to show that P is bounded by C(C,, C;, A)d2. If P attains a maximum on {r < &}, then
¢s = 0and P is bounded by A5 supy Tr h. Suppose P attains a maximum at a point x € {r > 6}.
Our good term will be

A
|th—1|;H = @S (3.32)

- A
A8 2gIkTr V.hh=1Vih >
&IV YR = e cy)

using C;'g < H < Cogand h' = h. For the term (V),
(V)] 2 =CS2|V451,(IV(VRR )| g 1 + [V(VRR D)l p1)-
We have

IV¢slg = 671¢ IVrlg < C(A)HL.
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Since |¢/] < 3|¢|/2, we have

(V)] 2 =C8S1/2¢5|M 2 V(VRR™D] + [V(VRR))
Using 2ab < a? + b?, we can estimate

(V)] 2 =3 5 IAVVRRDP + [F(VRR ) - €825,
In (3.30), we showed the estimate

25Re (1) + (ID) + (D] 2 — ¢V (VAR + [V(VRR)) = Cle51r S,
We are working in the region where r=2 < §72, hence we obtain at x the inequality
0 > AP(x)
> gv—‘5(|V(th—1)|2 +|V(VRR™ D)2 ) + éés—zs —C572S—CAs2.
2 &H gH” = C
For A > 1 depending on C,, C;, A, we obtain
S(x)<C.

It follows that P(x) is bounded by C§~2. From the bound of P, we obtain a bound for S on {r > 25}
since ¢ = 1 there.

sup S <C52.
{r>25}

It follows that for any point x € X, we have the estimate
S(x) < Cr(x)2.

This completes the proof of Proposition 3.9.

3.4 | Higher estimates

By combining the C° and C! estimates along the degenerating sequence (g,, H,), we can apply
regularity theory of elliptic equations to obtain higher order estimates and obtain a limitas a — 0.

Proof of Theorem 3.1. To extract a limit from (g,, H,), we fix § > 0 and work on the set Us = {r >

6}. Since g, — g, smoothly uniformly on Ug, we can cover Us by finitely many charts where the
matrices representing the metrics g, satisfy

A0k < (8)kj < AsBijr  11(8kjllck < Asp.
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The C° estimate (3.4) for H, implies that on this cover of Us, the local matrices
satisfy

C7'8j < (Hy)gj < Coy;.
The C! estimate (3.17) gives a uniform bound
I0(H) gy llLeo(us) < C

uniform in a on the local matrices (H,)g,- The equation A, Fy, = 0 is given in local charts
as

(82)7%0;0¢(Ho)y = (8a) 05 (Hy) gy (H,) 0 (H )z

The right-hand side isbounded in L*. By the local C La estimate for elliptic PDE, the local matrices
(Hg)py satisfy

I(Ho) gy llcreuy) < C.

By the local Schauder estimates, we can take a smooth limit of the sequence (g,, H,) on Us as
a — 0. The limiting metric Hy satisfies

ACUOFHO = O

on Us. We can now let § — 0 to obtain a limiting metric Hy on X reg" The C° and C! estimates
imply

|Holg, + [Hy g, + 7|V g Holg, <C. (3.33)

To obtain higher estimates, we work near the singularities of X, which can be identified with a
neighborhood of V|, with gy, = g., . In holomorphic cylindrical coordinates (see Lemma 2.11), we

have r? g;)lo = O(I) (notation O(I) is used for a matrix uniformly equivalent to the identity) and

the equation
12(80.0)*0,0k (Ho)py = 1*(8c0.0) 0 (Ho)py (Ho Y *3 ;(Ho)ey-

Estimate (3.33) in these coordinates is H = r>0(I) and 0H = r>0(1). Therefore this local
equation is of the form

al9,0;Hy = f, f=r’0Q), al =0Q).
Local C1¢ estimates for elliptic PDE imply

IEH) o llcra, 5 g0e) S CUH gy Lo, goe) + 1 oo sy)) < Cr.
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Local Schauder estimates then imply |[(Ho)gyllcke(s, J28ene) S C,r?. Converting these local
estimates to norms using g., ( gives estimates of the form

k —k
|Vgco,0H0|gco,0 < Ckr

for each k € Z. This completes the estimate.

4 | QUANTITATIVE CONVERGENCE TO THE TANGENT CONE

In this section we show that the estimates for the Hermitian-Yang-Mills metric H, constructed in
Theorem 3.1 can be improved to obtain the decay of H, towards the Candelas-de la Ossa metric.
This will be an essential ingredient in the perturbation argument later in the paper. The main goal
of this section is to prove

Theorem 4.1. Let (V,8.,0) denote the conifold equipped with Candelas-de la Ossa Ricci-flat
Kdéhler cone metric, and let 0 € V|, denote the tip of the cone. Suppose H is a Hermitian-
Yang-Mills metric on T*°V,, over B;(0) \ {0}. Assume that there is a constant C > 0 so that H
satisfies

C_lgco,o <HK Cgco,O-

Then there are constants cy > 0,41 € (0,1), and for each k € Z a constant Cy > 0, such that the
following estimate holds

k A—k
|Vgco,0 (H - CogCO,O) |gco,0 < Ckr .

where, as usual, r(x) = dg., o(x,0) is the distance to 0 € V, with respect to g., o.

The proof of Theorem 4.1 follows closely the work of Jacob-S4 Earp-Walpuski [51] who stud-
ied related quantitative convergence results in the case of punctured balls in C". Related results
for stationary Yang-Mills connections were obtained by Yang using a Lojasiewicz inequality [92].
Chen-Sun [12-15] obtained a general characterization tangent cones of Hermitian-Yang-Mills con-
nections on reflexive sheaves on the ball in C" without estimates for the convergence rate. For our
applications, the polynomial decay rate, as well as the convergence at the level of metrics (rather
than connections) obtained in Theorem 4.1 is crucial.

The first step towards establishing Theorem 4.1 is to prove the following Poincaré inequality.

Lemma 4.2. Let (Vy, 8., 0) be the conifold equipped with the Candelas-de la Ossa metric. There
is a uniform constant C > 0 with the following property: for any p € (0,1] and any s € C*({r =

P} V=18u(T OV, g.0.0)) we have

/ |S|§co,0ds(p)gm,0 < C‘oz/ |vgco,0S|§co,0dS(p)gm,O
{r=p} {r=p}

where dS(p)gw‘o denotes the surface measure on {r = p} induced by g., .
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Proof. The result follows from standard elliptic theory and scaling provided we can show that
there are no parallel sections of \/—_léu(TLOVO, 8co0) on the link of the cone {r = 1}.

To begin, recall from Section 2 that V, can be identified with the complement of the zero
section in (*Op3(—1) where

(:Plx Pl 5 p3

is the Segre embedding. In particular, there is a projection 7w : V;, \ {0} = P! x P! whose fibers are
orbits of the holomorphic Reeb vector field. Let E — P! x P! be the holomorphic vector bundle
generated by the invariant sections of TV, so that T'°V, = 7*E. We can describe E explicitly;
if £ ¢ T'°V,, denotes the trivial line bundle generated by the non-vanishing holomorphic Reeb
field, then we have an exact sequence

0- L — TV - 7*TO (P! x P!) - 0.

Note that the £-valued (1,0) form on V|, given by £ ® d logr is precisely the orthogonal projection
TV, — L given by the Calabi-Yau metric g, o. Therefore the second fundamental form of £ C
TV, is represented by

£E® \V—1d3logr = £ @ T wkp
where wg is the Kihler-Einstein metric on P! x P! satisfying
RiC(C()KE) = 3COKE.

Since L is trivial, we can view E as the bundle corresponding to %cl([P’l x P1) under the
isomorphisms

Ext!(T1O(P! X P1), Opiyp1) = HY(TYO(P! x P1)Y) = HY(P! x P!, ©)
Thus E sits in an exact sequence
0 = Opiypt = E = TP x P1) = 0. (4.0)

Furthermore, since g, o is Calabi-Yau on the cone, one can easily show that E admits a natural
Hermitian-Yang-Mills metric with respect to the Kihler class ¢;(p; Op1(1) ® p;0p1(1)), see for
example [86] for related discussion.

It is easy to show, by direct calculation, that any parallel section of s & C®({r =
P}, V—18u(T0V,, g.00)) descends to a trace-free, global holomorphic section s, € HO(P! x
P!, End(E)). Thus, it suffices to show that the only global holomorphic endomorphisms of E are
multiples of the identity map. This will follow from the usual result for stable vector bundles
provided we can show that E is indecomposable [83]. Let Hr denote the Hermitian-Yang-Mills
connection on E and let w = pjwpg + p;wps where wpg denotes the Fubini-Study metric on Pl
By the exact sequence (4.1), the slope of E is given by

@B U] 2o @
HE) = tk(E) 3 -

4
3
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Now suppose that E can be holomorphically decomposed as E = E; @ E, where rk(E;) = 1, 2.
A standard computation shows that the decomposition E = E; @ E, is orthogonal with respect
to the Hermitian-Yang-Mills metric and the restriction Hg |, is Hermitian-Yang-Mills with slope
W(Ey) = u(E) [83]. Thus we have

ei(E) U] = Sik(Ey).

However, since c¢;(E;), [w] € H*(P! x P!, Z) this implies that grk(El) € Z, which is impos-
sible since rk(E;) =1,2. Therefore E is indecomposable and hence stable. The result
follows. O

In the remainder of this section we will show that Lemma 4.2 implies Theorem 4.1. Much of
the argument is based on the following well-known formula: if H, H are Hermitian metrics on a
holomorphic vector bundle E, then the positive definite, hermitian (with respect to either H, )29)
endomorphism h = H~'H satisfies

Fig—Fjp = =0p(h7'V;h) (4.2)

where F (resp. F') denotes the curvature of the Chern connection V (resp. V) defined with respect
to H (resp. H). In our case we will take H = g to be the Calabi-Yau cone metric on V,. We begin
with the following lemma, which shows that, at least at the level of the determinant, the metric
H decays towards g, o.

Lemma 4.3. Let (V, g) be a Calabi-Yau cone of real dimension n > 2. Suppose H is a Hermitian-
Yang-Mills metric on T'°V,; — B;(0) \ {0} with slope 0. Suppose there is a constant C > 0 such that
theh = g_lH satisfies C~Id < h < CId. Then, there are constants Cy,C,,y > 0, withy depending
only on (Vy, 8.,0) S0 that, for each k € N we have

VE(log(deth) — C,)| < Cr’=*
g

Proof. Since g is Ricci flat, and H is Hermitian-Yang-Mills with slope 0, it follows from (4.2)
that

g'%;0; logdeth = —g/*F ;. = 0.

On the other hand, since logdet i is bounded the result follows from separation of variables. To
see this recall that if ¢; is a function on the link L := dB;(0) C V, satisfying

Agllgol +ﬂ,§0/1 =0

+

with 4 > 0, then we can produce harmonic functions u;

on V given by

uy = risg,
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where 2a(4), = —(n — 2) + v/(n — 2)? + 44 (since n > 2). Fixing an orthonormal basis of eigen-
functions {¢;} AeSpec(Ag, )* standard elliptic theory says we can write

10gdeth|L = Z C0;
A€Spec(Ag, )

for constant c;. Now, we claim that since logdet h is bounded we have

logdeth = 2 cu
A€Spec(Ag; )

This follows from the Caccioppoli inequality; let 7 be a standard, smooth cut-off function on

R with n(x) = 0 for x < 1, and n(x) = 1 for x > 2. Consider 7.(y) = n(s_ldg(y,o)). Since 4 :=
log det h — u is harmonic, bounded and vanishes on the link L we have

-

Applying Cauchy-Schwarz we obtain

/n§|va|2sc/ V.22,
B BZs\Be

1

neiAgiidvol, = / (V(nZn), Virydvol,
By

1

Now we have |V7,|? < Ce~2, while |B,, \ B,| < Ce" and so, since n > 2 we can take the limit as
¢ — 0to obtain |Vil| = 0 and the claim follows.

Now the result for k = 0 follows from the fact that the only harmonic function on the link
{r = 1}is a constant. Combining this with standard estimates for harmonic functions and scaling,
we obtain the result for k > 1. O

Next we prove that the relative endomorphism h = gc_oloH is W12 on the cone.
Lemma 4.4. With h = gc_olOH as above, we have |V, hl,. € L*(B1(0),8c00)-

Proof. To ease notation let us denote g = g, and V =V, . To prove the L? bound, observe
that (4.2) implies

g/%9,0¢Tr h = g/*Tr (8thh~'V ;h).
On the other hand, since h is hermitian and bounded we have
C7!|Vh|? < g/*Tr (6thh™'V;h) < C|Vh[2.

This implies an L? estimate for |V h| ¢- To see this, let 7(x) be a standard cut-off function such that
n(x) = 1forx € [0,1],7(x) = 0for x € [2,c00)and |1'| + || < 10.Fory > 0wesetn, = n(y~'r).
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Since Tr h is uniformly bounded we have

/ g/FTr (6xhh~1V ;h)dvol, <lim / (1 = 7)%(m1)*g/* Tr (9ghh ™'V jh)dvol,
B =0 /B,

=lim [ (1-7.)7}(A;Tr h)dvol,
B,

= lim ’ (A1 = n.)*n?) Tr hdvol,
2
<C ll_I)% € 2Voly(By. \ B) + C
and the result follows since 7Voly(B, \ B;) < Ce*. O

The next step is to establish some decay for the endomorphism h = g;}OH .

Lemma 4.5. Define a hermitian endomorphism s by

1
. det gco,O 3 -1
o= () e

Then are constants C > 0,a € (0, 1) depending on (V, 8co,0) and || (s, (o)) Such that

. 2—-2n 2 20
u(t) .—/B r |ngyos|gw‘o dvolgm,o <Crt

T

forallt < 1.
Proof. Again, we denote g = g, and V =V, to ease notation. It is not hard to check that
(e7V;e’,5)g = (Vs,8),.
Therefore, from (4.2) we have
g7°90r sl = &/ 0p((V 5. 5)g + 87(5,975),)
= gjka,g((e‘svjes,s)g + glk(s, e~*9;e)g)
= ng(e‘SVjes, Vies)g + g/F(ags, e~*9;e’),.

Note that the bound C~'g < H < Cg implies that |s| < C. Thanks to [91, Lemma 2.1] there is a
uniform constant A > 0 depending only on C so that

g (e™5V e%, Vyis)g + g/F (s, e05¢%), > A1 V|2
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In summation, we have show that
Alslz > A7!|Vs]3. (4.3)
We now show that u(7) < C for some constant C independent of 7. Let .(r) be the cut-off

function from Lemma 4.3. First note that, for any € > 0, integration by parts using (4.3), Agrz_z”
Oand |Agn,| < Ct2, together with the bound for |s| yields

/ r?=21|Vs|zdvol, < A/ (1 =9 )mer>2"Als|zdvol,
BT\BZE BZT\BE

<A E_Z”/ |s|2dVg+/ r=?"|s|2dvol,
BZE\BE BZT\BT

which is bounded thanks to the L* bound for s. To improve the estimate we decompose the second
integral appearing on the right of (4.4) as

2T
/ |s|*dvol, < / dr / |s|2dS,(r)
By \B; T 0B,(0)

where dS,(r) denotes the surface measure on 0B,. Since s is trace free we can apply the Poincaré
inequality in Lemma 4.2 to get

(4.4)

/ |s|?dS,(r) < Cr? / |VTs|2dS,(r) < Cr? / |Vs|2dSg(r)
3B, 0B,(0) 3B,
where we wrote V7 for the covariant derivative tangent to dB,. Thus, we have
/ r=|s|2dvol, < C/ r?=21|Vs|2dvol, = C(u(27) — u(1))
BZT\BT B2‘L’\BT
Arguing similarly for the first term yields
/ £~"|s|2dvol, < Cu(2e)
BZE\BE
All together this implies

KD) S F g (KD + H(26).

Since this estimate holds for all ¢ > 0 and, thanks to Lemma 4.4, u(¢) — 0 by the dominated
convergence theorem, we conclude

c

HD) < G HQ20).

The lemma follows by a standard iteration argument. O

:sdy) SUONIPUO)) PUE SWIDT, A1 298 “[4707/80/90] U0 ATEIQIT AWIUQ A[1A OHEAGET OWOIOL JO ANSIATUN Aq S€1Z70d0/Z001°01/10p/W0oKo[Im ATeIquouI[u0;/5dNY WOy PApEO[uMoq ‘T “bT0Z ‘Z1€0L60T

pUB-swI01/ W02 KA1

25U00IT SUOWIWIOY) 2ANERI) d[qeardde o Aq PAUIAAS A1 SOOI VO SN JO SO[M 10] AIEAqIT SUIUO AS[1AN UO (SUO



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS | 329

Theorem 4.1 will now follow from Lemma 4.5 together with the regularity theory for the
Hermitian-Yang-Mills equation, which we recall below. The regularity theory is originally due to
Bando-Siu [3, Proposition 1], but we refer the reader to the paper of Jacob-Walpuski [50, Theorem
C.1] for the precise statement which implies the one below.

Proposition 4.6. Let (Y, g,J) be a Kdhler manifold of dimension n with bounded geometry, and
let E — Y be a holomorphic vector bundle. If Hy, H are hermitian metrics on E, H is Hermitian-
Yang-Millsand s := log(Ho_lH) € C™(Y, \/—_lﬁu(E,Ho)), then, forallk € Nand p € (1, ) there
is a function fi. ,(y) > 0 depending only on k, p and the geometry of (Y, g) such that f. ,(0) =0
and

2n k
k22 o
r P IVER sl ogs, 0 < Fropl ISleesy o + Y, PPV Frllzeo,, o) |-
0 | 0
i=l

‘We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let H be as in the statement of the theorem, and set g = g, o. Throughout
the proof C will denote a constant which can change from line to line, but depends only on (V, )
and the positive upper and lower bounds for g~ H. Define s by

w =

detgco,o -1
e’ = <deT> *8eootl:

so that s € C®(V,, V—18u(TV,, g)).

Fix 0 < R < 1 and consider the annulus Byg \ Bg/4. Let my : Vij — V|, be the map mg(p) =
R™!. p where - denotes the natural scaling action on the cone. Let § = mys. From the scale
invariance of u(7) we have

/ |V$|zdvol, < CR*™
B4\B1

3

while the Poincaré inequality proved in Lemma 4.2 implies

/ 1512 < c/ |VS$]2 < CR*. (4.5)
B4\B1 B4\B1
1

3

Note that the L* bound for § together with the interior estimates, Proposition 4.6, yield

k+2a
[Ver 8l zrB,\By/4) < Chp

and hence, by the Sobolev imbedding theorem we get

I8llck(Bs\B, 2) < C- (4.6)
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To improve this bound to a decay estimate we appeal to the Hermitian-Yang-Mills equation.
From (4.2), we have

g* ViV s+ B(VS® V§) =0 (4.7)
where B(-) is linear with coefficients depending on §, but not on any of its derivatives. The

result now follows from standard elliptic regularity and bootstrapping. By elliptic regularity we
have

1812208, 500 < C (188258120 + ISl 205,08, )-

On the other hand, from (4.7) we have

1

2 2
128l L2(8,\B, ) < C</ |V§|4> < C(/ |V§|2>
B3\B12 B3\B1/>

where, in the second inequality, we used (4.6) with k = 2. From (4.5) we conclude that

”§||W2'2(32A5\B3/4) < CR%,

for a uniform constant C > 0. By differentiating (4.7) a straightforward boot-strapping argument
yields

ISIlwx2B,\8,) < CkR”
for uniform constants Cj, > 0. All together we obtain
18lck(p,\By) < CkR*
from the Sobolev imbedding theorem. Rescaling yields
|5 ck(Bop\Bg) < CkRETE. (4.8)
Finally, Theorem 4.1 follows from this estimate together with Lemma 4.3. O
Remark 4.7. In the setting where we apply Theorem 4.1, where the metric H, obtained as a

limit of (H,, g,), we can apply Theorem 3.1 to obtain (4.6) bypassing the Bando-Siu regularity
theorem.

5 | APPROXIMATE HERMITIAN-YANG-MILLS METRICS

In the previous section, we started from a Calabi-Yau metric wcy on a simply connected Kihler
Calabi-Yau threefold (X, Q) and constructed a pair of hermitian metrics (g,, Hy) on a singular
space X obtained by contracting (—1, —1) curves C;. These metrics satisfy dcu(z) =0and A, Fy, =
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0. Let {p;} denote the nodal points of X,,. There are constants c;, R;, 4 > 0 such that we have the
following local description near the nodes:

* The Fu-Li-Yau construction gives
8o = Ri800, nearnode p;.
* By (4.8) and Lemma 4.3, for k € Z, there exists My > 1 such that

|V’g‘w,0 (Ho = €i8c0,0)lg00 < Mr*%,  near node p;. (5.1)

For ease of notation, in this section we will work at a single node point with scale constants
¢; = R; = 1. The metric Hj on X has conical singularities which we will desingularize by gluing in
the asymptotically conical metric g, ; on V,. For other work in geometry using this technique, see,
for example [11, 52, 53, 61]. The glued metric H, will approximately solve the Hermitian-Yang-Mills
equation on the smoothings X, for ¢ sufficiently small.

Recall that under the assumption of Theorem 2.3 there is a smoothing u : X — Awith u=(¢) =
X,, u~1(0) = X, and the family X is locally described by {(z, ¢) : z € V,} near the nodes, with V, =
{Z?zl zl.2 = t} C C*. We will show there exists y,¢ € (0,1) and C > 1 such that the approximate
solution H, satisfies

1A, Fr ll oo < Clt”

62

for all 0 < |¢| < ¢, and for suitably defined weighted Holder spaces with § € [-2,0],and 0 < a <
1; see Section 5.2 below for a precise definition. We recall that we denote by w, the Hermitian
metric from Proposition 2.17 constructed by Fu-Li-Yau, which satisfies w, = w,,; near the nodes
and converges back to the balanced metric w, on compact sets as t — 0.

5.1 | Definition of the approximate solution
To construct a Hermitian metric H; on X, which approximately solves the Hermitian-Yang-
Mills equation, we will glue g.,; to a deformation of the singular metric H, on the annulus
region
{lt1* < llzl* < 2101 c V.
Here 0 < a < 1, and specifically we will take o = (1 + 1/3)~! where 4 > 0 is the rate in (5.1). Let
x(2) =St~z I1*)

be a cutoff function on this annulus region, that is, the function ¢ : [0, c0) — [0, 1] satisfies { =1
on [0,1] and ¢ = 0 on [2, o0). Our glued Hermitian metric on X, is

H; = X8cot + 1- X)Kt’ (5.2)
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where

K, = [(@7')" Ho]"!
is the J-invariant part of the pullback (®,')*H,. Explicitly, we define (A"!),z = %(Aaﬁ +
JHE A LJY ) for a symmetric 2-tensor A. Recall @; is defined in Lemma 2.13, and note that K;
is defined on X, \{||z||> = |¢|} and so H, is defined on all of X,.

We will need estimates on the glued metric H, which are uniform in ¢.

Lemma 5.1. There exists € > 0 such that for any k € Z there exists Cy > 1 such that for all 0 <
[t] < € we have

Cylg <H; <Cogi, |V Hlg, < Cpr ™. (53)
Proof. We work region-by-region.
* Region {||z||* < |¢t|%}. Here H, = g, = g, so the estimates are trivial.
* Region {|t|* < ||z||> < 1}. Here g, = 8cor and llz||? > |¢| for all ¢ small enough. The estimate
(3.)reads |Hylg , < Cand |H; |y, < C,andso pullingback by by ®, ' and using Lemma 2.10
gives

C_lgco,t < ((I)[_l )*HO < Cgco,t-

Since |[(®;')*Hol"'|,,,, < [(®;")*Holy,,, and similarly for H;', this proves that C™'g.,, <
H, < Cg;. Next, pulling back |V§600H0| < Cr % by Lemma 2.10 gives

k —k
|Vgco,th|gco,l S Cr :

This proves (5.3) in the region {2|¢t|* < ||z||* < 1} where H, = K, = [(®;!)*H]"!. In the
transition region {|¢|* < ||z||> < 2||¢]|%} we have,

VH; = (Vx)(8cor — Ki) + (1 = x)VK;
and
|VgtH[|gt < Clv){'& + Clvgth|gz'
‘We estimate
IVxlg, < CltI=|Vr3|, < Cle|=r? < Cr ., (5.4)
Here we used |Vr|,, < Cand r® = ||z||* < 2|t|* in the transition region. Thus
|Vgco,tH[|gw,t S Cr_l (55)

and the higher order estimates are similar.
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* Region {1 < r}. Here H, = [(®;')*H,]"! and the metrics ®}'g, converge smoothly uniformly to
go ast — 0 by Lemma 2.17. The estimates for H, follow from pulling back the estimates for H,
obtained in Theorem 3.1. O

5.2 | Weighted Holder spaces

In the upcoming analysis we will work in weighted Holder spaces on X, using the weight function
r, the metric g, which is equal to the model metric g, ; near the nodes, and the glued metric H;.
We will use the connection V;, when differentiating. For endomorphisms h € T(End T'°X,), we
use the norm

k
Pl e, e = )Y sup [rP*1V, lg,.
i=0 ¢

For ® € T((TX,)? ® (T*X,)?), we define the semi-norm

5 12() = 20, ]

[®].00 = sup [min(r(x), r(y))~ Ay

B X#y

where the sup is taken over points x, y with distance less than the injectivity radius and ®(x) —
®(y) is understood by V,, -parallel transport along the minimal g, geodesic connecting x and y.
The weighted Holder norms are then

0,a
p—k—a

Vellghoqe 1, = Ilcie, )+ |Vi,h]

This definition is well adapted to work on annuli U; = {(1/2)7 < r(z) < 2/} ata given scale 7 > 0.
The norm over U; is equivalent to

) |R(x) = h(p)];-2
Ihlcea ) = F° [sgp IRllcog-2g,) + sup —= (5.6)

cyety  drag (%, y)°

where norms on the endomorphism h € T'(End T1°X,) are now all with respect to the rescaled

metric #~2g;. We will often estimate global Holder norms by estimating them on local annuli U;.

Lemma 5.2. Let 8 < 0and h € T(End T'°X,). Suppose there is a uniform bound on the local esti-

mates ||h||C0a(U) <K forall? > 0, where U; = {(1/2)f <r <27} C X,. Then ”h”COa < CK for

a constant C > 1 which is independent of t .

&) =

Proof. The local bounds imply ||h||Cg(X[) <K, so we need to estimate the global Holder semi-

norm. Let x,y € X, and suppose r(x) < r(y). If y lies in the set U = {(1/2)r(x) < r < 2r(x)}, the
estimate is assumed. If ¥(x) > € > 0, the geometry is uniform in ¢ and the estimate holds for C(¢).
In the remaining case, we assume x,y € V; with 2r(x) < r(y) and g; = g.,; and we claim that

dg, (x, ) > C7'r(x)
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for C > 1 independent of ¢. Indeed, this inequality holds at t = 1 for a constant C > 1, and the
uniform bound in ¢ follows from the bound when ¢ = 1 by scaling S(z) = t7!/2z with S*g,,, =
|t17%/3g.,, and S*r = |t|~'/3r. Therefore

s1alHCD) = HOY)|

O e

is bounded by C“h”cg(xt) since 8 < 0. O

We end this discussion with the following remark: if
rP|hlg, +rP*V, hl,, <K,

then for 0 < a < 1 we can estimate ||| 0.q < CK where C is independent of ¢. This can be
8

Xp)

seen for example from expression (5.6), since #~2g, is uniformly (in t) equivalent to the Euclidean

metric in holomorphic cylindrical coordinates (Lemma 2.11). Also, the difference of connec-

tions satisfies the bound r|A, — Ap,|g, < C by Lemma 5.1, so to estimate ||| 0q ., , We could
B

|gt (Xt)

equivalently estimate r°+1|Vy; h|y instead of r=#+1|V, k], .
5.3 | Smallness of the approximate solution

The main objective of this section is to show that the glued metric H; has small Hermitian-Yang-
Mills tensor.

Proposition 5.3. Let H, be the glued metric as in (5.2). There exists C > 0 and € > 0 such that for
any0 < a < 1,andanyt € C* with |t| < € we have

al

”Aw[FH[ ”Cg; < C|t|?’ (57)

where A > 0 is the rate in (5.1) (see Theorem 4.1), and a = (1 + %)_1.
The approximate solution will be estimated in four regions.

* Region {||z|* < |t|*}. Here H, = g,, and A,, Fy; = 0.
* Region {i [t]* < ||z]|* < 4|t|*}. This contains the transition region, and we will show that here

1Aw, Frll coa < Cle| @/
-2
in Lemma 5.4 below.
* Region {2|¢|* < ||z||> < 2}. In this region, H, = [(®;')*H,]"' and we need to control the

Hermitian-Yang-Mills tensor of [(®;)*H]"!. We will estimate

1A, Fillcos < Clef1=*
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in this region in Lemma 5.5 below.
* Region {r > 1}. In this region the geometry is smoothly varying, and so since A, Fp, =0
then

1A, Fi llcos < Clil.

By Lemma 5.2, it suffices to check the Holder estimate on these local pieces to obtain
the global estimate. We start by estimating the Hermitian-Yang-Mills tensor in the transition
region.

al

Lemma 5.4. With notation as in Proposition 5.3, the estimate ||A,, Fp, < C|t|3 holds in

”cE’Z(U)
the region U = {§|t|“ < llzII? < 4[¢]%.

Proof. 1If we decompose
Hy = 8c0,0 + Eo»

then the glued metric is

Ht = gco,t + (1 - )()[[(q)[_l)*EO] H + [(‘Dt_l)*gco,o] 1,1 - gco,t] .

Since Ay, Fy, , = 0, the formula (2.19) for the difference of curvature tensors gives

V=14, Fry, = (8o O (Y, ) jhe) (5.8)
where
-1 [(g—1y¢p 15, o-1 “1y# L1
h, =1+(Q1 —)()[ o [(@7)"Ey| +gco,t<[(¢'t )*&eon) _gco,t>]
=TI+ (01— y)E. (5.9)
During this proof, we simply write V = V, . We claim that

< Cr ke ral3, (5.10)

CU<h <CI, |V¥nlg,,
Assuming this, (5.8) and |¢|**/3 < 1 imply

|Aw,Fi g, < 1h7VRIG  +ClhT V2, < Cro2|e|2e/3,

|gco,[
Similarly
|VAy,Fi,lg,,, < Cr3|ejte/3

and this proves the estimate |A,, Fp, |sz(U) < C|t|re/3,
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We now prove the claim (5.10). Estimate (5.1) implies |V¥Eg|, < Cpr*™%, which by
Lemma 2.10 and (2.11) yields

VK@) Eolg,, , + IVFI®7 ) 8eo0 — 8eollge,, < Cr e + [¢1r2).
Since r3 ~ |t|%, this implies
|VEEl,,,, < Crrk(le)*e/? + 1e)'-9).

We choose « such that Aa/3 =1 — «a, so that |€]| < C|t|**/? and

\hy = 1Ilg,,, < Clt]**/* <1
which implies C~'I < h, < CI. Taking a derivative gives

Vh, =—-EVy+(1 - y)VE.
Since |£| < C|t|*/3,|VE| < Cr1|t|**/3 and |[Vy| < Cr~! (e.g. (5.4)), we obtain

|Vh,| < Crte|2e/3.
The higher order estimates in the claim (5.10) are similar. O
We now consider the next region past the transition zone.

Lemma 5.5. Let F, be the curvature of K, = [(®,')*Hy|"". Then on D = {|t|* < ||z||* < 2}, we
can estimate

180, Fi, Nl coap) < Clt|t—e. (5.11)

Proof. Let (21,2,,23,24,t) be a point in X = {(z,¢t) : Z?zlziz =t} with 2> > |t|%, and sup-
pose without loss of generality that 2, # 0. Let A = ||Z]| and 7 = A2/3. We take local coordinates
onU; = {%/1 < |lz|| €24} C X, given by w' = %zi. These coordinates land in {i <|w|<4}cC?
where |w| = |(w', w?, w?)| is the Euclidean norm on C3. The formula for the curvature on V; in
coordinates is

(Fx)jk = —K;'8;05K, + K[ '3;K,K[ ' 3¢K,.

We showed in Lemma 2.11 that in {w'} coordinates, we have g, = #>0(I), and by Lemma 5.1 the
metric K; = #20(I). Here we write O(I) for a matrix which is positive-define with positivity and
derivative bounds independent of ¢, 1. Therefore

|Fk,lg, = F720(1), (5.12)

|g[

where O(1) denotes a function with smooth bounds independent of ¢, A.
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* We claim:
d —1\x* ik _ =5
= [1@7 800 VE )] = #0C). (513)

Here [(<I>t‘1)*gco’0]ﬂ% are the local matrix entries of the inverse of (<I>[_1)*gco,0 (not the raised
indices with respect to g;). Assuming this for now, we complete the proof of the lemma. Since
at t = 0 we have [(®;)*g.00l/*(Fx,) i = 0, this implies

(@)oo, 0VF(Fi, ) = 177°0(1).
We can then write
V=10, Fr, = (07 8eoo P Fr st + [l = (@7 8oV | (P
and by (2.11) and (5.12) we have

V-1A,,Fy, = tF~50(1)
in {w'} coordinates. Therefore
1V (V=100 Fx, g, = 1t17°0(D).
Then forany0 < a < 1,

1A, Fi, lcoa ) < ClEIF= < Clel'==

using that |¢|* < A% <1 and 12 = /. By Lemma 5.2, this gives the Holder estimate on all of
D ={|t]* < |lzll* < 1}
* We now prove the claimed (5.13). We start with the variation of K;. The metric H, is defined

. . , 1 .
onV,={}, xl.2 = 0} and here we use coordinates (x!, x?, x*) given by x' = mxi where £ € V|,

is the point such that ®,(%) = 2. The map ®, (defined in (2.9)) appears in coordinates {x'} and
{w'} as

| - % 12
<I>i<x>=<xl+ TR S ) ' 1
2212 92 i 22 g ) A

Recall that ||x||?> < ||®;(x)||* < 2||x]|?, and so ||£]| ~ A and coordinates z! are in the range
{i < |z| < 4} ¢ C3. We may assume the coordinates x' on V|, are in the range {% <|x|L2}cC
C3. Abusing notation, we simply write w' = w'o®,(x). The change of coordinates is of the
form

swl _ Il

t
M =7 j + /1—20(1)
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and hence
9 dw! ) Jw
—_— = A 1 Iy < 4 i 1
33 A720(1), 51_5 g (5.15)
Differentiating the inverse Jacobian then also gives
9 dx! )
——— =1720(1).
ot qw/ A0

We now compute the variation of K, in these coordinates. In components K; = (K;)g; dw/ @ dwk,
we have

3 3 |axp dx1
E(Kt)léj(w) =3 W(Ho)pq(x(w))ﬁ

‘We note

d
[(Ho)(x(w))] = —( (w )):xp a;ut = 0@‘2>$-

Recall that in these coordinates, we have that H, = r(£)>0(I), and we noted earlier that r(£) ~
r(2) = 7. Putting everything together, we have

%(K[),;j(w) =721720(1). (5.16)
Since K; = #?0(I) in these coordinates, it follows that

0
E(FKI )ik =A720().

Thus
d —1y* Jjk N
= @ guo0VF (i )]
— d o 1y* Jjk F ,- o Hy* jk 9 F _
= E[( ¢ ) 8o oV (Frji| + [[(®77)78eo0] a( K)jk
0 1w T |
= [5[@% ) Zeoo VK (Fr)jie | + A7*F720(1). (5.17)
Here we used (2.11) and gc_ol’t = #720(I) in these coordinates. The same computation as (5.16)
gives

(@Y geo )ty @) = #22720(1)
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and therefore
d —1\# jk —22—2
= (@ g F (i )| = 2722000,

Since A% = #3, this completes the proof of (5.13). O

6 | PERTURBATION

At this stage in the construction, we have a pair of metrics (g;, H;) on the smoothing X, such that
both of these metrics agree with a scaling of g, ; near the vanishing cycles {llz||? = t}. The met-
ric w, is not balanced on all of X; and the metric H; is not Hermitian-Yang-Mills with respect to
w; away from the vanishing cycles, but by the construction they are close to solving these equa-
tions. In this section we will perturb (g;, H,) to a pair (ggLy , H,) solving the Hermitian-Yang-Mills
equation. We will prove:

Theorem 6.1. There exists € > 0 such that for all 0 < |t| < ¢, there exists on X; a pair of hermitian
metrics (ggry ., H,) solving

2 . 2 _
dop v, =0, Fy Awgy, =0.

Near the vanishing cycles, these metrics have the following local description. There exists A,c;,d; > 0
such that for any k € Z,, there exists Cy > 0 such that for all |t| < ¢

V.o (@FLY . = Ci8co)lgey, < Crlt|?/?r7k (6.1)
and
Ve, (H; — digeo)lg,,, < Ciltl*r™ (6.2)

in the region

3
R, = {ltl <zl < |t]3+ }

Remark 6.2. The decay estimates (6.1) and (6.2) imply that, at an appropriate scale, the Hermitian-
Yang-Mills metrics H, converge smoothly to a multiple of the CO metric g, as |t| — 0.

6.1 | The 6-perturbed Fu-Li-Yau metric

We recall the construction of Fu-Li-Yau [35] which perturbs w, to a balanced metric wgry,. The
Fu-Li-Yau balanced metric is obtained via the ansatz

2 _ .2 5
Wppy, =@ + 6; +6;. (6.3)
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The (2,2) form 6; is constructed to satisfy

36, =0, 06, = —dw?.
More specifically, the correction 6; is of the form

6, =030'3"y,
where adjoints are with respect to g; and y, € A*»3(X,) satisfies dy, = 0. Estimates for y, and 6,
were obtained by Fu-Li-Yau [35]. We will use the versions stated in [16]. [16, Proposition 3.8] states
that
161, < Clizll =/,

which using ||z||? > |¢| implies

16:1g, < Cltl*/3. (6.4)

The proof of [16, Proposition 3.8] uses
/ vl2 < Clel?. (65)
Xy

We will need the following higher estimate on V6.
Lemma 6.3.
V56,1, < Cilt?/3r7F,

Proof. This is similar to [16, Proposition 3.7]. We first show the estimate on a compact set K which
does not intersect the vanishing cycles. The operator E; given by

E, =00d"6" + 379876 + 879,
where 1 is with respect to g;, is a 4th order elliptic operator. The form y, satisfies
E(y) = 560,2-

In fact, it is obtained in [35] by solving this equation. On K, the geometry is uniform in ¢, hence
by elliptic estimates we have

I7llcary < CUIY N2y + 1807 lywkn (i)
for some k, p > 1. As noted in Lemma 2.17, the construction of w, is such that

100} |ck(x, g,) < Crltl- (6.6)
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By (6.6) and (6.5), we have ||y ||c4x) < C|t| and hence || V6 || =) < C|¢|. Similarly, |Vk6[”Loo(K) <
Cltl.

We now prove the estimate stated in the lemma on a set U(e) N X, containing the vanishing
cycles and assume g; = Rog., . Here 06 = dw? , = 0, and we also have

co,t
d'6 =399y, =0
since d and 8" commute because g, is Kihler on this set. Therefore
Az6, = 0.
Working in holomorphic cylindrical coordinates (see Lemma 2.11), we can verify that the coeffi-
cients of the equation r?A36, = 0 are uniformly bounded in C¥. Indeed, by the Bochner-Kodaira
formula,

A30 = —g78,6:0 + T 30 + 6T O+ T % T % 0+ Rmy, + 6,

and the uniform boundedness of the coefficients of r?A; follows from Lemma 2.11. By the
Schauder estimates in this coordinate chart, we obtain

sup |96,

I
Bl/z gB'MC

< Csup|blg,,.-
By

Using g.,,; = r*O(I) in these coordinates, we obtain

VO], < Cr! sup 16 lg, -
t

Since |6;], < C|t|*/3, we obtain the lemma for k = 1 and higher k > 1 are similar. O

le
We now note some general facts on (2,2) forms constructed via the ansatz &> = w? + 6 + 6.
Lemma 6.4. On a complex manifold of dimension n, the equation
W= >0
has solution
grj = (det ®)Y/ D@1y,

where w = \/—1gg; dz/ A dz* and W is written as

Y o Widzt Adzt A+ AdzK AdZE A AdzI AdZT A AdZ" A dZ"
k.j

with ¢ = (V=1""1(n = Disgn(k, j).
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Proof. See for example [59] or [66]. Direct computation of "' gives (det 9)g/F = Wk and the
result follows from taking the determinant of both sides and solving for g. O

Lemma 6.5. Let V be the Chern connection with respect to a Hermitian metric w. Let 1 =
V=1ng; dz/ A dz* be a positive (1,1) form solving n* = w* + 6 + 6, where

0= iesfﬂ; dz$ Adz" Adz AdzF.

Then
1 .- = 1 - _
Ving; = _Enbr(viesfjlé + Vibgrji) + 3 (7710 (V65 ik + Vibsepg)| M-

Proof. A similar computation can be found in [67]. In components, the equation 7> = w> + 8 + 8
is

=205 + 205 s = (0 + 6 + )5
Differentiating this equation leads to
1 -
=Vinrshicj — NrsVinkj + Vil jNis + 07 Villes = E(Viesfﬂ% + Vibgir)

Contracting by 7*" gives

_ 1 .. _

—("Vimesni; — Ving = Ensr(viesfjlé + Vibgir)
Contracting again by nﬂz gives
_ 1 . _

=40V inps = zn]knsr(viesfﬂ% + Vibsiji)-

Combining the previous two identities proves the lemma. O
Using what we have obtained so far in this subsection, we can derive the main esti-

mate of this subsection which shows that the difference between gt_1 and (gpry,)”! is
small.

Lemma 6.6. There exists C;, > 0 and € > 0 with the following property. For all 0 < |t| < ¢, the 6-
perturbed Fu-Li-Yau metric ggy ; satisfies the estimates:

27'g < grry, <28,
and

|VE (grry — 80)lg, < Cilt]?3r K,
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fork € Z. Furthermore, we have

-1 -1
leopry, — @ ||c8~°‘ < Colt]*3.

Proof. If |6, + 6, g < then by Lemma 6.4 we have

1
8rLy tlg, €2, I8ppy g <2

Next, we write the difference of metrics as

1
d
WELY,t — Wt = / ds —7sds
0

where 7, solves 72 = cuf + 5(6, + 0,). By the variation formula in Lemma 6.5, we have

Ly = =37 + Oyt + 2 [T + O] ey
The same argument as above shows that |7,], < C and In: g < Cfors € [0,1]. Therefore
|grLy, — 8ilg, < Cl6lg, < Clt|?/3
by (6.4). Next, by Lemma 6.5 and Lemma 6.3, we have
Vg, (8rry,)lg, < CIVg,0lg, < Clt1*3r L.

Higher order estimates for |V’g‘t (8rLy,)lg, are similar.
It remains to estimate the difference, which can be done by:

-1 -1 -1 -1
”wFLY,t — W, ”Cg’“ = ”wFLY,t(wFLY,t - CU[)C()t ”Cg’“

< Nty gllcos oy, = @illos e o 6.7)

Since |Voi! < C|t|*3r 1, we have

FLY, tlgt

0a <C(A+r|Vw ) <C.

l FLYt”C FLYtlgz
The estimate

wrry, — @] + 7|V (@pry, — @) < C|t]?/3
implies

2
llwopLy, — ||C0a <Clt)?3

which proves the lemma. [l
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6.2 | Uniform weighted Holder estimates

Let g; be the metric constructed by Fu-Li-Yau which satisfies g, = g.,, near the vanishing cycles
(for ease of notation, in this section we assume that the constant M;/ 25‘1/ 3in Proposition 2.17 is
equal to1). Let H, be the metric on X, constructed in the previous section, that is, the glued approx-
imate solution to the Hermitian-Yang-Mills equation. We will use a linear operator L, which acts

on endomorphisms h € T'(End T'°X,) by
Lih = (g 3V + %[\/—mw[FHt,h].

The motivation for this operator is that it is close to the linearization of the Hermitian-Yang-

Mills equation \/—1A, , Fy = 0 at the approximate solution H;, the difference being the use
of g; instead of gpy . We start by proving uniform Schauder estimates independent of ¢ on the
deformations X,.

Proposition 6.7. Let § < 0. There exists C > 1 and a € (0,1) such that forallt € C* and h €
['(End T"°X,), we can estimate

Il c2eqy,y < CAlAllcyex,) + MLeklcos x,))
where the weighted Holder norms are defined in Section 5.2 using (g;, H,).

Proof. On X, n {r > 1}, the geometry is uniform in ¢ and the estimate holds by the usual Schauder
estimates. Let X € X; N {r(x) < 1}. We denote the scale of this point by the constant 7 : = r(%). We
will work in holomorphic cylindrical coordinates {w'} given in Lemma 2.11 on the set

U; ={(1/4)F <r < 47}

By Lemma 2.11 and Lemma 5.1, the operator #2L, is uniformly elliptic with uniform derivative esti-
mates in coordinates {w'}. The standard Schauder estimates applied to each matrix entry ##h! j

imply
p—p p—p P21, (7B «
1P hllza g, ) < CAFPRICo 5y + IPLGE PRy, 5,)

with usual (non-scaled) norms

k

; [u(x) — u(y)|
Il 5y = 2 supID'ul, [l e
i=0 B1

8euc |x —yla

(B,) = SUp
xX#y

As observed in (5.6), since #~2g; is uniformly and smoothly equivalent to g, in coordinates {w'},
the weighted Holder norms are equivalent to these local Euclidean norms, and we have

ll oy, < CAlillcag, + Whehllcs. o)
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The norm || - involves connection terms from V*:, but these are bounded in coordinates

”c;'”(Uf)
{w'} by Lemma 5.3. By Lemma 5.2, these local estimates on sets U; imply the global bound.  []

The next step is to improve this estimate for endomorphisms orthogonal to the identity. For a
related argument used in a gluing construction of Kdhler-Einstein metrics on nodal surfaces, see
[79].

Proposition 6.8. Let 8 € (—2,0). There exists C > 1 and a € (0, 1) with the following property. Let
t € Cwith 0 < |t| < 1 be arbitrary. We can estimate

llczey < CllLehlles_cx,

forall h € T(End T'°X,) satisfying h'# = h and fX (Tr h) dvol =0.

8FLY,t

Proof. Suppose there exists a sequence of t; — 0 such that

il cae > MillLy iles
with M; — co and h; defined on X, . Replacing h; with h; /||h;|| .2«, we have a sequence with
B

Wileaege,y =1 Mehilles o, = 0.

Let K C X be a compact set on the central fiber disjoint from the singular points. For all ¢ small
enough, we have a sequence (IDZ h; of tensors defined on K. Since C~'r(x) < r(®,(x)) < Cr(x), we
have a uniform bound on

<C.

*
12 i ”cg*“(K,@;*‘igz-,@fiH,-) =

By Lemma 2.16, ®; g, — g, smoothly uniformly on compact sets, and the definition of H, implies
that (I)Z H,; — H, smoothly uniformly on compact sets. We can thus extract a limiting tensor h, €

2,0/2
c

oe. (X)) which satisfies the growth estimates

lholg, < CrP, |V holg, < Cri-L.

By the construction of ®; in Lemma 2.13, the limit h, preserves T°X and is an endomorphism of
this bundle which satisfies the identities

(g0)%0g Vg = 0, hj=hy 68)

where 1 is with respect to H,. We now show that

/ (Tr hy) dvoly, = 0. (6.9)
X
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For this, we let § > 0, so that (®;,)*h;,, (P;,)*g;, converge uniformly on {r > 6}. By Lemma 6.6, we
also have that (®;)*grry,, — 8o uniformly in the C° norm on {r > &}. Therefore

/ (Tr ho) dVOlgo = hm (Tr hl) dVOlgFLy "
Xn{r>6} b Jx, nir>s} o

Since /X Trh; = 0, then
t

/X (Tr hy) dvoly = — ‘151_1)1‘(1) 11{n '[( [.n{r<5}(Tr h;) dVOlgFLY,ti' (6.10)
From dVOlgFLY,t < Cdvol,, (Lemma 6.6) and |h;| < r#, we have

<csf / dvoly,
X, nfr<s} !

= CoFP / S* dvol,
Xintr<slg -y 1

= CsF / |t;|*dvoly,
X n{r<8|t;|=1/3} '

where S5 1 Vi = V,, S;15(z) = t'/%z is the scaling action (2.7) which satisfies S 18eos =

' / (Tr k) dvolgFLY,[i
Xy n{r<s}

|t1?/3g.01. We have Volngl({r<R})=O(R6) since g, is asymptotically conical, and
SO

' / (Trh;)dvoly, | < C&+F
X, nfr<s} -

which together with (6.10) proves (6.9).
Next, (6.8) implies that the identity

2 _9|vu 2
Bg ol =21Vl

holds pointwise away from the nodes. Let 55 be a cutoff function such that 5 =0 on {r < g},
ns = lon{r > 8} and |Agns| < C572. Then

),

Recall that g is balanced on X and so we can integrate by parts.

),

Vhol},, 5, dvolg, < /X N50g, hol7; dvoly.

) <

2
|l |H0dV01gm,o'

IVhol},, 5, dvoly, < C572 /

5 {§<r<6}
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Since h, € C} and dvoly == r3drdvol, , then

B 0 8L’

2 / Vo3, , dvolg, < 8228+
U 0,50

8

and we conclude that

lim sup/ |Vhol?, dvol, =0
-0 Us 0

for B €(—2,0). Therefore 5]10 =0 on X, and h, is a holomorphic endomorphism. By
Hartogs’s theorem, h, extends across the holomorphic curves to the small resolution X.
Since T'°X is stable with respect to wcy, it must be the case that h, =cI is a multi-
ple of the identity. We showed in (6.9) that the integral of Trh, is zero, so we conclude
that

hoEO.

The goal now is to obtain a contradiction to this by using that ||h;|| .2« = 1 along the sequence
B

t; = 0. The uniform Schauder estimates in Proposition 6.7 imply
1< C(lRilley + M),
and hence
IrPhi|(z;) > C™!
for a sequence z; € X,

* Case 1: Suppose liminf r(z;) > 0. It then follows that after taking a subsequence, we have z; —
zo € X with r(zy) > 0. Then

[ho(z0)| = C71r(zo)P > 0
which contradicts hy = 0.

» Case 2: Suppose r(z;) — 0. In this case, we can assume that all points z; are in the region of
X; which can be identified with a subset of V; = {). zl.2 = t} and where g; = g, ;. Define the
function u; : V,, n{llz||* < 1} - R given by

up = |hi|%{t.-

The sequence {u;} satisfies the uniform growth estimate

”uillcjﬁa(g[) <C, (6.11)
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which written in full is

41 2192 2 28
lul + 7= Vulg,  +177IVg, ulg,, + [ng,zu]cgfz_a <Cr.

This definition of [|u|| -2« @) is slightly different than the weighted Holder norms used previously
2
for h;, since we use V with respect to g, (rather than H,). These estimates for u; follow from

1A Cé‘a(g[,H,) < 1 and (5.3), which allow us to uniformly convert norms in H; to norms in g,.

Direct computation gives the identity
Agu; = 2Re(L;h;, by, + 2|Vh,-|}2qi’gi.

We are assuming || L, hi||cg , <¢; with g; — 0, hence

u; > —Cer?h—2, (6.12)

Agz

We will rescale the functions u; to take a limit. For ease of notation, we write 4; = r(z;). We will
use the scaling map S, : Vi = Vy from (2.7) given by S(x) = /1i3/ ®x. We rescale and pullback
u; via S, to obtain a function

i Vi nfllxl? <47 - R
defined by
7,00) = A7 Pu@x).
The rescaling is setup so that the estimates for u; imply estimates for #;. For example, we have

Ay U2 —Ce;r2h2, (6.13)

Indeed, pulling back the Laplacian gives

* _ 928 L 12842 7
S/li (Agtl- ui) = /‘li AS*gtl— u; = li Ai Ag[i/173 u;
by using the rescaling relation S} g, = A%g,)-s. Using r(4*/%x) = Ar(x), we obtain (6.13) from (6.12).
Similar computations show that
|ﬂl| + r_l |Vﬂl

AVl s+ [Vl <O 619

|g o0tiA=3
cotid; 2—

Recall that the points z; satisfy |h;|(z;) > C‘l/liﬁ . Then the points x; = /ll._S/ zzi satisfy
ﬂi(xl-) > C_l.

The sequence {ti/ll.—3} liesin [0,1], since ||z||? > || implies r3(z;) > |t;|. After taking a subsequence,
we have convergence tl-/li_3 — x forx € [0,1].
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* Case 2a: ti/ll._3 — x > 0. The points x; = /1;3/22i satisfy [|x;|| = 1. We may assume
Xi = X €V, Xl = 1.

We can take a limit of {#;} on compact sets and obtain a Clz(;z‘ limiting function u,, > 0 on V,
satisfying u,, < Cr? and Ag Uy, > 0. By the maximum principle,

sup u, < supuy, < R?.
r<R r=R

Letting R — o0, we obtain that u,, = 0 since 8 < 0. This contradicts u.,(x) > 0.
* Case 2b: ti/li‘3 — 0. In this case, the points x; = /11._3/ Zzi converge after a subsequence to

X; = Xo € Vi, ”xoo” =1

Letv; : {|5147° < [Ix||* < %ﬂ.ﬁ} NVo — R with v; = @ _i; be the corresponding sequence

of functions on the cone V (recall @, is defined in (2.9)). Since ||x]|?> < ||®(x)||> < 2||x]|?, we have
the growth estimate

v; < Crb.
By pulling-back (6.14), on compact sets K we have the estimate

”vi”Cl“(K,tD*gtifg) < C(K), Anp*g[irg v; > —C(K).

Corollary 2.9 implies <I>*gti 1-3 = 8copo Uniformly on K. Taking a limit of {v;} on compact sets

produces a Clo? limiting function v, > 0 on the cone V|, satisfying

Vg >0, vy, <Cr#

8co,0 0 —

for § € (—2,0). Lemma 6.9 below implies that v, = 0 which contradicts v, (x) > 0. O

Lemma 6.9. Let V be a Riemannian cone of dimension n > 2 with metric g = dr* + r>g;. Let u be
a C? function satisfying Agu > 0 and u > 0. Suppose there exists M > 0 such thatu < M r~% where
6€(0,n—2). Thenu=0.

Proof. Thisis a standard PDE result (e.g. [46]), but we give the proof for completeness. Recall that
the real Laplacian is

Agu=08,0,u+(n—Dr'd,u+r2A, u.

Let Bg(0) = {x € V;, : r(x) < R}. We start by noting that for any ¢ € C2(3B(0), R), there exists
h € C*(Bg(0), R) such that h|sp, ) = ¢ and

Agh =0, sup |h| < sup |g|.
Br(0) 9Br(0)
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To obtain such a harmonic function h, we start by expanding ¢|s5,0) = X, espec(a, ) € 22, Where
8L

¥, are an L? orthogonal basis of eigenfunctions of A, on the link L = {r = 1}, with eigenvalue
convention Ay, = —Ap;. We then let

r a(l)
h = Z alz) ¥
leSpec(AgL)

where a(l) = %(—(n —2)+/(n—2)? +42) > 0. Direct computation gives A;h = 0, and by the
maximum principle

sup |h| < max {suplgol,suplhl}.
BBR

Bg\B; 9B,

foranye > 0. Ase — 0, we see that sup, B, |h] selects the A = 0 mode cy3,. This is a constant equal

1 C
0 VolBD faBR @, which is bounded by sup 9By lp].

We now prove that the subharmonic function u given in the lemma is constant. Let R > 1. Let
hg be the harmonic function mentioned above with hg|s5, = u. Then

lhg| < %up |u] < MR7S. (6.15)
Br

Let 0 < ¢ < 1, and consider
U =u—hy —2Me" 2 9p~(n=2)
defined on By \B.. Since A,r~"=2) = 0 we have that A,v > 0, and
Vlop, < lul + |hgl —2Me™® < Me™® + MR™ — 2Me° < 0.
We also have

2M€n—2—5
Ul@BR = —W < 0.

By the maximum principle, v < 0 in B\ B,. We now fix x € Br\B,. Then v(x) < 0 implies

En—2—6

<h + 2M —.

u(x) < hg(x) 30

This holds true for all 0 < € < 1, hence taking ¢ — 0 we obtain
u(x) < hg(x).

By (6.15), we conclude

u(x) < MRS.
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We now take R — oo to conclude u < 0. Since u > 0 by assumption, we obtain that u = 0. [l
6.3 | Inverting the linearized operator
Let
W, = {u eT(EndTX,) : u' =u, / (Tru)dvoly, , = 0} (6.16)
" :

t

where T is the adjoint with respect to H,. When linearizing the equation A, Fy =0 at the

approximate solution H, we obtain an operator £ that acts on endomorphisms by

[ \/ _lAwFLY,tFHI , u] .

This operator £ involves grry, rather than g;, so it is a perturbation of the operator L in
Proposition 6.8.

We note that £ : W, — W,. Indeed, since u’ = u, (v/—=1AF)" = \/—1AF and & Vvt =
ngV,;Vju, we have

7 1
Lu= —(gFLY,r)JkaEVI;IZ” -3

o 11 —
(ﬁu)T = _(gFLY,t)Jij ‘Oru + 5[ _1AwFLY,zFHz’”]'

The commutator identity for [V j, V] now shows that (Lu)" = Lu. Next, since wrry ¢ is balanced,
we do have

/ (AgFLY,rTr u) ((’)FLY,t)3 =0.
Xy

This verifies that £ : W, — W, preserves the subspace W,.
Having obtained the estimate || k|| < C||Lh|| from Proposition 6.8, we can invert £ with a bound
on the inverse.

Lemma 6.10. Let L : Cé’“(W,) - CE’_“Z(W[)for a € (0,1) and B € (=2,0). There exists |ty| > 0
such that for all 0 < |t| < |ty], then L is invertible and the operator norm

e <c (6.17)
is bounded independent of t.

Proof. We start by discussing the uniform estimate. Let L be the operator that was estimated in
Proposition 6.8. For u € Cé’a(W[), we have

lull 2« < CllLul| 04
C )

. ik .
< Ol (e ~ " )0V ulos
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-1 -1
+ C“gFLY — & “Cg’“ ”FH[ ”ng ”u”Cg’a + C“[/ullcgfz

< CUP Nl + ClePP I oz Il os + LUl o

cos

by Lemma 6.6. By Lemma 5.3, we have r2|FH[ lg, + r3|VgtFHt < C and hence

|gt

IFg, ||Cg,§( <C (6.18)
uniformly in t. We conclude that for t small enough, then
lull2e < CllLull 00, u€W,. (6.19)
B B-2

The proof of the lemma now follows from standard elliptic PDE theory on the smooth compact
manifold X,. We will use the space of sections denoted by

H = {u e(EndT™X,) : u' = u}
with L? inner product

(s,h)r2 = /(S,h)Hl dvolg. .., s,heH.
X

Then we can orthogonally decompose H = W @ CI. We consider P : C>%(H) — C%%(H) with
Pu = Lu. From (6.19), we see that CI = ker P. Furthermore, by the balanced condition of wgyy
we see that

imP CW.

Therefore (ker P)t C W and so CI C ker P*. We will show CI = ker P".

An integration by parts argument using the balanced property shows that the operator A =
(gFLY,t)ﬂ%a,; V]}.I‘ is L? self-adjoint and so has degree zero. Thus P also has degree zero. Therefore
dimker P* = 1 and CI = ker P'. It follows that im P = W. Hence £ : W — W is invertible, and
the bound on the inverse in weighted norms is (6.19). O

6.4 | Fixed point theorem

In this section, we perturb the glued metric H; to a solution of the Hermitian-Yang-Mills equa-
tion \/—_1AQ,FLYJF 7 = 0 on the smoothing X, via a fixed point theorem. The general approach of
constructing an approximate solution and deforming it to a true solution to solve equations in dif-
ferential geometry goes back to Taubes [85] and is now widely used; in this section we will follow
the notation used in [84].

Our space of deformations will be the space W, defined in (6.16). We introduce the operator

F:W,—>W,
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given
Fu) = e”/2<\/ —1AwFLY’tFu)e‘”/2, (6.20)

where F,, is the curvature of the metric H; ,, = H,e".
We note that F : W, - W,. Indeed, for u € W, we have [ Tr F(u) = 0 since

/ el(THX) Awgy, =0
X,

t

as X; has trivial canonical bundle. The adjoint action of e“/2 in (6.20) is added to ensure that
Fu)" = F(u). Indeed, \/—1AF H,, 1s self-adjoint with respect to the metric H; ,. In coordinates
where H, = I and e" is diagonal, it is straight-forward to check that

+
(e”/2 ( V=1Au,, Fu )e‘“/z) = e¥/? ( V=1Auy, Fu )e‘“/z

where T is the adjoint with respect to H;.
A well-known computation gives the linearization of F,,.

5(F,) = 30y, (e 5e").
The linearization of F is then
— _pu/2 jk 3 e ,—u s uy | ,—u/2
EPNu(8w) = —e2|(grry, )/ 3V} (e 0e")|e
+ (5e”/2)< V=1A,,, Fu )e—u/2
@) V-1hgyy, F )82,

Let £ be the linearization (§F)|, at u = 0. Thatis, £ : W, -» W, with

Lw = —(gFLY,t)jkaEVJ}-I[w - %[\/ZAWFLY,tFHt’ w].
We previously inverted £ and gave a bound on the inverse £~! uniform in . We can write
F(u) = F(0) + L(u) + Q(u)
where by definition
Q(u) = F(u) — F(0) — L(w). (6.21)

We define

. 2 2,a
J\/'.Cﬁ (W)—»Cﬁ w)
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given by
N@W) = L7(=F(0) — Qw)).
To solve F(u) = 0, it is equivalent to find a fixed point
N@Ww) =u.

Proposition 6.11. Let a € (0,1). There exists¢ > 0 and 3 € (—1,0) with the following property. Let
U, = {u IS Cé,’a(W(Xz)) : ||u||C2,a < |¢|@/3)8I }
Then for all 0 < |t| < ¢, the mapping N preserves U; and satisfies
ING) = N @)l 2o < 5= Vlcze (6.22)

forallu,v e V..

Proof. We start by assuming (6.22) and prove that N preserves U;. We have
F(0) = V=1Ay,,, Fy,

and we can estimate

-1 -1
”F(O)”CE,;I < ”ACUIFHt 0,a + ”CO[ - CUFLY,[”Cg’aHFHI”CO‘a'

o 0a

Proposition 5.3, Lemma 6.6 and (6.18) imply
IFO)lloa < C(t1P/> + [e]1941/3),
-2

||o¢/1|/3

The contribution [¢ is the slowest rate. For any 8 € (—1,0), we therefore have

POl 00 < C|t|leal/3,
52

Since [|£7!]| < C by (6.17), it follows that

IN©)ll 20 < Clef141/3,
B
and hence (6.22) implies that for u € U, then
1
N @ <IN @w) — N©O) + [|N(O)] < E|t|(2/3)|5| 4 Cle[leA3 < |e|C/oI8l

for g = —i |ad| and ¢ small enough.
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Thus it remains to prove (6.22). By definition
N (@) = N() = L71(Qv) — Qw)).
Since [|£7!]] < C by (6.17), we have

ING) = N@)lcze < IR = Q)i (6.23)

So we need to estimate Q(u) — Q(v). One way to write this is

1
d
Q) - 0w = [ Sow)ds
o ds
where w; = su + (1 — s)v. By the definition (6.21) of Q, its variation is

L0 = (5P, (4= ) = L(u~v).
S

We claim that the approximate linearized operator L is close enough to the actual linearization
OF, so that for all w, s € U’ then

I(6F)w(s) — ﬁ(S)IICgf2 < CIIwIIC(Z),aIISIICéa- (6.24)
Assuming this, we conclude
1Q(u) — Q(v)llcg,g2 < Clllull2a + llvll g2a)llu — vllcé,a.
By (6.23), we see that
IV @) - N(v)llclzg,a < Clllull2a + vl 2a)llu — vllcé.a'

2

Ifu € U, then |Juf| 2 < 1t13'!, and since 3 > |¢|, we have
8
[|u|l 20 < ;Hull ra < 1 |t| /DBl < elBI/3,
G = minXt rlBl (Cra |[||ﬁ|/3 -

Thus if ¢ is small enough, then N is a contraction map. The proof is complete given (6.24), which
is proved in the following lemma. O

Lemma 6.12. Thereexists C > 1suchthatforallt € C* andu,s € W, with ||u||cz,a(Xt) < 1,wecan
0

estimate

”(5P)|u(s) - E(S)”Cgfz(Xt) < C“ullc(z)'a(xl)”S”C;ra(xl)'
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Proof. To simplify notation, for this estimate we will write g = gpry, Hy = H; and H, = H, ,,.
The linearization was computed in (6.21), and the difference is explicitly given by

G (5) — £(5)
= [18 explly(s/21(V=TAuFr, e = Z5(V=1A, i)
@) (V=18,Fy, )8 expll(-5/2] + 3 (V1A Fr, )s
— e[ gl oV e[S expll ()] /2 + g3V s

= (D + (1) + (I11),

where (I), (II), (IIT) denotes the terms on each line and the derivative of the matrix exponential is
given by the formula

1
[8 exp]..(Su) = / M (Su)e1-Dud,
0

* Terms (I) and (II). These two terms are estimated in the same way, so we only give the estimate
for (I). We start by writing

(D) = 8 expllu(s/2(VTAFy e/ = Z5(V=1Ay i)

1
d
= /0 W[[S eXP]|yu(S/2)(\/—_1AwFHyu)e—(V/Z)u] dy. (6.25)

There are three terms depending on where di lands. The first is
¥

d
(la), = [d—y[a exp]lyu(s/z)] (V=1A,Fp,, e 7/,
This can be estimated as
II(Ia)yllcgf2 < C”FH},MHCE;”ullcgﬂllsllcgﬂ

Next, we consider

(1b), = [8 expllyu(s/2) j—y(\/—_lAwFHyu) /D

:sdy) SUONIPUO)) PUE SWIDT, A1 298 “[4707/80/90] U0 ATEIQIT AWIUQ A[1A OHEAGET OWOIOL JO ANSIATUN Aq S€1Z70d0/Z001°01/10p/W0oKo[Im ATeIquouI[u0;/5dNY WOy PApEO[uMoq ‘T “bT0Z ‘Z1€0L60T

pUB-SULI0l WOo KA

25U00IT SUOWIWIOY) 2ANERI) d[qeardde o Aq PAUIAAS A1 SOOI VO SN JO SO[M 10] AIEAqIT SUIUO AS[1AN UO (SUO



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 357

Since iFH =09, u, we have
dy yu yu
) o < CIEVr, 2l cos lslos
The other term is
d
(), = 18 xpll,(5/ V=10 Fiy )| e 072"
ru dy
and can be estimated by
II(IC)yllcng < CIIFHWIIngaIIMIICg,aIISIICg,a-

Altogether, using |lul[.2« <1, the formula for the difference of connections Ap,, —An, =
0
e~ 7"V e’ which gives a formula for FHW, and ||Fp || oa < C, we have
-2

II(I)IICg;a2 < Cllullcg,aIISIICg,a

* Term (III). We write

1
(Il = — / diy [e(}'/Z)u [gjkakvfyue—yu[a eXp]yu(S)] e—(y/2)u] dy.
0
Using ||u|| c2a <1, from here we can derive the estimate
0
III a < Cllu allS a.
IIC )Ilcgf2 I IIC(Z) | IICé

. . o . _ — -
To do this, the covariant derivative V H,, €an be converted to Vi via V Hy, Vg, =e Ve

. d
and we can use the variational formula ™ \Y Hy, = \Y Hy, U [l
Y

By Proposition 6.11 and the Banach fixed point theorem, there exists & € Cé’a(W(Xt)) with

llitl] 20 < |t|3/3% such that N (i1) = 11, meaning that Ay, Fy = 0 where F, is the curvature of
: :

H,e". This proves the existence of a pair solving

dw?

FLY,t — 0

2
0, Fp, Aoy, =
on X,. To complete the proof of the main theorem, we describe the behavior of (ggr vy, H;) near

the vanishing cycles.

Proof (Theorem 6.1). The local estimate (6.1) follows from Lemma 6.6 since g; = ¢;g,, in a fixed

neighborhood of the vanishing cycles. The Hermitian-Yang-Mills metric is given by H, = H,e"

where 1 is the fixed-point solving N'(if) = % and satisfying ||| ;2« < |t|*/*)IP]. Near the nodes,
B
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by the gluing construction (see (5.2)) we have H, = d; gco,[ef‘ in the region

3
Ra={MsuﬂPsnﬁi}
which implies
|H, — digeorlg,, < Cr1Fle|2/DIBl < C |t 18173

since 3 > |t|. We obtain similar estimates for VKH, for k = 1 and k = 2. For the higher order
estimates, we write the equation g/*(F;) ik = 0 in holomorphic cylindrical coordinates as

rz(gFLY,t)jkajakHt = rz(gFLY,t)jkajI:[tH[_lakHt'

Note that since g, = r*0(I) (see Lemma 2.11), by (6.1) we also have gryy, = r?0O(1) for small ¢.
Schauder estimates and a bootstrap argument imply
|67 Fi

|geuc < Ct) |t||6|/3

Converting g,,,. in holomorphic cylindrical coordinates to g., ; gives the stated estimate with A =

181/3. O

Remark 6.13. To simultaneously solve the Hermitian-Yang-Mills and the conformally balanced
equations

d(|Qlls, &7) =0, Fy, Ad} =0,
we can set
@ = 191150, @
t tllopy  PFLY ¢

so that [|€; [, 03[2 =w . Here Q, isaholomorphic volume form on X, whose existence through

}27LY,t
conifold transitions is proved in [32], normalized by /X[ \/—_lﬂt A ﬁt = 1. It is straightforward to
show that this conformally balanced metric g, associated to @, satisfies a decay estimate near
the vanishing cycles. Namely, near any ODP p; € X there is a constant ¢; such that we have the
estimates

3
k 5 Sk
|Vg1~‘LY,t (g[ - CigFLY,t)lgFLY’t < Ckl"z s

for all k € Z,. Note that, unlike Lemma 6.6, one can no longer expect decay in |¢| for fixed r.
This is due to the the fact that, near the ODP singularities, the holomorphic volume form Q; will
not necessarily converge to a constant multiple of the natural equivariant holomorphic volume
form on the conifold. Nevertheless, these estimates still imply that there is a constant d; > 0 so
that at a suitable scale the pair (g;, H,) converges smoothly to the pair (g., 0, digc00) as |t| = 0.
In particular, at suitably small scales, the pair (g;, H,) converges to a solution of the Strominger
system near the ODP singularities as ¢ — 0.

:sdy) SUONIPUO)) PUE SWIDT, A1 298 “[4707/80/90] U0 ATEIQIT AWIUQ A[1A OHEAGET OWOIOL JO ANSIATUN Aq S€1Z70d0/Z001°01/10p/W0oKo[Im ATeIquouI[u0;/5dNY WOy PApEO[uMoq ‘T “bT0Z ‘Z1€0L60T

SULI) W0 KoM

pi

25U00IT SUOWIWIOY) 2ANERI) d[qeardde o Aq PAUIAAS A1 SOOI VO SN JO SO[M 10] AIEAqIT SUIUO AS[1AN UO (SUO



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS 359

Corollary 6.14. For all |t| < 1 sufficiently small, the tangent bundle T'°X, is stable.

Proof. We showed that the bundle T'°X, admits a Hermitian-Yang-Mills metric. This implies that
the bundle is polystable with respect to the Fu-Li-Yau balanced metric. To show T'°X, is stable,
we must show that it cannot split holomorphically as a product T'°X, = E, @ F,.

Suppose there exists a sequence t; — 0 such that T“’Xti splits. Let h; be the holomorphic
endomorphism of T1°X; which is the identity on E; and zero on F,. Note that h, satisfies

aht = O, Trh[ = I"kEt, detht =0.

By the compactness of holomorphic functions, we can take a subsequential limit on compact sets
to obtain a limit h, € I'(End(T"°X,)) such that dh, = 0 and h,, is non-zero and not a multiple
of the identity. By Hartogs’s theorem, h extends to the small resolution X. Since T'°X is sta-
ble, it does not admit holomorphic endomorphisms other than multiples of the identity. This is
a contradiction.
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APPENDIX A: THE FU-LI-YAU GLUING CONSTRUCTION

In this appendix we will explain the gluing result of Fu-Li-Yau, which establishes Propositions 2.16
and 2.18. Before beginning, we recall the notation. We are primarily interested in the small reso-
lution of the conifold, given by p : Op1(—1)®? — P!, Let hpg denote the Fubini-Study metric on
Op1(—1). Let

T Om(-1)%2 >V,

be the map contracting P. The pull-back radial function of the conical Calabi-Yau metric on V
is given by

2 2 2 2/3
P = (2, +108,)

where (u, v) are fiber coordinates on Op:1(—1)®2. The holomorphic Reeb field on V,, induces a
holomorphic C* action given by

S, (¢, u,v) = (x,13/2u, A3/%v).
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where x € P!. Unless otherwise specified, we will consider the restriction to 1 € R., C C*. Note

that we have
w2 _ 12,2
Sj{r = 1°r=.
We define a smooth Kihler metric on O(—1)®? by
Won =V —16573 + p*C()Fs.

We will consider also the cone metric
3 )
Weo0 = 5\/ —190r-.

It will be important for us to compare w2, ' and w3,
Lemma A.1. There is a uniform constant C > 0 such that following estimates hold
() If0 < r < 1, then we have

2012 2 1,2
r<C Wepo S Wy < Cr W0

(ii) If0 <r < 1then

2

1,22 -1
CTriw, o <@gy AWeoo X1 Weo0

co0,0

Proof. First, since w,, and wy,, define smooth Kéihler metrics on the compact set {1 <r < 2} we

can fix a constant A such that
A w0 < Wy < A .

Consider

Sp{1sr<2t->{A<r<24h
From the homogeneity of r we have

Sjlkwgo,o = ’14‘0?0,0'

On the other hand,

Siwg, =A° V—105r3 + p*wps,
and so

S:wszm = 15(\/=188r3)? + 223v/—180r% A p*wpy
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using that p*w%s =0.If 1 <1 then we get

6.2 % 02 3.2
1 Wi < Slwsm <2 Wym

From the definition of A we have

% )2 3,2 3 42,2 —1 42¢%,,2
S Wsm S AW, S VA%, <ATATS W

and similarly

w02 6,2 2 A—2G% 2
SiWsm 2 AWy 2 ACATES @y, -

Since A < r < 24, proves (i). The proof of (ii) is similar. O

Consider the four form
Q:= \/—_165<)((r2)\/—_165r2>
where y(-) is some smooth function to be determined. We compute
Q = x"(r2)V—16r2 A3r? A V/—100r2 + X' ()l (.
To understand the first term write
V=186r2 = 4v/=10r A 3r + r?\/-183 log 1.
from which it follows that
< \/—_185r2>2 = 8r2\/—19r A r A V—163 logr? + <r2 \/—198 log r? )2
and also
\/=18r A 3r A V/—183r2 = r2A/=13r A 3r A V/—133 logr?.

Since \/—_wglog r? > 0 we conclude

Lemma A.2. The following estimate holds everywhere on Op:(—1)®?

_ _ 2 _
\V—18r2 ABr2 A V/—183r2 < %(\/—_warz)%

In particular, whenever y"" < 0 we have the lower bound

’,.2
@ (1045207 ot
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Fix R > 1. Our goal is to find R > 1, and a constant Cp > 0 such that we can glue
Qg 1= C285V/=190(x(r*)V/~180r?)

to the Calabi-Yau metric wéy. This will require carefully choosing y, and the constant C. We are
going to assume that

x(s)=s

for s € [0, 4], so that Qp agrees with a rescaling of C‘)?o,o on{0<r< %}. More precisely, we have

CaSiV —183(x(r?)\V/—180r%) = CIZQR“cogo)0 {0<r<2R 1.
In the remainder of the appendix we will determine conditions on y, Cg, R for this to be possible.
We now consider the Calabi-Yau metric wcy. Consider the set U = {r < 4} C X. Since U is
contractible onto P!, we can write

wey = Ap*wps + 0B + 53

for some (1,0) form 8 on U, and some 4 > 0. To simplify notation, let us assume 4 = 1. By solving
the d-equation we can write

wcy = pFw+ \/—165cp

where w is a Kéhler form on P!, with [w] = [wps] € HVY(P!,R) and ¢ : U — R a smooth func-
tion with @|p1 = 0; see [35, Lemma 2.4]. Let h; denote the degree % part of ¢ under S; (recall that

S, corresponds to scaling with weight % along the fibers), so that |¢ — h;| ~ O(Ju|? + |v|?), or in
other words

lp —hy| < Cr.

Let o(x) be a positive cut-off function with 0 < o(x) < 1and o(x) = 1 for x € [0,1] and g(x) =
0 for x > 8. Define

W, = wl, — V180T
Iy = V=183 (a®r)((@ — h)@p*e + V=133(p + hy)) + h V=103, ) )
where, as before, R > 1 is a parameter to be determined. From the definition of o we have
W =y if {r > 2R}
We claim that

¥, =0if{r <R '}
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To see this, note that if x, y, w are commutative variables satisfying yw = 0, then
(x=y)Q2w + (x +y)) = xQw + x) + xy — 2wy — xy — y*> = xQw + x) — y°.

We apply this formula with x = v/ —165g0, y=v —165111, w = p*w and product being the wedge
product. We only need to check that \/—190h; A p*wps = \/—laahf = 0, but this is clear since
\/—188h, is linear along the fibers of Opi(—1)®2 — P!,

The main task is to find a lower bound for Wy in terms of cofo o in the transition region {R7! <
r < 2R7'}. To do this we expand

¥ = (1 - 0)awl, — @) — (II) — (III)
where
1) = 2Re<(\/—1a/(R3r3)R36r3 AS(p — hy) A (2P + V/—103(p + hg))
+ 2Re<c7’(R3r3)R36r3 ABhy A \/—155;11)
(1) = o (L3r3)LSV/—10r3 A 3F3 A <(go — h)2p*w + V—103(p + b)) + hy \/—165h1)
(11D = o/ (L3r3)L3V/—180r% A <(go — h)(2p*w + V—=183(p + hy)) + hy V/—130h, )

Our goal is to estimate each term from below by a)f .o Each term will be treated differently,
depending on whether it is homogeneous or not.

* Term (I). Observe that
ar3 Ad(p — hy) ~ gy,

To see this recall that, in coordinates we have

=l ol
so that, in coordinates where dhrg = 0, we have

or® = adu + vdv.
On the other hand, since h; is linear along the fibers of p : Op1(—1)®? — P! we have
3(p — hy) = O(u, v)(dit + dv)

and so

ar3 Ad(p — hy) < Criagy,.
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Thus, by Lemma A.1, the first term in (I) can be controlled by r3co52m < rzcug 0"
To analyze the second term in (I) we observe that

S¥(3r3 AShy A V/=103h,) = 2°3r° A 3hy A V/—180h,,
which, by the homogeneity of w,, (, implies
3r* A3hy A V/=183h, < Crla}, .
In total, we have
(D) < Cria?,
» Term (II). Again, by homogeneity we have
0<V—-10r3 Adr3 < Criwe,,
while the bound |¢ — h;| < Cr? yields a bound for the first term in (II)
V—10r3 ABF3 A ((cp —h)Rp*w + \/—_165(go + h1)> < PPwe A Pag,
<crtal

where we used Lemma A.1, (ii). The second term in (II) can be treated directly by scaling. We
have

V=10r> A r® A hyV/ =130k, < Cria?, .
In total, we have
an <crie?,
* Term (IIT) can be treated similarly to term (II). The first term can be estimated as
V—183r® A (¢ — h))(2p* @ + V—138(p + hy)) < Cri3w?,, < Crzcofo,o,
thanks to Lemma A.1 (i) again. The homogeneous term is easily estimated as
V—=180r3 A hy\/—13dh; < Crzcogoyo.

In summation, we have proved

Lemma A.3. There is a constant C > 0 so that on the region {R™' < r < 2R~} we have

3,2,2 2
Yp > —CR°’r Wooo 2 _Ccho,O'
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At this point we consider
Wr + CoCrSH Q.

In order for this form to be positive we need to show that C;,, Cx can be chosen consistently. To
do this we consider the conditions for positivity in four different regions. In the following C will
denote a uniform constant which can change from line to line, but depends only on the fixed
background data and is, in particular, independent of R, C, C.

« Region{0 <r <R7'}
In this region we have ¥ = 0 and Sj y(r?) = R*r?, so that

4
2Q%0) — 2p4. 2
Wy + CoCpSrQ = 5CoCRR Y, (> 0
so this region contributes no restriction.
* Region{R™! <r <2R7'}.
Thanks to Lemma A.3, and the fact that y(s) = s for s € [0,4] we have

ery 4
¥y > —CRw? CoCrSzQ = 5CoCrR @

co,0 co,0°
Thus, in order to ensure positivity we need C, > 3C, CIZQR4 = R, so we must take Cﬁ =R3.
« Region {2R~! <r < 1}.
By definition we have

= 2 2
Yr = wiy 2 Cagy,.

On the other hand whenever "' < 0, Lemma A.2 gives the estimate

CoCES3Q 2 SCORQ (R + (R 1 (R

co,0°

Now, from Lemma A.1 we have cofo’o < Cr~2w?,, and so we can ensure positivity provided
4
5 CoRr 22 (R?r?) + Rr)* " (R*r?)) 2 —C.

If we can choose y so that y’ >0, then when y” >0 we have S;Q >0 so no additional
restriction is contributed from this case.
* Region {1 < r}.
In this region we take y(s) = const., and so, by definition
Wy + CoCrSpQ = @l
In summary, ¥y + C0C§S;;Q will be positive definite provided we can construct a cut-off

function y(s) (upon defining s = R?>r?) with the following properties: for 0 < ¢ < 1 given, we
have
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« x(s) =sfors €[0,4],and y'(s) > 0,
* x(s) is constant for s > R?,
* x(s) satisfies

L@+ O) 2 -

for s € [4,R?]

A cut-off function with these properties is constructed in [35, Lemma 2.2], but for the readers
convenience we give a slightly different proof here.

Lemma A.4. For R > 1 sufficiently large there exists a smooth function y(s) with the following
properties

(i) x(s) =sfors €[0,4], and ¥'(s) > 0.
(ii) x(s) is constant for s > R?,
(iii) there is a uniform constant C' such that

!/

" ¢
S +sx0) 2 -5

Proof. Letv = x’. Then we need to find v such that v(s) = 1 for s € [0,4], v(s) = 0 for s > R?, and

1d,, c’
= —(s%v) > —=.
52 ds( )2 R4
Consider
1, s €0, 5]
v(s)=qas>+bs?+cs’+d, se[5R*-1]
0, s>R*—1.

Demanding that v(s)is C 1 gives a system of 4 equations in the unknowns a, b, ¢, d, whose solutions
are given by

a=-250+0R32), b=75+0(R?), c=75R3+0(R 19, d=-150R"*+OR™®).
On the other hand, if w(s) = C,s%, then

4 >0 ifa>-2,andC, >0
d—( s*w) = (a +2)Cys“ 1 =10 ifa=-2
>0 ifa<-2,andC, <0.

1
2

Since the terms corresponding to a, b, c fall into one of these cases, it follows that

920y > - 2+ OR™),

s2 ds
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It only remains to check that v(s) > 0 for s € [4, R?]. To see this, observe that
0=0'(AR?) <= 2> —1=0R?).
Since the equation A =21 =0has only three real solutions 4 = +1, 0, it follows that for R suffi-
ciently large v’(s) = 0 has only two real solutions on [4, R?]. Since these solutions are given by
s =4ands = R? — 1, it follows that v/(s) # 01in (4, R> — 1), and hence v does not have an interior
minimum in [4, R?]. This immediately implies v(s) > 0.
Finally, let U be the result of convolving v with a positive, symmetric mollifier with sufficiently

small support. Then U is smooth and has the same properties as v. Integrating U yields y. O

Now let us explain the extension of this construction to the metrics w,, , on the small resolution.
For this, recall that

Weoa =V _lagfa(llzllz) + 46127'[*501:5
where f,(x) = a’f 1(%) and f satisfies
(xf1)? +6(xf})* = x*.

Rewriting this equation in terms of the variable z defined by x = z~3/2 and applying standard
ODE techniques we obtain the following result, whose proof we leave to the reader

Lemma A.5. For x > 1, the function f(x) has a convergent expansion

f1(x) = ;x2/3 —2log(x) + Z e, x"21/3,

n=0

2/3

In particular, f,(x) - gx smoothly and uniformly on any compact set as a — 0.

‘We now describe how to glue w,, , to the Calabi-Yau metric wcy to obtain a balanced metric.
We first recall that

Qg = CoR3V—=100(x(R2r})R*\/=183r?) = C,R~1V/—183(x (R?r?)\V/—130r?)
On the other hand, we have
W20 = (V=103 f,(1|2I1?)* + 8> V=133 f ,(||z1*) A 7* wops
= V=183 ( £alllzIP)(V=183f (12I) + 807 cops ) )

This suggests that we define

-1 — 2 —
= \/—_wa(x<%fa(uzu2>>(\/—_wafa(nzn2>+8a2n*wFs)>

QR,a = CO

:sdy) SUONIPUO)) PUE SWIDT, A1 298 “[4707/80/90] U0 ATEIQIT AWIUQ A[1A OHEAGET OWOIOL JO ANSIATUN Aq S€1Z70d0/Z001°01/10p/W0oKo[Im ATeIquouI[u0;/5dNY WOy PApEO[uMoq ‘T “bT0Z ‘Z1€0L60T

pUB-swI01/ W02 KA1

25U00IT SUOWIWIOY) 2ANERI) d[qeardde o Aq PAUIAAS A1 SOOI VO SN JO SO[M 10] AIEAqIT SUIUO AS[1AN UO (SUO



STABILITY OF THE TANGENT BUNDLE THROUGH CONIFOLD TRANSITIONS | 371

Lemma A.6. For 0 < a < 1 sufficiently small there is an open set U containing the (—1,—1)
rational curve such that

_ 2
QR,a - COcho,a

Proof. We only need to observe that the formula holds whenever
2R?
Tfa(”zllz) <4.

Now since f,(]|z||?) converges uniformly to %rz on compact sets away from the (—1, —1) rational

curve, this inequality will hold for a sufficiently small provided r < 2R~ O
Next, recall that the gluing of w,, ¢ and w¢y depending on only two estimates.

* The bounds

W, > —CRw? CR35:0 = Cop,2
R="— CQco,O’ 0 R T wco,o

in the region {R™! < r < 2R™'}. Since Qy, , converges uniformly to wio o on this region, the same

2
co,a’

bound holds with w,, o replaced by w
* The bound

after possibly changing the constants.

2 2,2
Wep0 < Crrwgy,
in the region {2R™! < r < 1}. Again, from the uniform convergence of w,, , to @, o this bound
holds, up to possibly increasing C for cofo’a as well, from the uniform convergence.
; 2 2

It follows that the gluing procedure used to glue w; 0.0 10 @Gy
way to glue cogo,a to wéy for 0 < a <« 1. Furthermore, from Lemma A.5 we obtain the smooth,
uniform convergence of w, to w, on compact sets away from the (—1, —1) rational curves.

carries over in exactly the same
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