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ARTICLE INFO ABSTRACT
Keywords: It is commonplace to solve the extended magnetohydrodynamics (MHD) system of equations
Weak solution in non-conservative form, in particular using equations for pressures. This approach leads to

Conservation laws

unpredictable behavior at discontinuities such as shock fronts. Here we propose using a linear
Extended magnetohydrodynamics

combination of entropy densities to distribute the non-adiabatic heating among the various
pressure components in a deterministic manner. In particular, we describe algorithms that
can distribute the non-adiabatic heating between electrons and ions when the electron and
ion temperatures are solved separately, and between parallel and perpendicular pressures for
anisotropic pressure MHD. The same approach can also be used for extended hydrodynamic
equations. The algorithm is based on conservation laws, which provides proper convergence to
weak solutions as demonstrated by numerical tests.

1. Introduction

The ideal magnetohydrodynamic (MHD) equations can be written in a conservation form in terms of mass, momentum and energy
densities and magnetic field. A conservative discretization of these equations guarantees correct weak solutions across discontinuities,
in particular across MHD shocks. When ideal MHD is extended to account for pressure anisotropy and/or electron pressure being
different from ion pressure [1-3], there is no obvious way to write the extended MHD equations in a conservative form that is correct
across discontinuities, such as shocks and current sheets. In reality, the distribution of the total energy density among electron, ion
and/or parallel and perpendicular energy densities is determined by physical processes at the shock front or the current sheet that
are not captured by the extended MHD equations, which represents them as discontinuities. This means that the electrons pressure
downstream the bow shock of Earth or the ratio of parallel and perpendicular ion pressures behind a shock produced by a coronal
mass ejection are not realistic in the simulation and may not even converge to a deterministic value with increasing grid resolution.

Here we propose an algorithm to handle both ion pressure anisotropy and separate electron pressure in a way that provides weak
solutions that are similar to shocks observed in space by satellites or simulated with kinetic models. In particular, we propose to solve
for the total energy density (in conservation form), together with linear combinations of entropy densities (instead of pressures). The
entropy equations are in conservation form for electrons [4] as well as for the parallel and perpendicular ion entropy densities [5].
The weights in the linear combinations can be used to determine how the non-adiabatic processes increase the individual entropy
densities and corresponding pressures. The conservation form guarantees that the solution is well-behaved across discontinuities,
which is not true for the non-conservative pressure equations.
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In general, the non-adiabatic heating fractions are not constants. Electron heating across shocks has been studied with kinetic
simulations, and it was found that a non-zero fraction W, of the total non-adiabatic heating is deposited into the electron energy
density [6]. For the anisotropic ion pressure, let us consider the two extreme cases: parallel shocks where the magnetic field B
is parallel with the shock normal n, and perpendicular shocks with B - n = 0. We expect that for parallel shocks most of the non-
adiabatic heating is deposited into the parallel entropy, while for perpendicular shocks most of the non-adiabatic heating goes into the
perpendicular entropy. We note that the anisotropy may be limited by instabilities [2]. Our algorithm accommodates non-constant
weights as long as the variation of the weights is smooth across the discontinuities.

Section 2 describes the extended MHD equations in various forms, including the entropy and pressure equations. Section 3
describes the new algorithm. Numerical tests are presented in Section 4, and we conclude in Section 5.

2. Extended MHD equations using entropy

The extended MHD equations in a conservative form [1,2] can be written as

0
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where p is the mass density, u is the bulk velocity, B the magnetic field vector, b = B/B is the unit vector parallel with B and
p=p, + p,. The magnetic field units are chosen to make the magnetic permeability y, = 1. The isotropic ion pressure equations
can be obtained by setting p;; = p, = p;. Setting p, =0 eliminates the separate electron pressure. Finally, setting B =0 results in the
hydrodynamic equations. The source terms on the right hand sides are zero for ideal MHD, but they may differ from zero in general.
The total energy density is
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where e, is the total thermal energy density, e; = e + e, is the ion thermal energy density, and e, is the electron thermal energy
density. The energy densities are related to the pressures as
Py
= 6
Ca Vo1 (6)

where a stands for e,i, || or L. The adiabatic indexes are y; =5/3, yy =3 and y, =2 from the y = (F + 2)/F relationship with F the
degrees of freedom. The electron adiabatic index y, can be different from y; in general.

The specific entropy density (per unit mass) of a gas is usually defined as ¢ = In(Cp/p”) from the Sackur-Tetrode equation where
C is some constant with appropriate dimensions. One can define the volumetric entropy density as s = p f(c), where f is an arbitrary
differentiable function (see Appendix A and Appendix B). We can choose f(c) = exp(c)/C so that s = p/p"~! is a linear function of
pressure p. Analogously, the volumetric electron entropy density can be defined as

v, — 1
= "y_lee (7)
ple

where we used Eq. (6) to express p, from e,. If the ion pressure is assumed to be isotropic, the ion entropy density is

e
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In the anisotropic ion pressure case [5], the parallel and perpendicular ion entropy densities (see also Appendix A) that are linear
functions of the energy densities are

2
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All entropy densities satisfy a simple conservation law (for smooth solutions):
05,
T +V-(s,w=S, amn

Using different functions f, to define s’ = pf,(s,/p) lead to alternative definitions of entropy densities that all satisfy the con-
servation law (11). The particular choices above have linear dependence on energy densities, s, « e,, which will be useful later
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on. Combining these conservation laws with the definitions of the entropy densities leads to the usual non-conservative pressure
equations (see Appendix A). The electron pressure equation:

ap,
5 TV W+ = DpV-u=S5, a2
For isotropic ion pressure the ion pressure equation:
op;
LtV G+ - pYV-u=s, 13)
For anisotropic ion pressure the parallel and perpendicular pressure equations:
op)
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The entropy source terms are obtained by taking the time derivatives of Egs. (7)—(10) (see Appendix A for a detailed derivation):
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where S’y =Sy +uV - B, i.e. if the 8-wave [7] source term —uV - B is used in the induction equation, then it does not enter the
entropy source terms SS” and S .

3. Distributing the non-adiabatic heating

Solving the conservative energy equation (3) provides a time derivative, or in the discrete sense a change, for the energy density,
which we denote as Ae. Solving the discrete form of the entropy density equations (11) provides preliminary updates for s,, and the
corresponding thermal energy densities e, from Eq. (7)—(10). We denote this preliminary (adiabatic) change as A e, where the s
subscript indicates that the update is based on an entropy conservation law. The update of the thermal energy e, based on the total
energy equation (3) and Eq. (5) and the adiabatic updates of energy densities e, based on Eq. (11) are related as

Ae, =Age, +Age; + Ae, (20)

where the last term Ae, = Ae, — Aje, — A e; describes the non-adiabatic heating. For well-resolved smooth solutions Ae, = 0 within
truncation error. Across a discontinuity, however, Ae, # 0. In the anisotropic case the adiabatic change in the ion thermal energy
consists of the sum of the parallel and perpendicular adiabatic energy changes:

Aje;=Agey +Ase; (21
3.1. Distributing non-adiabatic heating between isotropic electron and ion pressures

First we discuss the distribution of the non-adiabatic energy between electrons and ions with an isotropic ion pressure. Assuming
that a fraction W; of this energy goes into the ions and W, = 1 — W; into the electrons, we can define the ion and electron thermal
energy updates as

Ae; =Aje; + WiAe, (22)
Ae,=Ase, + W,Ae, (23)

Setting W, = 0 assumes that the electrons are heated adiabatically, which is not valid based on kinetic simulations [6] and satellite
observations [8] that suggest W, ~ 1/4.

It is not entirely obvious that the updates Egs. (22) and (23), which can be viewed as adding and subtracting source terms, will
not have the same issue as solving the non-conservative pressure equations: the solution may depend on the discretization errors at
the shock front. There is a good reason to believe that is not the case as long as y; = y,. In this particular case moving energy between
e; and e, will not change the total pressure p = p; + p,, which is the only form of pressure entering the momentum equation (2),
energy equation (3) and the definition of the energy density Eq. (5).

When y; # 7., we have to specify the shock heating of electrons and ions in a manner that relies on conservation laws. We
introduce a “combined entropy” density
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Sie = I/Vesi - I/Vise (24)

that needs to be conserved. The non-negative weights satisfy W; + W, =1 (although this is not essential). We take the difference
instead of the sum, as we expect the non-adiabatic heating to increase both the ion and electron entropy densities, so it is their
weighted difference that can be conserved. Clearly, s;, satisfies a conservation law similar to s, in Eq. (11). If W, =1 then the ion
entropy is conserved, so all non-adiabatic heating is pushed into the electrons. If W, =0, then the electron entropy is conserved
(since s;, = —s, is conserved), and all non-adiabatic heating is deposited into the ions. In the general case, one needs to solve the
following two equations for the unknowns e; and e,:

Wee; — W€, = Sje (25)

e, +e,=¢ (26)

where we introduced the energy weights w, = W,(y; — 1)/p"~! and w; = W;(y, — 1)/p<~! based on Egs. (7) and (8). The solutions
are

_ St wie
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With some manipulations, the equations can be rewritten into an update form:
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w, w,
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For the case y, =y;, these equations become the same as Egs. (22) and (23), which confirms that Egs. (22) and (23) will produce
correct weak solutions for this case.

The weights W, and W, can vary smoothly and slowly across the shock, and the solution will remain well-behaved. For example,
the weights can depend on the plasma beta or the Mach number upstream of the shock front.

3.2. Distributing non-adiabatic heating between parallel and perpendicular ion pressures

In the anisotropic ion pressure case (starting with no electron pressure equation here, and continuing with electron pressure in
subsection 3.3), the goal is to distribute the non-adiabatic energy gain Ae, between the parallel and perpendicular thermal energies
e and ¢, . Using weights W, and W) =1 — W, the combined entropy to be conserved is defined as

Sy =Wls” —VI/”SJ_ (29)

which satisfies the same conservation law as s, and s;. When W, = 1, the parallel entropy is conserved, so all non-adiabatic heating
is pushed into the perpendicular pressure. Conversely, when W, = 0, all non-adiabatic heating is deposited into the parallel pressure.
In the general case, the following system of equations need to be solved for ¢ and e, :

wpe —wyeL=sx (30)
e”+eJ_=e, (31)

where we introduced the energy weights w, = W, 2B?/p? and w, = W) /B. The solutions are

_ S)( + w”er
T v w
L Il
eL=e—¢ (32)

After some simple algebra, the equations can be written into an update form

Aey=Ae + “ Ae, =A e +¢Ae
I sEl wy +w, n sEl VI/H+WJ_2B3//J2 n
w W,
Ael=Asel+7J‘Aen=Asel+%Aen (33)

For W =0 the Ae| update is purely adiabatic and all non-adiabatic heating is deposited into Ae,, while for W, =0 the opposite
holds. For 0 < W} <1 a fraction of the shock heating is deposited into ¢, but this fraction depends on B3/p?, which is the ratio of
the coefficients of the parallel and perpendicular entropy densities in Egs. (9) and (10).
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The weights W) and W =1 — W do not have to be global constants. As long as they change smoothly and slowly across the
shock, the solution will remain well-behaved. For example, one can make W a function of the upstream angle 0, between the
magnetic field B; and the shock normal n directions:
[n-B|

B,

VV” =cosf, = (34)

where the subscript 1 refers to the upstream values. With this definition, W =1 and 0 for parallel and perpendicular shocks,
respectively. For a moving shock, the shock normal direction can be obtained from the change of velocity Au, for example.

3.3. Distributing non-adiabatic heating among electron, parallel and perpendicular pressures

Finally, we discuss the most complicated case, when we solve for the isotropic electron pressure and anisotropic ion pressures
(parallel and perpendicular). We define two linear combinations of the entropy densities:

Sie = VVeSH - I/Vise (35)
S = WJ_S” - VI/”SJ_ (36)

where W, and W, define how the non-adiabatic heating increases the electron and parallel ion entropy densities. The choice of s
over s, is arbitrary. Unfortunately using the sum of the two ion entropy densities is not particularly better, as they have different
physical dimensions. Similarly, W) and W, determines the split between s, and s, . The weights are positive and satisfy W, + W, = 1
and W) + W, = . After updating the total energy and the entropy densities, we solve the following linear system of equations for
e, epande;:

Wwee| — W;e, = Sj, 37)
wye—wye; = sy (38)
e, te te =¢ 39

where the energy weights are w; = W(y, — 1)/p"~", w, = W, B?/?, wy=W,/Band w, = W, 2B?/p?. The solutions are

_ wHSie + W; Sy + wl-w”e,
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I/UJ_CH — Sy
e =—-
wy
w,e| —S;
eCl ie
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The coefficients W; =1 — W, and W) =1 — W, can be smoothly varying functions.
3.4. Summary of the numerical scheme

Here we summarize the implementation of the numerical scheme. First we solve equations (1) to (4) for mass density p, momen-
tum density pu, total energy density e, magnetic field B and also the entropy conservation laws (11) for all entropy densities s,.
Next, we calculate the total thermal energy density e, from Eq. (5) and the linear combinations of the entropy densities s;, and/or
sy from Egs. (24) or (35) and/or (29). Finally, we obtain the energy densities e, from Egs. (27), (32) or (40), and calculate the
corresponding pressures p, from Eq. (6).

4. Numerical tests

The schemes described above have been implemented into the BATS-R-US extended MHD code [9,10,1]. We will use normalized
units throughout, so that uy = kg = M; = 1. The adiabatic indexes are 5/3 unless noted otherwise. Note that in all tests we solve
Eq. (3) for the total energy density e defined by Eq. (5), so the total energy is always conserved. The new scheme differs from the
other tested schemes in how the total energy density is distributed among the individual energy densities e,,.

4.1. 1D shocktube tests

We solve the anisotropic MHD equations with separate electron pressure on a 1D domain —128 < x < 128 resolved by 1500 grid
cells, which is more than sufficient to obtain a grid converged solution (if the scheme solves conservation laws). The second order
Rusanov [11] scheme is used with the minmod limiter applied to the primitive variables. The adiabatic index of the electrons is
7. = 5/3. The stability conditions [12] for the anisotropy are not enforced, so the results of the scheme can be clearly understood.
For the new scheme we use W, = 0.4 (instead of 0.25) to make the electron pressure variation more obvious. The anisotropic weights
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Fig. 1. Solution of the 1D parallel shock problem with the new algorithm solving for energy and entropy densities e, s;, = 0.4s; — 0.6s, and s, =0.1s; —0.9s, (solid
blue line), with the conservative scheme solving for e, s, and s; (dotted red line), and with energy conserving MHD scheme extended with non-conservative pressure
equations solving for e, p, and p; (dashed black line). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

are set by Eq. (34) but limited to stay within 0.1 < W), W, <0.9. The initial conditions are piece-wise constant separated by a
discontinuity at x = 0. The simulations are run to ¢ = 20.

For the parallel shock the upstream state at x >0 is p; = 0.25, u; =(-3.5,0,0), B; =(0.75,0,0), and p,; = pj; =p, ; =0.25,
while the downstream state at x <0 is p, =0.75, u, =0, B, = (0.75,0,0) and p,, = p, = p,» = 1.5. Fig. 1 shows the solutions
obtained with our new scheme and the typical energy conserving MHD scheme combined with pressure or entropy equations. For
the new scheme W) = 0.9, consequently the perpendicular temperature T, = p, /p does not change much across the shock at x ~ 50,
while the other schemes mostly deposit the shock heating into the perpendicular pressure and produce a larger jump in T, .

For the perpendicular shock the upstream state at x <0 is p; =0.25, u; =(=3.5,0,0), B; =(0,0.25,0) and p,; = p ; =p,; =0.25,
while the initial downstream state at x > 0 is p, =0.75, u, =0, B, =(0,0.75,0) and p,, = 1.5, p; , =0.75 and p, , =4.5. The results
are shown in Fig. 2. All schemes increase the perpendicular temperature the most. The new scheme also increases the parallel
temperature as W), = 0.1, while the other two schemes solving for the parallel pressure or parallel entropy equations do not deposit
non-adiabatic heating into p and the parallel temperature T} = p; /p remains constant. The three schemes produce different electron
heatings: the new scheme deposits some of the non-adiabatic heating into the electrons because W, = 0.4, the scheme solving for the
electron entropy provides pure adiabatic heating for electrons, while the scheme solving for electron pressure heats the electrons in
an unpredictable manner due to the non-conservative electron pressure equation.

Finally, we perform a test for an inclined shock. The initial conditions are p; =0.25, u; =(-3.5,0,0), B; =(0.25,0.25,0), p,; =
Py =pr1 =025 for x>0 and p, =0.75, u, =0, B, =(0.25,0.75,0), p.» = pj» = py» = 2.5 for x <0. Fig. 3 shows the solution for

three different schemes. For the new scheme W) =1/ \/5 =~ 0.7 from Eq. (34) to distribute the non-adiabatic heating. In this case
both the perpendicular and parallel temperatures change across the shock at x ~ 35, as expected.

Fig. 4 shows the solutions using different numerical schemes (second order Rusanov versus first order HLLE schemes) with
500, 1000 and 1500 grid cells to demonstrate that the weak solution converges independent of the spatial discretization for the
conservative methods, including the new algorithm, while it produces significantly different results for the non-conservative pressure
equations.

4.2. 2D tests

We demonstrate the use of the new algorithm on a blast wave propagating into a magnetized low-pressure plasma. The equations
are solved with the HLLE scheme [13] using the Koren limiter [14] on the primitive variables. The divergence of the magnetic field
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Fig. 2. Solution of the 1D perpendicular shock problem with the new algorithm solving for energy and entropy densities e, s;, = 0.4s; — 0.6s, and s, =0.9s; —0.1s
(solid blue line), conservative scheme solving for e, s, and s (dotted red line) and energy conserving MHD scheme extended with non-conservative pressure equations
solving for e, p, and Py (dashed black line).
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Fig. 3. Solution of the 1D inclined shock problem with the new algorithm solving for energy and entropy densities e, s;, = 0.4s; — 0.6s,, 5, = 0.3s) — 0.7s_ (solid blue
line), conservative scheme solving for e, s; and s, (dotted red line), and with energy conserving MHD scheme extended with non-conservative pressure equations
solving for e, p, and Py (dashed black line).
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Fig. 4. Solution of the 1D inclined shock problem with the new algorithm solving for energy and entropy densities e, s;, = 0.4s; — 0.6s,, s, = 0.3s) — 0.7s, (left
column), conservative scheme solving for e, s; and s, (middle column), and with energy conserving MHD scheme extended with non-conservative pressure equations
solving for e, p, and Py (right column) with second order Rusanov with 500 (dotted green line), 1000 (yellow dashed) and 1500 (solid red) grid cells and first order
HLLE scheme with 500 (dotted black), 1000 (dashed dark blue) and 1500 (solid light blue) grid cells. Note that the lines mostly overlap for the conservative schemes
(left and middle columns), but are very different for the non-conservative scheme (right column).

is controlled with the 8-wave scheme [7]. The computational domain is 0 < x, y < 1 with double periodic boundaries resolved by a
200 x 200 uniform grid. The initial conditions are p=1, u=0, and B=(1/ \/5 1/ \/5 0). The pressure is p; = 0.1 outside a circle of
radius r = 0.2 centered around x = y=0.5 and p, = 10 inside.

We perform two separate tests to study electron heating with isotropic ion pressure and anisotropic ion heating with no electron
pressure, respectively, for the sake of clarity. In the first test we solve a separate electron pressure equation with isotropic ion
pressure. Initially the pressure is distributed as p; = 0.9p and p, = 0.1p. The adiabatic indexes are set to y; =5/3 and y, =4/3 and
W, =0.25 for the new scheme. In the second test there is no electron pressure, but the ion pressure equation is anisotropic. Initially,
however, we set py=pPL=P and take WH from Eq. (34) allowing the full range from 0 to 1. In Eq. (34) the shock normal is estimated
from the change in the velocity as n = Au/Au. Note that we do not explicitly detect the shock, but the non-adiabatic heating is only
significant at the shock where the velocity change is parallel to the shock normal. The direction of the upstream magnetic field is
taken from the initial and boundary condition: B; =(1/ \/5 1/ \/5 0). The simulations are stopped at t = 0.2.

Fig. 5 shows the ion and electron pressures obtained in the first test. The left column shows the results from the new algorithm
depositing 25% of the non-adiabatic heating into the electrons. The middle column shows the results when solving for electron
entropy with pure adiabatic heating. The ions are hotter and electrons are cooler in this case. Finally, the right panels show the
solution using a non-conservative electron pressure equation. In this case the non-adiabatic electron heating depends on the numerical
errors at the shock front. Interestingly, we had to switch to the minmod limiter for the conservative scheme with no electron
heating (middle column) to avoid over and undershoots in the ion pressure. The other two simulations worked fine with the Koren
limiter.

Fig. 6 shows the perpendicular and parallel pressures obtained in the second test. The left column shows the results from the
new algorithm using Eq. (34) to distribute non-adiabatic heating between the parallel and perpendicular pressures. The middle
column shows the results when solving for parallel entropy with pure adiabatic heating. The perpendicular pressure is enhanced and
the parallel pressure is reduced in this case. Finally, the right panels show the solution using a non-conservative parallel pressure
equation. In this case the non-adiabatic parallel heating depends on the numerical errors at the shock front.

Fig. 7 shows the solutions with the source terms enforcing the firehose and mirror stability conditions [2]. The solutions of the
three schemes are more alike now, but still significantly different. This means that the stability conditions are insufficient to produce
reliable weak solutions for MHD with anisotropic ion pressure. The new scheme, on the other hand, guarantees that the converged
weak solution is not dependent on the discretization errors at the discontinuities.
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Fig. 5. Solution of the 2D blast wave problem with the new algorithm solving for energy and entropy densities e, s;, = 0.25s; — 0.75s, (left), with energy conserving
MHD scheme extended with electron entropy equation solving for e and s, (middle), and solving for e and non-conservative equation for p, (right). The top panels
show the ion pressure and the bottom panels the electron pressure.
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Fig. 6. Solution of the 2D blast wave problem with the new algorithm solving for energy and entropy densities e and s, (left), with energy conserving MHD scheme
extended with parallel entropy equation solving for e and s, (middle), and solving for e and non-conservative equation for p; (right). The top panels show the
perpendicular pressure and the bottom panels the parallel pressure.

5. Conclusions

We have developed a new approach to obtain deterministic and physically well-motivated jump conditions across shocks in
extended hydrodynamic and MHD simulations. We solve conservation equations for energy and linear combinations of entropy
densities. The weights in the linear combination determine the fraction of non-adiabatic heating deposited into the various entropy
densities. In particular, we can assign a fixed fraction of the non-adiabatic heating to electrons based on PIC simulation studies
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Fig. 7. Same as Fig. 6 but with the source terms enforcing the anisotropic stability conditions.

and satellite observations. For the anisotropic ion pressure, parallel and perpendicular shocks are expected to deposit most of the
non-adiabatic heating into the parallel and perpendicular pressures, respectively. We have demonstrated the use of smoothly varying
entropy weights (based on the upstream angle between the shock normal and the magnetic field) that transitions between the parallel
and perpendicular shock cases.

The numerical tests suggest that the algorithm works as intended and provides solutions that are less dependent of the numerical
scheme and closer to reality than the usual approaches using non-conservative pressure equations or conservative entropy equations
with pure adiabatic heating. We note that we have not shown that the new scheme necessarily converges to entropy-based weak
solutions. Proving such properties is left for future work.

The new scheme can also improve the numerical solution of reconnection at grid collapsed current sheets. While the reconnection
rate itself depends on the numerical dissipation (see appendix of [15]), the new scheme can distribute the non-adiabatic Joule
heating among the electron, parallel and perpendicular pressures in a way that is more consistent with kinetic simulations than a
simple conservative scheme solving for e, s, (and s)), which deposits most of the heat into the (perpendicular) ion thermal energy.

While in this paper we only discussed isotropic electron pressure, the ideas can be easily extended to the anisotropic electron
pressure case. The parallel and perpendicular electron pressure equations have the same form as the corresponding ion pressure
equations [16] as long as the electron and ion velocities are assumed to be the same, i.e. the Hall term is neglected. This means that
the anisotropic electron entropy densities are completely analogous to the anisotropic ion entropy densities in Egs. (9) and (10).
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Appendix A. Entropy density functions and source terms

We show that if 6 = s/ is a specific entropy function per mass then an arbitrary differentiable function of ¢ can be used to define
an alternative specific entropy function o, = f(¢) and the corresponding alternative entropy density s, = pf(s/p). The conservation
law for s, can be expanded as

a(g‘:“) +V- (o) =S5, (A1)

dp ), 0o ’
GQE +pof (O')E +o,V-(pu)+ f (U)pu-VazSSa (A.2)
0,5, + 11(0) (p(;—(; +pu- VO‘) =5, (A.3)
[(©@)S,+ ['(0)(S;—06S,)=S,, (A.4)

where f’(c) =d f(c)/do. The last equation defines Ssa based on f, S, and S,,.

Next we show that the conservation law for the entropy density function s = p,
The conservation law for s is

1/7e

./ ¢ results in the electron pressure equation (12).

ds

E+V-(su):SS (A.5)
1 1/7,-10P, 1 1/y,-1 1
_Pe/ye _e+_pe/ye Vpe'u+pe/yev'u=ss (A6)
Ye ot .
ap, 1-1
a—;+VpE-u+yEpeV-u=yepe /“SS (A7)

which is equivalent with Eq. (12) if S, = (ds/ 0pe)Spe =(1/ ye)pi/ ye_lSpe. We can obtain the alternative electron entropy density s,

that is linear in the electron energy density e, by applying the function f(c) = o', so that s, = p,/p"~!. The source term for s, can
be obtained from Eq. (A.4):

S, =f(@)S,+ f(e)(S;—0S,) (A.8)
= Pe o-1
=—=8,+71.0" (S,-05,) (A.9)
e
—(-yp)Pes + L g (A.10)
LT g1 P
_ dseS + 0s, (A11)
- dp 14 ap, Pe .
in agreement with Eq. (16). The derivation for the isotropic ion entropy density s; = p;/p’i~! is completely analogous and results in
Eq. (17).
The conservation law for the perpendicular entropy density s, = p, /B can be manipulated as follows:
s
o +V- (s w=.5 (A.12)
7} B
l ﬂ — PL . @ + p_J‘V -u
B ot B3 ot B
1 by
+ Eu-Vpl—Eu-(VB)-BzSSl (A.13)
dp, p,B
74‘? '[V'(UB—BU)—SB]+]JJ_V'U
pL _
+u-Vp, — Eu-(VB)'B—BSSl (A.14)
opy
T V-(pyw+p,V-u=-p,;b-(b-Vu
_ 2B s tuv.B)=Bs (A.15)
B2 B tU sy ’

where we introduced b =B/B and S;; =Sg +uV - B. We did not discard terms proportional to V - B for the sake of applications using
the 8-wave scheme [7]. The last equation is the same as Eq. (15) except for the source terms, which have to satisfy

B
lS P1

_aSJ_ dsl
L B3 I

.8 + 8Ly, (A.16)

S =
B™ . PL B

Sy = E
The result agrees with Eq. (19).
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Finally, the conservation law for the parallel entropy density s = p B?/p? can be manipulated as

6s”
= +V (=S, (A.17)
2 dp 2p,B 2p,B? § py B?
B 23 o _E o nF g,
p ot p ot p ot p
2 2p B 2p, B?
+ Zuvp + 2 vB- P u V=S, (A18)
p P P
opy  2pB 2p)
7 - ? . [V(UB—BU)—SB]— TSp
3p,V oo+ . vB)-B= L5 A19
+5pV-u+u- P||+FU'( ) = F (A.19)
op)
oy, B,
- 7S,,+ 2 Sy = ESS" (A.20)
which is the same as Eq. (14) as long as
2
_B 2p B 2B 05y 05y o 981 o
SSH_?SPH_p_3SP+7.SB_ESPL+ESP+£.SB (AZl)
that is the same as Eq. (18).
In general, the source term for an entropy density s that is a function of the variables U is
ds
S,= 55 Sy (A.22)

where Sy are the source terms for dU/oz.
Appendix B. Alternative non-linear forms of the entropy densities
When forming a linear combination of multiple entropy densities, it seems useful to have the same physical dimensions for

them. For the isotropic case s; = p;/p"i -1 and Se =D,/ p’e~! have the same dimensions when 7; =7.- When the adiabatic indexes are
different, one could switch to alternative definitions, such as

C.p.

s =pln —2t (B.1)
pVi
C

s; =pln ele (B.2)
p}’c

where C; and C, are constants with appropriate dimensions that make the arguments of the logarithm functions dimensionless. The
disadvantage of these definitions is that it requires solving a nonlinear system of equations

VVes; - VV,»s; = s;’e (B.3)
e +e,=¢ (B.4)

for the unknown energy densities ¢; and e,.
Similarly, an alternative form of the anisotropic entropy densities can be defined [17] as

2
;1 GpyB

5= pg In 3 (B.5)
2, Cipy
s'l = pg In B (B.6)

/
I
does not have any obvious physical meaning, and one needs to solve a non-linear

which have the same dimensions, moreover, they have the desired property that s

!
1

+s/ =s! wheny, =5/3 and p, = p, . On the other
hand, the linear combination s/, = Wj_sfl -Ws
system of equations for ej and e, .
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