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ABSTRACT

Engineering projects, such as designing a solar farm that converts solar radiation shined on the
Earth into electricity, engage students in addressing real-world challenges by learning and applying
geoscience knowledge. To improve their designs, students benefit from frequent and informative
feedback as they iterate. However, teacher attention may be limited or inadequate, both during
COVID-19 and beyond. We present Aladdin, a web-based computer-aided design (CAD) platform for
engineering design with a built-in artificial intelligence teaching assistant (AITA). We also present
two curriculum units (Solar Energy Science and Solar Farm Design), where students explore the
Sun-Earth relationship and optimize the energy output and yearly profit of a solar farm with the
help of the AITA. We tested the software and curriculum units with over 100 students in two
Midwestern high schools. Pre- and post-survey data showed improvements in understanding of
science concepts and self-efficacy in engineering design. Pre-post analysis of design performance
gains reveals that Al helped lower achievers more than higher achievers. Interviews revealed
students’ values and preferences when receiving feedback. Our findings suggest that AITAs may be
helpful as an additional feedback mechanism for geoscience and engineering education. Future
efforts should focus on improving the usability of the software and providing multiple types of
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feedback to promote inclusive and equitable use of Al in education.

Introduction

There is an increasing demand to integrate engineering
design with geoscience education. At the K-12 level, the
Next Generation Science Standards (NGSS) listed seven
Earth and Space Science (ESS) performance expectations
that incorporate engineering practices. For example, high
school students are expected to “evaluate competing design
solutions for developing, managing, and utilizing energy and
mineral resources based on cost-benefit ratios” (NGSS Lead
States, 2013). In addition, the K-12 science faculty, including
ESS educators, share the responsibility to address 14 separate
NGSS performance expectations for engineering design, such
as “design[ing] a solution to a complex real-world problem by
breaking it down into smaller, more manageable problems that
can be solved through engineering” (NGSS Lead States, 2013).
According to the National Research Council's A Framework
for K-12 Science Education, on which the NGSS is based, a
major advantage of integrated science and engineering edu-
cation is that “[fJrom a teaching and learning point of view,
it is the iterative cycle of design that offers the greatest poten-
tial for applying science knowledge in the classroom and
engaging in engineering practices” (NRC, 2012, pp. 201-202).
The interactivity of and repeated involvement in engineering

design projects may also help trigger and maintain students’
situational interest in ESS (van der Hoeven Kraft, 2017).
Of all engineering design projects within an ESS context,
renewable energy engineering may be one of the most famil-
iar to a K-12 audience. Take solar energy engineering—the
design and deployment of solar power systems—for an
example. Prior research suggests that while an overwhelming
majority of students reported some familiarity with the con-
cept of solar panels and many reported seeing them in their
everyday lives, much fewer could use ESS knowledge such as
solar angles to explain what time of day solar panels worked
best (Kishore & Kisiel, 2013). Therefore, a solar energy
design project can both relate to students’ personal experi-
ences with solar energy and reinforce their ESS knowledge
through repeated application in an iterative design process.
For example, how can the design of utility-scale solar panel
arrays—or solar farms—integrate ESS with engineering? For
starters, the energy output of solar panels depends on solar
irradiance, which fluctuates according to the Sun’s position
in the sky. An optimal solar farm design will use an appro-
priate tilt angle to maximize the solar insolation (the total
incident solar radiation across a certain time) and thus the
energy output. In addition, the exact energy output of a
solar farm is dependent on a number of other factors, such
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as the latitude (which determines the daytime length and
the Sun’s relative position), the local weather (which deter-
mines the number of sunshine hours and local temperature),
and air pollution (which can absorb and scatter light), all of
which must be accounted for in an accurate yield analysis.

Solar energy engineering education can be a powerful
response to the critical issues that the global coronavirus
pandemic brought to light as educators in all disciplines
were forced to shift toward virtual learning tools and online
teaching. Geoscience educators were acutely aware of the
need to reduce barriers for disadvantaged students but saw
those new factors, such as internet access and family dynam-
ics impacted education (Riggs, 2020). Other critical issues
also surfaced due to the pandemic such as the climate crisis
and how both tragedies disproportionately impact marginal-
ized communities (Behune, 2020). The Biden Administration
signed an executive order to decarbonize the energy sector
(The United States Government, 2021), and the amount of
renewable energy generated reached a record high of 28% in
April 2022 (U.S. Energy Information Administration, 2022),
which demonstrates the importance of solar energy engi-
neering and education in this sector. Meeting the decarbon-
ization goal requires a solar workforce of as many as
500,000-1,500,000 people by 2035 (U.S. Department of
Energy, 2021), which serves as a reminder that engineering
design projects should be integrated into regular ESS educa-
tion so that students can be prepared to apply their geosci-
ence knowledge to mitigating global challenges such as the
climate crisis.

The engineering design process is iterative, and improve-
ment is incremental, meaning that students would typically
require frequent feedback on their design process and prod-
uct, often from either their teachers or their peers, so that
they can evaluate the pros and cons of their current design,
assess their application of scientific principles, and explore
potential next steps. Unfortunately, teachers are often unable
to look over each student’s shoulder to provide individual
feedback on each design iteration due to a lack of time or
expertise (An & Mindrila, 2020). Peer feedback may be
more available but not necessarily as effective without proper
training. The situation was exacerbated by the total interrup-
tion of all face-to-face interactions at the height of the pan-
demic, meaning that students were often left with no
feedback during their learning.

In addition to introducing new challenges, the COVID-19
crisis also highlighted existing shortcomings in science and
engineering education, especially around issues of equity
and inclusion. For example, the cost of physical materials
can be a barrier for students with low socioeconomic status,
limiting their access to and success in engineering design
projects. Traditional engineering projects may not be acces-
sible for students with chronic illness or disabilities, who
may rely more on virtual learning than their peers (Porter
et al., 2021; Thornton et al,, 2022). Also, some students may
not actively seek teacher or peer feedback due to their per-
sonality or neurodiversity. In each case, the lack of alterna-
tives may discourage certain students from developing an
interest or expertise in science and engineering. Therefore,
the necessity of an ever-available virtual option has become

evident to students and teachers. Alternative feedback
mechanisms need not replace all in-person teacher and peer
feedback. Still, they can serve as a safety net and allow stu-
dents to personalize their learning based on their
diverse needs.

Recent developments in artificial intelligence (AI) have
propelled a wave of educational applications in assessment,
tutoring, and feedback (Afzaal et al, 2021; Darvishi et al.,
2022; Goldin et al, 2017; Hooda et al., 2022; Mirchi et al.,
2020; Porter & Grippa, 2020). In the field of engineering
design, AI has been used in computer-aided design (CAD)
and computer-aided engineering (CAE) settings (Shu et al.,
2019; Yoo et al, 2021), computational geoscience (Bergey,
2020), and renewable energy engineering (Vahdatikhaki
et al., 2022). There has been some exploration of its capabil-
ity to assess engineering design performance (Xing et al.,
2021), but little has been reported about its potential as a
feedback mechanism in engineering education.

To advance inclusive and equitable science and engineer-
ing education and promote student agency in developing
solutions to global challenges using geoscience knowledge,
we introduce 1) a virtual platform for engineering design
called Aladdin (Figure 1); 2) a built-in artificial intelligence
teaching assistant (AITA) capable of providing individual
design feedback, and; 3) a week-long solar energy science
and engineering curriculum. Aladdin is an integrated CAD
and CAE tool for renewable energy engineering (Xie et al,
2023). The design of the AITA was informed by the field of
heuristics (Gigerenzer, 2008), which has a long tradition in
math teaching (Higgins, 1971; Hughes, 1974; Lucas, 1974),
has been observed as a scaffolding technique for teaching
assistants (Radford et al.,, 2014), and was viewed as a suit-
able solution for Al agents (Al-Shaery et al., 2022).

The week-long curriculum consists of two units: In the
first unit, “Solar Energy Science,” students explore basic ESS
concepts related to solar energy engineering, such as solar
angles and the projection effect, which describes the varying
angles of the Sun that shine on a designated surface will
affect the amount of solar energy it gets. In the second unit,
“Solar Farm Design,” students explored the design require-
ments of a solar farm, followed the engineering design pro-
cess to create their own solar farm designs, and used the
AITA to improve their designs. We also present our evalua-
tion of the software and curriculum using data from a recent
field study and discuss limitations and future opportunities
for AITAs in geoscience education.

Study population and setting

The study took place in May 2022 in two suburban high
schools in a Midwestern state. The demographics are
reported in Table 1. Students from School 1 and School 2,
which have similar demographics, took environmental sci-
ence and physical science, respectively. Both schools had
resumed in-person learning at the time of the study. In
School 1, students sat individually and used their own lap-
tops. In School 2, students sat in groups of one to four peo-
ple, each assigned to use a school-issued Chromebook. Even
though the participants were encouraged to interact with
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Figure 1. A screenshot of the virtual heliodon feature in the Aladdin software. The virtual heliodon visualizes the Sun’s current position relative to an observer on
Earth and the Sun’s possible paths throughout a year for a given location. Students can input any date, time, and latitude into Aladdin, and the heliodon visual-
ization will update automatically to reflect the change. Students can also turn on the animation feature to see the Sun move across the sky in a day.

Table 1. The demographic information of both schools that participated in the study.

School 1 School 2
Number of periods 4 2
Total number of students in each period 25, 32, 28, 26 16, 15
Total number of students enrolled 1m 31
Subject AP Environmental Science  Physical Science

Age 15-18 (mode: 17) 16-18 (mode: 17)
Gender Female: 45.0% Female: 38.7%
Male: 39.6% Male: 54.8%

Didn't report: 12.6%

Prefer not to answer: 6.5%

Prefer not to answer: 2.7%

Ethnicity (only showing those with population > 5%) White/Caucasian: 55.0%

White/Caucasian: 61.3%

Asian/Pacific Islander: 20.7% Multiple ethnicity: 16.1%

Didn't report: 12.6%

Hispanic American: 6.5%
Black or African American: 6.5%

their teacher, peers, and AITA, each student was expected to
fill out the AI worksheet and complete the AITA curriculum
individually. Two science teachers—one from each school—
participated in three hours of professional development
before implementing the Solar Farm Design curriculum in
their classrooms. The resources covered during the profes-
sional development can be found in the following “Materials
and Implementation” section.

Materials and implementation

Before the implementation, the teachers received access to
the free Aladdin software (http://intofuture.org/aladdin.
html), the Solar Energy Science unit (http://intofuture.org/
aladdin-solar-science.html), and the Solar Farm Design unit
(http://intofuture.org/aladdin-solar-farm-design-ai.html). The
units included student worksheets, teacher guides, design
journals, and links to pre-made Aladdin models. Students
and teachers could run Aladdin directly in the browser
using their Chromebooks or laptops. All worksheets and
surveys were also completed online using Google Suite. The
teachers had editor access to all Google Docs files and could
view and leave comments on student worksheets. They could
also view the Google Form responses of the pre- and
post-surveys.

The full curriculum took five to seven days to implement.
On the first day, a pre-survey was administered in class,
which took about 10min. The teacher then introduced the
first unit, “Solar Energy Science;” which had also been used
in other curriculum projects (Sung et al, 2022). Over the
next 2-3days, students worked through the solar energy sci-
ence unit in a self-directed fashion. The main learning
objectives of this section were to describe the Sun’s position
using solar elevation and azimuth angles, describe the daily
and seasonal changes of solar angles, describe the relation-
ship between the angle of incidence and the energy output
of a solar panel, and explain the optimal tilt angles of a solar
panel that maximizes the energy output in each season and
in a year. Each activity followed the Predict-Observe-Explain
framework (White & Gunstone, 2014). For example, students
would first predict the best tilt angle for fall, then conduct
an investigation in Aladdin, where they compared the simu-
lated daily energy output of solar panels with different tilt
angles. Finally, they were asked to explain this result using
the solar energy science concepts they learned earlier, such
as the solar elevation angle and projection effect. At the end
of the unit, students completed a challenge called “Optimize
It"” where they needed to find the best position and angle to
place a single solar panel in a yard surrounded by trees, such
that the panel would generate the most yearly output.
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After students completed the Solar Energy Science unit,
they continued to the Solar Farm Design unit, where they
were tasked with designing a solar farm that would generate
the most yearly profit for their town. Here, the main learn-
ing objectives were to evaluate a design solution using the
given criteria and constraints, collect evidence of the design
performance using computer simulations, improve the design
performance through iterations, create a design that meets
the given criteria and constraints, and explain the choice of
design variables using scientific principles. Students were
first introduced to the design criteria, constraints, and vari-
ables of a solar farm. The design process began with the
students evaluating an existing solar farm design with sub-
optimal performance: a negative yearly profit. Students
brainstormed how they could change the three design vari-
ables—tilt angle, row width (RW), and inter-row spacing
(IRS)—to improve the performance and were asked to doc-
ument their reasoning. After choosing one design variable to
change and specifying its new value, students input the new
design variable into Aladdin’s layout wizard, which automat-
ically updated the solar farm design layout based on the
specified variables. Students were directed to save their new
design as a new file on the cloud storage as a method of
showcasing their design artifacts and version control.
Students then used Aladdin to calculate the yearly energy
output and profit of their new design and compare it with
the performance of the previous iteration, and they reflected
on their learning during this iteration. An example iteration
was provided on the design instruction to help explain the
design process and clarify the expectation of student
responses. The teacher also demonstrated how to go through
a design iteration in Aladdin on the projector screen. After
that, students were given at least one class period to create
their own solar farm designs, and they were directed to doc-
ument their full design process, including their design

<%’ Aladdin

variables, performances, and reflections, in a pre-formatted
design journal accompanied by the student instruction man-
ual. Students were directed to work on their own designs,
but they were encouraged to discuss them with their class-
mates. While the students were iterating, the teacher was
instructed to circulate the classroom, check on student prog-
ress, and answer questions.

After students had had a chance to create at least two to
three designs, they were introduced to the AITA. Using a
genetic algorithm with preset parameters, the AITA used the
current student design as the starting point, generated new
designs by mutating the current design, improved its strat-
egy by learning from the analysis result of each iteration,
and evaluated a total of 50 new designs over five genera-
tions. While the AITA iterated through different designs, the
students could view an animation of how one design changed
into the next design and evolved into the final design over
time. The final best design (including the design variables
and the performance) was reported as an interactive graph
alongside all previous iterations (Figure 2). Students then
answered a series of reflection questions on a worksheet to
document their reaction to the AIs design for use as feed-
back, ie., AITA feedback, to think about how they could
further improve their design. They then had until the end of
the implementation to keep iterating either by interacting
purely with AITA and/or with teacher feedback (Figure 3).
During the implementation, students from both schools had
access to three types of feedback—AlI, teacher, and peers.
The Al's design also doubled as a formative assessment of
student design, because it was not guaranteed that the AITA
could find a better design. If the student design was already
close to the local optimum, then the AITA would be less
likely to find a better design or improve by any significant
amount. A post-survey was administered on the last day of
the implementation.
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Figure 2. A sample screenshot of an Al-generated solar farm model in Aladdin. The top window shows the evolution of three design variables (tilt, RW, and IRS)
and one objective (yearly profit) over multiple iterations. The bottom window shows the yearly yield analysis of the current design.
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Figure 3. Classroom photos taken during the implementation. The science
teacher from School 2 was giving feedback on one student’s solar farm design.
Three students on the back were inputting design variables into Aladdin’s lay-
out wizard to test their solar farm designs.

Table 2. A list of interview questions related to design feedback.

Relevant interview questions Question Count

What part of the design process was the MOST engaging 13
for you?

What part of the design process was the LEAST engaging 13
for you?

What kind of feedback did you receive on your design, if any? 12

How would you compare receiving design feedback from a 7
teacher, a classmate, and Al?

If you can change one thing about how Al gives you design 7
feedback, what would you change? Why?

If you can receive feedback on anything, what kind of 10

feedback do you think will help you the most with
improving your design?

Evaluation

The goals of the evaluation were to address the following
research questions (RQs): 1) To what extent and in what
ways does the Solar Farm Design curriculum affect students’
achievement of learning outcomes? 2) To what extent and in
what ways does the use of AITAs affect students’ achieve-
ment of learning outcomes? 3) To what extent and in what
ways does the use of AITAs affect students” perception of AI?

Data collection

The main data were collected using pre- and post-surveys,
worksheets, and interviews. Students filled out the same sur-
vey before and after the implementation of the Solar Farm
Design project to determine their pre- and post-activity per-
formance. The survey consisted of the following compo-
nents: a) Multiple choice questions that assess student
understanding of the following solar energy science concepts
(Xie et al., 2018; 2023): i) Daily changes of solar angles, ii)
Seasonal changes of solar angles, iii) Projection effect, and iv)
Optimal solar panel tilt angle; b) A two-tier question to elicit
students’ knowledge about engineering design and its pro-
cesses; ¢) An engineering design self-efficacy survey consist-
ing of nine Likert-type items with a possible 100 points

JOURNAL OF GEOSCIENCE EDUCATION e 5

(adapted from Carberry et al,, 2010); d) Likert scale ques-
tions about student perception of the AITA after design
activity (adapted from Kim et al., 2020); e) Two open-ended
questions about what the students enjoyed and would have
changed about the curriculum (note that components ‘d’ and
‘e were only included in the post-survey).

After receiving AITA feedback, students were asked to
answer a series of reflection questions on their AI work-
sheets and student instruction (see sample questions on the
“Design  Challenge (AI Worksheet) tab on Supplement
Document 1” and questions on pages 12-18 on Supplement
Document 2) and given another opportunity to improve
their solar farm design. They also recorded their pre-Al, Al,
and post-Al designs on the AI worksheet as design
documentation.

Three interviewers (AB, IL, & RJ) conducted 15- to
20-minute semi-structured interviews after the project imple-
mentation. Teachers selected five students from School 1 and
10 from School 2, based on availability and interest, cover-
ing different levels of engagement and performance. The
lead interviewer was determined by availability. All three
interviewers followed the same interview protocol developed
by one researcher (RJ) (See Supplement Document 3), but
the exact questions asked varied for each student based on
their progress and time availability. Table 2 shows some rel-
evant interview questions that were centered around how
students experienced different types of feedback.

In addition, the following types of supporting data were
collected and used to corroborate the main data:

« Design artifacts: During the Solar Farm Design proj-
ect, students were instructed to save their solar farm
models on the Aladdin cloud storage. When present,
these files were used to validate the design documen-
tation on the AI worksheets.

o Student activity log data: Every student action in
Aladdin (such as turning on the heliodon, changing
the tilt angle of a solar panel, and simulating the
yearly energy output) was automatically logged and
stored in a database. This log data was consulted
when the design documentations on the AI work-
sheets were incomplete or contained inconsistencies.
Note that the data logger in Aladdin was only enabled
during the implementation for research purposes,
and it is currently disabled for regular users.

o Design journals: During the solar farm design por-
tion of the project, students were asked to document
each design iteration in a design journal and answer
a series of reflection questions about each iteration
(see “Design Challenge Journal” tab on Supplement
Doc2). The journals were also used to validate the
design documentation on the AI worksheets.

o Teacher feedback: After each class period, the teach-
ers in both schools gave verbal descriptions of their
observations in the classroom. An informal interview
was also conducted after the project implementation.

o Observation notes: In both schools, the teachers set
up additional cameras that were connected to a video
conference during the implementation, so researchers
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could observe and take notes on the classroom
dynamics and student engagement.

Compliant with IRB requirements, student assent forms
and parent consent forms were distributed prior to the study,
and data were only collected from assenting students. Each
student was assigned an anonymous ID in the following for-
mat: C_P1S1 or M_P1S1. The prefix indicates the school (C
for School 1, M for School 2), and P1S1 stands for “period
1, student 1” All students were only referred to by their
anonymous IDs in subsequent data analysis.

Data analysis

After omitting students without consent forms or incomplete
data, the remaining student data that were available for anal-
ysis are presented in Table 3. Unless otherwise stated, the
pre- and post-survey data referenced below include only
data from 80 students in School 1 and 28 students in School
2 who submitted both surveys. A data table showing the
alignment of available data with the corresponding research
question(s) and relevant learning objectives is summarized
in Table 4. To answer RQ1 relating to the effect of the

Table 3. A breakdown of student data availability from different sources.

School 1 School 2
Pre-survey 97 /111 87.39% 31/ 31 100.00%
Post-survey 87 /111 78.38% 28 /31 90.32%
Both pre- and post- 80/ 111 72.07% 28/ 31 90.32%
surveys
Design journal 40 /111 36.04% 16 / 31 51.61%
Al worksheet 24 /111 21.62% 1/31 3.23%
Interview 5/11 4.50% 10 / 31 32.26%

engineering design activity on students’ learning outcomes,
we conducted a paired one-tailed t-test using the aggregate
results from the pre- and post-surveys.

For RQ2 concerning the impact of AITAs on students’
learning outcomes on the understanding of engineering
design processes and engineering design performance, we
coded students’ responses to the two-tier question on the
pre- and post-surveys: (1) “How familiar are you with ‘engi-
neering design’® (multiple choice question)”, and (2) “What
are the important components of the engineering design pro-
cess? Name at least three components. (open-ended question)”
Closed coding of the responses (Saldafna, 2021) was done by
RJ. Eight engineering process components, including identify
a design need, research a design need, develop design solu-
tions, select the best possible design, construct a prototype,
evaluate and test a design, communicate a design, and rede-
sign (e.g., Carberry et al., 2010; Massachusetts Department
of Education, 2006) were adopted to code the open-ended
responses.

We also analyzed participants’ design data to investigate
the effect of AITA on students’ engineering design perfor-
mance in response to RQ2. Students’ design data (including
the pre-Al design, Al design, and post-Al design) were
organized from Al worksheets, which were corroborated
with their design journals and validated using the log data.
A student’s design data was considered to be “complete” if it
contained all three designs. A student’s design data was con-
sidered to be “coherent” if there were no inconsistencies
among different data sources. A students design data was
considered to be “unique” if the student did not share their
data with anyone else in a group setting. Forty of 111 stu-
dents in School 1 left complete, coherent, and unique docu-
mentation of their solar farm designs before receiving Al

Table 4. A data table showing the alignment of available data with the corresponding research question(s) and relevant learning objectives.

Data Collected

Data Analyzed for
Corresponding RQ(s)?

Relevant Learning
Objectives®

Both Pre- and Post-Survey

Multiple choice questions that assess student understanding of the following solar energy science concepts: 1 A1-A4
i) Daily changes of solar angles; ii) Seasonal changes of solar angles; iii) Projection effect, and iv)

Optimal solar panel tilt angle

A two-tier question to elicit students’ knowledge about engineering design and its processes 2 B1-B5
An engineering design self-efficacy survey consisting of nine Likert-type items with a possible 100 points 3

Post-Survey Only

Likert scale questions about student perception of the AITA after design activity 3 B1-B5
Two open-ended questions about what the students enjoyed and would have changed about the curriculum 3 B1-B5
Al Worksheet

Design documentation for pre-AITA, AITA, and post-AITA designs 2 B1-B5
Reflection questions 2 B1-B5
Student Interviews

Interview transcripts 3 B1-B5
Supporting Data

Pre-Al design journals 2 B1-B5
Solar farm design artifacts stored on the cloud 2 B1-B5
Student activity log data 2 B1-B5
Student instruction manual (some reflection questions) 3 A1-A4,B1-B5
Teacher feedback 2,3 B1-B5
Observation notes 23 B1-B5

Goals of Evaluation (Research Questions): To what extent and in what ways does... RQ1) the Solar Farm Design curriculum affect students’ learning outcomes?
RQ2) the use of AITAs affect students’ learning outcomes? RQ3) the use of AITAs affect students’ perception of Al?

bLearning Objectives: A) Solar Energy Science exercise: 1) Describe the Sun’s position using solar elevation and azimuth angles; 2) Describe the daily and seasonal
changes of solar angles; 3) Describe the relationship between the angle of incidence and the energy output of a solar panel; 4) Explain the optimal tilt angles
of a solar panel that maximizes the energy output in each season and in a year. B) Solar Farm Design unit:1) Evaluate a design solution using the given criteria
and constraints; 2) Collect evidence of the design performance using computer simulations; 3) Improve the design performance through iterations; 4) Create a
design that meets the given criteria and constraints; 5) Explain the choice of design variables using scientific principles.
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feedback on the AI worksheets, which were considered to be
valid data to be included for further analysis henceforth. Of
the 71 students who were excluded from further discussions
of design performance, three students worked together with
other students and used their data with permission; 15 doc-
umented data that were incomplete or incomparable with
other students’ data; 27 used other students’ data without
express permission or documented data that could not be
validated by other data sources; and 26 did not finish the
activity or document enough coherent data. Of the 40 stu-
dents in School 1 with valid data on AI worksheets, 24 doc-
umented the feedback from AI;, 10 were from a class that
had to end early before the AI activity; and six did not doc-
ument enough data. Of the 24 students who received Al
feedback, 14 increased the yearly profit of their final design;
two did not find a better design than AI's recommendation;
three did not iterate again or document enough data; and
five students already had near-optimal designs (see Figure
4a). Since the AITA was unlikely to improve a near-optimal
design within one run (or 50 iterations), students with
near-optimal designs were excluded from any analysis or
discussion of AI feedback. We only consider the 16 students
who either improved in their final design or accepted the
AITA feedback for further analysis.

As for School 2, 16 of 31 students left complete, coherent,
and unique data of their solar farm design before receiving
AT feedback; seven documented data that were incomplete
or incomparable with other students’ data; and eight did not
finish the activity or document enough data. Of the 16 stu-
dents with valid data, 10 documented the feedback from AI;
six did not document enough data. Of the 10 students who
received Al feedback, only one student increased the yearly
profit of their final design; nine did not iterate again or doc-
ument enough data (Figure 4b). Due to the lack of recorded
design improvement taken from the AITA feedback from
School 2, only AITA feedback for 16 students in School 1
was manually categorized by R] by comparing AIs designs
with students’ pre-Al designs.

Students’ engineering design performance was evaluated
using a single metric: The yearly profit of their solar farm
design, which equals the revenue (determined by the total
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energy output of the solar panels) minus the cost (deter-
mined by the number of solar panels used). In general, a tilt
angle equal to the latitude of the location (around 42° for
the two schools) would optimize the energy output per solar
panel for an entire year, although the curriculum placed a
wind resistance constraint that limited the maximum tilt
angle to 35°. The other two design variables, row width and
inter-row spacing, were coupled: A larger RW required a
larger IRS to avoid inter-row shading. Therefore, an optimal
design was one with an optimal tilt angle and a suitable
pairing of RW and IRS that fit as many solar panels onto
the given plot as possible while minimizing inter-row shad-
ing. Solar farm designs would be hereinafter denoted in the
following format: (tilt, RW, IRS).

The allowed design space was specified as (0°-35°, 1-6
panels, 2m ~ 10m), which was also set as the search range
of the AITAs genetic algorithm. At least three local optima
existed within this design space: (35°1 panel, 2.3m), (35°, 2
panels, 4m), (35°, 3 panels, 7m). When deployed on the
given plot in the curriculum, these optimal designs pro-
duced a yearly profit of around $420 in School 1 and $517
in School 2. The difference was due to different weather
conditions. A student design was considered to be optimal
or near optimal if its yearly profit was greater than $400 in
School 1 or $500 in School 2.

To better illustrate the common themes in AI feedback
and student reactions in response to RQ3 about the effects
of AITAs on students’ perception of the usefulness of AITA
feedback and self-efficacy, we analyzed students’ AITA per-
ception responses on the post-survey and engineering design
self-efficacy (measured by confidence) survey (Carberry
et al., 2010) by averaging students’ pre- and post-score on
each item. We also analyzed students’ different reactions
toward AITA feedback and compared their post-Al design.
In addition, interviews were transcribed by three researchers
(AB, IL, & RJ) and analyzed through inductive thematic
analysis (Braun & Clarke, 2006) by R]. The initial open
codes were generated after a thorough reading of the tran-
scribed student responses to all interview questions. In a
second round of focused coding, only responses containing
open codes related to Al or feedback were reviewed, and

Data availability of students’ engineering design

No data

Valid data

'A«,

Other 7
2 3 Group member

a 15 Invalid data

No data

.

Valid data

Invalid data i

b

Received Al feedback Class ended before Al No data

@® Improved @ Didn'timprove

Nodata @ Already optimal

Figure 4. A breakdown of the data availability of students’ engineering design. The outer ring showed the sample size of student designs before the Al feedback
and reasons why data points were excluded. The middle ring showed the sample size of students who received Al feedback and reasons for exclusion. The inner
pie chart showed students’ reactions to Al feedback. (a) Statistics from School 1. (b) Statistics from School 2.
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emergent themes were identified from the final codes and
refined into sub-themes.

Results

Solar energy science knowledge learning outcome

To answer whether the Solar Farm Design curriculum affects
participants’ conceptual understanding (RQ1), we analyzed
the items related to solar energy science knowledge on pre-
and post-surveys. In School 1, the mean score increased in
all four questions that assess solar energy science knowledge
(Figure 5). In School 2, the mean score increased only in
question 3 (Figure 5c), remained the same in question 1
(Figure 5a), and decreased in questions 2 and 4 (Figures 5b, d).
In multiple choice questions Q1 and Q3, School 1 outper-
formed School 2 in both the pre- and post-surveys by a mar-
gin of 10%-20%. In Q2 and Q4, where School 2 outperformed
School 1 in the pretest, School 2 actually performed worse
in the post-survey, whereas School 1 still improved. The
paired one-tailed t-test indicated that students at School 1
improved their understanding of solar energy science after

the Solar Farm Design project (p, = .00002, M, = 1.15,
8Dy = 0.95 My = 1.8, 8D, ; = 1.08), but students at
School 2 did not (p, = .25, M,,., = 1.04, SD,,., = 0.74
M,y = 0.89, 8D, , = 0.74).

Engineering design performance and engineering design
process learning outcome

To determine the effects of AITAs on participants’ engineer-
ing design performance and engineering design process

1.- On the summer solstice (6/21) in Boston, Massachusetts (42° N, 71
W), in which direction does the Sun appear to set?

School 1 (Pre) M School 1 (Post) School 2 (Pre) M School 2 (Post)

100%

25% |

w R
a A (southwest) B (west)

L | | B

C*(northwest) D (southeast) E (east) F (northeast)

3.- Asingle solar panel lies flat on the ground in Boston. The date is
6/21 (summer solstice). At which hour of the day would it produce the

School 1 (Pre) [ School 1 (Post) School 2 (Pre) [ School 2 (Post)

100%
75%

50%

At9am witha *At11am witha  At2pm with a At 5pm with a The energy
c sunbeam angle sunbeam angle sunbeam angle sunbeam angle outputis the
of 41.6° of 22.6° of31.2° of 63.7° same ateach

hour of the day

learning outcome (RQ2), we summarized the results from
relevant pre- and post-survey questions and their post-Al
designs in the following sections.

Familiarity with engineering design

Before the project, when prompted with the question about
how familiar they were with engineering design on the
pre-survey, 51.5% of the students in School 1 and 51.6% in
School 2 chose level 2 (i.e., “have some idea what it is, but
don’t know when or how to do it”), followed by level 1 or the
lowest level (“I have never heard of it or I have heard of
them but dont know what it is.”) with 35.1% and 35.5% of
the votes, respectively (See Supplement Figure 1la,b). In the
post-survey, over half of the students (54.0%) from School 1
reported level 4 or the highest level (i.e., “I can explain what
it is, how to do it, and I have done it”) after the project,
followed by level 2 (29.9%) (Supplement Figure 1c). In
School 2, the plurality choice remained at level 2 (42.9%),
while 21.4% of the students selected level 4 (Supplement
Figure 1d).

Understanding of engineering design process

When asked to identify important components of the engi-
neering design process on the pre- and post-surveys, stu-
dents frequently mentioned more “hands-on” processes like
“develop design solutions” and “construct a prototype, a
consistent observation across both surveys that reflected the
common impressions of engineering design among these
students (see Figure 6). They rarely mentioned processes
like “identify a design need,” “select the best possible
design,” and “communicate a design,” which was expected

2.- The images below show the same tree and its shadow at different times and dates in
Boston. Which one is more likely to be at 2pm on the winter solstice (12/21)?

School 1 (Pre) M School 1(Post) ' School 2 (Pre) M School 2 (Post)

100%

b = _*_,;‘_.AgJ_L

A B [ D*
4.- For a single row of solar panels located in Boston, which tilt
angle would produce the most total energy in a whole year?
School 1 (Pre) [ School 1 (Post)

School 2 (Pre) School 2 (Post)

100%
75%
50%
25% ‘

d A

0% . =
0° 24.4° *45.6° The tilt angle does not matter

Figure 5. The distribution of student responses to the solar energy science assessment items, before and after completing the solar farm design curriculum. The
correct answer is marked with an asterisk symbol. (a) A question about daily changes of solar angles. (b) A question about seasonal changes of solar angles. (c)
A question about the projection effect. (d) A question about the optimal solar panel tilt angle.
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because those were not emphasized or practiced heavily in
the project. Students in School 1 mentioned “research a
design need” and “evaluate and test a design” more fre-
quently than those in School 2 in the pre-survey, but the
differences were reduced in the post-survey. This suggested
that the Solar Farm Design project helped students develop
a more holistic impression of the engineering design pro-
cess and reduced the achievement gap between different
student populations. Finally, both schools saw significant
increases in the popularity of “redesign” (including responses
that mentioned “iterate’, “multiple designs”, or “trial and
error”), which may in part be due to the interaction with
the AITA and the extensive redesigning that many students
went through.

Students’ understanding of the engineering design process
shows that the percentage of non-responses, which included
answers like “I do not know” and “I am not sure,” decreased
by 23% in School 1 and 25% in School 2, respectively
(Figure 6). For six of the nine categories, the differences
between pre- and post-surveys were within 10%. In School
1, 25% more students identified “redesign” as an important
component of the engineering design process. In School 2,
the biggest increase was for “research a design need” (+15%),
followed by “redesign” and “evaluate” (+10%). Students from
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both schools reported similar levels of familiarity with engi-
neering design in the pre-survey. While 54% of students
from School 1 reported the highest familiarity with engi-
neering design in the post-survey, only 21.4% did so in
School 2.

Design space and benchmark performance

Figure 7a shows that in School 1, 36 out of 40 students were
able to make a profit on their solar farm design before receiv-
ing Al feedback (mediany, prear; = $282, SDpseprears =
362.40). Sixteen of the 36 students received Al feedback that
improved the yearly profit of their designs (medianp,.s 47, =
$392, SDp,yf.ar.1 = 28.92). Fourteen students further improved
their profit after receiving Al feedback (mediany, g par; =
$420, SDp,ofitpostar.s = 32.50), whereas two students did not.
Notice that the students who made lower profits before
receiving Al feedback were the ones who showed the most
improvement with their post-AI designs.

Figure 7b shows that in School 2, 11 out of 16 students
were able to make a profit on their solar farm design before
receiving Al feedback (mediany, g pear = $266, SDpyogir prear. =
561.00). Only one student recorded the AI feedback, which
failed to improve the yearly profit due to a technical issue in
the early version of the Aladdin software. However, the

Comparison of students' understanding of the engineering design process

Pre (school 1) [ Post (school 1)
100%

75%

50%

Percentage

25%

0%

Pre (school 2) [l Post (school 2)

Figure 6. A comparison of students’ self-reported understanding of the engineering design process, before and after completing the solar farm design curriculum

calculated from semi-structured interview codes.

Student’s engineering design performance

School 1 (n =40) B Post-Alimprovement

600

400 g==g =

I P | = ‘
-

i

. ||IIIIIIIIIIIIllll““‘ll‘“““‘

-200

Yearlyprofi (§)

Student

Alimprovement [l Pre-Al School 2(n=16)

Student

Figure 7. A comparison of students’ engineering design performance (measured by the yearly profit of their final solar farm design), before receiving Al feedback
(blue), the improvement made by Al's recommended design (yellow), and the improvement made by students’ design after they received Al feedback (green). The
negative y-axis was truncated to save space. Red columns below zero indicated the difference in yearly profit between students’ post-Al design and Al's design
when a student couldn't further improve Al's design. Yellow columns below zero indicated the difference between students’ pre-Al design and Al's design, when
the Al couldn’t improve a student’s design, which were rare faulty behaviors from Al. (a) Statistics from School 1. (b) Statistics from School 2.
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student improved their own design after receiving Al feed-
back, nonetheless.

Students’ reactions to AITAs

In the following sections, we combined the results from sur-
veys, Al worksheets, reflection questions, observations, and
interviews to address RQ3 regarding AITAs impacts on par-
ticipants’ perceived usefulness, self-efficacy, design decisions
made based on AI feedback, and reactions and surprises
toward AITA.

Impact of AITA on perceived usefulness and self-efficacy

Figures 8 and 9 demonstrate the overall impact of imple-
menting AITA feedback on learning engineering design
based on responses from the survey. Students’ self-rated

Comparison of students' confidence

confidence with the eight components of the engineering
design process indicates that the average ratings were 45
(School 1) and 36 (School 2) out of a possible 100 before
the project and increased to 66 (School 1) and 58 (School
2) after the project (Figure 8). However, students from
School 2 reported confidence levels that were consistently
5-15% lower than students from School 1 did across all
engineering design processes. Similarly, even though both
schools saw a roughly 20% overall increase in confidence
levels in the post-survey, students from School 1 reported
higher confidence levels for every design process. Similarly,
students’ overall perception of AITAs usefulness in the
post-survey shows that students were more positive in
School 1 with an average rating of 4.38 compared to 4.25 for
School 2 (M, = 4.38, M, = 4.25), although students’ percep-
tions displayed a larger standard deviation for School 2 (SD,
= 1.53, SD, = 1.90) (Figure 9).

in the engineering design process

Pre (school 1) [ Post (school 1) Pre (school 2) [ Post (school 2)
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Figure 8. A comparison of students’ self-rated confidence in the engineering design process, before (pre-) and after (post-) completing the solar farm design

curriculum using a 100-point Likert-type survey.

Using an Al teaching assistant would be useful for learning.
School 1 (n =87) and School 2 (n = 28)

B School 1

40.00%

30.00%
S

S 20.00%
=~
3
o)
o

10.00%

0.00%

1 (Strongly 2 3

disagree)

B School 2

4 5 6 7 (Strongly

agree)

Figure 9. Responses to a 7-point bipolar Likert scale question about student perception of the AITA, with 1 being “strongly disagree” and 7 being “strongly agree.”

The remaining numbers were not labeled in the survey.
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Summary of students’ reactions to their pre- and post-Al
design

Students’ reactions to the AI feedback from the AI work-
sheet and reflection questions are summarized in a vertical
treemap chart (see Figure 10). The tilt angle was analyzed
separately due to it being relatively independent from the
other two design variables. One common Al feedback to
decrease the tilt angle, received by 11 students total, was
considered an artifact of the software algorithm because the
AT search range for tilt angle was capped at 35°, and Al
could only output floating point numbers that were bound
to be less than 35°. Ten of 11 students made the correct
decision to reject the feedback to decrease the tilt angle.
When AI did use a higher tilt angle, which was interpreted
as feedback to optimize the tilt angle, two students improved
their design by accepting the feedback and further increas-
ing the tilt angle, while one accepted the feedback but did
not make improvements in their post-AI design. We also
found that when AI used design variables that were similar
to what students used, the feedback became more difficult to
interpret and led to some misinterpretation. For instance,
one rare occasion showed that AI was able to inspire stu-
dents to diverge the tilt angle even when its own attempt
yielded less profit (see case C_P5S16s reaction in Category
1 below for a more detailed example).

Another common Al feedback was to use a different RW
or IRS than the student did, and it was interpreted as the
feedback to diverge more in the design space. There were 14
students who received this feedback, and among them, 12
made further improvements in their post-Al designs, i.e.,
nine copied AT’s exact same values in their final designs and
three accepted the feedback and diverged further, while the
other two did not lead to any improvement (one accepted
and one rejected Al feedback). We found two incidences in
which students were inspired by AITAs recommendation to

Al fee:

Tilt angle

Artifact

Reject (10)

Optimize (misinterpreted)

Accept (1) Accept (1)

Figure 10. A vertical treemap chart showing students’ reactions to different Al feedback. The chart can be interpreted using the following color-coded tiles—Blue
tiles represented different categories of Al feedback. Dark green tiles represented student reactions that led to further improvement of the yearly profit in the
post-Al design. Red tiles represented reactions that didn't lead to any improvement. Light green tiles represented reactions that wouldn’t have led to any improve-

Accept (2)

ment per se but still did due to the optimization of other design variables. Th
particular category.
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optimize IRS. Even though one accepted and one rejected
ATs feedback, they both improved their post-AI designs.
One student (see C_P5S16’s case for example below) was
inspired by AITA’s suggestion and diverged for 17 unsuccess-
ful iterations. He then copied AITAs RW and IRS design in
his post-AI design and further improved the annual profit.

Categorizing students’ reactions to Al feedback

Based on students’ reactions to AITAs recommendations on
the three design variables from AI worksheets and reflection
questions, the 16 students’ reactions are grouped into five
categories:

Category 1: Best of both worlds (seven students)

The first category illustrates the most common Al feedback
and the most common student reaction. When AI parame-
ters yield better outcomes, the students accepted or copied
those parts. When students outcomes were better, they
rejected Al-recommended parameters. For instance, C_
P5829% pre-Al design was (35°, 2 panels, 12m) and made a
yearly profit of $220. Al's recommended design was (33.87°,
3 panels, 8m) and made $374 of profit. The student was
“not really” surprised by Als tilt angle because they “knew
the optimal range is between 30°-60%, but they rejected Al's
change and kept the original tilt angle in the final design.

However, C_P5S29 was “very much” surprised by the
other changes because “minor changes created such drastic
differences” They ended up copying AIs exact RW and IRS
in the final design, (35°, 3 panels, 8m), which made $383
of profit.

C_P5816’s pre-Al design was (35° 2 panels, 4m) and
made $412 of profit. When they saw AIs design of (33.21°,
3 panels, 6.89m), they were not surprised by the wider rows,
keeping the following notes in the AI worksheet: “In my

dback

Row width / Inter-row spacing
Diverge RW/IRS

Accept (3)

Copy (9)

Accept (1) Reject (1)

Optimize IRS Diverge (unsuccessful)

Copy (1)

e number included in the parenthesis represents the number of students for a
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initial testing, I found that 3 panel width was effective in cre-
ating a large amount of profit. Only after much more testing
did 1 find a much more effective 2 panel width design. So, it
does not surprise me that the Al found and stuck with the
3-panel width idea.” Their design documentation on the Al
worksheet, which had over 10 iterations, showed that they
had already tried (35° 3 panels, 6.5m). Their post-Al design
of (35° 3 panels, 6.89m) combined AI's wider rows and
their original tilt angle and made $421 of profit.

In total, seven students responded in the same way to Al
feedback: They kept their original tilt angle when AI used a
lower one, copied AI's RW and IRS, which were different
from their original ones, and improved their profit in the
end by combining the best of both worlds.

Category 2: Go the extra mile (three students)

Instead of directly copying Al's design variables, students in
Category 2 accepted ADs feedback to diverge and diverged
further in the design space. In the case of C_P4S30 (see
Table 5), the student’s pre-AI design was (35° 2 panels,
7m) and made a yearly profit of $297. The AITA recom-
mended the design (33.87°, 3 panels, 8m) and increased
the yearly profit to $314.44. The student also reported
being surprised by Al's changes to the RW because “an
increase in the [row] width by 1 panel resulted in such a big
difference in energy output.” They went on to explain the
rationale of this surprise: “If there are more solar panels per
row, then the yearly energy output will increase because the

additional panels receiving sunlight contribute to the amount
absorbed”

In the reflection, the student agreed with the change in
RW, while acknowledging that there could be more optimal
tilt angles. He did not agree with the change in IRS, citing
the decrease in solar panels that would ensue. The student
then documented three design attempts (Figure 11), the best
of which made $420.62 of profit by integrating AI's new RW
of three panels into their original design to create the final
design (35° 3 panels, 7m). C_P4S30 ended up accepting Al's
feedback to diverge and diverged further in the design space
by combining ATs wider rows with their own tighter IRS.

Two other students reacted similarly by going the extra
mile. For instance, C_P6S18’s pre-Al design was (32°, 2 pan-
els, 6m), and when they saw Al's design of (30.66°, 3 panels,
7.37m), they pivoted to wider rows and further increased
the IRS, creating the final design (35° 3 panels, 8m).
However, C_P6S20’s pre-Al design was (35°, 3 panels, 10m),
and when they saw AI's design of (33.76° 1 panel, 2.33m),
they kept their wider rows but took inspiration to decrease
the IRS, creating the final design (33.76°, 3 panels, 6m).

Category 3: You may already know this (two students)

Students in this category were able to activate their existing
knowledge based on Als feedback to improve their design
and reinforce science and engineering design understanding.
For example, when Al changed the tilt angle of C_P4S19%
design from 30° to 34.5°, they further increased it to 35°.

Table 5. A partial reproduction of C_P4S30's Al feedback worksheet showed the documented evolution of their solar farm design, before and

after receiving feedback from the AITA.

Design variables Your design Al's final design Your new design 1 Your new design 2 Your new design 3
Tilt angle (°) 35 27.47 35 30 30

Row width (panels) 2 3 3 3 2
Inter-row spacing (m) 7 7.55 7 8 5
Number of solar panels 66 96 99 90 90

Yearly energy output (kWh) 30094.77 43305.87 45044.48 40803.92 40790.26
Yearly Profit ($) 296.69 314.47 420.62 345.98 342.57

Figure 11. Side-by-side comparison of three solar farm designs. (a) C_P4S30’s best design before receiving Al feedback. (b) The AITA’s design, which used wider
rows and a lower tilt angle than (a). (c) C_P4S30’s best design after receiving Al feedback, which used the same wider rows as in (b) but reverted to the higher

tilt angle used in (a).
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Reflecting on this decision, they wrote: “We noted that any
degree closer to 35 is more ideal. So even that slight change
of half a degree can make a dollar or more difference over the
course of a year” They also copied AI's RW and IRS to
increase yearly profit by $4. They concluded by stating:
“Increasing tilt closer to the 35 degree constraint will result in
an increase in profit. The act of using less solar panels far
[outweighs] the costs of spending ... on [maintaining] more
solar panels poorly positioned.”

Another student (C_P5S23) was surprised to see the
AITA increase the tilt angle of their design from 30° to 33°
and wrote: “I say this because I did not think about further
tilting the panels as I felt I had reached the sweet spot. Now,
I understand that the further tilt accommodates the middle
seasons, fall and spring, much more appropriately and there-
fore produces more energy.”

Category 4: Unintended consequences (two students)
Students in this category accepted but misinterpreted Al’s
feedback, which led to unexpected results in their final
design. For example, when C_P5S5 compared AT’ tilt angle
of 30.09° with their own tilt angle of 30°, he wrote: “I wasn’t
surprised because I feel like 30 degrees is the best tilt angle.”
They did try other design variables after receiving Al feed-
back with varying design variables, (31°, 4 panels, 9m), (35°,
3 panels, 10m), (27°, 2 panels, 4m), but when none of the
attempts improved ATs design, they concluded that “the
[30°] angle is perfect” Similarly, when C_P5S20 compared
ATs feedback of (32.74° 1 panel, 2.85m) with their own
iterations (35°, 1 panel, 3m), (31°, 1 panel, 2.5m) they
wrote: “I am not surprised because I know that the tilt angle
is most efficient in the low thirties due to the seasons.” When
their best post-AI design, which used a slightly higher tilt
angle of 31° and a narrower IRS, turned out to be better
than AT, they concluded that: “If the solar panel tilt is closer
to 30 degrees, the amount of total energy increases” without
further iteration by controlling variables. Both C_P5S5 and
C_P5S820 interpreted AI's feedback based on their feelings or
relied primarily on their prior knowledge rather than con-
ducting more controlled experiments to isolate the effect of
different design variables on annual profit.

Category 5: No pain, no gain (two students)

Students in this category had the potential to improve their
design just by changing a particular variable at a time based
on AT’s recommended design for a few more iterations. For
example, C_P5S82’ pre-Al design was (30°, 1 panel, 3m),
and when AI recommended the design (32°, 3 panels, 7m),
they rejected the feedback to diverge to 3-panel rows and
kept using 1-panel rows. That decision could still have led
to success, since the student was already near the local opti-
mum (35%1 panel, 2.3m), which would have made over
$400 of profit, but the student stopped short at (34°1 panel,
2.5m), which made $10.5 less than AI did. On the contrary,
C_P5S1 demonstrated strong reasoning skills (by changing
one design variable recommended by AITA at a time) and
persistence (with 50 iterations recorded on log data) by
making the most profit ($466) among their peers.
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Students’ preferred source of feedback and their reasons
Students described various qualities they valued when receiv-
ing feedback on their designs. Table 6 shows the results of
the thematic analysis of the interview transcripts and Figure
12 and Figure 13 show students’ evaluation about the AITA
curriculum. In general, AI feedback excelled at providing a
visual representation of iterative computation and epistemic
agency with this computational power (Figure 12). For
example, when asked from whom they prefer to receive
feedback, C_P5S29 picked AI feedback because AI “can do
more calculations than the teacher can or would want to.”
Nonetheless, Al lacked the empathy that a human teacher or
a peer could provide. When M_P5S16 explained why they
preferred peer feedback, they said, “..because they [my class-
mates] are in the same kind of position as me. Because theyre
also experimenting with it as we do it together, and it kind of
helps. Sometimes we might realize something and be like, ‘Oh,
yeah, make sure to do that”” There were also four accounts
of students complaining about the software crashing or
being difficult to navigate, which hindered its usefulness,
and could have been attributed to the high frequency of
complaints around technical issues (Figure 13).

Students reacted favorably to the type of comparative
feedback provided by the AITA. M_P6S9 found the Al feed-
back “straightforward” because “it was like seeing, ‘Oh, I did
this one way, and the Al did this another way” Students also
offered a variety of ideas for how the AITA could give dif-
ferent types of feedback. M_P5S16 would like more specific
feedback, such as "its a little bit too slightly to the left." C_
P3§28, who did not interact with AI, also wanted directive
feedback such as “Oh, other students had success changing
the row width. Maybe you should try doing that”

In addition to design improvements, some students
reported that Al helped them figure out what to do in the
design process. For example, M_P5S10 described how the
AITA was “where it all clicked, and it made sense on what
everything was doing.” He explained that

...before we started making our own [solar farm], I was just
kind of pressing buttons and watching things change... I didn’t
know really what to do... And then, once we did our own [solar
farm], the directions actually made me change them and I
watched them change, like the visual aspect.

Finally, there was further evidence that the presence of an
AITA created affective responses among students. Students
reported being surprised by the AITA, which was also observed
in the student reflections from the AI worksheet. M_P5S10 also
claimed the most engaging part of the design process was “when
.. we built one [solar farm], and then we compared [ours] to the
AL” The engagement did not guarantee a positive experience
throughout, but there could be payoff at the end. According to
M_P5S5, “I was hearing how a little bit of people were struggling,
but then they were happy when they beat the AL”

Student interview data showed no dominant source of
feedback (teacher, peer, or AI) that was preferred by the
majority (see Supplement Figure 2). Instead, students pro-
vided different reasons for preferring each source of feed-
back. For example, M_P6S7 elaborated that they “might take
in my fellow classmates if they were doing really good, and
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Table 6. A list of themes and subthemes from the interviews.

Themes Sub-themes Definition Example quote Count
Values in Visualization ~ The feedback recipient can visualize designs and ~ C_P5S25: “I'm a super visual learner. So, being able to see the 2
feedback design changes in different representations. whole program work itself through and see the pictures
behind it and be like ‘oh, you can see it's at this angle’ or
‘this is where the shading part is’ and ‘this is the best part to
put this. That's what | really like about it
Authority The feedback giver is deemed trustworthy due to  C_P5525: “The teacher won't know everything. The teacher can 2
their perceived experience in the subject take a guess, but Al probably knows the best design because
matter. you can see it run through 100 designs.”
Empathy The feedback giver can express emotions and M_P5S3: “Mr. [teacher] isn't a robot. He can show emotion, so 2
relate to shared experiences. he was smiling, where[as] the bot was just giving me
information of what | could do to do better”
Usability The feedback recipient can receive, understand, C_P4S19: “It [Al] was like a lot of things that you would press 4
and act on the feedback easily. and steps you gotta go through. That was confusing.”
Types of Comparative  The feedback shows the recipient other people’s ~ M_P5510: “It was nice to actually compare [to] someone’s 5
feedback results. numbers.”
Directive The feedback provides explicit steps the recipient M_P5516: “If you move it at a slanted angle and push it 4
needs to take to improve. backwards a little bit, you might have better results.
Facilitative The feedback engages the recipient in M_P5510: “Maybe it [could] explain why they thought more 2
independent thinking and sensemaking. panels were better, or why [changing] 10 to 12 makes a
huge difference”
Affect from Surprise The feedback leads the recipient to unexpected M_P659: “I was surprised by it, because obviously [it was] a lot 1
feedback conclusions. better than mine”
Challenge The feedback recipient views the feedback as a M_P5510: “We need to try and beat it because it made it a 3
challenge to win a competition. challenge”
Additional Intention The feedback helps the recipient figure out the M_P659: “[I] kinda just... thought, ‘you know I'll just put in 3
effects of goals and next steps. some random number and see what comes out’ But as |
Feedback [saw Al's design, ] realized that maybe | didn't need to have

Confirmation The feedback confirms whether certain decisions

are good/bad for the recipient.

something lower or something higher... The Al knew that
right off the bat.

C_P5529: “I just learned that my assumptions about the tilt 1
angle were correct”

Which aspect(s) of the the Aladdin curriculum did you enjoy?

School 1 (n

School 1

School 2

0% 25% 50%

87) and School 2 (n = 28)

B epistemic agency
B visualization
learning

IIIIl | Al

B ease

= nothing
m everything
m other

non-response

75% 100%

Frequencies of mention (total may exceed # of students)

Figure 12. A breakdown of the student responses to the open-ended question in the post-survey about what they liked about the curriculum.

they were improving multiple times each time.” It is worth
noting that some students also expressed a preference for
multiple sources of feedback. For example, M_P5S16 com-
mented “I would compare it [the feedback] and see if a lot of
the things that they mentioned matched up with one another...
If a student and a teacher said that the positioning was a
little bit awkward, because it's 2 [people], then it has more of
a stronger standpoint.” It was also observed that students fre-
quently (though not always) discuss with their peers during
their independent work time.

The teacher from School 2 found the AITA to be useful in
an informal conversation after the implementation, explaining

that “in a lot of cases, the kids just need a suggestion.” He also
suggested other types of feedback that the AITA could give,
from more directive feedback (“You have tried to change the
tilt angle 5 times, how is it going for you so far? You have not
touched the other variables”) to more facilitative feedback (“I
see your number went down. Here are some reasons it may
have gone down instead of up as you expected.”).

Student evaluation
In the free-response questions about the learning experience
in the post-survey, students left both praises and criticisms
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If you could change anything about Aladdin curriculum, what would you
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change?
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not interesting

W repetitive

m Al

non-response
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Frequencies of mention (total may exceed # of students)

Figure 13. A breakdown of the student responses to the open-ended question in the post-survey about what they would change about the curriculum.

of the Aladdin curriculum (Figures 12 and 13). On the pos-
itive side, 49 out of the 115 students surveyed mentioned
the freedom and autonomy to design and experiment (Figure
12). For example, C_P6S2 stated: “I liked playing around
with different factors and seeing how they affected the out-
come, whether that was the revenue or the cost or the amount
of kWh that were produced as I changed different things.”
C_P6S28 was one of the 34 students who commented posi-
tively on the visual aspect of the Aladdin curriculum, stating
that “once I saw [AITAS] take on how to do it, it pointed me
in the right direction to then make more profit and energy,
which lead [sic] me to one of my final designs.” Four students
mentioned the AITA specifically, claiming that they enjoyed
“the use of the Al to find the best design for the solar panel
farm” (C_P4S16) because they “liked seeing the AI work and
go through many [iterations] quickly” (C_P6S5).

However, 80 of the 115 students experienced some level of
technological difficulty, reporting issues with freezing, lagging,
or navigation. Students also provided constructive criticism of
the current implementation of AITAs (Figure 13). One student
wished that “when the Al says the [design] parameters are off, it
should explain how they are off. I should not have to figure it
out” (C_P5S2). Another student wished to “really see the math
behind the Al and have an explanation [of] why and how Al
works” (C_P4S18). Finally, one student cautioned that “using an
Al as a teaching method should be used sparingly and a human
teacher should be used a majority of the time” (C_P4S33), with
no specific explanation of their reasoning.

Discussion

Science and engineering learning outcomes in
response to RQ1

Understanding solar science concepts in depth helped stu-
dents consider different variables and perspectives that could
facilitate and expedite their search for the optimal design log-
ically. Results from the multiple-choice questions in the pre-
and post-surveys suggested that students achieved some
improved understanding of solar energy science concepts

after finishing the Solar Farm Design project. Student perfor-
mance differed between the two schools. The difference was
most noticeable in two of the four questions (Q2: seasonal
change of solar angles, and Q4: optimal solar panel tilt angle),
where the correct answers did not receive the majority vote
in the post-survey. Option C in Q2 was the most popular
distractor as opposed to the Key in Option D. The only dif-
ference between these options is the length of the shadow.
The shadow in Option C is shorter, which is a logical, edu-
cational guess for the solar angle two hours past noon.
Students were able to rule out the shadow pointing to the
north (Option A) and no shadow (Option B), but not the
“height” of the sun during different seasons. Even though
students could observe the seasonal change using the heliodon
tool (see Figure 1), they might not have attended to different
effects caused by the seasonal change of solar angles. In Q4,
the most popular distractor students opted for was approxi-
mately half (24.4°) of the most optimal tilt angle (~42°),
which should reflect the corresponding latitude of the place,
i.e,, 42° N. The finding is indicative that many students were
either not transferring or generalizing the rule from the AITA
activity to solve a similar problem. Notice that we put a cap
of 35° on the tilt angle in our design due to the wind resis-
tance constraint; therefore, students might not be able to
extrapolate from the limited range of tilt angle to answer Q4.

Advantages of AlITAs in enhancing science and
engineering learning outcomes in response to RQ2

A comparison of students’ design performance before and
after using the AITA, their design reflections, and their
interviews provided both quantitative and qualitative data
that indicated the pedagogical advantages of using AITAs to
provide feedback on student learning.

Playing the role of peer assistants

The use of AITAs is comparable to learning from peers
(Wood & O'Malley, 1996). This was found to be a common
theme in the interviews, with at least five out of 15 students
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identifying a need or preference for comparing their results
with those of someone else, be it another student or an
AITA. In an in-person learning environment, students may
spontaneously compare their design performance (yearly
profit) with others. While this peer feedback is not directly
actionable without further comparison of design variables
and processes, it informs them of their relative standing in
the group and what has been proven to be achievable in
terms of design optimization. Similarly, the AITA provides a
concrete design with quantitative performance data as a
comparison, but it also exceeds typical peer feedback in two
aspects: 1) While students sometimes only share their design
performance but not their design variables, the AITAs always
provide both pieces of information, so that students can
quantitatively compare both designs, identify specific changes
that contribute to the improvement (if any), and act upon it;
2) While students rarely discuss their thought process or
design rationale that led to their designs, the AITA visual-
izes the design process in an animation, where students can
see the evolution of one design iteration to the next. The
abstract concept of divergence and convergence cycles can
also be visualized: Students can see that the earlier design
iterations look more variable, and the later iterations look
less variable. This visual aspect facilitates learning from con-
trasting cases (Schwartz et al., 2016) and may be responsible
for helping novice students adapt their design strategy from
random trial and error to a more systematic approach. Such
visual benefit may explain why learners perceived visualiza-
tion effects as the second most enjoyable factor of the AITA
curriculum.

Playing the role of experts

The use of AITAs is also comparable to learning from
experts. Assessing large numbers of engineering design solu-
tions has always been a difficult task, especially for geosci-
ence educators who may not have equal expertise in
engineering design. The AITA provides an efficient approach
for formative assessment: If the AI design performs much
better than the student design, then it obviously means that
the student design has lots of room for improvement.
However, if the AI design does not show much improve-
ment, then it means that the student design may already be
close to the optimal solution (see Figures 7 and 8).
Al-generated feedback also exceeds expert feedback in two
aspects: 1) While expert feedback is often based on design
heuristics that still need to be tested, Al-generated feedback
is supported by quantitative evidence. 2) Student interview
data suggests that the dynamic visualization of the computa-
tion process increases student confidence in the authority of
the feedback, which may encourage the adoption of such
feedback.

Creating cognitive dissonance with surprising design

Finally, there is evidence to support the hypothesis that the
psychological effect of AITAs, especially the element of sur-
prise, contributes to student learning. Students in Category
2 documented how ATs surprising design prompted them to
apply previously acquired knowledge about solar energy

science to explain the surprise and identify ways to further
improve the design. C_P4S14, one of the students in
Category 3, explained how ATIs surprising design triggered
an important understanding of solar energy science: Seasonal
changes of solar angles are an important factor in choosing
an optimal tilt angle. These findings are consistent with the
theory of cognitive development and constructivist learning
(Lutz & Huitt, 2004): When presented with new knowledge
that does not fit into any existing schema, the cognitive dis-
sonance may trigger students to restructure their existing
schema to accommodate the new knowledge.

Activating and reinforcing existing knowledge

An analysis of the different types of Al feedback and student
reactions showed that one of the most prominent effects of
the AITA in Aladdin was either reinforcing or activating
students’ existing knowledge. For the 10 of 16 students that
correctly rejected Al feedback to decrease the tilt angle, their
reflections showed that many already knew the optimal
range of the tilt angle and therefore raised doubts when the
AT feedback contradicted the solar energy science knowledge
they had already learned. As for three of the 16 students
accepting Al feedback to increase the tilt angle, their reflec-
tions also showed that they were already aware of the opti-
mal range of tilt angle, but for whatever reason, they did not
fully optimize it (35°) on their initial attempt. In this case,
the AI feedback activated their existing knowledge and
reminded them to optimize it further.

Fostering more divergent thinking

Another effect of the AITA was allowing students to create
more divergent designs. The effect was most prominent in
the case of the three students who went the extra mile to
find a new RW-IRS pairing for their post-Al design. For the
eight students who simply adopted AI's exact RW-IRS pair-
ing in their post-Al design, less could be said about whether
the students learned anything about the coupled nature of
RW and IRS, how they impacted design performance, and
how divergent thinking could lead to better designs. However,
it could be viewed as a case of collaborative intelligence
between humans and AI (Wilson & Daugherty, 2018), where
each contributed what they knew about the design problem
and took advice from each other.

Nonetheless, C_P5S16 presented a rare case, where the
AITA failed to improve the students original design. Their
reflection referred to the “initial testing” and “much more
testing” that they had done to discover two of the local
optima in the design space. Their activity log data also con-
firmed that they had already iterated 30 times before receiv-
ing Al feedback and another 17 times afterward, which
might explain why the student still managed to learn even
from a failed attempt from Al: The student was very engaged
and already explored the design space pretty thoroughly, giv-
ing them an edge in distilling helpful information from the
raw feedback.

On the other hand, two students did not further improve
their designs after receiving Al feedback, likely due to not
having iterated enough times. Two other students reinforced
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their premature conclusions about the tilt angle despite hav-
ing improved their designs, likely due to changing multiple
variables at a time instead of running controlled experi-
ments. Observations from these cases suggested that the
quality and extent of the effect of the AITA varied based on
many factors such as the students’ level of engagement/per-
sistence, existing knowledge, familiarity with engineering
design practices, etc., and that additional scaffolding may be
necessary to support the learning in one or more of those
aspects.

Student perceptions of AITAs in response to RQ3

Student perceptions of AITAs are mixed. In general, the
AITA was regarded as being able to meet some students’
needs but not all. Based on a combination of data sources,
such as surveys, observations, and interviews, students in
School 1 rated the AITA more favorably than those in
School 2, which may be partially attributed to the fact that
the students in School 2 exhibited more overall disengage-
ment with the AITA curriculum. These mixed responses
agreed with a previous study that found variation in student
perceptions of automated feedback (Calvo & Ellis, 2010).
Student interview data further supports the positioning of
AITAs not as a substitute for teacher or peer feedback but
as an additional source of feedback that can amplify the
effect of human feedback (when available).

Results from the self-assessments also indicate that stu-
dents achieved increased self-efficacy and enhanced their
epistemic agency (Miller et al., 2018) in engineering design
after the project. The difference in engagement in AITA
activities was also salient, considering that only one out of
31 students documented valid AI data. Out of all students
who submitted both the pre- and post-surveys and had the
opportunity to interact with AI in class, 12.5% (10 of 80)
students from School 1 did not document anything, while
64.2% (18 of 28) students from School 2 did not document
anything. These differences in self-efficacy and engagement
may be inherent, given that the teacher from School 2 had
commented on the behavioral issues in his classes, and there
had been multiple accounts of observations where the
teacher had to address such issues publicly in class.
Nevertheless, improvements could be made to support the
struggling students and address disengagement.

Room for improvement

Data from this preliminary study of AITAs in geoscience
and engineering education generated important insight into
how this pedagogical approach can be improved, specifically
in the following aspects:

More informative feedback

Many students thought that the AITA could give “more spe-
cific” feedback. Recommendations collected from the stu-
dents and teacher can be categorized as (1) directive
feedback, which includes pointing out what the student did
wrong and telling the student explicitly what they need to
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do to improve the result; (2) facilitative feedback, which
includes explaining the reason why the student did not per-
form as expected, asking the student to reflect on patterns
in their process or behavior, or recommending that the stu-
dent experiment with something new. It is worth noting that
students and the teacher preferred different types of feed-
back. Students generally wished for immediate actionable
feedback that quickly improved their design product and
required less cognitive effort. In contrast, the teacher recom-
mended feedback that focuses more on scientific reasoning
than immediate action, targets the design process or mindset
more than the product, and requires more cognitive effort.
Because students exhibit diverse needs that vary greatly
depending on their levels of prior knowledge and current
progress (Schwartz et al., 2016), it seems more desirable for
AITAs to provide multiple types of feedback rather than
canonizing any one approach.

More psychological support

Student interview data also highlighted the importance of
human interaction in the classroom. While the current AITA
lacks the emotional attention of a teacher and the shared
experience of a fellow student and makes clear that future
research should explore how AI can support students in the
psychological dimension in addition to the cognitive dimen-
sion, we would like to reiterate that the intention of this
innovation is not to create any replacement for human inter-
action. Rather, it is to create an alternative to accommodate
students’ diverse needs and a fallback in times of disruption.

More inclusive and equitable Al

Our findings resonated with other studies with AI feedback
(e.g., Shi & Aryadoust, 2024) that students who were more
engaged in the project benefited more readily from the cur-
rent implementation of AITA, while students who were dis-
engaged appeared to have gained less from their interactions
with the AITA. Taking students’ engineering design perfor-
mance from School 1 for example (see Figure 7a), students
with less desirable initial designs benefited more with more
Al engagement, and most of these students’ final designs
outperformed those who either did not adopt AIs sugges-
tions or reached near optimal with initial attempts. To make
Al more inclusive and equitable, future research should
focus on improving the usability of the software to enhance
motivation and boost engagement by providing both direc-
tive and facilitative AI feedback that addresses different stu-
dent needs. To this end, large language models (LLMs) may
be well suited for the task of providing automated and per-
sonalized feedback (Shi & Aryadoust, 2024) in educational
contexts to support more inclusive learning (Chen
et al.,, 2023).

Limitations

There are several limitations to this evaluation. The first
limitation is that more validated assessment items specific to
solar energy engineering were not readily available; other-
wise, we could adopt multiple assessment items to elicit
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students’ ESS knowledge of items like Q2 and Q4. Second,
it was difficult to assess and control for students’ prior
knowledge of solar energy or engineering design during the
study, so some patterns in student responses to the AITA
may be attributed to students’ prior knowledge. For example,
students who had more familiarity with the subject matter
may be more engaged in reflecting on the feedback they
received and therefore exhibit more learning gains and a
more positive attitude toward the AITA.

In terms of data analysis, the discussion of students’ engi-
neering design performance was based on a comparison of
three snapshots within the entire design trajectory, namely
the pre-Al, Al, and post-Al designs, instead of the evolution
of all iterations. The potential correlations between factors
such as engagement and performance were not discussed. In
addition, due to the solo coding and analysis of qualitative
data from one researcher, the inter-rater reliability was not
measured. These limitations could also provide directions for
future research.

Implications

The study has exposed long-standing shortcomings in geo-
science education, such as inadequate integration with engi-
neering design at the K-12 level, and the lack of alternative
feedback mechanisms. However, with a wealth of experience
accumulated with a call for integrated STEM education
(NGSS Lead States, 2013), geoscience educators are now in
a much better position to proactively build a more equitable
and resilient learning environment that cultivates student
agency concerning global challenges.

Part of the solution entails deeper integration of engi-
neering design into geoscience education, which would
afford students the opportunity to apply their science knowl-
edge to solve pressing problems of today and tomorrow. ESS
educators interested in using the Solar Farm Design curric-
ulum are welcome to explore the full problem space of solar
energy engineering, a booming industry in demand of a
greater workforce. For example, the profitability of the same
solar farm design varies greatly in different geographic
regions and depends on factors such as the weather and the
local electric rate. A profitable solar farm design in
the Northeastern US may not be profitable at all in the
Midwestern US due to fewer sunshine hours and lower elec-
tric rates, which can lead to rich discussions about the rela-
tionship among geoscience, engineering design, and public
policy. In addition, Aladdin supports the use of custom
ground images, which educators can use to overlay addi-
tional GIS data and discuss geological and environmental
considerations during site assessment.

Similar to how online learning has transitioned from a
novel concept to a common alternative during the unprece-
dented pandemic, another part of the solution is to intro-
duce alternative forms of support into the learning
environment, including the selective use of AI. While the
AITA in Aladdin remains available 24/7, educators interested
in Aladdin and its accompanying curriculum materials
should be mindful of providing multiple feedback mecha-
nisms to accommodate diverse student needs, with Al

feedback being an additional option that complements exist-
ing methods. Future research may focus on making
Al-generated feedback more understandable, e.g., by incor-
porating strategies recommended in the engineering design
coaching tool suggested in this study and from our previous
work (e.g., Purzer et al., 2022). Another potential research
direction is to extend the preliminary work on AI as instruc-
tional design agents with different personas (Schimpf et al.,
2019) and create more humanized agents that can assess stu-
dents’ psychological states using their design activity data
and providing socio-psychological interventions (Yeager &
Walton, 2011), in addition to design feedback. As Al contin-
ues to gain traction in education, the findings about how
Al-assisted coaching tools may impact students’ conceptual
and affective learning will only become more relevant for
applying Al in ways that benefit all students.
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