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It is commonplace to solve the extended magnetohydrodynamics (MHD) system of equations 
in non-conservative form, in particular using equations for pressures. This approach leads to 
unpredictable behavior at discontinuities such as shock fronts. Here we propose using a linear 
combination of entropy densities to distribute the non-adiabatic heating among the various 
pressure components in a deterministic manner. In particular, we describe algorithms that 
can distribute the non-adiabatic heating between electrons and ions when the electron and 
ion temperatures are solved separately, and between parallel and perpendicular pressures for 
anisotropic pressure MHD. The same approach can also be used for extended hydrodynamic 
equations. The algorithm is based on conservation laws, which provides proper convergence to 
weak solutions as demonstrated by numerical tests.

 Introduction

The ideal magnetohydrodynamic (MHD) equations can be written in a conservation form in terms of mass, momentum and energy 
nsities and magnetic field. A conservative discretization of these equations guarantees correct weak solutions across discontinuities, 
 particular across MHD shocks. When ideal MHD is extended to account for pressure anisotropy and/or electron pressure being 
fferent from ion pressure [1–3], there is no obvious way to write the extended MHD equations in a conservative form that is correct 
ross discontinuities, such as shocks and current sheets. In reality, the distribution of the total energy density among electron, ion 
d/or parallel and perpendicular energy densities is determined by physical processes at the shock front or the current sheet that 
e not captured by the extended MHD equations, which represents them as discontinuities. This means that the electrons pressure 
wnstream the bow shock of Earth or the ratio of parallel and perpendicular ion pressures behind a shock produced by a coronal 
ass ejection are not realistic in the simulation and may not even converge to a deterministic value with increasing grid resolution.
Here we propose an algorithm to handle both ion pressure anisotropy and separate electron pressure in a way that provides weak 
lutions that are similar to shocks observed in space by satellites or simulated with kinetic models. In particular, we propose to solve 
r the total energy density (in conservation form), together with linear combinations of entropy densities (instead of pressures). The 
tropy equations are in conservation form for electrons [4] as well as for the parallel and perpendicular ion entropy densities [5]. 
e weights in the linear combinations can be used to determine how the non-adiabatic processes increase the individual entropy 
nsities and corresponding pressures. The conservation form guarantees that the solution is well-behaved across discontinuities, 
hich is not true for the non-conservative pressure equations.
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In general, the non-adiabatic heating fractions are not constants. Electron heating across shocks has been studied with kinetic 
ulations, and it was found that a non-zero fraction 𝑊𝑒 of the total non-adiabatic heating is deposited into the electron energy 
nsity [6]. For the anisotropic ion pressure, let us consider the two extreme cases: parallel shocks where the magnetic field 𝐁
parallel with the shock normal 𝐧, and perpendicular shocks with 𝐁 ⋅ 𝐧 = 0. We expect that for parallel shocks most of the non-
iabatic heating is deposited into the parallel entropy, while for perpendicular shocks most of the non-adiabatic heating goes into the 
rpendicular entropy. We note that the anisotropy may be limited by instabilities [2]. Our algorithm accommodates non-constant 
eights as long as the variation of the weights is smooth across the discontinuities.
Section 2 describes the extended MHD equations in various forms, including the entropy and pressure equations. Section 3
scribes the new algorithm. Numerical tests are presented in Section 4, and we conclude in Section 5.

 Extended MHD equations using entropy

The extended MHD equations in a conservative form [1,2] can be written as
𝜕𝜌

𝜕𝑡
+∇ ⋅ (𝜌𝐮) = 𝑆𝜌 (1)

𝜕𝜌𝐮
𝜕𝑡

+∇ ⋅
(
𝜌𝐮𝐮−𝐁𝐁+ (𝑝∥ − 𝑝⟂)𝐛𝐛+ 𝐼𝑝+ 𝐼

𝐵2

2

)
= 𝐒𝜌𝐮 (2)

𝜕𝑒

𝜕𝑡
+∇ ⋅

(
𝑒𝐮+ 𝑝𝐮+ 𝐵2

2
𝐮−𝐁𝐁 ⋅ 𝐮+ (𝑝∥ − 𝑝⟂)𝐛𝐛 ⋅ 𝐮

)
= 𝑆𝑒 (3)

𝜕𝐁
𝜕𝑡

+∇× (−𝐮 ×𝐁) = 𝐒𝐁 (4)

here 𝜌 is the mass density, 𝐮 is the bulk velocity, 𝐁 the magnetic field vector, 𝐛 = 𝐁∕𝐵 is the unit vector parallel with 𝐁 and 
= 𝑝⟂ + 𝑝𝑒. The magnetic field units are chosen to make the magnetic permeability 𝜇0 = 1. The isotropic ion pressure equations 
n be obtained by setting 𝑝∥ = 𝑝⟂ = 𝑝𝑖. Setting 𝑝𝑒 = 0 eliminates the separate electron pressure. Finally, setting 𝐁 = 0 results in the 
drodynamic equations. The source terms on the right hand sides are zero for ideal MHD, but they may differ from zero in general. 
e total energy density is

𝑒 = 𝜌𝑢2

2
+ 𝐵2

2
+ 𝑒𝑡 =

𝜌𝑢2

2
+ 𝐵2

2
+ 𝑒𝑖 + 𝑒𝑒 (5)

here 𝑒𝑡 is the total thermal energy density, 𝑒𝑖 = 𝑒∥ + 𝑒⟂ is the ion thermal energy density, and 𝑒𝑒 is the electron thermal energy 
nsity. The energy densities are related to the pressures as

𝑒𝛼 =
𝑝𝛼

𝛾𝛼 − 1
(6)

here 𝛼 stands for 𝑒, 𝑖, ∥ or ⟂. The adiabatic indexes are 𝛾𝑖 = 5∕3, 𝛾∥ = 3 and 𝛾⟂ = 2 from the 𝛾 = (𝐹 + 2)∕𝐹 relationship with 𝐹 the 
grees of freedom. The electron adiabatic index 𝛾𝑒 can be different from 𝛾𝑖 in general.
The specific entropy density (per unit mass) of a gas is usually defined as 𝜎 = ln(𝐶𝑝∕𝜌𝛾 ) from the Sackur–Tetrode equation where 
is some constant with appropriate dimensions. One can define the volumetric entropy density as 𝑠 = 𝜌𝑓 (𝜎), where 𝑓 is an arbitrary 
fferentiable function (see Appendix A and Appendix B). We can choose 𝑓 (𝜎) = exp(𝜎)∕𝐶 so that 𝑠 = 𝑝∕𝜌𝛾−1 is a linear function of 
essure 𝑝. Analogously, the volumetric electron entropy density can be defined as

𝑠𝑒 =
𝛾𝑒 − 1
𝜌𝛾𝑒−1

𝑒𝑒 (7)

here we used Eq. (6) to express 𝑝𝑒 from 𝑒𝑒. If the ion pressure is assumed to be isotropic, the ion entropy density is

𝑠𝑖 =
𝛾𝑖 − 1
𝜌𝛾𝑖−1

𝑒𝑖 (8)

 the anisotropic ion pressure case [5], the parallel and perpendicular ion entropy densities (see also Appendix A) that are linear 
nctions of the energy densities are

𝑠∥ =
2𝐵2

𝜌2
𝑒∥ (9)

𝑠⟂ = 1
𝐵
𝑒⟂ (10)

l entropy densities satisfy a simple conservation law (for smooth solutions):
𝜕𝑠𝛼

𝜕𝑡
+∇ ⋅ (𝑠𝛼𝐮) = 𝑆𝑠𝛼

(11)

ing different functions 𝑓𝛼 to define 𝑠′𝛼 = 𝜌𝑓𝛼(𝑠𝛼∕𝜌) lead to alternative definitions of entropy densities that all satisfy the con-
2

rvation law (11). The particular choices above have linear dependence on energy densities, 𝑠𝛼 ∝ 𝑒𝛼 , which will be useful later 
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. Combining these conservation laws with the definitions of the entropy densities leads to the usual non-conservative pressure 
uations (see Appendix A). The electron pressure equation:

𝜕𝑝𝑒

𝜕𝑡
+∇ ⋅ (𝑝𝑒𝐮) + (𝛾𝑒 − 1)𝑝𝑒∇ ⋅ 𝐮 = 𝑆𝑝𝑒

(12)

r isotropic ion pressure the ion pressure equation:
𝜕𝑝𝑖

𝜕𝑡
+∇ ⋅ (𝑝𝑖𝐮) + (𝛾𝑖 − 1)𝑝𝑖∇ ⋅ 𝐮 = 𝑆𝑝𝑖

(13)

r anisotropic ion pressure the parallel and perpendicular pressure equations:

𝜕𝑝∥

𝜕𝑡
+∇ ⋅ (𝑝∥𝐮) + 2𝑝∥𝐛 ⋅ (𝐛 ⋅∇)𝐮 = 𝑆𝑝∥

(14)

𝜕𝑝⟂
𝜕𝑡

+∇ ⋅ (𝑝⟂𝐮) + 𝑝⟂∇ ⋅ 𝐮− 𝑝⟂𝐛 ⋅ (𝐛 ⋅∇)𝐮 = 𝑆𝑝⟂
(15)

e entropy source terms are obtained by taking the time derivatives of Eqs. (7)−(10) (see Appendix A for a detailed derivation):

𝑆𝑠𝑒
= 1

𝜌𝛾𝑒−1
𝑆𝑝𝑒

− (𝛾𝑒 − 1)
𝑝𝑒

𝜌𝛾𝑒
𝑆𝜌 (16)

𝑆𝑠𝑖
= 1

𝜌𝛾𝑖−1
𝑆𝑝𝑖

− (𝛾𝑖 − 1)
𝑝𝑖

𝜌𝛾𝑖
𝑆𝜌 (17)

𝑆𝑠∥
= 𝐵2

𝜌2
𝑆𝑝∥

+ 2
𝑝∥

𝜌2
𝐁 ⋅ 𝐒′𝐁 − 2

𝑝∥𝐵
2

𝜌3
𝑆𝜌 (18)

𝑆𝑠⟂
= 1

𝐵
𝑆𝑝⟂

−
𝑝⟂

𝐵3𝐁 ⋅ 𝐒′𝐁 (19)

here 𝐒′𝐁 = 𝐒𝐁 + 𝐮∇ ⋅ 𝐁, i.e. if the 8-wave [7] source term −𝐮∇ ⋅ 𝐁 is used in the induction equation, then it does not enter the 
tropy source terms 𝑆𝑠∥

and 𝑆𝑠⟂
.

 Distributing the non-adiabatic heating

Solving the conservative energy equation (3) provides a time derivative, or in the discrete sense a change, for the energy density, 
hich we denote as Δ𝑒. Solving the discrete form of the entropy density equations (11) provides preliminary updates for 𝑠𝛼 , and the 
rresponding thermal energy densities 𝑒𝛼 from Eq. (7)−(10). We denote this preliminary (adiabatic) change as Δ𝑠𝑒𝛼 where the 𝑠
bscript indicates that the update is based on an entropy conservation law. The update of the thermal energy 𝑒𝑡 based on the total 
ergy equation (3) and Eq. (5) and the adiabatic updates of energy densities 𝑒𝛼 based on Eq. (11) are related as

Δ𝑒𝑡 =Δ𝑠𝑒𝑒 +Δ𝑠𝑒𝑖 +Δ𝑒𝑛 (20)

here the last term Δ𝑒𝑛 ≡Δ𝑒𝑡 −Δ𝑠𝑒𝑒 −Δ𝑠𝑒𝑖 describes the non-adiabatic heating. For well-resolved smooth solutions Δ𝑒𝑛 = 0 within 
ncation error. Across a discontinuity, however, Δ𝑒𝑛 ≠ 0. In the anisotropic case the adiabatic change in the ion thermal energy 
nsists of the sum of the parallel and perpendicular adiabatic energy changes:

Δ𝑠𝑒𝑖 =Δ𝑠𝑒∥ + Δ𝑠𝑒⟂ (21)

1. Distributing non-adiabatic heating between isotropic electron and ion pressures

First we discuss the distribution of the non-adiabatic energy between electrons and ions with an isotropic ion pressure. Assuming 
at a fraction 𝑊𝑖 of this energy goes into the ions and 𝑊𝑒 = 1 −𝑊𝑖 into the electrons, we can define the ion and electron thermal 
ergy updates as

Δ𝑒𝑖 =Δ𝑠𝑒𝑖 +𝑊𝑖Δ𝑒𝑛 (22)

Δ𝑒𝑒 =Δ𝑠𝑒𝑒 +𝑊𝑒Δ𝑒𝑛 (23)

tting 𝑊𝑒 = 0 assumes that the electrons are heated adiabatically, which is not valid based on kinetic simulations [6] and satellite 
servations [8] that suggest 𝑊𝑒 ≈ 1∕4.
It is not entirely obvious that the updates Eqs. (22) and (23), which can be viewed as adding and subtracting source terms, will 
t have the same issue as solving the non-conservative pressure equations: the solution may depend on the discretization errors at 
e shock front. There is a good reason to believe that is not the case as long as 𝛾𝑖 = 𝛾𝑒. In this particular case moving energy between 
and 𝑒𝑒 will not change the total pressure 𝑝 = 𝑝𝑖 + 𝑝𝑒, which is the only form of pressure entering the momentum equation (2), 
ergy equation (3) and the definition of the energy density Eq. (5).
When 𝛾𝑖 ≠ 𝛾𝑒, we have to specify the shock heating of electrons and ions in a manner that relies on conservation laws. We 
3

troduce a “combined entropy” density
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𝑠𝑖𝑒 =𝑊𝑒𝑠𝑖 −𝑊𝑖𝑠𝑒 (24)

at needs to be conserved. The non-negative weights satisfy 𝑊𝑖 +𝑊𝑒 = 1 (although this is not essential). We take the difference 
stead of the sum, as we expect the non-adiabatic heating to increase both the ion and electron entropy densities, so it is their 
eighted difference that can be conserved. Clearly, 𝑠𝑖𝑒 satisfies a conservation law similar to 𝑠𝛼 in Eq. (11). If 𝑊𝑒 = 1 then the ion 
tropy is conserved, so all non-adiabatic heating is pushed into the electrons. If 𝑊𝑒 = 0, then the electron entropy is conserved 
ince 𝑠𝑖𝑒 = −𝑠𝑒 is conserved), and all non-adiabatic heating is deposited into the ions. In the general case, one needs to solve the 
llowing two equations for the unknowns 𝑒𝑖 and 𝑒𝑒:

𝑤𝑒𝑒𝑖 −𝑤𝑖𝑒𝑒 = 𝑠𝑖𝑒 (25)

𝑒𝑖 + 𝑒𝑒 = 𝑒𝑡 (26)

here we introduced the energy weights 𝑤𝑒 =𝑊𝑒(𝛾𝑖 − 1)∕𝜌𝛾𝑖−1 and 𝑤𝑖 =𝑊𝑖(𝛾𝑒 − 1)∕𝜌𝛾𝑒−1 based on Eqs. (7) and (8). The solutions 
e

𝑒𝑖 =
𝑠𝑖𝑒 +𝑤𝑖𝑒𝑡

𝑤𝑒 +𝑤𝑖

𝑒𝑒 = 𝑒𝑡 − 𝑒𝑖 (27)

ith some manipulations, the equations can be rewritten into an update form:

Δ𝑒𝑖 =Δ𝑠𝑒𝑖 +
𝑤𝑖

𝑤𝑖 +𝑤𝑒

Δ𝑒𝑛 =Δ𝑠𝑒𝑖 +
𝑊𝑖

𝑊𝑖 +𝑊𝑒
𝜌𝛾𝑒

𝜌𝛾𝑖

𝛾𝑖−1
𝛾𝑒−1

Δ𝑒𝑛

Δ𝑒𝑒 =Δ𝑠𝑒𝑒 +
𝑤𝑒

𝑤𝑒 +𝑤𝑖

Δ𝑒𝑛 =Δ𝑠𝑒𝑒 +
𝑊𝑒

𝑊𝑒 +𝑊𝑖
𝜌𝛾𝑖

𝜌𝛾𝑒

𝛾𝑒−1
𝛾𝑖−1

Δ𝑒𝑛 (28)

r the case 𝛾𝑒 = 𝛾𝑖, these equations become the same as Eqs. (22) and (23), which confirms that Eqs. (22) and (23) will produce 
rrect weak solutions for this case.
The weights 𝑊𝑒 and 𝑊𝑖 can vary smoothly and slowly across the shock, and the solution will remain well-behaved. For example, 
e weights can depend on the plasma beta or the Mach number upstream of the shock front.

2. Distributing non-adiabatic heating between parallel and perpendicular ion pressures

In the anisotropic ion pressure case (starting with no electron pressure equation here, and continuing with electron pressure in 
bsection 3.3), the goal is to distribute the non-adiabatic energy gain Δ𝑒𝑛 between the parallel and perpendicular thermal energies 
and 𝑒⟂. Using weights 𝑊⟂ and 𝑊∥ = 1 −𝑊⟂, the combined entropy to be conserved is defined as

𝑠× =𝑊⟂𝑠∥ −𝑊∥𝑠⟂ (29)

hich satisfies the same conservation law as 𝑠⟂ and 𝑠∥. When 𝑊⟂ = 1, the parallel entropy is conserved, so all non-adiabatic heating 
pushed into the perpendicular pressure. Conversely, when 𝑊⟂ = 0, all non-adiabatic heating is deposited into the parallel pressure.
In the general case, the following system of equations need to be solved for 𝑒∥ and 𝑒⟂:

𝑤⟂𝑒∥ −𝑤∥𝑒⟂ = 𝑠× (30)

𝑒∥ + 𝑒⟂ = 𝑒𝑡 (31)

here we introduced the energy weights 𝑤⟂ =𝑊⟂2𝐵2∕𝜌2 and 𝑤∥ =𝑊∥∕𝐵. The solutions are

𝑒∥ =
𝑠× +𝑤∥𝑒𝑡

𝑤⟂ +𝑤∥

𝑒⟂ = 𝑒𝑡 − 𝑒∥ (32)

ter some simple algebra, the equations can be written into an update form

Δ𝑒∥ = Δ𝑠𝑒∥ +
𝑤∥

𝑤∥ +𝑤⟂
Δ𝑒𝑛 =Δ𝑠𝑒∥ +

𝑊∥

𝑊∥ +𝑊⟂2𝐵3∕𝜌2
Δ𝑒𝑛

Δ𝑒⟂ =Δ𝑠𝑒⟂ +
𝑤⟂

𝑤⟂ +𝑤∥
Δ𝑒𝑛 =Δ𝑠𝑒⟂ +

𝑊⟂

𝑊⟂ +𝑊∥𝜌
2∕(2𝐵3)

Δ𝑒𝑛 (33)

r 𝑊∥ = 0 the Δ𝑒∥ update is purely adiabatic and all non-adiabatic heating is deposited into Δ𝑒⟂, while for 𝑊⟂ = 0 the opposite 
lds. For 0 <𝑊∥ < 1 a fraction of the shock heating is deposited into 𝑒∥, but this fraction depends on 𝐵3∕𝜌2, which is the ratio of 
4

e coefficients of the parallel and perpendicular entropy densities in Eqs. (9) and (10).
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The weights 𝑊∥ and 𝑊⟂ = 1 −𝑊∥ do not have to be global constants. As long as they change smoothly and slowly across the 
ock, the solution will remain well-behaved. For example, one can make 𝑊∥ a function of the upstream angle 𝜃1 between the 
agnetic field 𝐁1 and the shock normal 𝐧 directions:

𝑊∥ = cos𝜃1 =
|𝐧 ⋅𝐁1|
𝐵1

(34)

here the subscript 1 refers to the upstream values. With this definition, 𝑊∥ = 1 and 0 for parallel and perpendicular shocks, 
spectively. For a moving shock, the shock normal direction can be obtained from the change of velocity Δ𝐮, for example.

3. Distributing non-adiabatic heating among electron, parallel and perpendicular pressures

Finally, we discuss the most complicated case, when we solve for the isotropic electron pressure and anisotropic ion pressures 
arallel and perpendicular). We define two linear combinations of the entropy densities:

𝑠𝑖𝑒 =𝑊𝑒𝑠∥ −𝑊𝑖𝑠𝑒 (35)

𝑠× =𝑊⟂𝑠∥ −𝑊∥𝑠⟂ (36)

here 𝑊𝑒 and 𝑊𝑖 define how the non-adiabatic heating increases the electron and parallel ion entropy densities. The choice of 𝑠∥
er 𝑠⟂ is arbitrary. Unfortunately using the sum of the two ion entropy densities is not particularly better, as they have different 
ysical dimensions. Similarly, 𝑊∥ and 𝑊⟂ determines the split between 𝑠∥ and 𝑠⟂. The weights are positive and satisfy 𝑊𝑖+𝑊𝑒 = 1
d 𝑊∥ +𝑊⟂ = 1. After updating the total energy and the entropy densities, we solve the following linear system of equations for 
, 𝑒∥ and 𝑒⟂:

𝑤𝑒𝑒∥ −𝑤𝑖𝑒𝑒 = 𝑠𝑖𝑒 (37)

𝑤⟂𝑒∥ −𝑤∥𝑒⟂ = 𝑠× (38)

𝑒𝑒 + 𝑒∥ + 𝑒⟂ = 𝑒𝑡 (39)

here the energy weights are 𝑤𝑖 =𝑊𝑖(𝛾𝑒 − 1)∕𝜌𝛾𝑒−1, 𝑤𝑒 =𝑊𝑒𝐵
2∕𝜌2, 𝑤∥ =𝑊∥∕𝐵 and 𝑤⟂ =𝑊⟂2𝐵2∕𝜌2. The solutions are

𝑒∥ =
𝑤∥𝑠𝑖𝑒 +𝑤𝑖𝑠× +𝑤𝑖𝑤∥𝑒𝑡

𝑤⟂𝑤𝑖 +𝑤∥𝑤𝑒 +𝑤𝑖𝑤∥

𝑒⟂ =
𝑤⟂𝑒∥ − 𝑠×

𝑤∥

𝑒𝑒 =
𝑤𝑒𝑒∥ − 𝑠𝑖𝑒

𝑤𝑖

(40)

e coefficients 𝑊𝑖 = 1 −𝑊𝑒 and 𝑊∥ = 1 −𝑊⟂ can be smoothly varying functions.

4. Summary of the numerical scheme

Here we summarize the implementation of the numerical scheme. First we solve equations (1) to (4) for mass density 𝜌, momen-
m density 𝜌𝐮, total energy density 𝑒, magnetic field 𝐁 and also the entropy conservation laws (11) for all entropy densities 𝑠𝛼 . 
xt, we calculate the total thermal energy density 𝑒𝑡 from Eq. (5) and the linear combinations of the entropy densities 𝑠𝑖𝑒 and/or 
from Eqs. (24) or (35) and/or (29). Finally, we obtain the energy densities 𝑒𝛼 from Eqs. (27), (32) or (40), and calculate the 
rresponding pressures 𝑝𝛼 from Eq. (6).

 Numerical tests

The schemes described above have been implemented into the BATS-R-US extended MHD code [9,10,1]. We will use normalized 
its throughout, so that 𝜇0 = 𝑘𝐵 =𝑀𝑖 = 1. The adiabatic indexes are 5∕3 unless noted otherwise. Note that in all tests we solve 
. (3) for the total energy density 𝑒 defined by Eq. (5), so the total energy is always conserved. The new scheme differs from the 
her tested schemes in how the total energy density is distributed among the individual energy densities 𝑒𝛼 .

1. 1D shocktube tests

We solve the anisotropic MHD equations with separate electron pressure on a 1D domain −128 < 𝑥 < 128 resolved by 1500 grid 
lls, which is more than sufficient to obtain a grid converged solution (if the scheme solves conservation laws). The second order 
sanov [11] scheme is used with the minmod limiter applied to the primitive variables. The adiabatic index of the electrons is 
= 5∕3. The stability conditions [12] for the anisotropy are not enforced, so the results of the scheme can be clearly understood. 
5

r the new scheme we use 𝑊𝑒 = 0.4 (instead of 0.25) to make the electron pressure variation more obvious. The anisotropic weights 
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. 1. Solution of the 1D parallel shock problem with the new algorithm solving for energy and entropy densities 𝑒, 𝑠𝑖𝑒 = 0.4𝑠𝑖 − 0.6𝑠𝑒 and 𝑠× = 0.1𝑠∥ − 0.9𝑠⟂ (solid 
e line), with the conservative scheme solving for 𝑒, 𝑠𝑒 and 𝑠∥ (dotted red line), and with energy conserving MHD scheme extended with non-conservative pressure 
uations solving for 𝑒, 𝑝𝑒 and 𝑝∥ (dashed black line). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

e set by Eq. (34) but limited to stay within 0.1 ≤ 𝑊∥, 𝑊⟂ ≤ 0.9. The initial conditions are piece-wise constant separated by a 
scontinuity at 𝑥 = 0. The simulations are run to 𝑡 = 20.
For the parallel shock the upstream state at 𝑥 > 0 is 𝜌1 = 0.25, 𝐮1 = (−3.5, 0, 0), 𝐁1 = (0.75, 0, 0), and 𝑝𝑒,1 = 𝑝∥,1 = 𝑝⟂,1 = 0.25, 

hile the downstream state at 𝑥 < 0 is 𝜌2 = 0.75, 𝐮2 = 0, 𝐁2 = (0.75, 0, 0) and 𝑝𝑒,2 = 𝑝∥,2 = 𝑝⟂,2 = 1.5. Fig. 1 shows the solutions 
tained with our new scheme and the typical energy conserving MHD scheme combined with pressure or entropy equations. For 
e new scheme 𝑊∥ = 0.9, consequently the perpendicular temperature 𝑇⟂ = 𝑝⟂∕𝜌 does not change much across the shock at 𝑥 ≈ 50, 
hile the other schemes mostly deposit the shock heating into the perpendicular pressure and produce a larger jump in 𝑇⟂ .
For the perpendicular shock the upstream state at 𝑥 < 0 is 𝜌1 = 0.25, 𝐮1 = (−3.5, 0, 0), 𝐁1 = (0, 0.25, 0) and 𝑝𝑒,1 = 𝑝∥,1 = 𝑝⟂,1 = 0.25, 

hile the initial downstream state at 𝑥 > 0 is 𝜌2 = 0.75, 𝐮2 = 0, 𝐁2 = (0, 0.75, 0) and 𝑝𝑒,2 = 1.5, 𝑝∥,2 = 0.75 and 𝑝⟂,2 = 4.5. The results 
e shown in Fig. 2. All schemes increase the perpendicular temperature the most. The new scheme also increases the parallel 
mperature as 𝑊∥ = 0.1, while the other two schemes solving for the parallel pressure or parallel entropy equations do not deposit 
n-adiabatic heating into 𝑝∥ and the parallel temperature 𝑇∥ = 𝑝∥∕𝜌 remains constant. The three schemes produce different electron 
atings: the new scheme deposits some of the non-adiabatic heating into the electrons because 𝑊𝑒 = 0.4, the scheme solving for the 
ectron entropy provides pure adiabatic heating for electrons, while the scheme solving for electron pressure heats the electrons in 
 unpredictable manner due to the non-conservative electron pressure equation.
Finally, we perform a test for an inclined shock. The initial conditions are 𝜌1 = 0.25, 𝐮1 = (−3.5, 0, 0), 𝐁1 = (0.25, 0.25, 0), 𝑝𝑒,1 =

,1 = 𝑝⟂,1 = 0.25 for 𝑥 > 0 and 𝜌2 = 0.75, 𝐮2 = 0, 𝐁2 = (0.25, 0.75, 0), 𝑝𝑒,2 = 𝑝∥,2 = 𝑝⟂,2 = 2.5 for 𝑥 < 0. Fig. 3 shows the solution for 
ree different schemes. For the new scheme 𝑊∥ = 1∕

√
2 ≈ 0.7 from Eq. (34) to distribute the non-adiabatic heating. In this case 

th the perpendicular and parallel temperatures change across the shock at 𝑥 ≈ 35, as expected.
Fig. 4 shows the solutions using different numerical schemes (second order Rusanov versus first order HLLE schemes) with 
0, 1000 and 1500 grid cells to demonstrate that the weak solution converges independent of the spatial discretization for the 
nservative methods, including the new algorithm, while it produces significantly different results for the non-conservative pressure 
uations.

2. 2D tests

We demonstrate the use of the new algorithm on a blast wave propagating into a magnetized low-pressure plasma. The equations 
6

e solved with the HLLE scheme [13] using the Koren limiter [14] on the primitive variables. The divergence of the magnetic field 
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. 2. Solution of the 1D perpendicular shock problem with the new algorithm solving for energy and entropy densities 𝑒, 𝑠𝑖𝑒 = 0.4𝑠𝑖 − 0.6𝑠𝑒 and 𝑠× = 0.9𝑠∥ − 0.1𝑠⟂
lid blue line), conservative scheme solving for 𝑒, 𝑠𝑒 and 𝑠∥ (dotted red line) and energy conserving MHD scheme extended with non-conservative pressure equations 
ving for 𝑒, 𝑝𝑒 and 𝑝∥ (dashed black line).

. 3. Solution of the 1D inclined shock problem with the new algorithm solving for energy and entropy densities 𝑒, 𝑠𝑖𝑒 = 0.4𝑠𝑖 − 0.6𝑠𝑒 , 𝑠× = 0.3𝑠∥ − 0.7𝑠⟂ (solid blue 
e), conservative scheme solving for 𝑒, 𝑠∥ and 𝑠𝑒 (dotted red line), and with energy conserving MHD scheme extended with non-conservative pressure equations 
7

ving for 𝑒, 𝑝𝑒 and 𝑝∥ (dashed black line).
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. 4. Solution of the 1D inclined shock problem with the new algorithm solving for energy and entropy densities 𝑒, 𝑠𝑖𝑒 = 0.4𝑠𝑖 − 0.6𝑠𝑒 , 𝑠× = 0.3𝑠∥ − 0.7𝑠⟂ (left 
lumn), conservative scheme solving for 𝑒, 𝑠∥ and 𝑠𝑒 (middle column), and with energy conserving MHD scheme extended with non-conservative pressure equations 
ving for 𝑒, 𝑝𝑒 and 𝑝∥ (right column) with second order Rusanov with 500 (dotted green line), 1000 (yellow dashed) and 1500 (solid red) grid cells and first order 
LE scheme with 500 (dotted black), 1000 (dashed dark blue) and 1500 (solid light blue) grid cells. Note that the lines mostly overlap for the conservative schemes 
ft and middle columns), but are very different for the non-conservative scheme (right column).

controlled with the 8-wave scheme [7]. The computational domain is 0 < 𝑥, 𝑦 < 1 with double periodic boundaries resolved by a 
0 × 200 uniform grid. The initial conditions are 𝜌 = 1, 𝐮 = 0, and 𝐁 = (1∕

√
2, 1∕

√
2, 0). The pressure is 𝑝1 = 0.1 outside a circle of 

dius 𝑟 = 0.2 centered around 𝑥 = 𝑦 = 0.5 and 𝑝2 = 10 inside.
We perform two separate tests to study electron heating with isotropic ion pressure and anisotropic ion heating with no electron 
essure, respectively, for the sake of clarity. In the first test we solve a separate electron pressure equation with isotropic ion 
essure. Initially the pressure is distributed as 𝑝𝑖 = 0.9𝑝 and 𝑝𝑒 = 0.1𝑝. The adiabatic indexes are set to 𝛾𝑖 = 5∕3 and 𝛾𝑒 = 4∕3 and 
𝑒 = 0.25 for the new scheme. In the second test there is no electron pressure, but the ion pressure equation is anisotropic. Initially, 
wever, we set 𝑝∥ = 𝑝⟂ = 𝑝 and take 𝑊∥ from Eq. (34) allowing the full range from 0 to 1. In Eq. (34) the shock normal is estimated 
m the change in the velocity as 𝐧 =Δ𝐮∕Δ𝑢. Note that we do not explicitly detect the shock, but the non-adiabatic heating is only 
nificant at the shock where the velocity change is parallel to the shock normal. The direction of the upstream magnetic field is 
ken from the initial and boundary condition: 𝐁1 = (1∕

√
2, 1∕

√
2, 0). The simulations are stopped at 𝑡 = 0.2.

Fig. 5 shows the ion and electron pressures obtained in the first test. The left column shows the results from the new algorithm 
positing 25% of the non-adiabatic heating into the electrons. The middle column shows the results when solving for electron 
tropy with pure adiabatic heating. The ions are hotter and electrons are cooler in this case. Finally, the right panels show the 
lution using a non-conservative electron pressure equation. In this case the non-adiabatic electron heating depends on the numerical 
rors at the shock front. Interestingly, we had to switch to the minmod limiter for the conservative scheme with no electron 
ating (middle column) to avoid over and undershoots in the ion pressure. The other two simulations worked fine with the Koren 
iter.

Fig. 6 shows the perpendicular and parallel pressures obtained in the second test. The left column shows the results from the 
w algorithm using Eq. (34) to distribute non-adiabatic heating between the parallel and perpendicular pressures. The middle 
lumn shows the results when solving for parallel entropy with pure adiabatic heating. The perpendicular pressure is enhanced and 
e parallel pressure is reduced in this case. Finally, the right panels show the solution using a non-conservative parallel pressure 
uation. In this case the non-adiabatic parallel heating depends on the numerical errors at the shock front.
Fig. 7 shows the solutions with the source terms enforcing the firehose and mirror stability conditions [2]. The solutions of the 
ree schemes are more alike now, but still significantly different. This means that the stability conditions are insufficient to produce 
liable weak solutions for MHD with anisotropic ion pressure. The new scheme, on the other hand, guarantees that the converged 
8

eak solution is not dependent on the discretization errors at the discontinuities.
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. 5. Solution of the 2D blast wave problem with the new algorithm solving for energy and entropy densities 𝑒, 𝑠𝑖𝑒 = 0.25𝑠𝑖 − 0.75𝑠𝑒 (left), with energy conserving 
D scheme extended with electron entropy equation solving for 𝑒 and 𝑠𝑒 (middle), and solving for 𝑒 and non-conservative equation for 𝑝𝑒 (right). The top panels 
ow the ion pressure and the bottom panels the electron pressure.

. 6. Solution of the 2D blast wave problem with the new algorithm solving for energy and entropy densities 𝑒 and 𝑠× (left), with energy conserving MHD scheme 
tended with parallel entropy equation solving for 𝑒 and 𝑠∥ (middle), and solving for 𝑒 and non-conservative equation for 𝑝∥ (right). The top panels show the 
rpendicular pressure and the bottom panels the parallel pressure.

 Conclusions

We have developed a new approach to obtain deterministic and physically well-motivated jump conditions across shocks in 
tended hydrodynamic and MHD simulations. We solve conservation equations for energy and linear combinations of entropy 
nsities. The weights in the linear combination determine the fraction of non-adiabatic heating deposited into the various entropy 
9

nsities. In particular, we can assign a fixed fraction of the non-adiabatic heating to electrons based on PIC simulation studies 
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Fig. 7. Same as Fig. 6 but with the source terms enforcing the anisotropic stability conditions.

d satellite observations. For the anisotropic ion pressure, parallel and perpendicular shocks are expected to deposit most of the 
n-adiabatic heating into the parallel and perpendicular pressures, respectively. We have demonstrated the use of smoothly varying 
tropy weights (based on the upstream angle between the shock normal and the magnetic field) that transitions between the parallel 
d perpendicular shock cases.
The numerical tests suggest that the algorithm works as intended and provides solutions that are less dependent of the numerical 
heme and closer to reality than the usual approaches using non-conservative pressure equations or conservative entropy equations 
ith pure adiabatic heating. We note that we have not shown that the new scheme necessarily converges to entropy-based weak 
lutions. Proving such properties is left for future work.
The new scheme can also improve the numerical solution of reconnection at grid collapsed current sheets. While the reconnection 
te itself depends on the numerical dissipation (see appendix of [15]), the new scheme can distribute the non-adiabatic Joule 
ating among the electron, parallel and perpendicular pressures in a way that is more consistent with kinetic simulations than a 
ple conservative scheme solving for 𝑒, 𝑠𝑒 (and 𝑠∥), which deposits most of the heat into the (perpendicular) ion thermal energy.
While in this paper we only discussed isotropic electron pressure, the ideas can be easily extended to the anisotropic electron 
essure case. The parallel and perpendicular electron pressure equations have the same form as the corresponding ion pressure 
uations [16] as long as the electron and ion velocities are assumed to be the same, i.e. the Hall term is neglected. This means that 
e anisotropic electron entropy densities are completely analogous to the anisotropic ion entropy densities in Eqs. (9) and (10).
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pendix A. Entropy density functions and source terms

We show that if 𝜎 = 𝑠∕𝜌 is a specific entropy function per mass then an arbitrary differentiable function of 𝜎 can be used to define 
 alternative specific entropy function 𝜎𝑎 = 𝑓 (𝜎) and the corresponding alternative entropy density 𝑠𝑎 = 𝜌𝑓 (𝑠∕𝜌). The conservation 
w for 𝑠𝑎 can be expanded as

𝜕(𝜌𝜎𝑎)
𝜕𝑡

+∇ ⋅ (𝜎𝑎𝜌𝐮) = 𝑆𝑠𝑎
(A.1)

𝜎𝑎
𝜕𝜌

𝜕𝑡
+ 𝜌𝑓 ′(𝜎)𝜕𝜎

𝜕𝑡
+ 𝜎𝑎∇ ⋅ (𝜌𝐮) + 𝑓 ′(𝜎)𝜌𝐮 ⋅∇𝜎 = 𝑆𝑠𝑎

(A.2)

𝜎𝑎𝑆𝜌 + 𝑓 ′(𝜎)
(
𝜌
𝜕𝜎

𝜕𝑡
+ 𝜌𝐮 ⋅∇𝜎

)
= 𝑆𝑠𝑎

(A.3)

𝑓 (𝜎)𝑆𝜌 + 𝑓 ′(𝜎)(𝑆𝑠 − 𝜎𝑆𝜌) = 𝑆𝑠𝑎
(A.4)

here 𝑓 ′(𝜎) = 𝑑𝑓 (𝜎)∕𝑑𝜎. The last equation defines 𝑆𝑠𝑎
based on 𝑓 , 𝑆𝑠 and 𝑆𝜌.

Next we show that the conservation law for the entropy density function 𝑠 = 𝑝
1∕𝛾𝑒
𝑒 results in the electron pressure equation (12). 

e conservation law for 𝑠 is

𝜕𝑠

𝜕𝑡
+∇ ⋅ (𝑠𝐮) = 𝑆𝑠 (A.5)

1
𝛾𝑒
𝑝
1∕𝛾𝑒−1
𝑒

𝜕𝑝𝑒

𝜕𝑡
+ 1

𝛾𝑒
𝑝
1∕𝛾𝑒−1
𝑒 ∇𝑝𝑒 ⋅ 𝐮+ 𝑝

1∕𝛾𝑒
𝑒 ∇ ⋅ 𝐮 = 𝑆𝑠 (A.6)

𝜕𝑝𝑒

𝜕𝑡
+∇𝑝𝑒 ⋅ 𝐮+ 𝛾𝑒𝑝𝑒∇ ⋅ 𝐮 = 𝛾𝑒𝑝

1−1∕𝛾𝑒
𝑒 𝑆𝑠 (A.7)

hich is equivalent with Eq. (12) if 𝑆𝑠 = (𝜕𝑠∕𝜕𝑝𝑒)𝑆𝑝𝑒
= (1∕𝛾𝑒)𝑝

1∕𝛾𝑒−1
𝑒 𝑆𝑝𝑒

. We can obtain the alternative electron entropy density 𝑠𝑒
at is linear in the electron energy density 𝑒𝑒 by applying the function 𝑓 (𝜎) = 𝜎𝛾𝑒 , so that 𝑠𝑒 = 𝑝𝑒∕𝜌𝛾𝑒−1. The source term for 𝑠𝑒 can 
 obtained from Eq. (A.4):

𝑆𝑠𝑒
= 𝑓 (𝜎)𝑆𝜌 + 𝑓 ′(𝜎)(𝑆𝑠 − 𝜎𝑆𝜌) (A.8)

=
𝑝𝑒

𝜌
𝛾
𝑒

𝑆𝜌 + 𝛾𝑒𝜎
𝛾𝑒−1(𝑆𝑠 − 𝜎𝑆𝜌) (A.9)

= (1 − 𝛾𝑒)
𝑝𝑒

𝜌
𝛾
𝑒

𝑆𝜌 +
1

𝜌𝛾𝑒−1
𝑆𝑝𝑒

(A.10)

=
𝜕𝑠𝑒

𝜕𝜌
𝑆𝜌 +

𝜕𝑠𝑒

𝜕𝑝𝑒
𝑆𝑝𝑒

(A.11)

 agreement with Eq. (16). The derivation for the isotropic ion entropy density 𝑠𝑖 = 𝑝𝑖∕𝜌𝛾𝑖−1 is completely analogous and results in 
. (17).

The conservation law for the perpendicular entropy density 𝑠⟂ = 𝑝⟂∕𝐵 can be manipulated as follows:
𝜕𝑠⟂
𝜕𝑡

+∇ ⋅ (𝑠⟂𝐮) = 𝑆𝑠⟂
(A.12)

1
𝐵

𝜕𝑝⟂
𝜕𝑡

−
𝑝⟂𝐁
𝐵3 ⋅

𝜕𝐁
𝜕𝑡

+
𝑝⟂
𝐵

∇ ⋅ 𝐮

+ 1
𝐵
𝐮 ⋅∇𝑝⟂ −

𝑝⟂

𝐵3 𝐮 ⋅ (∇𝐁) ⋅𝐁 = 𝑆𝑠⟂
(A.13)

𝜕𝑝⟂
𝜕𝑡

+
𝑝⟂𝐁
𝐵2 ⋅ [∇ ⋅ (𝐮𝐁−𝐁𝐮) − 𝐒𝐁] + 𝑝⟂∇ ⋅ 𝐮

+ 𝐮 ⋅∇𝑝⟂ −
𝑝⟂

𝐵2 𝐮 ⋅ (∇𝐁) ⋅𝐁 = 𝐵𝑆𝑠⟂
(A.14)

𝜕𝑝⟂
𝜕𝑡

+∇ ⋅ (𝑝⟂𝐮) + 𝑝⟂∇ ⋅ 𝐮− 𝑝⟂𝐛 ⋅ (𝐛 ⋅∇𝐮)

−
𝑝⟂𝐁
𝐵2 ⋅ (𝐒𝐁 + 𝐮∇ ⋅𝐁) = 𝐵𝑆𝑠⟂

(A.15)

here we introduced 𝐛 = 𝐁∕𝐵 and 𝐒′𝐁 = 𝐒𝐁 +𝐮∇ ⋅𝐁. We did not discard terms proportional to ∇ ⋅𝐁 for the sake of applications using 
e 8-wave scheme [7]. The last equation is the same as Eq. (15) except for the source terms, which have to satisfy

𝑆𝑠⟂
= 1

𝐵
𝑆𝑝⟂

−
𝑝⟂𝐁
𝐵3 ⋅ 𝐒′𝐁 =

𝜕𝑠⟂
𝜕𝑝⟂

𝑆𝑝⟂
+

𝜕𝑠⟂
𝜕𝐁

⋅ 𝐒′𝐁 (A.16)
11

e result agrees with Eq. (19).
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Finally, the conservation law for the parallel entropy density 𝑠∥ = 𝑝∥𝐵
2∕𝜌2 can be manipulated as

𝜕𝑠∥

𝜕𝑡
+∇ ⋅ (𝑠∥𝐮) = 𝑆𝑠∥

(A.17)

𝐵2

𝜌2

𝜕𝑝∥

𝜕𝑡
+

2𝑝∥𝐁
𝜌2

⋅
𝜕𝐁
𝜕𝑡

−
2𝑝∥𝐵2

𝜌3
𝜕𝜌

𝜕𝑡
+

𝑝∥𝐵
2

𝜌2
∇ ⋅ 𝐮

+ 𝐵2

𝜌2
𝐮 ⋅∇𝑝∥ +

2𝑝∥𝐵
𝜌2

𝐮 ⋅∇𝐵 −
2𝑝∥𝐵2

𝜌3
𝐮 ⋅∇𝜌 = 𝑆𝑠∥

(A.18)

𝜕𝑝∥

𝜕𝑡
−

2𝑝∥𝐁
𝐵2 ⋅ [∇ ⋅ (𝐮𝐁−𝐁𝐮) − 𝐒𝐁] −

2𝑝∥
𝜌

𝑆𝜌

+ 3𝑝∥∇ ⋅ 𝐮+ 𝐮 ⋅∇𝑝∥ +
2𝑝∥
𝐵2 𝐮 ⋅ (∇𝐁) ⋅𝐁 = 𝜌2

𝐵2 𝑆𝑠∥
(A.19)

𝜕𝑝∥

𝜕𝑡
+∇ ⋅ (𝑝∥𝐮) + 2𝑝∥𝐛 ⋅ (𝐛 ⋅∇)𝐮

−
2𝑝∥
𝜌

𝑆𝜌 +
2𝑝∥𝐁
𝐵2 ⋅ 𝐒′𝐁 = 𝜌2

𝐵2 𝑆𝑠∥
(A.20)

hich is the same as Eq. (14) as long as

𝑆𝑠∥
= 𝐵2

𝜌2
𝑆𝑝∥

−
2𝑝∥𝐵2

𝜌3
𝑆𝜌 +

2𝑝∥𝐁
𝜌2

⋅ 𝐒′𝐁 =
𝜕𝑠⟂
𝜕𝑝⟂

𝑆𝑝⟂
+

𝜕𝑠⟂
𝜕𝜌

𝑆𝜌 +
𝜕𝑠⟂
𝜕𝐁

⋅ 𝐒′𝐁 (A.21)

at is the same as Eq. (18).
In general, the source term for an entropy density 𝑠 that is a function of the variables 𝐔 is

𝑆𝑠 =
𝜕𝑠

𝜕𝐔
⋅ 𝐒𝐔 (A.22)

here 𝐒𝐔 are the source terms for 𝜕𝐔∕𝜕𝑡.

pendix B. Alternative non-linear forms of the entropy densities

When forming a linear combination of multiple entropy densities, it seems useful to have the same physical dimensions for 
em. For the isotropic case 𝑠𝑖 = 𝑝𝑖∕𝜌𝛾𝑖−1 and 𝑠𝑒 = 𝑝𝑒∕𝜌𝛾𝑒−1 have the same dimensions when 𝛾𝑖 = 𝛾𝑒. When the adiabatic indexes are 
fferent, one could switch to alternative definitions, such as

𝑠′
𝑖
= 𝜌 ln

𝐶𝑖𝑝𝑖

𝜌𝛾𝑖
(B.1)

𝑠′
𝑒
= 𝜌 ln

𝐶𝑒𝑝𝑒

𝜌𝛾𝑒
(B.2)

here 𝐶𝑖 and 𝐶𝑒 are constants with appropriate dimensions that make the arguments of the logarithm functions dimensionless. The 
sadvantage of these definitions is that it requires solving a nonlinear system of equations

𝑊𝑒𝑠
′
𝑖
−𝑊𝑖𝑠

′
𝑒
= 𝑠′

𝑖,𝑒
(B.3)

𝑒𝑖 + 𝑒𝑒 = 𝑒𝑡 (B.4)

r the unknown energy densities 𝑒𝑖 and 𝑒𝑡.
Similarly, an alternative form of the anisotropic entropy densities can be defined [17] as

𝑠′∥ = 𝜌
1
3
ln

𝐶∥𝑝∥𝐵
2

𝜌3
(B.5)

𝑠′⟂ = 𝜌
2
3
ln

𝐶⟂𝑝⟂
𝜌𝐵

(B.6)

hich have the same dimensions, moreover, they have the desired property that 𝑠′∥ + 𝑠′⟂ = 𝑠′
𝑖
when 𝛾𝑖 = 5∕3 and 𝑝∥ = 𝑝⟂. On the other 

nd, the linear combination 𝑠′× =𝑊⟂𝑠
′
∥ −𝑊∥𝑠

′
⟂ does not have any obvious physical meaning, and one needs to solve a non-linear 

stem of equations for 𝑒∥ and 𝑒⟂.
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