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Using artificial intelligence teaching assistants to guide students in solar 
energy engineering design
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ABSTRACT
Engineering projects, such as designing a solar farm that converts solar radiation shined on the 
Earth into electricity, engage students in addressing real-world challenges by learning and applying 
geoscience knowledge. To improve their designs, students benefit from frequent and informative 
feedback as they iterate. However, teacher attention may be limited or inadequate, both during 
COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for 
engineering design with a built-in artificial intelligence teaching assistant (AITA). We also present 
two curriculum units (Solar Energy Science and Solar Farm Design), where students explore the 
Sun-Earth relationship and optimize the energy output and yearly profit of a solar farm with the 
help of the AITA. We tested the software and curriculum units with over 100 students in two 
Midwestern high schools. Pre- and post-survey data showed improvements in understanding of 
science concepts and self-efficacy in engineering design. Pre-post analysis of design performance 
gains reveals that AI helped lower achievers more than higher achievers. Interviews revealed 
students’ values and preferences when receiving feedback. Our findings suggest that AITAs may be 
helpful as an additional feedback mechanism for geoscience and engineering education. Future 
efforts should focus on improving the usability of the software and providing multiple types of 
feedback to promote inclusive and equitable use of AI in education.

Introduction

There is an increasing demand to integrate engineering 
design with geoscience education. At the K-12 level, the 
Next Generation Science Standards (NGSS) listed seven 
Earth and Space Science (ESS) performance expectations 
that incorporate engineering practices. For example, high 
school students are expected to “evaluate competing design 
solutions for developing, managing, and utilizing energy and 
mineral resources based on cost-benefit ratios” (NGSS Lead 
States, 2013). In addition, the K-12 science faculty, including 
ESS educators, share the responsibility to address 14 separate 
NGSS performance expectations for engineering design, such 
as “design[ing] a solution to a complex real-world problem by 
breaking it down into smaller, more manageable problems that 
can be solved through engineering” (NGSS Lead States, 2013). 
According to the National Research Council’s A Framework 
for K-12 Science Education, on which the NGSS is based, a 
major advantage of integrated science and engineering edu-
cation is that “[f]rom a teaching and learning point of view, 
it is the iterative cycle of design that offers the greatest poten-
tial for applying science knowledge in the classroom and 
engaging in engineering practices” (NRC, 2012, pp. 201–202). 
The interactivity of and repeated involvement in engineering 

design projects may also help trigger and maintain students’ 
situational interest in ESS (van der Hoeven Kraft, 2017).

Of all engineering design projects within an ESS context, 
renewable energy engineering may be one of the most famil-
iar to a K-12 audience. Take solar energy engineering—the 
design and deployment of solar power systems—for an 
example. Prior research suggests that while an overwhelming 
majority of students reported some familiarity with the con-
cept of solar panels and many reported seeing them in their 
everyday lives, much fewer could use ESS knowledge such as 
solar angles to explain what time of day solar panels worked 
best (Kishore & Kisiel, 2013). Therefore, a solar energy 
design project can both relate to students’ personal experi-
ences with solar energy and reinforce their ESS knowledge 
through repeated application in an iterative design process. 
For example, how can the design of utility-scale solar panel 
arrays—or solar farms—integrate ESS with engineering? For 
starters, the energy output of solar panels depends on solar 
irradiance, which fluctuates according to the Sun’s position 
in the sky. An optimal solar farm design will use an appro-
priate tilt angle to maximize the solar insolation (the total 
incident solar radiation across a certain time) and thus the 
energy output. In addition, the exact energy output of a 
solar farm is dependent on a number of other factors, such 
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as the latitude (which determines the daytime length and 
the Sun’s relative position), the local weather (which deter-
mines the number of sunshine hours and local temperature), 
and air pollution (which can absorb and scatter light), all of 
which must be accounted for in an accurate yield analysis.

Solar energy engineering education can be a powerful 
response to the critical issues that the global coronavirus 
pandemic brought to light as educators in all disciplines 
were forced to shift toward virtual learning tools and online 
teaching. Geoscience educators were acutely aware of the 
need to reduce barriers for disadvantaged students but saw 
those new factors, such as internet access and family dynam-
ics impacted education (Riggs, 2020). Other critical issues 
also surfaced due to the pandemic such as the climate crisis 
and how both tragedies disproportionately impact marginal-
ized communities (Behune, 2020). The Biden Administration 
signed an executive order to decarbonize the energy sector 
(The United States Government, 2021), and the amount of 
renewable energy generated reached a record high of 28% in 
April 2022 (U.S. Energy Information Administration, 2022), 
which demonstrates the importance of solar energy engi-
neering and education in this sector. Meeting the decarbon-
ization goal requires a solar workforce of as many as 
500,000–1,500,000 people by 2035 (U.S. Department of 
Energy, 2021), which serves as a reminder that engineering 
design projects should be integrated into regular ESS educa-
tion so that students can be prepared to apply their geosci-
ence knowledge to mitigating global challenges such as the 
climate crisis.

The engineering design process is iterative, and improve-
ment is incremental, meaning that students would typically 
require frequent feedback on their design process and prod-
uct, often from either their teachers or their peers, so that 
they can evaluate the pros and cons of their current design, 
assess their application of scientific principles, and explore 
potential next steps. Unfortunately, teachers are often unable 
to look over each student’s shoulder to provide individual 
feedback on each design iteration due to a lack of time or 
expertise (An & Mindrila, 2020). Peer feedback may be 
more available but not necessarily as effective without proper 
training. The situation was exacerbated by the total interrup-
tion of all face-to-face interactions at the height of the pan-
demic, meaning that students were often left with no 
feedback during their learning.

In addition to introducing new challenges, the COVID-19 
crisis also highlighted existing shortcomings in science and 
engineering education, especially around issues of equity 
and inclusion. For example, the cost of physical materials 
can be a barrier for students with low socioeconomic status, 
limiting their access to and success in engineering design 
projects. Traditional engineering projects may not be acces-
sible for students with chronic illness or disabilities, who 
may rely more on virtual learning than their peers (Porter 
et  al., 2021; Thornton et  al., 2022). Also, some students may 
not actively seek teacher or peer feedback due to their per-
sonality or neurodiversity. In each case, the lack of alterna-
tives may discourage certain students from developing an 
interest or expertise in science and engineering. Therefore, 
the necessity of an ever-available virtual option has become 

evident to students and teachers. Alternative feedback 
mechanisms need not replace all in-person teacher and peer 
feedback. Still, they can serve as a safety net and allow stu-
dents to personalize their learning based on their 
diverse needs.

Recent developments in artificial intelligence (AI) have 
propelled a wave of educational applications in assessment, 
tutoring, and feedback (Afzaal et  al., 2021; Darvishi et  al., 
2022; Goldin et  al., 2017; Hooda et  al., 2022; Mirchi et  al., 
2020; Porter & Grippa, 2020). In the field of engineering 
design, AI has been used in computer-aided design (CAD) 
and computer-aided engineering (CAE) settings (Shu et  al., 
2019; Yoo et  al., 2021), computational geoscience (Bergey, 
2020), and renewable energy engineering (Vahdatikhaki 
et  al., 2022). There has been some exploration of its capabil-
ity to assess engineering design performance (Xing et  al., 
2021), but little has been reported about its potential as a 
feedback mechanism in engineering education.

To advance inclusive and equitable science and engineer-
ing education and promote student agency in developing 
solutions to global challenges using geoscience knowledge, 
we introduce 1) a virtual platform for engineering design 
called Aladdin (Figure 1); 2) a built-in artificial intelligence 
teaching assistant (AITA) capable of providing individual 
design feedback, and; 3) a week-long solar energy science 
and engineering curriculum. Aladdin is an integrated CAD 
and CAE tool for renewable energy engineering (Xie et  al., 
2023). The design of the AITA was informed by the field of 
heuristics (Gigerenzer, 2008), which has a long tradition in 
math teaching (Higgins, 1971; Hughes, 1974; Lucas, 1974), 
has been observed as a scaffolding technique for teaching 
assistants (Radford et  al., 2014), and was viewed as a suit-
able solution for AI agents (Al-Shaery et  al., 2022).

The week-long curriculum consists of two units: In the 
first unit, “Solar Energy Science,” students explore basic ESS 
concepts related to solar energy engineering, such as solar 
angles and the projection effect, which describes the varying 
angles of the Sun that shine on a designated surface will 
affect the amount of solar energy it gets. In the second unit, 
“Solar Farm Design,” students explored the design require-
ments of a solar farm, followed the engineering design pro-
cess to create their own solar farm designs, and used the 
AITA to improve their designs. We also present our evalua-
tion of the software and curriculum using data from a recent 
field study and discuss limitations and future opportunities 
for AITAs in geoscience education.

Study population and setting

The study took place in May 2022 in two suburban high 
schools in a Midwestern state. The demographics are 
reported in Table 1. Students from School 1 and School 2, 
which have similar demographics, took environmental sci-
ence and physical science, respectively. Both schools had 
resumed in-person learning at the time of the study. In 
School 1, students sat individually and used their own lap-
tops. In School 2, students sat in groups of one to four peo-
ple, each assigned to use a school-issued Chromebook. Even 
though the participants were encouraged to interact with 
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their teacher, peers, and AITA, each student was expected to 
fill out the AI worksheet and complete the AITA curriculum 
individually. Two science teachers—one from each school—
participated in three hours of professional development 
before implementing the Solar Farm Design curriculum in 
their classrooms. The resources covered during the profes-
sional development can be found in the following “Materials 
and Implementation” section.

Materials and implementation

Before the implementation, the teachers received access to 
the free Aladdin software (http://intofuture.org/aladdin.
html), the Solar Energy Science unit (http://intofuture.org/
aladdin-solar-science.html), and the Solar Farm Design unit 
(http://intofuture.org/aladdin-solar-farm-design-ai.html). The 
units included student worksheets, teacher guides, design 
journals, and links to pre-made Aladdin models. Students 
and teachers could run Aladdin directly in the browser 
using their Chromebooks or laptops. All worksheets and 
surveys were also completed online using Google Suite. The 
teachers had editor access to all Google Docs files and could 
view and leave comments on student worksheets. They could 
also view the Google Form responses of the pre- and 
post-surveys.

The full curriculum took five to seven days to implement. 
On the first day, a pre-survey was administered in class, 
which took about 10 min. The teacher then introduced the 
first unit, “Solar Energy Science,” which had also been used 
in other curriculum projects (Sung et  al., 2022). Over the 
next 2–3 days, students worked through the solar energy sci-
ence unit in a self-directed fashion. The main learning 
objectives of this section were to describe the Sun’s position 
using solar elevation and azimuth angles, describe the daily 
and seasonal changes of solar angles, describe the relation-
ship between the angle of incidence and the energy output 
of a solar panel, and explain the optimal tilt angles of a solar 
panel that maximizes the energy output in each season and 
in a year. Each activity followed the Predict-Observe-Explain 
framework (White & Gunstone, 2014). For example, students 
would first predict the best tilt angle for fall, then conduct 
an investigation in Aladdin, where they compared the simu-
lated daily energy output of solar panels with different tilt 
angles. Finally, they were asked to explain this result using 
the solar energy science concepts they learned earlier, such 
as the solar elevation angle and projection effect. At the end 
of the unit, students completed a challenge called “Optimize 
It!” where they needed to find the best position and angle to 
place a single solar panel in a yard surrounded by trees, such 
that the panel would generate the most yearly output.

Table 1. T he demographic information of both schools that participated in the study.

  School 1 School 2

Number of periods 4 2
Total number of students in each period 25, 32, 28, 26 16, 15
Total number of students enrolled 111 31
Subject AP Environmental Science Physical Science
Age 15–18 (mode: 17) 16–18 (mode: 17)
Gender Female: 45.0%

Male: 39.6%
Didn’t report: 12.6%
Prefer not to answer: 2.7%

Female: 38.7%
Male: 54.8%
Prefer not to answer: 6.5%

Ethnicity (only showing those with population > 5%) White/Caucasian: 55.0%
Asian/Pacific Islander: 20.7%
Didn’t report: 12.6%

White/Caucasian: 61.3%
Multiple ethnicity: 16.1%
Hispanic American: 6.5%
Black or African American: 6.5%

Figure 1. A  screenshot of the virtual heliodon feature in the Aladdin software. The virtual heliodon visualizes the Sun’s current position relative to an observer on 
Earth and the Sun’s possible paths throughout a year for a given location. Students can input any date, time, and latitude into Aladdin, and the heliodon visual-
ization will update automatically to reflect the change. Students can also turn on the animation feature to see the Sun move across the sky in a day.

http://intofuture.org/aladdin.html
http://intofuture.org/aladdin.html
http://intofuture.org/aladdin-solar-science.html
http://intofuture.org/aladdin-solar-science.html
http://intofuture.org/aladdin-solar-farm-design-ai.html
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After students completed the Solar Energy Science unit, 
they continued to the Solar Farm Design unit, where they 
were tasked with designing a solar farm that would generate 
the most yearly profit for their town. Here, the main learn-
ing objectives were to evaluate a design solution using the 
given criteria and constraints, collect evidence of the design 
performance using computer simulations, improve the design 
performance through iterations, create a design that meets 
the given criteria and constraints, and explain the choice of 
design variables using scientific principles. Students were 
first introduced to the design criteria, constraints, and vari-
ables of a solar farm. The design process began with the 
students evaluating an existing solar farm design with sub-
optimal performance: a negative yearly profit. Students 
brainstormed how they could change the three design vari-
ables—tilt angle, row width (RW), and inter-row spacing 
(IRS)—to improve the performance and were asked to doc-
ument their reasoning. After choosing one design variable to 
change and specifying its new value, students input the new 
design variable into Aladdin’s layout wizard, which automat-
ically updated the solar farm design layout based on the 
specified variables. Students were directed to save their new 
design as a new file on the cloud storage as a method of 
showcasing their design artifacts and version control. 
Students then used Aladdin to calculate the yearly energy 
output and profit of their new design and compare it with 
the performance of the previous iteration, and they reflected 
on their learning during this iteration. An example iteration 
was provided on the design instruction to help explain the 
design process and clarify the expectation of student 
responses. The teacher also demonstrated how to go through 
a design iteration in Aladdin on the projector screen. After 
that, students were given at least one class period to create 
their own solar farm designs, and they were directed to doc-
ument their full design process, including their design 

variables, performances, and reflections, in a pre-formatted 
design journal accompanied by the student instruction man-
ual. Students were directed to work on their own designs, 
but they were encouraged to discuss them with their class-
mates. While the students were iterating, the teacher was 
instructed to circulate the classroom, check on student prog-
ress, and answer questions.

After students had had a chance to create at least two to 
three designs, they were introduced to the AITA. Using a 
genetic algorithm with preset parameters, the AITA used the 
current student design as the starting point, generated new 
designs by mutating the current design, improved its strat-
egy by learning from the analysis result of each iteration, 
and evaluated a total of 50 new designs over five genera-
tions. While the AITA iterated through different designs, the 
students could view an animation of how one design changed 
into the next design and evolved into the final design over 
time. The final best design (including the design variables 
and the performance) was reported as an interactive graph 
alongside all previous iterations (Figure 2). Students then 
answered a series of reflection questions on a worksheet to 
document their reaction to the AI’s design for use as feed-
back, i.e., AITA feedback, to think about how they could 
further improve their design. They then had until the end of 
the implementation to keep iterating either by interacting 
purely with AITA and/or with teacher feedback (Figure 3). 
During the implementation, students from both schools had 
access to three types of feedback—AI, teacher, and peers. 
The AI’s design also doubled as a formative assessment of 
student design, because it was not guaranteed that the AITA 
could find a better design. If the student design was already 
close to the local optimum, then the AITA would be less 
likely to find a better design or improve by any significant 
amount. A post-survey was administered on the last day of 
the implementation.

Figure 2. A  sample screenshot of an AI-generated solar farm model in Aladdin. The top window shows the evolution of three design variables (tilt, RW, and IRS) 
and one objective (yearly profit) over multiple iterations. The bottom window shows the yearly yield analysis of the current design.
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Evaluation

The goals of the evaluation were to address the following 
research questions (RQs): 1) To what extent and in what 
ways does the Solar Farm Design curriculum affect students’ 
achievement of learning outcomes? 2) To what extent and in 
what ways does the use of AITAs affect students’ achieve-
ment of learning outcomes? 3) To what extent and in what 
ways does the use of AITAs affect students’ perception of AI?

Data collection

The main data were collected using pre- and post-surveys, 
worksheets, and interviews. Students filled out the same sur-
vey before and after the implementation of the Solar Farm 
Design project to determine their pre- and post-activity per-
formance. The survey consisted of the following compo-
nents: a) Multiple choice questions that assess student 
understanding of the following solar energy science concepts 
(Xie et  al., 2018; 2023): i) Daily changes of solar angles, ii) 
Seasonal changes of solar angles, iii) Projection effect, and iv) 
Optimal solar panel tilt angle; b) A two-tier question to elicit 
students’ knowledge about engineering design and its pro-
cesses; c) An engineering design self-efficacy survey consist-
ing of nine Likert-type items with a possible 100 points 

(adapted from Carberry et  al., 2010); d) Likert scale ques-
tions about student perception of the AITA after design 
activity (adapted from Kim et  al., 2020); e) Two open-ended 
questions about what the students enjoyed and would have 
changed about the curriculum (note that components ‘d’ and 
‘e’ were only included in the post-survey).

After receiving AITA feedback, students were asked to 
answer a series of reflection questions on their AI work-
sheets and student instruction (see sample questions on the 
“Design Challenge (AI Worksheet) tab on Supplement 
Document 1” and questions on pages 12–18 on Supplement 
Document 2) and given another opportunity to improve 
their solar farm design. They also recorded their pre-AI, AI, 
and post-AI designs on the AI worksheet as design 
documentation.

Three interviewers (AB, IL, & RJ) conducted 15- to 
20-minute semi-structured interviews after the project imple-
mentation. Teachers selected five students from School 1 and 
10 from School 2, based on availability and interest, cover-
ing different levels of engagement and performance. The 
lead interviewer was determined by availability. All three 
interviewers followed the same interview protocol developed 
by one researcher (RJ) (See Supplement Document 3), but 
the exact questions asked varied for each student based on 
their progress and time availability. Table 2 shows some rel-
evant interview questions that were centered around how 
students experienced different types of feedback.

In addition, the following types of supporting data were 
collected and used to corroborate the main data:

•	 Design artifacts: During the Solar Farm Design proj-
ect, students were instructed to save their solar farm 
models on the Aladdin cloud storage. When present, 
these files were used to validate the design documen-
tation on the AI worksheets.

•	 Student activity log data: Every student action in 
Aladdin (such as turning on the heliodon, changing 
the tilt angle of a solar panel, and simulating the 
yearly energy output) was automatically logged and 
stored in a database. This log data was consulted 
when the design documentations on the AI work-
sheets were incomplete or contained inconsistencies. 
Note that the data logger in Aladdin was only enabled 
during the implementation for research purposes, 
and it is currently disabled for regular users.

•	 Design journals: During the solar farm design por-
tion of the project, students were asked to document 
each design iteration in a design journal and answer 
a series of reflection questions about each iteration 
(see “Design Challenge Journal” tab on Supplement 
Doc2). The journals were also used to validate the 
design documentation on the AI worksheets.

•	 Teacher feedback: After each class period, the teach-
ers in both schools gave verbal descriptions of their 
observations in the classroom. An informal interview 
was also conducted after the project implementation.

•	 Observation notes: In both schools, the teachers set 
up additional cameras that were connected to a video 
conference during the implementation, so researchers 

Figure 3. C lassroom photos taken during the implementation. The science 
teacher from School 2 was giving feedback on one student’s solar farm design. 
Three students on the back were inputting design variables into Aladdin’s lay-
out wizard to test their solar farm designs.

Table 2. A  list of interview questions related to design feedback.

Relevant interview questions Question Count

What part of the design process was the MOST engaging 
for you?

13

What part of the design process was the LEAST engaging 
for you?

13

What kind of feedback did you receive on your design, if any? 12
How would you compare receiving design feedback from a 

teacher, a classmate, and AI?
7

If you can change one thing about how AI gives you design 
feedback, what would you change? Why?

7

If you can receive feedback on anything, what kind of 
feedback do you think will help you the most with 
improving your design?

10
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could observe and take notes on the classroom 
dynamics and student engagement.

Compliant with IRB requirements, student assent forms 
and parent consent forms were distributed prior to the study, 
and data were only collected from assenting students. Each 
student was assigned an anonymous ID in the following for-
mat: C_P1S1 or M_P1S1. The prefix indicates the school (C 
for School 1, M for School 2), and P1S1 stands for “period 
1, student 1.” All students were only referred to by their 
anonymous IDs in subsequent data analysis.

Data analysis

After omitting students without consent forms or incomplete 
data, the remaining student data that were available for anal-
ysis are presented in Table 3. Unless otherwise stated, the 
pre- and post-survey data referenced below include only 
data from 80 students in School 1 and 28 students in School 
2 who submitted both surveys. A data table showing the 
alignment of available data with the corresponding research 
question(s) and relevant learning objectives is summarized 
in Table 4. To answer RQ1 relating to the effect of the 

engineering design activity on students’ learning outcomes, 
we conducted a paired one-tailed t-test using the aggregate 
results from the pre- and post-surveys.

For RQ2 concerning the impact of AITAs on students’ 
learning outcomes on the understanding of engineering 
design processes and engineering design performance, we 
coded students’ responses to the two-tier question on the 
pre- and post-surveys: (1) “How familiar are you with ‘engi-
neering design’? (multiple choice question)”, and (2) “What 
are the important components of the engineering design pro-
cess? Name at least three components. (open-ended question)” 
Closed coding of the responses (Saldaña, 2021) was done by 
RJ. Eight engineering process components, including identify 
a design need, research a design need, develop design solu-
tions, select the best possible design, construct a prototype, 
evaluate and test a design, communicate a design, and rede-
sign (e.g., Carberry et  al., 2010; Massachusetts Department 
of Education, 2006) were adopted to code the open-ended 
responses.

We also analyzed participants’ design data to investigate 
the effect of AITA on students’ engineering design perfor-
mance in response to RQ2. Students’ design data (including 
the pre-AI design, AI design, and post-AI design) were 
organized from AI worksheets, which were corroborated 
with their design journals and validated using the log data. 
A student’s design data was considered to be “complete” if it 
contained all three designs. A student’s design data was con-
sidered to be “coherent” if there were no inconsistencies 
among different data sources. A student’s design data was 
considered to be “unique” if the student did not share their 
data with anyone else in a group setting. Forty of 111 stu-
dents in School 1 left complete, coherent, and unique docu-
mentation of their solar farm designs before receiving AI 

Table 3. A  breakdown of student data availability from different sources.

  School 1 School 2

Pre-survey 97 / 111 87.39% 31 / 31 100.00%
Post-survey 87 / 111 78.38% 28 / 31 90.32%
Both pre- and post- 

surveys
80 / 111 72.07% 28 / 31 90.32%

Design journal 40 / 111 36.04% 16 / 31 51.61%
AI worksheet 24 / 111 21.62% 1 / 31 3.23%
Interview 5 / 111 4.50% 10 / 31 32.26%

Table 4. A  data table showing the alignment of available data with the corresponding research question(s) and relevant learning objectives.

Data Collected
Data Analyzed for 

Corresponding RQ(s)a
Relevant Learning 

Objectivesb

Both Pre- and Post-Survey    
Multiple choice questions that assess student understanding of the following solar energy science concepts: 

i) Daily changes of solar angles; ii) Seasonal changes of solar angles; iii) Projection effect, and iv) 
Optimal solar panel tilt angle

1 A1-A4

A two-tier question to elicit students’ knowledge about engineering design and its processes 2 B1-B5
An engineering design self-efficacy survey consisting of nine Likert-type items with a possible 100 points 3  
Post-Survey Only    
Likert scale questions about student perception of the AITA after design activity 3 B1-B5
Two open-ended questions about what the students enjoyed and would have changed about the curriculum 3 B1-B5
AI Worksheet    
Design documentation for pre-AITA, AITA, and post-AITA designs 2 B1-B5
Reflection questions 2 B1-B5
Student Interviews    
Interview transcripts 3 B1-B5
Supporting Data    
Pre-AI design journals 2 B1-B5
Solar farm design artifacts stored on the cloud 2 B1-B5
Student activity log data 2 B1-B5
Student instruction manual (some reflection questions) 3 A1-A4,B1-B5
Teacher feedback 2,3 B1-B5
Observation notes 2,3 B1-B5
aGoals of Evaluation (Research Questions): To what extent and in what ways does… RQ1) the Solar Farm Design curriculum affect students’ learning outcomes? 

RQ2) the use of AITAs affect students’ learning outcomes? RQ3) the use of AITAs affect students’ perception of AI?
bLearning Objectives: A) Solar Energy Science exercise: 1) Describe the Sun’s position using solar elevation and azimuth angles; 2) Describe the daily and seasonal 

changes of solar angles; 3) Describe the relationship between the angle of incidence and the energy output of a solar panel; 4) Explain the optimal tilt angles 
of a solar panel that maximizes the energy output in each season and in a year. B) Solar Farm Design unit:1) Evaluate a design solution using the given criteria 
and constraints; 2) Collect evidence of the design performance using computer simulations; 3) Improve the design performance through iterations; 4) Create a 
design that meets the given criteria and constraints; 5) Explain the choice of design variables using scientific principles.
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feedback on the AI worksheets, which were considered to be 
valid data to be included for further analysis henceforth. Of 
the 71 students who were excluded from further discussions 
of design performance, three students worked together with 
other students and used their data with permission; 15 doc-
umented data that were incomplete or incomparable with 
other students’ data; 27 used other students’ data without 
express permission or documented data that could not be 
validated by other data sources; and 26 did not finish the 
activity or document enough coherent data. Of the 40 stu-
dents in School 1 with valid data on AI worksheets, 24 doc-
umented the feedback from AI; 10 were from a class that 
had to end early before the AI activity; and six did not doc-
ument enough data. Of the 24 students who received AI 
feedback, 14 increased the yearly profit of their final design; 
two did not find a better design than AI’s recommendation; 
three did not iterate again or document enough data; and 
five students already had near-optimal designs (see Figure 
4a). Since the AITA was unlikely to improve a near-optimal 
design within one run (or 50 iterations), students with 
near-optimal designs were excluded from any analysis or 
discussion of AI feedback. We only consider the 16 students 
who either improved in their final design or accepted the 
AITA feedback for further analysis.

As for School 2, 16 of 31 students left complete, coherent, 
and unique data of their solar farm design before receiving 
AI feedback; seven documented data that were incomplete 
or incomparable with other students’ data; and eight did not 
finish the activity or document enough data. Of the 16 stu-
dents with valid data, 10 documented the feedback from AI; 
six did not document enough data. Of the 10 students who 
received AI feedback, only one student increased the yearly 
profit of their final design; nine did not iterate again or doc-
ument enough data (Figure 4b). Due to the lack of recorded 
design improvement taken from the AITA feedback from 
School 2, only AITA feedback for 16 students in School 1 
was manually categorized by RJ by comparing AI’s designs 
with students’ pre-AI designs.

Students’ engineering design performance was evaluated 
using a single metric: The yearly profit of their solar farm 
design, which equals the revenue (determined by the total 

energy output of the solar panels) minus the cost (deter-
mined by the number of solar panels used). In general, a tilt 
angle equal to the latitude of the location (around 42° for 
the two schools) would optimize the energy output per solar 
panel for an entire year, although the curriculum placed a 
wind resistance constraint that limited the maximum tilt 
angle to 35°. The other two design variables, row width and 
inter-row spacing, were coupled: A larger RW required a 
larger IRS to avoid inter-row shading. Therefore, an optimal 
design was one with an optimal tilt angle and a suitable 
pairing of RW and IRS that fit as many solar panels onto 
the given plot as possible while minimizing inter-row shad-
ing. Solar farm designs would be hereinafter denoted in the 
following format: (tilt, RW, IRS).

The allowed design space was specified as (0°-35°, 1–6 
panels, 2 m ∼ 10 m), which was also set as the search range 
of the AITA’s genetic algorithm. At least three local optima 
existed within this design space: (35°,1 panel, 2.3 m), (35°, 2 
panels, 4 m), (35°, 3 panels, 7 m). When deployed on the 
given plot in the curriculum, these optimal designs pro-
duced a yearly profit of around $420 in School 1 and $517 
in School 2. The difference was due to different weather 
conditions. A student design was considered to be optimal 
or near optimal if its yearly profit was greater than $400 in 
School 1 or $500 in School 2.

To better illustrate the common themes in AI feedback 
and student reactions in response to RQ3 about the effects 
of AITAs on students’ perception of the usefulness of AITA 
feedback and self-efficacy, we analyzed students’ AITA per-
ception responses on the post-survey and engineering design 
self-efficacy (measured by confidence) survey (Carberry 
et  al., 2010) by averaging students’ pre- and post-score on 
each item. We also analyzed students’ different reactions 
toward AITA feedback and compared their post-AI design. 
In addition, interviews were transcribed by three researchers 
(AB, IL, & RJ) and analyzed through inductive thematic 
analysis (Braun & Clarke, 2006) by RJ. The initial open 
codes were generated after a thorough reading of the tran-
scribed student responses to all interview questions. In a 
second round of focused coding, only responses containing 
open codes related to AI or feedback were reviewed, and 

Figure 4. A  breakdown of the data availability of students’ engineering design. The outer ring showed the sample size of student designs before the AI feedback 
and reasons why data points were excluded. The middle ring showed the sample size of students who received AI feedback and reasons for exclusion. The inner 
pie chart showed students’ reactions to AI feedback. (a) Statistics from School 1. (b) Statistics from School 2.
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emergent themes were identified from the final codes and 
refined into sub-themes.

Results

Solar energy science knowledge learning outcome

To answer whether the Solar Farm Design curriculum affects 
participants’ conceptual understanding (RQ1), we analyzed 
the items related to solar energy science knowledge on pre- 
and post-surveys. In School 1, the mean score increased in 
all four questions that assess solar energy science knowledge 
(Figure 5). In School 2, the mean score increased only in 
question 3 (Figure 5c), remained the same in question 1 
(Figure 5a), and decreased in questions 2 and 4 (Figures 5b, d). 
In multiple choice questions Q1 and Q3, School 1 outper-
formed School 2 in both the pre- and post-surveys by a mar-
gin of 10%-20%. In Q2 and Q4, where School 2 outperformed 
School 1 in the pretest, School 2 actually performed worse 
in the post-survey, whereas School 1 still improved. The 
paired one-tailed t-test indicated that students at School 1 
improved their understanding of solar energy science after 
the Solar Farm Design project (p1 = .00002, Mpre-1 = 1.15, 
SDpre-1 = 0.9; Mpost-1 = 1.8, SDpost-1 = 1.08), but students at 
School 2 did not (p2 = .25, Mpre-2 = 1.04, SDpre-2 = 0.74; 
Mpost-2 = 0.89, SDpost-2 = 0.74).

Engineering design performance and engineering design 
process learning outcome

To determine the effects of AITAs on participants’ engineer-
ing design performance and engineering design process 

learning outcome (RQ2), we summarized the results from 
relevant pre- and post-survey questions and their post-AI 
designs in the following sections.

Familiarity with engineering design
Before the project, when prompted with the question about 
how familiar they were with engineering design on the 
pre-survey, 51.5% of the students in School 1 and 51.6% in 
School 2 chose level 2 (i.e., “have some idea what it is, but 
don’t know when or how to do it”), followed by level 1 or the 
lowest level (“I have never heard of it or I have heard of 
them but don’t know what it is.”) with 35.1% and 35.5% of 
the votes, respectively (See Supplement Figure 1a,b). In the 
post-survey, over half of the students (54.0%) from School 1 
reported level 4 or the highest level (i.e., “I can explain what 
it is, how to do it, and I have done it”) after the project, 
followed by level 2 (29.9%) (Supplement Figure 1c). In 
School 2, the plurality choice remained at level 2 (42.9%), 
while 21.4% of the students selected level 4 (Supplement 
Figure 1d).

Understanding of engineering design process
When asked to identify important components of the engi-
neering design process on the pre- and post-surveys, stu-
dents frequently mentioned more “hands-on” processes like 
“develop design solutions” and “construct a prototype,” a 
consistent observation across both surveys that reflected the 
common impressions of engineering design among these 
students (see Figure 6). They rarely mentioned processes 
like “identify a design need,” “select the best possible 
design,” and “communicate a design,” which was expected 

Figure 5. T he distribution of student responses to the solar energy science assessment items, before and after completing the solar farm design curriculum. The 
correct answer is marked with an asterisk symbol. (a) A question about daily changes of solar angles. (b) A question about seasonal changes of solar angles. (c) 
A question about the projection effect. (d) A question about the optimal solar panel tilt angle.

https://doi.org/10.1080/10899995.2024.2384340
https://doi.org/10.1080/10899995.2024.2384340
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because those were not emphasized or practiced heavily in 
the project. Students in School 1 mentioned “research a 
design need” and “evaluate and test a design” more fre-
quently than those in School 2 in the pre-survey, but the 
differences were reduced in the post-survey. This suggested 
that the Solar Farm Design project helped students develop 
a more holistic impression of the engineering design pro-
cess and reduced the achievement gap between different 
student populations. Finally, both schools saw significant 
increases in the popularity of “redesign” (including responses 
that mentioned “iterate”, “multiple designs”, or “trial and 
error”), which may in part be due to the interaction with 
the AITA and the extensive redesigning that many students 
went through.

Students’ understanding of the engineering design process 
shows that the percentage of non-responses, which included 
answers like “I do not know” and “I am not sure,” decreased 
by 23% in School 1 and 25% in School 2, respectively 
(Figure 6). For six of the nine categories, the differences 
between pre- and post-surveys were within 10%. In School 
1, 25% more students identified “redesign” as an important 
component of the engineering design process. In School 2, 
the biggest increase was for “research a design need” (+15%), 
followed by “redesign” and “evaluate” (+10%). Students from 

both schools reported similar levels of familiarity with engi-
neering design in the pre-survey. While 54% of students 
from School 1 reported the highest familiarity with engi-
neering design in the post-survey, only 21.4% did so in 
School 2.

Design space and benchmark performance
Figure 7a shows that in School 1, 36 out of 40 students were 
able to make a profit on their solar farm design before receiv-
ing AI feedback (medianProfit-PreAI-1 = $282, SDProfit-PreAI-1 = 
362.40). Sixteen of the 36 students received AI feedback that 
improved the yearly profit of their designs (medianProfit-AI-1 = 
$392, SDProfit-AI-1 = 28.92). Fourteen students further improved 
their profit after receiving AI feedback (medianProfit-PostAI-1 = 
$420, SDProfit-PostAI-1 = 32.50), whereas two students did not. 
Notice that the students who made lower profits before 
receiving AI feedback were the ones who showed the most 
improvement with their post-AI designs.

Figure 7b shows that in School 2, 11 out of 16 students 
were able to make a profit on their solar farm design before 
receiving AI feedback (medianProfit-PreAI-2 = $266, SDProfit-PreAI-2 = 
561.00). Only one student recorded the AI feedback, which 
failed to improve the yearly profit due to a technical issue in 
the early version of the Aladdin software. However, the 

Figure 6. A  comparison of students’ self-reported understanding of the engineering design process, before and after completing the solar farm design curriculum 
calculated from semi-structured interview codes.

Figure 7. A  comparison of students’ engineering design performance (measured by the yearly profit of their final solar farm design), before receiving AI feedback 
(blue), the improvement made by AI’s recommended design (yellow), and the improvement made by students’ design after they received AI feedback (green). The 
negative y-axis was truncated to save space. Red columns below zero indicated the difference in yearly profit between students’ post-AI design and AI’s design 
when a student couldn’t further improve AI’s design. Yellow columns below zero indicated the difference between students’ pre-AI design and AI’s design, when 
the AI couldn’t improve a student’s design, which were rare faulty behaviors from AI. (a) Statistics from School 1. (b) Statistics from School 2.
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student improved their own design after receiving AI feed-
back, nonetheless.

Students’ reactions to AITAs

In the following sections, we combined the results from sur-
veys, AI worksheets, reflection questions, observations, and 
interviews to address RQ3 regarding AITA’s impacts on par-
ticipants’ perceived usefulness, self-efficacy, design decisions 
made based on AI feedback, and reactions and surprises 
toward AITA.

Impact of AITA on perceived usefulness and self-efficacy
Figures 8 and 9 demonstrate the overall impact of imple-
menting AITA feedback on learning engineering design 
based on responses from the survey. Students’ self-rated 

confidence with the eight components of the engineering 
design process indicates that the average ratings were 45 
(School 1) and 36 (School 2) out of a possible 100 before 
the project and increased to 66 (School 1) and 58 (School 
2) after the project (Figure 8). However, students from 
School 2 reported confidence levels that were consistently 
5–15% lower than students from School 1 did across all 
engineering design processes. Similarly, even though both 
schools saw a roughly 20% overall increase in confidence 
levels in the post-survey, students from School 1 reported 
higher confidence levels for every design process. Similarly, 
students’ overall perception of AITA’s usefulness in the 
post-survey shows that students were more positive in 
School 1 with an average rating of 4.38 compared to 4.25 for 
School 2 (M1 = 4.38, M2 = 4.25), although students’ percep-
tions displayed a larger standard deviation for School 2 (SD1 
= 1.53, SD2 = 1.90) (Figure 9).

Figure 8. A  comparison of students’ self-rated confidence in the engineering design process, before (pre-) and after (post-) completing the solar farm design 
curriculum using a 100-point Likert-type survey.

Figure 9. R esponses to a 7-point bipolar Likert scale question about student perception of the AITA, with 1 being “strongly disagree” and 7 being “strongly agree.” 
The remaining numbers were not labeled in the survey.
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Summary of students’ reactions to their pre- and post-AI 
design
Students’ reactions to the AI feedback from the AI work-
sheet and reflection questions are summarized in a vertical 
treemap chart (see Figure 10). The tilt angle was analyzed 
separately due to it being relatively independent from the 
other two design variables. One common AI feedback to 
decrease the tilt angle, received by 11 students total, was 
considered an artifact of the software algorithm because the 
AI search range for tilt angle was capped at 35°, and AI 
could only output floating point numbers that were bound 
to be less than 35°. Ten of 11 students made the correct 
decision to reject the feedback to decrease the tilt angle. 
When AI did use a higher tilt angle, which was interpreted 
as feedback to optimize the tilt angle, two students improved 
their design by accepting the feedback and further increas-
ing the tilt angle, while one accepted the feedback but did 
not make improvements in their post-AI design. We also 
found that when AI used design variables that were similar 
to what students used, the feedback became more difficult to 
interpret and led to some misinterpretation. For instance, 
one rare occasion showed that AI was able to inspire stu-
dents to diverge the tilt angle even when its own attempt 
yielded less profit (see case C_P5S16’s reaction in Category 
1 below for a more detailed example).

Another common AI feedback was to use a different RW 
or IRS than the student did, and it was interpreted as the 
feedback to diverge more in the design space. There were 14 
students who received this feedback, and among them, 12 
made further improvements in their post-AI designs, i.e., 
nine copied AI’s exact same values in their final designs and 
three accepted the feedback and diverged further, while the 
other two did not lead to any improvement (one accepted 
and one rejected AI feedback). We found two incidences in 
which students were inspired by AITA’s recommendation to 

optimize IRS. Even though one accepted and one rejected 
AI’s feedback, they both improved their post-AI designs. 
One student (see C_P5S16’s case for example below) was 
inspired by AITA’s suggestion and diverged for 17 unsuccess-
ful iterations. He then copied AITA’s RW and IRS design in 
his post-AI design and further improved the annual profit.

Categorizing students’ reactions to AI feedback
Based on students’ reactions to AITA’s recommendations on 
the three design variables from AI worksheets and reflection 
questions, the 16 students’ reactions are grouped into five 
categories:

Category 1: Best of both worlds (seven students)
The first category illustrates the most common AI feedback 
and the most common student reaction. When AI parame-
ters yield better outcomes, the students accepted or copied 
those parts. When students’ outcomes were better, they 
rejected AI-recommended parameters. For instance, C_
P5S29’s pre-AI design was (35°, 2 panels, 12 m) and made a 
yearly profit of $220. AI’s recommended design was (33.87°, 
3 panels, 8 m) and made $374 of profit. The student was 
“not really” surprised by AI’s tilt angle because they “knew 
the optimal range is between 30°-60°”, but they rejected AI’s 
change and kept the original tilt angle in the final design.

However, C_P5S29 was “very much” surprised by the 
other changes because “minor changes created such drastic 
differences.” They ended up copying AI’s exact RW and IRS 
in the final design, (35°, 3 panels, 8 m), which made $383 
of profit.

C_P5S16’s pre-AI design was (35°, 2 panels, 4 m) and 
made $412 of profit. When they saw AI’s design of (33.21°, 
3 panels, 6.89 m), they were not surprised by the wider rows, 
keeping the following notes in the AI worksheet: “In my 

Figure 10. A  vertical treemap chart showing students’ reactions to different AI feedback. The chart can be interpreted using the following color-coded tiles—Blue 
tiles represented different categories of AI feedback. Dark green tiles represented student reactions that led to further improvement of the yearly profit in the 
post-AI design. Red tiles represented reactions that didn’t lead to any improvement. Light green tiles represented reactions that wouldn’t have led to any improve-
ment per se but still did due to the optimization of other design variables. The number included in the parenthesis represents the number of students for a 
particular category.
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initial testing, I found that 3 panel width was effective in cre-
ating a large amount of profit. Only after much more testing 
did I find a much more effective 2 panel width design. So, it 
does not surprise me that the AI found and stuck with the 
3-panel width idea.” Their design documentation on the AI 
worksheet, which had over 10 iterations, showed that they 
had already tried (35°, 3 panels, 6.5 m). Their post-AI design 
of (35°, 3 panels, 6.89 m) combined AI’s wider rows and 
their original tilt angle and made $421 of profit.

In total, seven students responded in the same way to AI 
feedback: They kept their original tilt angle when AI used a 
lower one, copied AI’s RW and IRS, which were different 
from their original ones, and improved their profit in the 
end by combining the best of both worlds.

Category 2: Go the extra mile (three students)
Instead of directly copying AI’s design variables, students in 
Category 2 accepted AI’s feedback to diverge and diverged 
further in the design space. In the case of C_P4S30 (see 
Table 5), the student’s pre-AI design was (35°, 2 panels, 
7 m) and made a yearly profit of $297. The AITA recom-
mended the design (33.87°, 3 panels, 8 m) and increased 
the yearly profit to $314.44. The student also reported 
being surprised by AI’s changes to the RW because “an 
increase in the [row] width by 1 panel resulted in such a big 
difference in energy output.” They went on to explain the 
rationale of this surprise: “If there are more solar panels per 
row, then the yearly energy output will increase because the 

additional panels receiving sunlight contribute to the amount 
absorbed.”

In the reflection, the student agreed with the change in 
RW, while acknowledging that there could be more optimal 
tilt angles. He did not agree with the change in IRS, citing 
the decrease in solar panels that would ensue. The student 
then documented three design attempts (Figure 11), the best 
of which made $420.62 of profit by integrating AI’s new RW 
of three panels into their original design to create the final 
design (35°, 3 panels, 7 m). C_P4S30 ended up accepting AI’s 
feedback to diverge and diverged further in the design space 
by combining AI’s wider rows with their own tighter IRS.

Two other students reacted similarly by going the extra 
mile. For instance, C_P6S18’s pre-AI design was (32°, 2 pan-
els, 6 m), and when they saw AI’s design of (30.66°, 3 panels, 
7.37 m), they pivoted to wider rows and further increased 
the IRS, creating the final design (35°, 3 panels, 8 m). 
However, C_P6S20’s pre-AI design was (35°, 3 panels, 10 m), 
and when they saw AI’s design of (33.76°, 1 panel, 2.33 m), 
they kept their wider rows but took inspiration to decrease 
the IRS, creating the final design (33.76°, 3 panels, 6 m).

Category 3: You may already know this (two students)
Students in this category were able to activate their existing 
knowledge based on AI’s feedback to improve their design 
and reinforce science and engineering design understanding. 
For example, when AI changed the tilt angle of C_P4S19’s 
design from 30° to 34.5°, they further increased it to 35°. 

Table 5. A  partial reproduction of C_P4S30’s AI feedback worksheet showed the documented evolution of their solar farm design, before and 
after receiving feedback from the AITA.

Design variables Your design AI’s final design Your new design 1 Your new design 2 Your new design 3

Tilt angle (º) 35 27.47 35 30 30
Row width (panels) 2 3 3 3 2
Inter-row spacing (m) 7 7.55 7 8 5
Number of solar panels 66 96 99 90 90
Yearly energy output (kWh) 30094.77 43305.87 45044.48 40803.92 40790.26
Yearly Profit ($) 296.69 314.47 420.62 345.98 342.57

Figure 11. S ide-by-side comparison of three solar farm designs. (a) C_P4S30’s best design before receiving AI feedback. (b) The AITA’s design, which used wider 
rows and a lower tilt angle than (a). (c) C_P4S30’s best design after receiving AI feedback, which used the same wider rows as in (b) but reverted to the higher 
tilt angle used in (a).
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Reflecting on this decision, they wrote: “We noted that any 
degree closer to 35 is more ideal. So even that slight change 
of half a degree can make a dollar or more difference over the 
course of a year.” They also copied AI’s RW and IRS to 
increase yearly profit by $4. They concluded by stating: 
“Increasing tilt closer to the 35 degree constraint will result in 
an increase in profit. The act of using less solar panels far 
[outweighs] the costs of spending … on [maintaining] more 
solar panels poorly positioned.”

Another student (C_P5S23) was surprised to see the 
AITA increase the tilt angle of their design from 30° to 33° 
and wrote: “I say this because I did not think about further 
tilting the panels as I felt I had reached the sweet spot. Now, 
I understand that the further tilt accommodates the middle 
seasons, fall and spring, much more appropriately and there-
fore produces more energy.”

Category 4: Unintended consequences (two students)
Students in this category accepted but misinterpreted AI’s 
feedback, which led to unexpected results in their final 
design. For example, when C_P5S5 compared AI’s tilt angle 
of 30.09° with their own tilt angle of 30°, he wrote: “I wasn’t 
surprised because I feel like 30 degrees is the best tilt angle.” 
They did try other design variables after receiving AI feed-
back with varying design variables, (31°, 4 panels, 9 m), (35°, 
3 panels, 10 m), (27°, 2 panels, 4 m), but when none of the 
attempts improved AI’s design, they concluded that “the 
[30°] angle is perfect.” Similarly, when C_P5S20 compared 
AI’s feedback of (32.74°, 1 panel, 2.85 m) with their own 
iterations (35°, 1 panel, 3 m), (31°, 1 panel, 2.5 m) they 
wrote: “I am not surprised because I know that the tilt angle 
is most efficient in the low thirties due to the seasons.” When 
their best post-AI design, which used a slightly higher tilt 
angle of 31° and a narrower IRS, turned out to be better 
than AI’s, they concluded that: “If the solar panel tilt is closer 
to 30 degrees, the amount of total energy increases” without 
further iteration by controlling variables. Both C_P5S5 and 
C_P5S20 interpreted AI’s feedback based on their feelings or 
relied primarily on their prior knowledge rather than con-
ducting more controlled experiments to isolate the effect of 
different design variables on annual profit.

Category 5: No pain, no gain (two students)
Students in this category had the potential to improve their 
design just by changing a particular variable at a time based 
on AI’s recommended design for a few more iterations. For 
example, C_P5S2’s pre-AI design was (30°, 1 panel, 3 m), 
and when AI recommended the design (32°, 3 panels, 7 m), 
they rejected the feedback to diverge to 3-panel rows and 
kept using 1-panel rows. That decision could still have led 
to success, since the student was already near the local opti-
mum (35°,1 panel, 2.3 m), which would have made over 
$400 of profit, but the student stopped short at (34°,1 panel, 
2.5 m), which made $10.5 less than AI did. On the contrary, 
C_P5S1 demonstrated strong reasoning skills (by changing 
one design variable recommended by AITA at a time) and 
persistence (with 50 iterations recorded on log data) by 
making the most profit ($466) among their peers.

Students’ preferred source of feedback and their reasons
Students described various qualities they valued when receiv-
ing feedback on their designs. Table 6 shows the results of 
the thematic analysis of the interview transcripts and Figure 
12 and Figure 13 show students’ evaluation about the AITA 
curriculum. In general, AI feedback excelled at providing a 
visual representation of iterative computation and epistemic 
agency with this computational power (Figure 12). For 
example, when asked from whom they prefer to receive 
feedback, C_P5S29 picked AI feedback because AI “can do 
more calculations than the teacher can or would want to.” 
Nonetheless, AI lacked the empathy that a human teacher or 
a peer could provide. When M_P5S16 explained why they 
preferred peer feedback, they said, “…because they [my class-
mates] are in the same kind of position as me. Because they’re 
also experimenting with it as we do it together, and it kind of 
helps. Sometimes we might realize something and be like, ‘Oh, 
yeah, make sure to do that.’” There were also four accounts 
of students complaining about the software crashing or 
being difficult to navigate, which hindered its usefulness, 
and could have been attributed to the high frequency of 
complaints around technical issues (Figure 13).

Students reacted favorably to the type of comparative 
feedback provided by the AITA. M_P6S9 found the AI feed-
back “straightforward” because “it was like seeing, ‘Oh, I did 
this one way, and the AI did this another way’.” Students also 
offered a variety of ideas for how the AITA could give dif-
ferent types of feedback. M_P5S16 would like more specific 
feedback, such as "it’s a little bit too slightly to the left." C_
P3S28, who did not interact with AI, also wanted directive 
feedback such as “Oh, other students had success changing 
the row width. Maybe you should try doing that.”

In addition to design improvements, some students 
reported that AI helped them figure out what to do in the 
design process. For example, M_P5S10 described how the 
AITA was “where it all clicked, and it made sense on what 
everything was doing.” He explained that

…before we started making our own [solar farm], I was just 
kind of pressing buttons and watching things change… I didn’t 
know really what to do… And then, once we did our own [solar 
farm], the directions actually made me change them and I 
watched them change, like the visual aspect.

Finally, there was further evidence that the presence of an 
AITA created affective responses among students. Students 
reported being surprised by the AITA, which was also observed 
in the student reflections from the AI worksheet. M_P5S10 also 
claimed the most engaging part of the design process was “when 
… we built one [solar farm], and then we compared [ours] to the 
AI.” The engagement did not guarantee a positive experience 
throughout, but there could be payoff at the end. According to 
M_P5S5, “I was hearing how a little bit of people were struggling, 
but then they were happy when they beat the AI.”

Student interview data showed no dominant source of 
feedback (teacher, peer, or AI) that was preferred by the 
majority (see Supplement Figure 2). Instead, students pro-
vided different reasons for preferring each source of feed-
back. For example, M_P6S7 elaborated that they “might take 
in my fellow classmates if they were doing really good, and 

https://doi.org/10.1080/10899995.2024.2384340
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they were improving multiple times each time.” It is worth 
noting that some students also expressed a preference for 
multiple sources of feedback. For example, M_P5S16 com-
mented “I would compare it [the feedback] and see if a lot of 
the things that they mentioned matched up with one another… 
If a student and a teacher said that the positioning was a 
little bit awkward, because it’s 2 [people], then it has more of 
a stronger standpoint.” It was also observed that students fre-
quently (though not always) discuss with their peers during 
their independent work time.

The teacher from School 2 found the AITA to be useful in 
an informal conversation after the implementation, explaining 

that “in a lot of cases, the kids just need a suggestion.” He also 
suggested other types of feedback that the AITA could give, 
from more directive feedback (“You have tried to change the 
tilt angle 5 times, how is it going for you so far? You have not 
touched the other variables”) to more facilitative feedback (“I 
see your number went down. Here are some reasons it may 
have gone down instead of up as you expected.”).

Student evaluation
In the free-response questions about the learning experience 
in the post-survey, students left both praises and criticisms 

Table 6. A  list of themes and subthemes from the interviews.

Themes Sub-themes Definition Example quote Count

Values in 
feedback

Visualization The feedback recipient can visualize designs and 
design changes in different representations.

C_P5S25: “I'm a super visual learner. So, being able to see the 
whole program work itself through and see the pictures 
behind it and be like ‘oh, you can see it’s at this angle’ or 
‘this is where the shading part is’ and ‘this is the best part to 
put this.’ That’s what I really like about it.”

2

Authority The feedback giver is deemed trustworthy due to 
their perceived experience in the subject 
matter.

C_P5S25: “The teacher won’t know everything. The teacher can 
take a guess, but AI probably knows the best design because 
you can see it run through 100 designs.”

2

Empathy The feedback giver can express emotions and 
relate to shared experiences.

M_P5S3: “Mr. [teacher] isn’t a robot. He can show emotion, so 
he was smiling, where[as] the bot was just giving me 
information of what I could do to do better.”

2

Usability The feedback recipient can receive, understand, 
and act on the feedback easily.

C_P4S19: “It [AI] was like a lot of things that you would press 
and steps you gotta go through. That was confusing.”

4

Types of 
feedback

Comparative The feedback shows the recipient other people’s 
results.

M_P5S10: “It was nice to actually compare [to] someone’s 
numbers.”

5

Directive The feedback provides explicit steps the recipient 
needs to take to improve.

M_P5S16: “If you move it at a slanted angle and push it 
backwards a little bit, you might have better results.”

4

Facilitative The feedback engages the recipient in 
independent thinking and sensemaking.

M_P5S10: “Maybe it [could] explain why they thought more 
panels were better, or why [changing] 10 to 12 makes a 
huge difference.”

2

Affect from 
feedback

Surprise The feedback leads the recipient to unexpected 
conclusions.

M_P6S9: “I was surprised by it, because obviously [it was] a lot 
better than mine.”

1

Challenge The feedback recipient views the feedback as a 
challenge to win a competition.

M_P5S10: “We need to try and beat it because it made it a 
challenge.”’

3

Additional 
effects of 
Feedback

Intention The feedback helps the recipient figure out the 
goals and next steps.

M_P6S9: “[I] kinda just… thought, ‘you know I’ll just put in 
some random number and see what comes out’. But as I 
[saw AI’s design, I] realized that maybe I didn’t need to have 
something lower or something higher… The AI knew that 
right off the bat.”

3

Confirmation The feedback confirms whether certain decisions 
are good/bad for the recipient.

C_P5S29: “I just learned that my assumptions about the tilt 
angle were correct.”

1

Figure 12. A  breakdown of the student responses to the open-ended question in the post-survey about what they liked about the curriculum.
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of the Aladdin curriculum (Figures 12 and 13). On the pos-
itive side, 49 out of the 115 students surveyed mentioned 
the freedom and autonomy to design and experiment (Figure 
12). For example, C_P6S2 stated: “I liked playing around 
with different factors and seeing how they affected the out-
come, whether that was the revenue or the cost or the amount 
of kWh that were produced as I changed different things.” 
C_P6S28 was one of the 34 students who commented posi-
tively on the visual aspect of the Aladdin curriculum, stating 
that “once I saw [AITA’s] take on how to do it, it pointed me 
in the right direction to then make more profit and energy, 
which lead [sic] me to one of my final designs.” Four students 
mentioned the AITA specifically, claiming that they enjoyed 
“the use of the AI to find the best design for the solar panel 
farm” (C_P4S16) because they “liked seeing the AI work and 
go through many [iterations] quickly” (C_P6S5).

However, 80 of the 115 students experienced some level of 
technological difficulty, reporting issues with freezing, lagging, 
or navigation. Students also provided constructive criticism of 
the current implementation of AITAs (Figure 13). One student 
wished that “when the AI says the [design] parameters are off, it 
should explain how they are off. I should not have to figure it 
out” (C_P5S2). Another student wished to “really see the math 
behind the AI and have an explanation [of] why and how AI 
works” (C_P4S18). Finally, one student cautioned that “using an 
AI as a teaching method should be used sparingly and a human 
teacher should be used a majority of the time” (C_P4S33), with 
no specific explanation of their reasoning.

Discussion

Science and engineering learning outcomes in 
response to RQ1

Understanding solar science concepts in depth helped stu-
dents consider different variables and perspectives that could 
facilitate and expedite their search for the optimal design log-
ically. Results from the multiple-choice questions in the pre- 
and post-surveys suggested that students achieved some 
improved understanding of solar energy science concepts 

after finishing the Solar Farm Design project. Student perfor-
mance differed between the two schools. The difference was 
most noticeable in two of the four questions (Q2: seasonal 
change of solar angles, and Q4: optimal solar panel tilt angle), 
where the correct answers did not receive the majority vote 
in the post-survey. Option C in Q2 was the most popular 
distractor as opposed to the Key in Option D. The only dif-
ference between these options is the length of the shadow. 
The shadow in Option C is shorter, which is a logical, edu-
cational guess for the solar angle two hours past noon. 
Students were able to rule out the shadow pointing to the 
north (Option A) and no shadow (Option B), but not the 
“height” of the sun during different seasons. Even though 
students could observe the seasonal change using the heliodon 
tool (see Figure 1), they might not have attended to different 
effects caused by the seasonal change of solar angles. In Q4, 
the most popular distractor students opted for was approxi-
mately half (24.4°) of the most optimal tilt angle (∼42°), 
which should reflect the corresponding latitude of the place, 
i.e., 42° N. The finding is indicative that many students were 
either not transferring or generalizing the rule from the AITA 
activity to solve a similar problem. Notice that we put a cap 
of 35° on the tilt angle in our design due to the wind resis-
tance constraint; therefore, students might not be able to 
extrapolate from the limited range of tilt angle to answer Q4.

Advantages of AITAs in enhancing science and 
engineering learning outcomes in response to RQ2

A comparison of students’ design performance before and 
after using the AITA, their design reflections, and their 
interviews provided both quantitative and qualitative data 
that indicated the pedagogical advantages of using AITAs to 
provide feedback on student learning.

Playing the role of peer assistants
The use of AITAs is comparable to learning from peers 
(Wood & O'Malley, 1996). This was found to be a common 
theme in the interviews, with at least five out of 15 students 

Figure 13. A  breakdown of the student responses to the open-ended question in the post-survey about what they would change about the curriculum.
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identifying a need or preference for comparing their results 
with those of someone else, be it another student or an 
AITA. In an in-person learning environment, students may 
spontaneously compare their design performance (yearly 
profit) with others. While this peer feedback is not directly 
actionable without further comparison of design variables 
and processes, it informs them of their relative standing in 
the group and what has been proven to be achievable in 
terms of design optimization. Similarly, the AITA provides a 
concrete design with quantitative performance data as a 
comparison, but it also exceeds typical peer feedback in two 
aspects: 1) While students sometimes only share their design 
performance but not their design variables, the AITAs always 
provide both pieces of information, so that students can 
quantitatively compare both designs, identify specific changes 
that contribute to the improvement (if any), and act upon it; 
2) While students rarely discuss their thought process or 
design rationale that led to their designs, the AITA visual-
izes the design process in an animation, where students can 
see the evolution of one design iteration to the next. The 
abstract concept of divergence and convergence cycles can 
also be visualized: Students can see that the earlier design 
iterations look more variable, and the later iterations look 
less variable. This visual aspect facilitates learning from con-
trasting cases (Schwartz et  al., 2016) and may be responsible 
for helping novice students adapt their design strategy from 
random trial and error to a more systematic approach. Such 
visual benefit may explain why learners perceived visualiza-
tion effects as the second most enjoyable factor of the AITA 
curriculum.

Playing the role of experts
The use of AITAs is also comparable to learning from 
experts. Assessing large numbers of engineering design solu-
tions has always been a difficult task, especially for geosci-
ence educators who may not have equal expertise in 
engineering design. The AITA provides an efficient approach 
for formative assessment: If the AI design performs much 
better than the student design, then it obviously means that 
the student design has lots of room for improvement. 
However, if the AI design does not show much improve-
ment, then it means that the student design may already be 
close to the optimal solution (see Figures 7 and 8). 
AI-generated feedback also exceeds expert feedback in two 
aspects: 1) While expert feedback is often based on design 
heuristics that still need to be tested, AI-generated feedback 
is supported by quantitative evidence. 2) Student interview 
data suggests that the dynamic visualization of the computa-
tion process increases student confidence in the authority of 
the feedback, which may encourage the adoption of such 
feedback.

Creating cognitive dissonance with surprising design
Finally, there is evidence to support the hypothesis that the 
psychological effect of AITAs, especially the element of sur-
prise, contributes to student learning. Students in Category 
2 documented how AI’s surprising design prompted them to 
apply previously acquired knowledge about solar energy 

science to explain the surprise and identify ways to further 
improve the design. C_P4S14, one of the students in 
Category 3, explained how AI’s surprising design triggered 
an important understanding of solar energy science: Seasonal 
changes of solar angles are an important factor in choosing 
an optimal tilt angle. These findings are consistent with the 
theory of cognitive development and constructivist learning 
(Lutz & Huitt, 2004): When presented with new knowledge 
that does not fit into any existing schema, the cognitive dis-
sonance may trigger students to restructure their existing 
schema to accommodate the new knowledge.

Activating and reinforcing existing knowledge
An analysis of the different types of AI feedback and student 
reactions showed that one of the most prominent effects of 
the AITA in Aladdin was either reinforcing or activating 
students’ existing knowledge. For the 10 of 16 students that 
correctly rejected AI feedback to decrease the tilt angle, their 
reflections showed that many already knew the optimal 
range of the tilt angle and therefore raised doubts when the 
AI feedback contradicted the solar energy science knowledge 
they had already learned. As for three of the 16 students 
accepting AI feedback to increase the tilt angle, their reflec-
tions also showed that they were already aware of the opti-
mal range of tilt angle, but for whatever reason, they did not 
fully optimize it (35°) on their initial attempt. In this case, 
the AI feedback activated their existing knowledge and 
reminded them to optimize it further.

Fostering more divergent thinking
Another effect of the AITA was allowing students to create 
more divergent designs. The effect was most prominent in 
the case of the three students who went the extra mile to 
find a new RW-IRS pairing for their post-AI design. For the 
eight students who simply adopted AI’s exact RW-IRS pair-
ing in their post-AI design, less could be said about whether 
the students learned anything about the coupled nature of 
RW and IRS, how they impacted design performance, and 
how divergent thinking could lead to better designs. However, 
it could be viewed as a case of collaborative intelligence 
between humans and AI (Wilson & Daugherty, 2018), where 
each contributed what they knew about the design problem 
and took advice from each other.

Nonetheless, C_P5S16 presented a rare case, where the 
AITA failed to improve the student’s original design. Their 
reflection referred to the “initial testing” and “much more 
testing” that they had done to discover two of the local 
optima in the design space. Their activity log data also con-
firmed that they had already iterated 30 times before receiv-
ing AI feedback and another 17 times afterward, which 
might explain why the student still managed to learn even 
from a failed attempt from AI: The student was very engaged 
and already explored the design space pretty thoroughly, giv-
ing them an edge in distilling helpful information from the 
raw feedback.

On the other hand, two students did not further improve 
their designs after receiving AI feedback, likely due to not 
having iterated enough times. Two other students reinforced 
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their premature conclusions about the tilt angle despite hav-
ing improved their designs, likely due to changing multiple 
variables at a time instead of running controlled experi-
ments. Observations from these cases suggested that the 
quality and extent of the effect of the AITA varied based on 
many factors such as the students’ level of engagement/per-
sistence, existing knowledge, familiarity with engineering 
design practices, etc., and that additional scaffolding may be 
necessary to support the learning in one or more of those 
aspects.

Student perceptions of AITAs in response to RQ3

Student perceptions of AITAs are mixed. In general, the 
AITA was regarded as being able to meet some students’ 
needs but not all. Based on a combination of data sources, 
such as surveys, observations, and interviews, students in 
School 1 rated the AITA more favorably than those in 
School 2, which may be partially attributed to the fact that 
the students in School 2 exhibited more overall disengage-
ment with the AITA curriculum. These mixed responses 
agreed with a previous study that found variation in student 
perceptions of automated feedback (Calvo & Ellis, 2010). 
Student interview data further supports the positioning of 
AITAs not as a substitute for teacher or peer feedback but 
as an additional source of feedback that can amplify the 
effect of human feedback (when available).

Results from the self-assessments also indicate that stu-
dents achieved increased self-efficacy and enhanced their 
epistemic agency (Miller et  al., 2018) in engineering design 
after the project. The difference in engagement in AITA 
activities was also salient, considering that only one out of 
31 students documented valid AI data. Out of all students 
who submitted both the pre- and post-surveys and had the 
opportunity to interact with AI in class, 12.5% (10 of 80) 
students from School 1 did not document anything, while 
64.2% (18 of 28) students from School 2 did not document 
anything. These differences in self-efficacy and engagement 
may be inherent, given that the teacher from School 2 had 
commented on the behavioral issues in his classes, and there 
had been multiple accounts of observations where the 
teacher had to address such issues publicly in class. 
Nevertheless, improvements could be made to support the 
struggling students and address disengagement.

Room for improvement

Data from this preliminary study of AITAs in geoscience 
and engineering education generated important insight into 
how this pedagogical approach can be improved, specifically 
in the following aspects:

More informative feedback
Many students thought that the AITA could give “more spe-
cific” feedback. Recommendations collected from the stu-
dents and teacher can be categorized as (1) directive 
feedback, which includes pointing out what the student did 
wrong and telling the student explicitly what they need to 

do to improve the result; (2) facilitative feedback, which 
includes explaining the reason why the student did not per-
form as expected, asking the student to reflect on patterns 
in their process or behavior, or recommending that the stu-
dent experiment with something new. It is worth noting that 
students and the teacher preferred different types of feed-
back. Students generally wished for immediate actionable 
feedback that quickly improved their design product and 
required less cognitive effort. In contrast, the teacher recom-
mended feedback that focuses more on scientific reasoning 
than immediate action, targets the design process or mindset 
more than the product, and requires more cognitive effort. 
Because students exhibit diverse needs that vary greatly 
depending on their levels of prior knowledge and current 
progress (Schwartz et  al., 2016), it seems more desirable for 
AITAs to provide multiple types of feedback rather than 
canonizing any one approach.

More psychological support
Student interview data also highlighted the importance of 
human interaction in the classroom. While the current AITA 
lacks the emotional attention of a teacher and the shared 
experience of a fellow student and makes clear that future 
research should explore how AI can support students in the 
psychological dimension in addition to the cognitive dimen-
sion, we would like to reiterate that the intention of this 
innovation is not to create any replacement for human inter-
action. Rather, it is to create an alternative to accommodate 
students’ diverse needs and a fallback in times of disruption.

More inclusive and equitable AI
Our findings resonated with other studies with AI feedback 
(e.g., Shi & Aryadoust, 2024) that students who were more 
engaged in the project benefited more readily from the cur-
rent implementation of AITA, while students who were dis-
engaged appeared to have gained less from their interactions 
with the AITA. Taking students’ engineering design perfor-
mance from School 1 for example (see Figure 7a), students 
with less desirable initial designs benefited more with more 
AI engagement, and most of these students’ final designs 
outperformed those who either did not adopt AI’s sugges-
tions or reached near optimal with initial attempts. To make 
AI more inclusive and equitable, future research should 
focus on improving the usability of the software to enhance 
motivation and boost engagement by providing both direc-
tive and facilitative AI feedback that addresses different stu-
dent needs. To this end, large language models (LLMs) may 
be well suited for the task of providing automated and per-
sonalized feedback (Shi & Aryadoust, 2024) in educational 
contexts to support more inclusive learning (Chen 
et  al., 2023).

Limitations

There are several limitations to this evaluation. The first 
limitation is that more validated assessment items specific to 
solar energy engineering were not readily available; other-
wise, we could adopt multiple assessment items to elicit 
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students’ ESS knowledge of items like Q2 and Q4. Second, 
it was difficult to assess and control for students’ prior 
knowledge of solar energy or engineering design during the 
study, so some patterns in student responses to the AITA 
may be attributed to students’ prior knowledge. For example, 
students who had more familiarity with the subject matter 
may be more engaged in reflecting on the feedback they 
received and therefore exhibit more learning gains and a 
more positive attitude toward the AITA.

In terms of data analysis, the discussion of students’ engi-
neering design performance was based on a comparison of 
three snapshots within the entire design trajectory, namely 
the pre-AI, AI, and post-AI designs, instead of the evolution 
of all iterations. The potential correlations between factors 
such as engagement and performance were not discussed. In 
addition, due to the solo coding and analysis of qualitative 
data from one researcher, the inter-rater reliability was not 
measured. These limitations could also provide directions for 
future research.

Implications

The study has exposed long-standing shortcomings in geo-
science education, such as inadequate integration with engi-
neering design at the K-12 level, and the lack of alternative 
feedback mechanisms. However, with a wealth of experience 
accumulated with a call for integrated STEM education 
(NGSS Lead States, 2013), geoscience educators are now in 
a much better position to proactively build a more equitable 
and resilient learning environment that cultivates student 
agency concerning global challenges.

Part of the solution entails deeper integration of engi-
neering design into geoscience education, which would 
afford students the opportunity to apply their science knowl-
edge to solve pressing problems of today and tomorrow. ESS 
educators interested in using the Solar Farm Design curric-
ulum are welcome to explore the full problem space of solar 
energy engineering, a booming industry in demand of a 
greater workforce. For example, the profitability of the same 
solar farm design varies greatly in different geographic 
regions and depends on factors such as the weather and the 
local electric rate. A profitable solar farm design in 
the Northeastern US may not be profitable at all in the 
Midwestern US due to fewer sunshine hours and lower elec-
tric rates, which can lead to rich discussions about the rela-
tionship among geoscience, engineering design, and public 
policy. In addition, Aladdin supports the use of custom 
ground images, which educators can use to overlay addi-
tional GIS data and discuss geological and environmental 
considerations during site assessment.

Similar to how online learning has transitioned from a 
novel concept to a common alternative during the unprece-
dented pandemic, another part of the solution is to intro-
duce alternative forms of support into the learning 
environment, including the selective use of AI. While the 
AITA in Aladdin remains available 24/7, educators interested 
in Aladdin and its accompanying curriculum materials 
should be mindful of providing multiple feedback mecha-
nisms to accommodate diverse student needs, with AI 

feedback being an additional option that complements exist-
ing methods. Future research may focus on making 
AI-generated feedback more understandable, e.g., by incor-
porating strategies recommended in the engineering design 
coaching tool suggested in this study and from our previous 
work (e.g., Purzer et  al., 2022). Another potential research 
direction is to extend the preliminary work on AI as instruc-
tional design agents with different personas (Schimpf et  al., 
2019) and create more humanized agents that can assess stu-
dents’ psychological states using their design activity data 
and providing socio-psychological interventions (Yeager & 
Walton, 2011), in addition to design feedback. As AI contin-
ues to gain traction in education, the findings about how 
AI-assisted coaching tools may impact students’ conceptual 
and affective learning will only become more relevant for 
applying AI in ways that benefit all students.
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