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Abstract
Reflexive lattice polytopes play a key role in combinatorics, algebraic geometry,
physics, and other areas. One important class of lattice polytopes are lattice sim-
plices defining weighted projective spaces. We investigate the question of when
a reflexive weighted projective space simplex has the integer decomposition prop-
erty. We provide a complete classification of reflexive weighted projective space
simplices having the integer decomposition property for the case when there are at
most three distinct non-unit weights, and conjecture a general classification for an
arbitrary number of distinct non-unit weights. Further, for any weighted projective
space simplex and m ≥ 1, we define the m-th reflexive stabilization, a reflexive
weighted projective space simplex. We prove that when m is 2 or greater, reflexive
stabilizations do not have the integer decomposition property. We also prove that
as long as one weight is at least three, the Ehrhart h∗-polynomial of any sufficiently
large reflexive stabilization is not unimodal and has only 1 and 2 as coefficients.
We use this construction to generate interesting examples of reflexive weighted pro-
jective space simplices that are near the boundary of both h∗-unimodality and the
integer decomposition property.
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1. Introduction

1.1. Motivation

Consider an integer partition q ∈ Zn≥1 with the convention q1 ≤ · · · ≤ qn. A lattice

simplex defined by q is

∆(1,q) := conv

{
e1, . . . , en,−

n∑
i=1

qiei

}
where ei denotes the ith standard basis vector in Rn. Set N(q) := 1 +

∑
i qi.

One can show, as for instance in [17, Proposition 4.5], that N(q) is the normalized

volume of ∆(1,q). Let Q denote the set of all lattice simplices of the form ∆(1,q).

We call elements of Q weighted projective space simplices, as the simplices in

Q correspond to a subset of the simplices defining weighted projective spaces [11],

namely those for which the vector (1,q) gives the weights of the projective coordi-

nates. The set Q is the focus of active study [2, 4, 5, 6, 7, 16, 18], motivated by

questions regarding Ehrhart positivity, Ehrhart h∗-unimodality and real-rootedness,

existence of unimodular triangulations, and other topics. One reason for this interest

is that Q is a relatively general family of simplices with diverse lattice-point com-

binatorics, and another is because elements of Q admit tractable number-theoretic

characterizations of several important geometric and combinatorial properties. This

makes Q a natural testing ground for exploring combinatorial and geometric prop-

erties of lattice simplices, while maintaining some combinatorial control over the

examples at hand. Another reason for this interest is that algebraic and geometric

properties of simplices in Q correspond to geometric properties of weighted projec-

tive spaces, and thus are of interest to algebraic geometers.

Our focus in this paper is on two properties, reflexivity and the integer decompo-

sition property, that are defined for general lattice polytopes as follows. Recall that

a subset P ⊆ Rn is a d-dimensional (convex) lattice polytope if it is the convex hull

of finitely many points v(1), . . . ,v(k) ∈ Zn that span a d-dimensional affine subspace

of Rn. Many interesting geometric and algebraic properties of P are revealed by

considering the cone over P , defined as the non-negative span of the vectors formed

by prepending a 1 to each vertex of P , i.e.,

cone (P ) := spanR≥0
{(1,v(i)) : i = 1, . . . , k} .

A lattice polytope P is said to have the integer decomposition property (or to be

IDP) if for every positive integer m and each (m,w) ∈ cone (P )∩Zn+1, there exist

m points x1, . . . ,xm ∈ P ∩Zn for which (m,w) =
∑
i(1,xi). IDP polytopes are also

known as projectively normal polytopes. Letting K◦ denote the topological interior

of a space K, P is said to be reflexive if there exists an integer vector c ∈ P ◦∩Zn+1

such that

(1, c) +
(
cone (P ) ∩ Zn+1

)
= cone (P )

◦ ∩ Zn+1 .
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Equivalently, P is reflexive if, possibly after translation by an integer vector, the

origin is contained in P ◦ and the geometric dual (or polar body) of P is also a

lattice polytope.

There are many interesting questions about polytopes that are IDP and/or re-

flexive. For example, it is typically difficult to identify when a given polytope is

IDP. As another example, the number of reflexive polytopes of a fixed dimension is

not known in dimension five and above. Our interest is determining when a reflexive

simplex in Q is IDP. One motivation for this paper is the conjecture, which appeared

first in the survey [8], that the h-polynomial of a standard graded Gorenstein domain

is unimodal. (Recall that a polynomial p = p0+p1x+· · ·+pdxd ∈ Z≥0[x] is unimodal

if there exists t ∈ [d] ∪ {0} := {1, . . . , d} ∪ {0} such that p0 ≤ · · · ≤ pt ≥ · · · ≥ pd.)

It is known that the Ehrhart h∗-polynomial of an IDP lattice polytope is the h-

polynomial of a corresponding standard graded semigroup algebra, and that reflex-

ive polytopes produce Gorenstein algebras. Thus, h∗-polynomials of IDP reflexive

polytopes yield a special case of this conjecture. A proof of this special case, that the

h∗-polynomial of an IDP reflexive lattice polytope is unimodal, has recently been

announced in a preprint by Adiprasito, Papadakis, Petrotou, and Steinmeyer [1].

It was previously known, due to work of Bruns and Römer [9], that if a reflexive

lattice polytope P admits a regular unimodular triangulation (implying IDP), then

the h∗-polynomial of P is unimodal. Given this context, it is of interest to determine

when a reflexive lattice polytope is IDP.

1.2. Our Contributions

In Section 2, we review properties of the weighted projective space simplices ∆(1,q),

for q ∈ Zn≥1, that correspond to weighted projective spaces in which one projective

coordinate has weight 1 and the others are given by the entries in q.

In Section 3, we state our main result, Theorem 9, a classification of all IDP

reflexive ∆(1,q) where q has three distinct entries. Because the proof of Theorem 9

is long and technical, we provide the proof in Section 5. We prove Theorem 7, which

gives a bound on the possible entries of an IDP reflexive q with fixed multiplicities

on the distinct entries. Motivated by these results and further experiments, we

propose in Conjecture 1 a classification of all reflexive IDP elements of Q.

In Section 4, we define for all m ≥ 1 the m-th reflexive stabilization of ∆(1,q). We

prove that for m ≥ 2, reflexive stabilizations produce non-IDP simplices, and for

large m they have non-unimodal Ehrhart h∗-polynomials with all coefficients taking

values in {1, 2}. Finally, we show that reflexive stabilizations can be used to pro-

duce interesting examples of lattice simplices; for example, Theorem 13 provides an

example of a ∆(1,q) that is simultaneously “almost IDP” and “almost h∗-unimodal”.



INTEGERS: 24 (2024) 4

2. Properties of Simplices in Q

2.1. Reflexivity and Q

The simplices in Q admit a natural parametrization (or stratification), based on

the distinct entries in the vector q, that allows us to test for the reflexive and IDP

conditions even when ∆(1,q) is high-dimensional and/or has large volume. Given a

vector of distinct positive integers r = (r1, . . . , rd) ∈ Zd>0, write

(rx1
1 , rx2

2 , . . . , rxdd ) := (r1, r1, . . . , r1︸ ︷︷ ︸
x1 times

, r2, r2, . . . , r2︸ ︷︷ ︸
x2 times

, . . . , rd, rd, . . . , rd︸ ︷︷ ︸
xd times

) .

If q = (q1, . . . , qn) = (rx1
1 , rx2

2 , . . . , rxdd ), we say that both q and ∆(1,q) are supported

by the vector r = (r1, . . . , rd), which has distinct entries, with multiplicity x =

(x1, . . . , xd). We write q = (r,x) in this case and say that q is d-supported.

We are particularly interested in the case when the simplex ∆(1,q) is reflexive,

and we say that q is reflexive whenever ∆(1,q) is reflexive. The following theorem,

due to Conrads, and setup provide us with a number-theoretic basis for studying

reflexive simplices in Q.

Theorem 1 ([11]). The simplex ∆(1,q) ∈ Q is reflexive if and only if

qi divides 1 +

n∑
j=1

qj for all 1 ≤ i ≤ n . (1)

Equivalently, if q = (r,x), then ∆(1,q) is reflexive if and only if lcm (r1, . . . , rd)

divides 1 +
∑d
i=1 xiri.

Setup 1. Let q be reflexive and supported by the vector r = (r1, . . . , rd) ∈ Zd≥1

with multiplicity x = (x1, . . . , xd) ∈ Zd≥1. Let ` = `(q) be the integer defined by

1 +
d∑
j=1

xjrj = ` · lcm (r1, r2, . . . , rd) . (2)

Finally, we define s := (s1, . . . , sd) where

si :=
lcm (r1, . . . , rd)

ri
(3)

for each 1 ≤ i ≤ d.

This setup provides useful restrictions on q, such as the following lemma due to

Braun and Liu.

Lemma 1 ([7]). In Setup 1, we have that gcd(r1, . . . , rd) = 1 and thus

lcm (s1, . . . , sd) = lcm (r1, . . . , rd) . (4)
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Remark 1. The Hermite normal form for the simplex ∆(1,q) − e1 is
0 1 0 · · · 0 N(q)− q2

0 0 1 · · · 0 N(q)− q3

...
...

...
. . .

...
...

0 0 0 · · · 1 N(q)− qd
0 0 0 · · · 0 N(q)

 ,

that is, ∆(1,q) is unimodularly equivalent to the convex hull of the columns of this

matrix. This is an example of a simplex with what Hibi, Higashitani, and Li [14]

call a one-column Hermite normal form. Their work provides a partial study of

Ehrhart-theoretic properties of such simplices.

2.2. The Integer Decomposition Property and Q

For each r-vector, it is known [5] that there are infinitely many reflexive ∆(1,q)’s

supported on r. Given a pair ∆(1,q) and ∆(1,p), both reflexive and IDP, Braun and

Davis [4] proved that a new reflexive IDP ∆(1,y) can be constructed as shown in the

following theorem. Suppose that ∆(1,q) ⊂ Rn and ∆(1,p) ⊂ Rm are reflexive and

the vertices of ∆(1,p) are labeled as v0, v1, . . . , vm. For every i = 0, 1, . . . ,m, define

the affine free sum

∆(1,q) ∗i ∆(1,p) := conv
{

(∆(1,q) × 0m) ∪ (0n ×∆(1,p) − vi)
}
⊂ Rn+m.

The notion of an affine free sum can be generalized significantly [3], but in this

article it will not be necessary.

Theorem 2 ([4]). The simplex ∆(1,q) is reflexive and arises as a free sum ∆(1,p) ∗0
∆(1,w) if and only if ∆(1,p) and ∆(1,w) are reflexive and q = (p, (1 +

∑
i pi)w). If

∆(1,p) is IDP reflexive and ∆(1,q) is IDP, then ∆(1,q) ∗0 ∆(1,p) is IDP. Further, if

∆(1,p) and ∆(1,q) are reflexive, IDP, and h∗-unimodal (defined in Subsection 2.3),

then so is ∆(1,q) ∗0 ∆(1,p).

Thus, there are infinitely many reflexive IDP ∆(1,q)’s that arise as a result of

the affine free sum operation. However, the support vector for ∆(1,q) ∗0 ∆(1,p) is

distinct from that of p and q, so this operation does not respect the stratification of

Q given by support vectors. In fact, for many r-vectors, it is impossible to generate

infinitely many reflexive IDP ∆(1,q)’s supported on r, as the following theorem due

to Braun, Davis, and Solus shows.

Theorem 3 ([5]). Given a support vector r ∈ Zd≥1, if there exists some j < d such

that rj - rd, then only finitely many reflexive IDP ∆(1,q)’s are supported on r.

Computational experiments show that IDP reflexive ∆(1,q) satisfying the criteria

in Theorem 3 are uncommon when q is supported on a small partition. Specifically,
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consider all r-vectors that are partitions of M ≤ 75 with distinct entries, such that

there exist some rj such that rj - rd. Table 1 shows that only 509 IDP reflexive

∆(1,q) are supported on r-vectors of this type. While IDP reflexive ∆(1,q)’s are

uncommon among this sample, it is important to keep in mind that this represents

a relatively small sample set of simplices. For example,

q = (210, 211, 211, 211, 211, 1055, 1055, . . . , 1055︸ ︷︷ ︸
41 times

)

is not among this sample, but it is both IDP and reflexive with 210 - 1055.

# of r-vectors with some rj - rd # of IDP reflexives supported by these
501350 509

Table 1: Experimental results for r-vectors that are partitions of M ≤ 75.

Fortunately, the following theorem due to Braun, Davis, and Solus provides a

number-theoretic characterization of the IDP property for reflexive ∆(1,q).

Theorem 4 ([5]). The reflexive simplex ∆(1,q) is IDP if and only if for every

j = 1, . . . , n, for all b = 1, . . . , qj − 1 satisfying

b

(
1 +

∑
i6=j qi

qj

)
−
∑
i6=j

⌊
bqi
qj

⌋
≥ 2 (5)

there exists a positive integer c < b satisfying the following equations, where the first

is considered for all 1 ≤ i ≤ n with i 6= j:⌊
bqi
qj

⌋
−
⌊
cqi
qj

⌋
=

⌊
(b− c)qi

qj

⌋
, and (6)

c

(
1 +

∑
i6=j qi

qj

)
−
∑
i6=j

⌊
cqi
qj

⌋
= 1. (7)

The next corollary of Theorem 4 provides a necessary condition for a reflexive

∆(1,q) to be IDP. This condition is an essential tool in our study of IDP reflexive

elements of Q. Note that in this corollary, and throughout the paper, we use the

notation (a mod b) to denote the remainder 0 ≤ r < b obtained when dividing a by

b.

Corollary 1 ([5]). If ∆(1,q) is reflexive and IDP, then for all j = 1, 2, . . . , n,

1 +
n∑
i=1

(qi mod qj) = qj

or equivalently

1 +
n∑
i=1

xi(ri mod rj) = rj .
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Definition 1. If q satisfies one (hence both) of these equations for all j = 1, . . . , n,

we say q satisfies the necessary condition for IDP.

Note that if q satisfies the necessary condition, then ∆(1,q) must be reflexive

because the necessary condition implies the divisibility condition in Equation (1).

2.3. Ehrhart Theory and Q

The Ehrhart function of P is the lattice point enumerator i(P ; t) := |tP ∩Zn|, where

tP := {tp : p ∈ P} denotes the tth dilate of the polytope P . It is well-known [12]

that i(P ; t) is a polynomial in t of degree d = dim(P ). The Ehrhart series of P is

the rational function

EhrP (z) :=
∑
t≥0

i(P ; t)zt =
h∗0 + h∗1z + · · ·+ h∗dz

d

(1− z)dim(P )+1
,

where the coefficients h∗0, h
∗
1, . . . , h

∗
d are all nonnegative integers [19]. The polyno-

mial h∗(P ; z) := h∗0 + h∗1z + · · · + h∗dz
d is called the (Ehrhart) h∗-polynomial of

P .

Remark 2. A result of Stanley [20] states that P is Gorenstein if and only if

h∗(P ; z) is symmetric with respect to its degree s; i.e., h∗i = h∗s−i for all i. Hibi [13]

proved the special case that P is reflexive if and only if h∗i = h∗d−i for all i. Further,

Bruns and Römer [9] proved that if P is IDP and Gorenstein, then h∗(P ; z) is the h∗-

polynomial of an IDP reflexive polytope. Thus, reflexive polytopes are identifiable

via Ehrhart theory and play a key role in the general study of Gorenstein lattice

polytopes.

Unlike the situation for general lattice polytopes, for ∆(1,q) there is an explicit

formula for h∗(∆(1,q); z) due to Braun, Davis, and Solus.

Theorem 5 ([5]). The h∗-polynomial of ∆(1,q) is

h∗(∆(1,q); z) =

q1+···+qn∑
b=0

zw(q,b)

where

w(q, b) := b−
n∑
i=1

⌊
qib

1 + q1 + · · ·+ qn

⌋
. (8)

Example 1. Let q = (2, 2, 3). Then w(q, b) := b− 2

⌊
b

4

⌋
−
⌊

3b

8

⌋
, and thus

h∗(∆(1,q); z) = 1 + 2z + 4z2 + z3.
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For the case where ∆(1,q) is IDP reflexive, we will need to know that the h∗-

polynomial of ∆(1,q) often admits a geometric sum as a factor, as the following

definition and theorem due to Braun and Liu demonstrate.

Definition 2. Suppose r,x, ` and s are as given in Setup 1. We define

gxr (z) :=
∑

0≤α<lcm(r1,...,rd)

zu(α)

where

u(α) = uxr (α) := α`−
d∑
i=1

xi

⌊
α

si

⌋
.

Theorem 6 ([7]). Using the notation in Setup 1, we have that

h∗(∆(1,q); z) =

(
`−1∑
t=0

zt

)
· gxr (z) .

Example 2. For q = (17, 34, 55), we have

(z2 + z + 1)(x14 + x11 + 2x10 + 2x8 + 3x7 + 2x6 + 2x4 + x3 + 1) .

Note that in this case, ` = 3 and a factor of z2 +z+1 appears in the h∗-polynomial.

3. Classifying IDP Reflexive ∆(1,q)

Our goal in this section is to classify all reflexive IDP elements of Q that are

supported on up to three distinct entries. We begin by observing that the necessary

condition for IDP allows us to deduce the following refinement of Theorem 3.

Theorem 7. Let (r,x) = q ∈ Zn≥1, where q has at least two distinct entries and

r1 < r2 < · · · < rd; hence d ≥ 2. If ∆(1,q) is reflexive and IDP, then

xi ≤ ri+1/ri

for all i ≤ d− 1. Further, if there exists some j < d such that rj - rd, then

xd ≤ rj/(rd mod rj) .

Thus, if there exists some j < d such that rj - rd, then there are at most finitely

many IDP reflexives supported on r.

Proof. Let j < d, and assume that ∆(1,q) is reflexive and IDP. Then by Corollary 1,

we have

xjrj ≤ 1 +
d∑
i=1

xi(ri mod rj+1) = rj+1 ,
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from which the first inequality follows. Similarly, if rj - rd, then

xd(rd mod rj) ≤ 1 +
d∑
i=1

xi(ri mod rj) = rj ,

from which the second inequality follows.

Theorem 7 indicates that there are important relationships between the multi-

plicity vector x of q and the support vector r. By shifting our primary focus to

the multiplicity vector, we are able to give a complete classification of all reflexive

IDP ∆(1,q)’s that are supported on up to 3 distinct entries. If x has one entry, it is

straightforward to prove the following using Equation (1) and Corollary 1.

Proposition 1. For q = (rx1
1 ), if ∆(1,q) is IDP reflexive, then r1 = 1.

If x has two entries, meaning that r has two distinct entries, the following theorem

due to Braun, Davis, and Solus applies.

Theorem 8 ([5]). For the vector q = (rx1
1 , rx2

2 ), ∆(1,q) is IDP reflexive if and only

if it satisfies the necessary condition. The following is a classification of all such

vectors, for x1, x2 ≥ 1:

1. q = (1x1 , (1 + x1)x2)

2. q = ((1 + x2)x1 , (1 + (1 + x2)x1)x2).

Note that in the first case r1 | r2 while in the second case r1 - r2. We can extend

these results as follows to the 3-supported case using Theorem 7 and Corollary 1.

The proof of Theorem 9 is long and technical, so we include it separately in Section 5.

Theorem 9. Consider a 3-supported vector q = (r,x) such that ∆(1,q) satisfies

the necessary condition given in Corollary 1. If x = (x1, x2, x3) is the multiplicity

vector, then r is of one of the following forms:

(i) r = (1, 1 + x1, (1 + x1)(1 + x2));

(ii) r = (1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2));

(iii) r = ((1 +x2)(1 +x3), 1 +x1(1 +x2)(1 +x3), (1 +x1(1 +x2)(1 +x3))(1 +x2));

(iv) r = (1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3)));

(v) r = (1+(1+x3)x2, (1+x3)(1+x1(1+(1+x3)x2)), (1+(1+(1+x3)x2)x1)(1+

(1 + x3)x2));

(vi) r = ((1 + x3)(1 + (1 + x3)x2), (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)), (1 +

(1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2));
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(vii) r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2));

(viii) There exists some k, s ≥ 1, where

r = (1+kx2, (skx2+s+k)(1+x1(1+kx2)), (1+x1(1+kx2))(1+x2(skx2+s+k)))

and

x = (x1, x2, skx2 + s− k + 1) .

Further, the first seven r-vectors produce IDP ∆(1,q)’s, while (viii) does not.

Note that the first seven r-vectors in Theorem 9 each correspond to a unique

divisibility criteria for r = (r1, r2, r3), as follows:

(i) r1 | r2, r1 | r3, r2 | r3

(ii) r1 - r2, r1 | r3, r2 | r3

(iii) r1 - r2, r1 - r3, r2 | r3

(iv) r1 | r2, r1 | r3, r2 - r3

(v) r1 - r2, r1 | r3, r2 - r3

(vi) r1 - r2, r1 - r3, r2 - r3

(vii) r1 | r2, r1 - r3, r2 - r3

(viii) r1 - r2, r1 | r3, r2 - r3

We see that (v) and (viii) share the same divisibility pattern, yet of these two

families only (v) contains IDP simplices. Note that for each positive integer vector

x of length three, and for each divisibility condition on the support vector r, there

is at most one support vector r such that q = (r,x) is reflexive IDP. We extend

these observations to a general conjecture in the following manner.

Given a support vector r = (r1, . . . , rd) and a naturally labeled poset Ω on

{1, 2, . . . , d}, we say that r is division compatible with Ω if we have i <Ω j if and

only if ri|rj . For example, an r-vector of the form (ii) above is division compatible

with the poset Ω on {1, 2, 3} having relations 1 <Ω 3 and 2 <Ω 3. Posets that arise

from a set of integers in this way are called divisibility posets [10, 15].

Conjecture 1. Given x = (x1, x2, . . . , xd) ∈ Zd≥1 and a divisibility poset Ω that is

not an antichain, there is a unique IDP reflexive ∆(1,q) with multiplicity vector x

and support vector that is division compatible with Ω.
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4. Reflexive Stabilizations

It is unlikely that a random integer partition q is reflexive. Further, Theorem 7 tells

us that for many support vectors r, r supports infinitely many reflexives but finitely

many IDP reflexives. Thus, it is interesting to consider both how to assign reflexive

elements of Q to an arbitrary integer partition and the behavior of h∗-vectors for

reflexive elements of Q where at least one entry has a large multiplicity. We can

begin investigating both of these through a process we call reflexive stabilization,

which allows us to assign to each integer partition q a sequence of reflexive simplices

in Q.

Definition 3. Let q ∈ Zn≥1. The first reflexive stabilization of q, denoted rs(q),

is the vector (1, 1, . . . , 1,q) such that ∆(1,rs(q)) is reflexive and the number of 1’s

prepended to q is the minimum necessary for this condition to hold; if q is reflexive,

then no 1’s are prepended. Note that rs(q) exists due to Theorem 1. We say the

number of 1’s prepended to q in rs(q) is the reflexive stabilization number of q,

denoted rsn(q). Thus, we can write

rs(q) := (1rsn(q),q) .

More generally, the m-th reflexive stabilization of q, denoted rs(q,m), is defined as

rs(q,m) := (1rsn(q)+(m−1)·lcm(q),q) .

Note that by Theorem 1, when prepending lcm (q) copies of 1 as many times as

desired, the resulting simplex is reflexive.

Example 3. Let q = (2, 2, 3). Then 1 + 2 + 2 + 3 = 8, and thus rs(q) =

(1, 1, 1, 1, 2, 2, 3) is reflexive with rsn(q) = 4. Further,

rs(q, 3) = (r,x) = ((1, 2, 3), (16, 2, 1)) .

We can restrict ourselves to only q ∈ Zn≥2, since if 1 is an entry of q, then rs(q)

is rs(q′,m) for some m with q′ given by the entries of q that are not equal to 1.

We begin by observing that for m ≥ 2, reflexive stabilizations are not IDP.

Theorem 10. Assume that q ∈ Zn≥2. For m ≥ 2, ∆(1,rs(q,m)) is not IDP.

Proof. For q = (r,x), we again set rs(q,m) = (r(m),x(m)). Assume that r is

indexed from 1 to d and that r(m) is indexed from 0 to d, i.e., that r(m)0 = 1. We

use Corollary 1 in the case where j = 1. Observe that for all m ≥ 2, we have

1 +
d∑
i=0

xi(r(m)i mod r(m)1) = 1 + x(m)0 +
d∑
i=1

xi(ri mod r1)

> 1 + lcm (r) +
d∑
i=1

xi(ri mod r1) > r1 ,
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where the left-most inequality follows from, by definition, x(m)0 = rsn(q) + (m −
1)lcm (r). Thus, ∆(1,rs(q,m)) is not IDP.

We next show that for large m, the h∗-polynomial for reflexive stabilizations has

coefficients from {1, 2}. This is the motivation for the term reflexive stabilization ;

as m goes to infinity, the h∗-polynomial coefficient values stabilize to a fixed set.

Theorem 11. Assume that q ∈ Zn≥2 and lcm (q) ≥ 3. For m sufficiently large,

∆(1,rs(q,m)) is not h∗-unimodal. Further, h∗(∆(1,rs(q,m))) contains only 1’s and 2’s.

Proof. For q = (r,x), set rs(q,m) = (r(m),x(m)). Assume that r is indexed from

1 to d and that r(m) is indexed from 0 to d, i.e., that r(m)0 = 1. Define `(m) by

1 +
d∑
i=0

r(m)ix(m)i = 1 + x(m)0 +
d∑
i=1

rixi = `(m)lcm (q) = `(m)lcm (r) .

Using the fact that r(m)0 = 1 implies s(m)0 = lcm (r), Definition 2 gives

g
x(m)
r(m) (z) =

∑
0≤α<lcm(r)

zα`(m)−
∑d
i=1 xibα/sic .

Note that in the exponent α`(m)−
d∑
i=1

xibα/sic, the only term that varies with m

is `(m). Note also that for all α we have

(
d∑
i=1

xi

)
lcm (r) ≥

d∑
i=1

xibα/sic.

Assume that m is large enough so that

`(m)− 1 >

(
d∑
i=1

xi

)
lcm (r) ≥

d∑
i=1

xibα/sic for all α .

By Theorem 6, we have that

h∗(∆(1,rs(q,m)); z) =

`(m)−1∑
t=0

zt

 · gx(m)
r(m) (z)

=
∑

0≤α<lcm(r)

`(m)−1∑
t=0

zt+α`(m)−
∑d
i=1 xibα/sic

 .

Our strategy is to show that for each value of t, the polynomial

pα(z) :=

`(m)−1∑
t=0

zt+α`(m)−
∑d
i=1 xibα/sic
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has common terms with only pα−1(z) and pα+1(z). Thus, the coefficients are either

1 or 2 for h∗(∆(1,rs(q,m)); z).

Observe that the largest term in pα−1(z) has degree

α`(m)−
d∑
i=1

xib(α− 1)/sic − 1 ,

while the smallest term in pα+1(z) has degree

(α+ 1)`(m)−
d∑
i=1

xib(α+ 1)/sic .

Because of our assumption regarding m, we have that

(α+ 1)`(m)−
d∑
i=1

xib(α+ 1)/sic ≥ (α+ 1)`(m)− (`(m)− 1)

=α`(m) + 1 > α`(m)

>α`(m)−
d∑
i=1

xib(α− 1)/sic − 1 .

Thus, the lowest degree term in pα+1(z) is strictly greater than the highest degree

term in pα−1(z). Further, the coefficient of zα`(m) in h∗(∆(1,rs(q,m)); z) is equal

to 1, which is contributed by pα(z). Thus, all coefficients in h∗(∆(1,rs(q,m)); z) are

equal to either 1 or 2. If lcm (r) ≥ 3, then there are at least two 2’s arising from

p0(z) + p1(z) and p1(z) + p2(z) with a 1 in between them contributed by p1(z).

Thus, h∗(∆(1,rs(q,m)); z) is not unimodal.

Theorems 10 and 11 imply that if reflexive stabilizations will result in simplices

that are IDP and/or h∗-unimodal, we need to focus on the case m = 1. Further, it

makes sense to begin by considering the case where both rsn(q) and `(q) are small.

For example, when rsn(q) = 1 and `(rs(q)) = 1, we have the following curious

result.

Theorem 12. Suppose that rsn(q) = 1 and that `(rs(q)) = 1, i.e., that 1 +∑n
i=1 qi = lcm (q) − 1. Then for all 0 ≤ b ≤

∑
i qi, we have w(q, b) = w(rs(q), b)

and hence

h∗(∆(1,rs(q)); z) = h∗(∆(1,q); z) + zn+1 .

Proof. Let q be reflexive and supported by the vector r = (r1, . . . , rd) ∈ Zd≥1 with

multiplicity x = (x1, . . . , xd) ∈ Zd≥1. Using Setup 1, we have that ri = lcm (q) /si.

By Theorem 5, it follows that

w(q, b) := b−
d∑
i=1

xi

⌊
rib

lcm (q)− 1

⌋
= b−

d∑
i=1

xi

⌊
lcm (q) b

si(lcm (q)− 1)

⌋
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with 0 ≤ b ≤ lcm (q)− 2. Rewriting lcm (q) b as (lcm (q)− 1)b+ b implies that

w(q, b) := b−
d∑
i=1

xi

⌊
b

si
+

b

si(lcm (q)− 1)

⌋
.

Additionally, it follows from Theorem 5 that

w(rs(q), b) := b−
d∑
i=1

xi

⌊
rib

lcm (q)

⌋
= b−

d∑
i=1

xi

⌊
b

si

⌋
with 0 ≤ b ≤ lcm (q)− 1. For all 0 ≤ b ≤ lcm (q)− 2, we have

0 ≤ 1

si
· b

lcm (q)− 1
<

1

si
implies

b

si
≤ b

si
+

b

si(lcm (q)− 1)
<
b+ 1

si
.

If we let b = ksi + a with some integer k and 0 ≤ a < si, then
⌊
b
si

⌋
= k. Since

b

si(lcm (q)− 1)
<

1

si
, then

⌊
b

si

⌋
=

⌊
b

si
+

b

si(lcm (q)− 1)

⌋
.

This implies that w(q, b) = w(rs(q), b) for all 0 ≤ b ≤ lcm (q)−2. When considering

rs(q), for b = lcm (q)−1 we have w(rs(q), b) = n+1, and our proof is complete.

It would be interesting to determine whether or not there are similar additive

structures for the h∗-polynomial in other cases where rsn(q) and `(rs(q)) are small.

Note that while h∗-unimodality is typically broken in reflexive stabilizations for

m > 1 by Theorem 12, it can be preserved for reflexive stabilizations with m = 1

as the following example illustrates.

Example 4. For q = (4, 4, 5, 5), we have that 1 +
∑n
i=1 qi = lcm (q)− 1, and

h∗(∆(1,rs(q)); z) = 1 + 2z + 7z2 + 7z3 + 2z4 + z5

with

h∗(∆(1,q); z) = 1 + 2z + 7z2 + 7z3 + 2z4 .

It is interesting that among the ∆(1,q) simplices, we can find examples that are

“near the boundary” of both h∗-unimodality and IDP using reflexive stabilizations.

One sequence of examples is the following. Recall that for a lattice polytope P , the

Hilbert basis of cone (P ) is the minimal generating set of the monoid cone (P )∩Zn+1.

Thus, P is IDP if and only if the Hilbert basis of cone (P ) consists of the elements

at height 1 in cone (P ), i.e., (1, P ) ∩ Zn+1.

Theorem 13. For n ≥ 1, define r(n) = (1, 3n, 10n, 15n) and x(n) = (2n−1, 1, 1, 1).

Thus, q(n) := (r(n),x(n)) = rs((3n, 10n, 15n)). For q = (r(n),x(n)), let V (n) =
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{(1,v) : v a vertex of ∆(1,q)}. The Hilbert basis for cone
(
∆(1,q)

)
consists of V (n)

and the columns of the following matrix (where the height coordinate is the first

entry): 

1 1 1 1 1 1 1 2 2
0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −2 −3
0 0 −1 −1 −2 −3 −4 −7 −10
0 −1 −1 −2 −3 −5 −6 −10 −15


.

Thus, there are exactly two elements in the Hilbert basis of height greater than 1,

both of which are at height 2. For n ≥ 2 with q = (r(n),x(n)), we have

h∗(∆(1,q); z) = (1 + z2 + z4 + z6 + · · ·+ z2n−2) · (1 + 7z + 14z2 + 7z3 + z4) ,

which has coefficient vector

(1, 7, 15, 14, 16, 14, 16, 14, . . . , 16, 14, 16, 14, 15, 7, 1) .

Proof. We first prove that the h∗-polynomial is correct. Fix n ≥ 2 and set q =

(r(n),x(n)). Since lcm (q) = 30n, it follows from Theorem 5 that, for 0 ≤ b < 30n,

w(rs(q), b) :=b− (2n− 1)

⌊
b

30n

⌋
−
⌊

3n · b
30n

⌋
−
⌊

10n · b
30n

⌋
−
⌊

15n · b
30n

⌋
= b−

⌊
b

10

⌋
−
⌊
b

3

⌋
−
⌊
b

2

⌋
.

Let b = 30α+ β, with 0 ≤ α < n and 0 ≤ β < 30. Then

w(rs(q), b) :=30α+ β −
⌊

30α+ β

10

⌋
−
⌊

30α+ β

3

⌋
−
⌊

30α+ β

2

⌋
= 2α+ β −

⌊
β

10

⌋
−
⌊
β

3

⌋
−
⌊
β

2

⌋
.

This implies that

∑
0≤b<30n

zw(b) =

 ∑
0≤α<n

z2α

 ∑
0≤β<30

zβ−b
β
10c−b β3 c−b β2 c


which evaluates to

(1 + z2 + z4 + z6 + · · ·+ z2n−2) · (1 + 7z + 14z2 + 7z3 + z4) .

We next prove our claim regarding the Hilbert basis for ∆(1,q). For each 0 ≤
b < 30n, there exist unique values 0 ≤ α, β, γ < 30n such that the following linear
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combination of ray generators for ∆(1,q) produces an element in the fundamental

parallelepiped for the cone over ∆(1,q):

p(b) :=



1 0 0 · · · 0 0 −1
0 1 0 · · · 0 0 −1
...

. . .
. . .

. . .
...

...
...

0 0 0
. . . 0 0 −3n

0 0 0 · · · 1 0 −10n
0 0 0 · · · 0 1 −15n
1 1 1 · · · 1 1 1





b/30n
b/30n

...
α/30n
β/30n
γ/30n
b/30n


∈ Z2(n+1) .

From the final four entries of the resulting vector, we observe that each of the

following values must be an integer:

α− 3bn

30n
,
β − 10bn

30n
,
γ − 15bn

30n
,

2nb+ α+ β + γ

30n
.

To determine α, we write b = 10p10 + r10 where 0 ≤ r10 < 10 and evaluate in the

first expression, yielding
α− 30p10n− 3r10n

30n
∈ Z

from which it follows that α = 3nr10 = 3n(b mod 10) and

α− 30p10n− 3r10n

30n
= p10 = bb/10c .

Similarly, it can be shown (by expressing b = 3p3 + r3) that β = 10n(b mod 3) with

β − 10bn

30n
= p3 = bb/3c .

Similarly, γ = 15n(b mod 2) and

γ − 15bn

30n
= bb/2c .

Thus, we have that

p(b) =



0
...
0

−bb/10c
−bb/3c
−bb/2c

(2b+ 3(b mod 10) + 10(b mod 3) + 15(b mod 2))/30n


.
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We now show that we can reduce p(b) for 30 < b < 30n to a case where 0 ≤ b ≤ 30.

If 30 < b, then

p(b)− p(30) =



0
...
0

−bb/10c+ 3
−bb/3c+ 10
−bb/2c+ 15

(2b+ 3(b mod 10) + 10(b mod 3) + 15(b mod 2))/30n− 2



=



0
...
0

−b(b− 30)/10c
−b(b− 30)/3c
−b(b− 30)/2c

(1/30n)

 2b+ 3((b− 30) mod 10)+
10((b− 30) mod 3)+
15((b− 30)b mod 2)




= p(b− 30) .

Thus, every lattice point in ∆(1,q) is a sum of elements from {p(b) : 0 ≤ b ≤ 30}.
It is straightforward but tedious to check (either by hand or via computer algebra

system) that the minimal additive generators of this set are precisely the columns

of the matrix in the theorem statement. Thus, our proof is complete.

While reflexive stabilizations are one way to obtain elements of Q that exhibit

extremal behavior for heights of Hilbert basis elements and h∗-unimodality, the

following example demonstrates that this phenomenon occurs outside of reflexive

stabilizations as well.

Example 5. For n ≥ 2, let

q = ((n, (2n− 1)(n+ 1), 2n(n+ 1)), (1, 1, 2(n− 1))) .

For n ≤ 20, it has been verified that

h∗(∆(1,q); z) = (1, (n+ 1)2, (2n+ 1)(n+ 1) + 1, (2n+ 1)(n+ 1),

(2n+ 1)(n+ 1) + 1, . . . , (2n+ 1)(n+ 1) + 1, (2n+ 1)(n+ 1),

(2n+ 1)(n+ 1) + 1, (n+ 1)2, 1)

and that the Hilbert basis of cone
(
∆(1,q)

)
consists of the points (1,∆(1,q))∩Z2n+1

together with the following lattice point at height two (as given by the first coordi-

nate):

(2,−1,−2n− 1,−2(n− 1),−2(n− 1),−2(n− 1), . . . ,−2(n− 1))T .
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Thus, this family of simplices is another example of polytopes on the boundary of

both IDP and h∗-unimodality. These simplices are more arithmetically complicated

than those given in Theorem 13.

5. Proof of Theorem 9

We now give a proof of Theorem 9.

Proof. We begin with the derivation that, under the assumption that (r,x) satisfies

the necessity condition, any resulting r-vectors must be of one of the eight types

listed in the statement of Theorem 9 as types (i)-(viii). Since r1 < r2 < r3, reducing

modulo r3 gives r3 = 1 + r1x1 + r2x2 . If we next consider the modulo r2 necessary

condition, then substituting the above for r3 and simplifying gives

r2 = 1 + x1r1 + x3((1 + r1x1) mod r2) .

The challenge here is that we would like to specify r2 using this formula, but it

involves a remainder which could fluctuate. The key observation is to recall that if

the necessary condition for IDP holds, then Theorem 7 implies x1 ≤ r2/r1. Thus,

we have

1 + x1r1 ≤ 1 + (r2/r1)r1 = 1 + r2 . (9)

There are now three cases to consider.

Derivation Case 1: Consider 1 + x1r1 = 1 + r2 in Equation (9). It is immediate

that in this case

(1 + r1x1) mod r2 = (1 + r2) mod r2 = 1 ,

and thus r2 = 1 + x1r1 + x3 = r2 + 1 + x3 . As x3 ≥ 1, this yields a contradiction,

and thus this case does not occur.

Derivation Case 2: Consider 1 + x1r1 = r2 in Equation (9). In this case,

(1 + r1x1) mod r2 = r2 mod r2 = 0 .

Thus, we have (r,x) = ((r1, 1 + x1r1, r3), (x1, x2, x3)) . However, we know that

r3 = 1 + r1x1 + r2x2 = (1 + x1r1)(1 + x2) ,

and thus (r,x) = ((r1, 1 +x1r1, (1 +x1r1)(1 +x2)), (x1, x2, x3)) . If r1 = 1, then the

result is (r,x) = ((1, 1 + x1, (1 + x1)(1 + x2)), (x1, x2, x3)) , which satisfies type (i)

in Theorem 9. If r1 ≥ 2, we consider our necessary condition modulo r1 and obtain

r1 = 1 + x2 + x3((1 + x2) mod r1) . Since (by this equality) we have 1 + x2 ≤ r1, it

follows that there are two subcases.
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Derivation Subcase 2.1: Supposing 1 + x2 = r1, then our vector is

(r,x) = ((1 + x2, 1 + x1(1 + x2), (1 + x1(1 + x2))(1 + x2)), (x1, x2, x3)) ,

which satisfies type (ii) in Theorem 9.

Derivation Subcase 2.2: Supposing 1 + x2 < r1, then

r1 = 1 + x2 + x3((1 + x2) mod r1) = 1 + x2 + x3(1 + x2) = (1 + x2)(1 + x3) .

Then our vector is

(r,x) =(((1 + x2)(1 + x3),

1 + x1(1 + x2)(1 + x3),

(1 + x1(1 + x2)(1 + x3))(1 + x2)), (x1, x2, x3)) ,

which satisfies type (iii) in Theorem 9.

Derivation Case 3: Consider 1 +x1r1 < r2 in Equation (9). It is immediate that

(1 + r1x1) mod r2 = 1 + r1x1 ,

and thus

r2 = 1 + x1r1 + (1 + r1x1)x3 = (1 + x3)(1 + x1r1) .

Combining this with

r3 = 1 + r1x1 + r2x2

= 1 + r1x1 + (1 + x3)(1 + x1r1)x2

= (1 + r1x1)(1 + (1 + x3)x2) ,

we obtain that

(r,x) = ((r1, (1 + x3)(1 + x1r1), (1 + r1x1)(1 + (1 + x3)x2)), (x1, x2, x3)) ,

which is a function of the multiplicities and the value r1. If r1 = 1, then we obtain

(1, (1 + x1)(1 + x3), (1 + x1)(1 + x2(1 + x3))),

which satisfies type (iv) in Theorem 9. If r1 ≥ 2, we again consider the necessary

condition modulo r1, for which we obtain

r1 = 1 + x2((1 + x3)(1 + x1r1) mod r1) + x3((1 + r1x1)(1 + (1 + x3)x2) mod r1)

= 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1).

We now have three subcases to consider.
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Derivation Subcase 3.1: If 1 + x3 < r1, then

r1 = 1 + x2(1 + x3) + x3((1 + (1 + x3)x2) mod r1) .

This requires two subsubcases.

Derivation Subsubcase 3.1.1: Supposing (1 + (1 + x3)x2) = r1, then x3 is

arbitrary, and we have

(r,x) =((1 + (1 + x3)x2, (1 + x3)(1 + x1(1 + (1 + x3)x2)),

(1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)), (x1, x2, x3)) ,

which satisfies type (v) in Theorem 9.

Derivation Subsubcase 3.1.2: Supposing (1 + (1 + x3)x2) < r1, then

r1 = 1 + x2(1 + x3) + x3(1 + (1 + x3)x2)

= (1 + x3)(1 + (1 + x3)x2) ,

and thus it follows that for x = (x1, x2, x3), we have

r =((1 + x3)(1 + (1 + x3)x2),

(1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)),

(1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)) ,

which satisfies type (vi) in Theorem 9.

Derivation Subcase 3.2: Supposing 1 + x3 = r1, then for x = (x1, x2, x3) we

have

r = (1 + x3, (1 + x3)(1 + x1(1 + x3)), (1 + (1 + x3)x1)(1 + (1 + x3)x2)) ,

which satisfies type (vii) in Theorem 9.

Derivation Subcase 3.3: Suppose 1 + x3 > r1. If r1 | (1 + x3), then we have

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1)

= 1 + x3 .

This is a contradiction, and thus it follows that r1 - 1 + x3. If r1 | x2, then

r1 = 1 + x2((1 + x3) mod r1) + x3 ,

which implies that r1 | (1 + x3), again a contradiction. Thus, we must have that

r1 - x2, and because r1 - (1 + x3) we also know r1 > x2 since

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) > x2 .
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We now consider two subsubcases.

Derivation Subsubcase 3.3.1: Supposing r1 | (1 + x2(1 + x3)), then

r1 = 1 + x2((1 + x3) mod r1) .

Thus, there exists some k ≥ 1 where r1 = 1 + x2k, and we are forced to have

r1 = 1 + x2k

= 1 + x2((1 + x3) mod r1) ,

implying that k = (1 + x3) mod 1 + x2k. Thus, for some s ≥ 1 we set

x3 = skx2 + s− k + 1 ,

and we have the case

r =(1 + kx2, (2 + skx2 + s− k)(1 + x1(1 + kx2)),

(1 + x1(1 + kx2))(1 + x2(2 + skx2 + s− k))) ,

with

x = (x1, x2, skx2 + s− k + 1) ,

which satisfies type (viii) in Theorem 9.

Derivation Subsubcase 3.3.2: Suppose r1 - (1 + x2(1 + x3)), so we have

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) .

We also have that 1 + x3 > r1 > x2. However, r1 - (1 + x2(1 + x3)) implies that

r1 = 1 + x2((1 + x3) mod r1) + x3((1 + (1 + x3)x2) mod r1) ≥ 1 + x3 ,

yielding a contradiction.

This completes our derivation of possible cases based on the necessary condition.

In particular, by Theorem 1, it is straightforward to check that all of the types

listed in Theorem 9 yield reflexive simplices.

We next consider the proofs of the IDP condition (or lack thereof) for each of

types (i)-(viii) from Theorem 9 on a case-by-case basis.

Case: Type (viii). We show that type (viii) r-vectors yield non-IDP simplices,

where we apply Theorem 4 and the notation therein. Let

qj = r2 = (skx2 + s+ k)(1 + x1(1 + kx2)) ,

and set b = skx2 + s+ k which is strictly less than r2 as needed for Theorem 4. It

is tedious but straightforward to reduce the left-hand side of Equation (5) to the
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form x3 + (x3 − 1)x2(skx2 + s+ k). Note that by the assumption of type (viii), we

have

x3 = s+ 1 + k(sx2 − 1) ≥ 2 ,

and thus

x3 + (x3 − 1)x2(skx2 + s+ k) ≥ 2 + x2(skx2 + s+ k) ≥ 2 ,

satisfying Equation (5). Setting qi = r3, we now ask if there is a solution 0 < c < b

satisfying Equation (6) and Equation (7). Using the fact that we must have

0 < c < b = skx2 + s+ k ,

we obtain that the left-hand side of 6 is:⌊
(skx2 + s+ k)(1 + x1(1 + kx2))(1 + x2(skx2 + s+ k))

(skx2 + s+ k)(1 + x1(1 + kx2))

⌋
−
⌊
c(1 + x2(skx2 + s+ k))

skx2 + s+ k

⌋
= 1 + x2(skx2 + s+ k)− cx2 −

⌊
c

skx2 + s+ k

⌋
= 1 + x2(skx2 + s+ k − c) .

On the other hand, using 0 < c < b = skx2 + s+k, we find that the right-hand side

of 6 is: ⌊
(skx2 + s+ k − c)(1 + x2(skx2 + s+ k))

(skx2 + s+ k)

⌋
=x2(skx2 + s+ k − c) +

⌊
1− c

skx2 + s+ k

⌋
=x2(skx2 + s+ k − c) .

Thus, there is no c value in this range that satisfies Equation (6), and hence we find

that simplices of type (viii) in Theorem 9 are not IDP.

Case: Types (i), (ii), and (iv). That types (i), (ii), and (iv) in Theorem 9

are IDP all follow from affine free sum decompositions as follows. For type (i),

observe that

r = (1x1) ∗0 (1x2) ∗0 (1x3) ,

and thus Theorem 2 applies. For type (ii), observe that

r = ((1 + x1)x2 , (1 + x1(1 + x2))x2) ∗0 (1x3) ,

and thus Theorem 8 and Theorem 2 apply to finish this case. Finally, for type (iv),

observe that

r = (1x3) ∗0 ((1 + x2)x3 , (1 + x2(1 + x3))x3) ,
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and thus again Theorem 8 and Theorem 2 apply to finish this case.

Note that types (iii), (v), (vi), and (vii) do not follow from affine free sum de-

compositions, and thus we must use Theorem 4 directly. Throughout the remainder

of this proof, we use the notation

h(b) := b

(
1 +

∑
i6=j qi

qj

)
−
∑
i6=j

⌊
bqi
qj

⌋

to denote the left-hand side of Equation (5).

Case: Type (iii). We next verify IDP for r-vectors of type (iii) using The-

orem 4. We must consider three cases corresponding to three possible values of

qj .

Case (iii).1: Consider qj = (1 + x2)(1 + x3). It is straightforward to verify that

h(b) = b− x3

⌊
b

(1 + x3)

⌋
,

and using this formula one can check that

h(k(1 + x3)) = k .

Combining these two observations, it follows that h(b) = 1 only when b = 1 and

b = (1 + x3), thus identifying the b-values we are required to check in (5). To

verify that Equation (6) always has the desired solution, we consider three cases. If

qi = (1 + x2)(1 + x3), the result is trivial. If qi = x1(1 + x2)(1 + x3) + 1, then we

may select c = 1, from which it follows that both sides of Equation (6) are equal to

x1(b − 1). If qi = (1 + x2)(x1(1 + x2)(1 + x3) + 1), then we set c = (1 + x3), from

which it is straightforward to compute that both sides of Equation (6) are equal to

b(1 + x2)x1 − x1(1 + x2)(1 + x3)− 1 + bb/(1 + x3)c .

This completes our first case.

Case (iii).2: Consider qj = x1(1+x2)(1+x3)+1. It is straightforward to verify

that

h(b) = b− x1

⌊
b(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
,

where the values of b range from 1 to x1(1+x2)(1+x3). To verify that Equation (6)

always has the desired solution, we consider three cases. If qi = x1(1+x2)(1+x3)+1,

the result is trivial. If qi = (1 + x2)(1 + x3), then we write b = αx1 + β, where
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0 ≤ β < x1 and 0 ≤ α ≤ (1 + x2)(1 + x3) for α, β ∈ Z. Consequently, we have⌊
b(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
(αx1 + β)(1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= α+

⌊
β(1 + x2)(1 + x3)− α
x1(1 + x2)(1 + x3) + 1

⌋
= α+

{
0, β > 0

−1, β = 0

}
.

In the case that β > 0, we have that h(b) = b − x1α = β. Hence, the viable

candidates for c-values from 1 to x1(1+x2)(1+x3) that satisfy equation Equation (7)

are precisely those c such that c ≡ 1 mod x1. Therefore, the b-values we are required

to check in Equation (5) are all b = αx1 + β, where 2 ≤ β ≤ x1 − 1. In this case,

we may choose c = αx1 + 1, from which it follows that both sides of Equation (6)

are equal to 0, giving the desired result. On the other hand, if β = 0, then we have

that

h(b) = h(αx1) = αx1 − x1(α− 1) = x1 .

If x1 = 1, then h(b) = 1. Thus, we need only consider when x1 > 1. In order to

satisfy Equation (5), it must be that α > 0. Given that x1 > 1 and α > 0, it is

straightforward to verify that both sides of Equation (6) when c = 1 are equal to

α − 1. Finally, if qi = (1 + x2)(x1(1 + x2)(1 + x3) + 1), then we can set c = 1 and

the result is immediate. This completes our second case.

Case (iii).3: Consider qj = (1 + x2)(x1(1 + x2)(1 + x3) + 1). We first identify

those values of b that satisfy Equation (5) and Equation (7). It is straightforward

to verify that

h(b) = b− x1

⌊
b(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
− ((1 + x2)− 1)

⌊
b

(1 + x2)

⌋
.

Writing b = m(1 + x2) + t where 0 ≤ m ≤ x1(1 + x2)(1 + x3) and 0 ≤ t ≤ (1 + x2),

it follows that

h(b) = h(m(1 + x2) + t) = m+ t− x1

⌊
m(1 + x2)(1 + x3) + t(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

We can now further divide into cases: either we have m = x1(1 + x2)(1 + x3) or we

have m = kx1 + w where 0 ≤ k < (1 + x2)(1 + x3) and 0 ≤ w < x1, which yields

h(b) = h((kx1 +w)(1 + x2) + t) = w+ t− x1

⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
.

For m 6= x1(1 + x2)(1 + x3), observe that since

0 ≤ w(1 + x2)(1 + x3) ≤ x1 − 1
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and

0 ≤ t(1 + x3) < (1 + x2)(1 + x3) ,

with 0 ≤ k < (1 + x2)(1 + x3), we have that

0 ≤ w(1 + x2)(1 + x3) + t(1 + x3) < x1(1 + x2)(1 + x3) .

Thus, ⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
is equal to either 0 or −1.

Subcase (iii).3.1: Suppose m = x1(1 + x2)(1 + x3). Since

0 ≤ t(1 + x3) < (1 + x2)(1 + x3) ,

we have

h((1 + x2)(1 + x3)x1(1 + x2) + t) = t− x1

⌊
t(1 + x3)− (1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= t+ x1.

If this is equal to 1, then it must be that t = 0 and x1 = 1. Thus, if x1 = 1, we

have that h((1 + x2)(1 + x3)(1 + x2)) = 1.

Subcase (iii).3.2: Suppose now that m 6= x1(1 + x2)(1 + x3) and that⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
= −1 .

Since w, t ≥ 0 and x1 ≥ 1, we have h(b) = w + t + x1 = 1 which forces w = t = 0

and x1 = 1. In this case, h(k(1 + x2)) = 1 any time that k > 0. Thus, if x1 = 1, we

have that h(k(1 + x2)) = 1 when 0 < k < (1 + x2)(1 + x3).

Subcase (iii).3.3: Suppose again that m 6= x1(1 + x2)(1 + x3) and that⌊
w(1 + x2)(1 + x3) + t(1 + x3)− k

x1(1 + x2)(1 + x3) + 1

⌋
= 0 .

In this case,

0 ≤ k ≤ w(1 + x2)(1 + x3) + t(1 + x3) ,

which implies that either (A) 0 < w < x1 with 0 ≤ t < (1 + x2) or (B) w = 0 with

k ≤ t(1+x3). If (A) holds, then h(b) = w+t = 1 forces w = 1 and t = 0 since w > 0,

which means that h(b) = 1 when b = (kx1 + 1)(1 +x2) for 0 ≤ k < (1 +x2)(1 +x3).

If (B) holds, then our same equation forces w = 0 and t = 1 when k ≤ (1 + x3),

which means that h(b) = 1 when b = kx1(1 + x2) + 1 for 0 ≤ k < (1 + x2)(1 + x3)

and k ≤ (1 + x3).

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (iii).3.1-(iii).3.3:
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• If x1 = 1 and 0 < k ≤ (1 + x2)(1 + x3) we have b = k(1 + x2);

• If x1 ≥ 1 and 0 ≤ k < (1 + x2)(1 + x3), we have b = (kx1 + 1)(1 + x2);

• If x1 ≥ 1 and 0 ≤ k < (1 + x2)(1 + x3) and k ≤ (1 + x3), we have b =

kx1(1 + x2) + 1.

Our next goal is to establish that Equation (6) is always satisfied; recall that we

are in the case where qj = (1 + x2)(x1(1 + x2)(1 + x3) + 1). If

qi = (1 + x2)(x1(1 + x2)(1 + x3) + 1) ,

then Equation (6) is trivially satisfied. If qi = x1(1 + x2)(1 + x3) + 1, we write

b = m(1 + x2) + t where 0 ≤ m < x1(1 + x2)(1 + x3) + 1 and 0 ≤ t < (1 + x2).

Substituting this form of b into Equation (6) yields the equation

−
⌊

c

(1 + x2)

⌋
=

⌊
t− c

(1 + x2)

⌋
.

If b > (1 +x2), we set c = (1 +x2) and the equation is satisfied. If 2 < b < (1 +x2),

then we set c = 1 and the equation is satisfied.

If qi = (1 + x2)(1 + x3), the analysis becomes more complicated. We write

b = m(1 + x2) + t where 0 ≤ m < d and 0 ≤ t < (1 + x2). Our argument will

proceed by considering x1 = 1 and x1 > 1 separately.

If x1 = 1, then the left-hand-side of Equation (6) is reduced to⌊
t(1 + x3)−m

(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
,

and the right-hand-side to⌊
t(1 + x3)−m− c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
.

Since m < (1 + x3), if t(1 + x3) −m < 0 this forces t = 0 and 0 < m, thus b is a

multiple of (1 + x2), and we found earlier that h(m(1 + x2)) = 1. Thus, we need

proceed no further. If t(1 + x3) −m ≥ 0, then since m < (1 + x3) we must have

t ≥ 1, and we also have t(1 + x3)−m < (1 + x2)(1 + x3). Thus,⌊
t(1 + x3)−m

(1 + x2)(1 + x3) + 1

⌋
= 0 ,

from which it follows that Equation (6) reduces to

−
⌊

c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
=

⌊
t(1 + x3)−m− c(1 + x3)

(1 + x2)(1 + x3) + 1

⌋
.
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If m = 0, set c = 1 and this equation is solved. If m ≥ 1, set c = m(1 + x2) + 1

which is less than b in this case, and this equation is again satisfied. This completes

our proof for x1 = 1.

We next consider when x1 ≥ 2, maintaining our previous notation of b = m(1 +

x2) + t. Write m = fx1 + g where 0 ≤ f ≤ b(1 + x3)/x1c and 0 ≤ g < x1

except in the case where f = b(1 + x3)/x1c in which case g is bounded above by

(1 + x3) − (1 + x3)b(1 + x3)/x1c. This leads to the left-hand-side of Equation (6)

having the form

f +

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
,

while the right-hand-side has the form

f +

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

We thus need to solve the equation⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
,

subject to the constraints 0 ≤ g < x1 (with the exception mentioned above), 0 ≤
t ≤ (1 + x2), and 0 ≤ f ≤ b(1 + x3)/x1c. Note that the first two inequalities imply

that

0 ≤ g(1 + x2)(1 + x3) + t(1 + x3) < x1(1 + x2)(1 + x3) ,

and also

f ≤ b(1 + x3)/x1c ≤ (1 + x2)(1 + x3) ,

hence ⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
is equal to {

0 if g(1 + x2)(1 + x3) + t(1 + x3) ≥ f
−1 if g(1 + x2)(1 + x3) + t(1 + x3) < f

.

Subcase (iii).3.a: If g(1 + x2)(1 + x3) + t(1 + x3) − f ≥ 0, then Equation (6)

reduces to

−
⌊

c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
=

⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − c(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.
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Note that f ≤ b(1 + x3)/x1c < (1 + x3), and thus we can set c = fx1(1 + x2) + 1

which is less than b. The left-hand-side of our above equation is given by

−
⌊

(fx1(1 + x2) + 1)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= −

⌊
fx1(1 + x2)(1 + x3) + (1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
= −

⌊
fx1(1 + x2)(1 + x3) + f + (1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
= −f .

Similarly, the right-hand-side of our equation is given by

−f+

⌊
f − (1 + x3) + g(1 + x2)(1 + x3) + t(1 + x3)− f

x1(1 + x2)(1 + x3) + 1

⌋
= − f +

⌊
−(1 + x3) + g(1 + x2)(1 + x3) + t(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

Since h(b) is assumed to be at least 2, we have that one or both of g and t are

non-zero. Combining this observation with

g(1 + x2)(1 + x3) + t(1 + x3)− f ≥ 0

it follows that

g(1 + x2)(1 + x3) + t(1 + x3) > 0 .

Note that

(1 + x3) | (g(1 + x2)(1 + x3) + t(1 + x3)) ,

and thus

x1(1 + x2)(1 + x3) + 1 > g(1 + x2)(1 + x3) + t(1 + x3)− (1 + x3) ≥ 0 ,

which forces the right-hand-side of our equation to equal −f , satisfying Equa-

tion (6).

Subcase (iii).3.b: Consider the case when g(1 +x2)(1 +x3) + t(1 +x3)−f < 0.

Since g, (1 + x2)(1 + x3), t, (1 + x3) ≥ 0, it follows that f ≥ 1 and thus

b = (fx1 + g)(1 + x2) + t ≥ (1 + x2) .

Set c = (1 + x2), which is less than b. With these conditions, the left-hand-side

of Equation (6) is easily seen to equal −1. The right-hand-side of Equation (6) is

given by ⌊
g(1 + x2)(1 + x3) + t(1 + x3)− f − (1 + x2)(1 + x3)

x1(1 + x2)(1 + x3) + 1

⌋
.

Since

g(1 + x2)(1 + x3) + t(1 + x3)− f < 0
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and −(1 + x2)(1 + x3) < 0, the numerator above is strictly negative. Also, since

g, (1 + x2)(1 + x3), t, (1 + x3) ≥ 0, the numerator is minimized by

−f − (1 + x2)(1 + x3) > −(1 + x3)− (1 + x2)(1 + x3) ≥ −2(1 + x2)(1 + x3) .

But, since we assumed that x1 ≥ 2, it follows that

x1(1 + x2)(1 + x3) + 1 > 2(1 + x2)(1 + x3)

and thus the floor function above is equal to −1, satisfying equality for Equation (6).

This completes the proof establishing IDP for r-vectors of type (iii).

Case: Type (v). We next verify IDP for r-vectors of type (v) using Theorem 4.

Again, we must consider three cases corresponding to three possible values of qj .

Case (v).1: Consider qj = 1 + (1 + x3)x2. It is straightforward to verify that

h(b) = b− x2

⌊
b(1 + x3)

1 + (1 + x3)x2

⌋
,

where 1 ≤ b ≤ (1 + x3)x2. To verify that Equation (6) always has the desired

solution, we consider three cases. If qi = 1 + (1 + x3)x2, the result is trivial. If

qi = (1 + x3)(1 + x1(1 + (1 + x3)x2)), then we write b = αx2 + β, where 0 ≤ β < x2

and 0 ≤ α ≤ 1 + x3 for α, β ∈ Z. Consequently, observe that⌊
b(1 + x3)

1 + (1 + x3)x2

⌋
=

⌊
(αx2 + β)(1 + x3

1 + (1 + x3)x2

⌋
= α+

⌊
β(1 + x3)− α
1 + (1 + x3)x2

⌋
= α+

{
0, β > 0

−1, β = 0

}
.

In the case that β > 0, this formula implies that h(b) = b − x2α = β. Hence, the

viable candidates for c-values that satisfy Equation (7) are precisely those c such

that c ≡ 1 mod x2. Therefore, the b-values we are required to check in Equation (5)

are all b = αx2 +β, where 2 ≤ β ≤ x2− 1. In this case, we may choose c = αx2 + 1,

from which it follows that both sides of Equation (6) are equal to (β−1)(1 +x3)x1.

On the other hand, if β = 0, then we have that

h(b) = h(αx2) = αx2 − x2(α− 1) = x2 .

If x2 = 1, then h(b) = 1. Thus, we need only consider when x2 > 1. Given that

x2 > 1 and 0 ≤ α ≤ 1 + x3, it is straightforward to verify that both sides of

Equation (6) when c = 1 are equal to (αx2 − 1)(1 + x3)x1 + α− 1. If

qi = (1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) ,
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then we may again set c = 1, from which it is straightforward to compute that both

sides of Equation (6) are equal to (b − 1)(1 + (1 + (1 + x3)x2)x1). This completes

our first case.

Case (v).2: Consider qj = (1 + x3)(1 + x1(1 + (1 + x3)x2)). We first identify

those values of b that satisfy Equation (5) and Equation (7). It is straightforward

to verify that

h(b) = b− x1

⌊
b(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
− x3

⌊
b

1 + x3

⌋
.

Writing b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α ≤ x1(1 + (1 + x3)x2),

it follows that

h(b) = h(α(1 + x3) + β)

= α+ β − x1

⌊
α(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
.

We can now further divide into cases: either we have α = x1(1 + (1 + x3)x2) or we

have α = γx1 + δ where 0 ≤ γ < 1 + (1 + x3)x2 and 0 ≤ δ < x1, which yields

h(b) = h((γx1 + δ)(1 + x3) + β)

= δ + β − x1

⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2)− γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
.

For α 6= x1(1 + (1 + x3)x2), observe that since

0 ≤ δ(1 + x3)(1 + (1 + x3)x2) ≤ (x1 − 1)(1 + x3)(1 + (1 + x3)x2)

and

0 ≤ β(1 + (1 + x3)x2) < (1 + x3)(1 + (1 + x3)x2)

with 0 ≤ γ(1 + x3) < (1 + x3)(1 + (1 + x3)x2), we have that

0 ≤ δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2) < x1(1 + x3)(1 + (1 + x3)x2) .

Thus, ⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
is equal to either 0 or −1.

Subcase (v).2.1: Suppose α = x1(1 + (1 + x3)x2). Since

0 ≤ β(1 + (1 + x3)x2) < (1 + x3)(1 + (1 + x3)x2) ,
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we have

h((1 + x3)x1(1 + (1 + x3)x2) + β)

= β − x1

⌊
β(1 + (1 + x3)x2)− (1 + x3)(1 + (1 + x3)x2)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= β + x1.

If this is equal to 1, then it must be that β = 0 and x1 = 1. Thus, if x1 = 1, we

have that h((1 + x3)(1 + (1 + x3)x2)) = 1.

Subcase (v).2.2: Suppose now that α 6= x1(1 + (1 + x3)x2) and that⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= −1.

Writing α = γx1 + δ where 0 ≤ γ < 1 + (1 + x3)x2 and 0 ≤ δ < x1, we have

h(b) = δ + β + x1. Since δ, β ≥ 0 and x1 ≥ 1, for this to equal 1, we must have

δ = β = 0 and x1 = 1. In this case, h(γ(1 + x3)) = 1 whenever γ > 0. Thus, if

x1 = 1, we have that h(γ(1 + x3)) = 1 when 0 < γ < 1 + (1 + x3)x2.

Subcase (v).2.3: Suppose now that α 6= x1(1 + (1 + x3)x2) and that⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ(1 + x3)

(1 + x3)(1 + x1(1 + (1 + x3)x2))

⌋
= 0.

It follows that

0 ≤ γ(1 + x3) ≤ δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2) ,

which given the bounds on γ, δ, and β, implies that either (A) 0 < δ < x1 or (B)

δ = 0 with γ(1 +x3) ≤ β(1 + (1 +x3)x2). If (A) holds, then h(b) = δ+β = 1 forces

δ = 1 and β = 0 since δ > 0. Therefore, h(b) = 1 when b = (γx1 + 1)(1 + x3) for

0 ≤ γ < 1+(1+x3)x2. If (B) holds, then our same equation forces δ = 0 and β = 1

when γ(1 + x3) ≤ 1 + 1(1 + x3)x2, which further implies 0 ≤ γ ≤ x2. This means

h(b) = 1 when b = γx1(1 + x3) + 1 for 0 ≤ γ ≤ x2.

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (v).2.1-(v).2.3:

• If x1 = 1 and 0 < γ ≤ 1 + (1 + x3)x2, we have b = γ(1 + x3);

• If x1 ≥ 1 and 0 ≤ γ < 1 + (1 + x3)x2, we have b = (γx1 + 1)(1 + x3);

• If x1 ≥ 1 and 0 ≤ γ < 1 + (1 +x3)x2 and γ < x2, we have b = γx1(1 +x3) + 1.

Next, we establish that Equation (6) is always satisfied; recall that we are in the case

where qj = (1 +x3)(1 +x1(1 + (1 +x3)x2)). If qi = (1 +x3)(1 +x1(1 + (1 +x3)x2)),

then Equation (6) is trivially satisfied. Now suppose

qi = (1 + (1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) .
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Note that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3 from

which it is straightforward to compute that both sides of Equation (6) are equal to

bx2 − (1 + (1 + x3)x2) +

⌊
b

1 + x3

⌋
.

Otherwise, if b < 1 + x3, we may choose c = 1 from which it follows that both sides

of Equation (6) are equal to (b−1)x2 since 1 ≤ b < 1+x3 implies 0 ≤ b−1 < 1+x3.

Finally, if qi = 1 + (1 +x3)x2, we write b = α(1 +x3) +β, where 0 ≤ β < 1 +x3 and

0 ≤ α < 1 + x1(1 + (1 + x3)x2). Moreover, we write α = γx1 + δ, where 0 ≤ δ < x1

and 0 ≤ γ ≤ 1 + (1 + x3)x2. We consider the following possible cases:

Subcase (v).2.a: Suppose β > 0 and δ > 0. Choosing

c = (γx1 + 1)(1 + x3) < (γx1 + δ)(1 + x3) + β = b ,

it follows that both sides of Equation (6) are equal to 0.

Subcase (v).2.b: Suppose β = 0 and δ > 0. Note that δ 6= 1 since h((γx1 +

1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x1, so we may consider

c = (γx1 + 1)(1 + x3) < (γx1 + δ)(1 + x3) = b .

Since 2 ≤ δ < x1 and 0 ≤ γ < 1 + (1 + x3)x2, both sides of Equation (6) are equal

to 0.

Subcase (v).2.c: Suppose β > 0 and δ = 0. If 0 ≤ γ ≤ x2, then β 6= 1 since

h(γx1(1+x3)+1) = 1. Thus, it must be that β > 1, thereby allowing us to consider

c = γx1(1 + x3) + 1 < γx1(1 + x3) + β = b .

With this choice of c, it is straightforward to verify that both sides of Equation (6)

will again be equal to 0. Otherwise, if x2 < γ ≤ 1 + (1 + x3)x2, consider

c = x2x1(1 + x3) + 1 < γx1(1 + x3) + β = b .

Thus, we have that η > 1, and we consider

c = (εx1 + 1)(1 + (1 + x3)x2) + γx2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 = b .

Since 1 < η < x1, it is straightforward to verify that both sides of Equation (6) are

equal to 0.

Subcase (v).3.d: Consider η = δ = 0. Further suppose γx2 < ε (and hence,

ε > 0). If x1 = 1, then h(b) = h(ε(1 + (1 + x3)x2) + γx2) = 1, so we may assume

x1 > 1. Consider

c = 1 + (1 + x3)x2 < εx1(1 + (1 + x3)x2) + γx2 = b .
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Since x1 > 1 and γx2 < ε, it follows that

−x1(1 + (1 + x3)x2) ≤ γx2 − ε− (1 + (1 + x3)x2) < 0 .

Given this, it is straightforward to verify that both sides of Equation (6) are equal to

ε− 1. Now, suppose γx2 > ε. Note that γ 6= 0 since otherwise, ε < 0 contradicting

our initial bounds on ε. Thus, we have that γ > 0. Moreover, if x2 = 1, it follows

that h(b) = h(εx1(2 + x3) + γ) = 1, so we may assume x2 > 1. Taking c = 1,

the inequality γx2 > ε readily implies that both sides of Equation (6) are equal to

ε. Finally, suppose γx2 = ε. Note that neither γ nor ε can be equal to 0 since

otherwise, we would have

η = δ = γ = ε = 0 ,

implying b = 0. This, of course, contradicts the bounds on b. Moreover, we may

again assume x2 > 1 (and thus, ε > 1) since otherwise, h(b) = h(εx1(2+x3)+γ) = 1.

Since γx2 = ε, observe that b = ε(1+x1(1+(1+x3)x2)). As such, we may consider

c = 1 + x1(1 + (1 + x3)x2) which is strictly less than b since ε > 1. This choice of c

readily gives that both sides of Equation (6) are equal to ε− 1.

Finally, if qi = (1 + x3)(1 + x1(1 + (1 + x3)x2)), we begin again by writing

b = α(1 + (1 + x3)x2) + β

where 0 ≤ β < 1 + (1 + x3)x2 and 0 ≤ α < 1 + (1 + (1 + x3)x2)x1. Furthermore, we

write β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 +x3, and we write α = εx1 + η,

where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + (1 + x3)x2. We consider the following possible

cases:

Subcase (v).3.I: Consider δ > 1. Combined with our bounds on γ, this implies

that

0 ≤ (δ − 1)(1 + x3)− γ < 1 + (1 + x3)x2 .

Taking c = 1, it follows that both sides of Equation (6) are equal to α(1 + x3) + γ.

Subcase (v).3.II: Consider δ = 1. If γx2+1 ≥ ε, note that η 6= 0 since otherwise,

h(b) = h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1 .

Thus, η ≥ 1, and we may consider

c = (εx1 + 1)(1 + (1 + x3)x2) < (εx1 + η)(1 + (1 + x3)x2) + γx2 + 1 = b .

Since γ ≤ 1 + x3, it is straightforward to show both sides of Equation (6) are equal

to (η − 1)(1 + x3) + γ. On the other hand, if γx2 + 1 < ε (and hence, ε > 1), we

may consider

c = 1 + (1 + x3)x2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 + 1 = b ,
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from which it follows that both sides of Equation (6) are equal to (εx1 + η− 1)(1 +

x3) + γ.

Subcase (v).3.III: Consider δ = 0. Note that η 6= 1 since otherwise, h(b) = 1.

This lends itself to two possibilities: (A) η = 0 or (B) η > 1. If (A) holds, we first

suppose γx2 < ε (and hence, ε > 0). If x1 = 1, then h(b) = 1, so we may assume

x1 > 1. Since ε > 0 and x1 > 1, we may consider

c = 1 + (1 + x3)x2 < εx1(1 + (1 + x3)x2) + γx2 = b .

For this choice of c, it readily follows that both sides of Equation (6) are equal to

(εx1 − 1)(1 + x3) +

⌊
γx2

1 + (1 + x3)x2

⌋
.

Now, suppose γx2 > ε. Since ε ≥ 0 by construction, this inequality implies γ 6= 0.

Moreover, note that if x2 = 1, then h(b) = 1. Thus, we may assume x2 > 1, and

we simply consider c = 1. Given that 0 < γ ≤ 1 + x3 and x2 > 1, it follows that

0 < γ + (1 + x3) < 1 + (1 + x3)x2 .

Therefore, with c = 1, we find that both sides of Equation (6) are equal to εx1(1 +

x3) + γ − 1. Finally, suppose γx2 = ε. Since b 6= 0, this equality implies that both

γ and ε cannot be 0. Moreover, we may again assume x2 > 1 since x2 = 1 would

imply h(b) = 1. Since γx2 = ε, it follows that b = ε(1 + x1(1 + (1 + x3)x2)), and

we also get that ε > 1 since we assume x2 > 1. Combining, we may consider

c = 1 + x1(1 + (1 + x3)x2) < ε(1 + x1(1 + (1 + x3)x2)) = b .

As before, the inequality

0 < γ + (1 + x3) < 1 + (1 + x3)x2

still holds in this case, from which it is straightforward to verify that both sides of

Equation (6) are equal to (ε− 1)x1(1 + x3) + γ − 1.

On the other hand, if (B) holds, we have that η > 1. Therefore, we consider

c = (εx1 + 1)(1 + (1 + x3)x2) + γx2 < (εx1 + η)(1 + (1 + x3)x2) + γx2 = b ,

from which it follows that both sides of Equation (6) simplify to (η− 1)(1 +x3). In

any case, we find that both sides of Equation (6) are equivalent for each possible

qi, thereby completing our third and final case. Thus, we have established IDP for

r-vectors of type (v).

Case: Type (vi). We next verify IDP for r-vectors of type (vi) using Theorem 4.

Again, we must consider three cases corresponding to three possible values of qj .
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Case (vi).1: Consider qj = (1+x3)(1+(1+x3)x2). We first identify those values

of b that satisfy Equation (5) and Equation (7). It is straightforward to verify that

h(b) = b− x2

⌊
b

1 + (1 + x3)x2

⌋
− x3

⌊
b

1 + x3

⌋
,

where 1 ≤ b ≤ (1 + x3)(1 + (1 + x3)x2) − 1. Writing b = α(1 + x3) + β, where

0 ≤ β < 1 + x3 and 0 ≤ α < 1 + (1 + x3)x2 for α, β ∈ Z, it follows that

h(b) = h(α(1 + x3) + β)

= α+ β − x2

⌊
α(1 + x3) + β

1 + (1 + x3)x2

⌋
.

We can now further divide into cases: either we have α = (1 + x3)x2 or we have

α = γx2 + δ where 0 ≤ γ < 1 + x3 and 0 ≤ δ < x2, which yields

h(b) = h((γx2 + δ)(1 + x3) + β)

= δ + β − x2

⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
.

For α 6= (1 + x3)x2, let n = δ(1 + x3) + β − γ. Observe that since

0 ≤ δ(1 + x3) + β < 1 + (1 + x3)x2

and 0 ≤ γ < 1 + x3, it follows that |n| < 1 + (1 + x3)x2. Thus,⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
is equal to either 0 or −1.

Subcase (vi).1.1: Consider α = (1 + x3)x2. Since 0 ≤ β < 1 + x3, we have

h((1 + x3)2x2 + β) = (1 + x3)x2 + β − (1 + x3)x2 − x2

⌊
β − (1 + x3)

1 + (1 + x3)x2

⌋
= β + x2.

If this is equal to 1, then it must be that β = 0 and x2 = 1. Thus, if x2 = 1, we

have that h((1 + x3)2) = 1.

For the next three subcases, we assume α 6= (1 + x3)x2, so we may write α =

γx2 + δ where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3.

Subcase (vi).1.2: Consider δ = 0 and β ≥ γ. We have that n ≥ 0, implying⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
= 0.
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Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1, i.e.,

h(b) = h(γx2(1 + x3) + 1) = 1 whenever 0 ≤ γ ≤ 1.

Subcase (vi).1.3: Consider δ = 0 and β < γ. We have that n < 0, implying⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
= −1.

Therefore, our equation for h(b) simplifies to h(b) = β+x2, which forces β = 0 and

x2 = 1 since x2 ≥ 1, i.e., h(b) = h(γ(1 + x3)) = 1 for 0 < γ < 1 + x3.

Subcase (vi).1.4: Consider δ ≥ 1. Since 0 ≤ γ < 1 + x3, we have that n ≥ 0,

implying ⌊
δ(1 + x3) + β − γ

1 + (1 + x3)x2

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = δ + β, which forces β = 0 and

δ = 1 since we assume δ ≥ 1, i.e., h(b) = h((γx2 +1)(1+x3)) = 1 for 0 ≤ γ < 1+x3.

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (vi).1.1-(vi).1.4:

• If x2 = 1 and 0 < γ ≤ 1 + x3, we have b = γ(1 + x3);

• If x2 ≥ 1, δ = 0, β = 1, and 0 ≤ γ ≤ 1, we have b = γx2(1 + x3) + 1;

• If x2 ≥ 1, δ = 1, β = 0, and 0 ≤ γ < 1 + x3, we have b = (γx2 + 1)(1 + x3).

Our next goal is to establish that Equation (6) is always satisfied; recall that we

are in the case where qj = (1 +x3)(1 + (1 +x3)x2). If qi = (1 +x3)(1 + (1 +x3)x2),

the result is trivial. If

qi = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) ,

we write b = α(1 +x3) +β, where 0 ≤ β < 1 +x3 and 0 ≤ α < 1 + (1 +x3)x2. Note

that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3 from which it

is straightforward to compute that both sides of Equation (6) are equal to

((α− 1)(1 + x3) + β)(1 + (1 + x3)x2)x1 + α− 1 .

Otherwise, if b < 1 +x3, note that α = 0 and hence b = β. To satisfy Equation (5),

we need only consider 1 < β < 1 + x3. Thus, we may choose c = 1 from which it

follows that both sides of Equation (6) are equal to (β − 1)(1 + (1 + x3)x2)x1 since

1 < b < 1 + x3 implies 1 ≤ β − 1 < 1 + x3. Finally, if

qi = (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)) ,
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we again write b = α(1 +x3) +β, where 0 ≤ β < 1 +x3 and 0 ≤ α < 1 + (1 +x3)x2.

Moreover, in the case that α 6= (1 + x3)x2, we write α = γx2 + δ, where 0 ≤ δ < x2

and 0 ≤ γ < (1 + x3). We consider the following possible cases:

Subcase (vi).1.a: Consider α = (1 + x3)x2. If x2 = 1, then β 6= 0 since h((1 +

x3)2) = 1. Thus, we may consider

c = (1 + x3)2 < (1 + x3)2 + β = b .

With this choice of c, it is straightforward to verify that both sides of Equation (6)

are equal to βx1(1 + x3). Otherwise, if x2 > 1, we consider

c = 1 + x3 < (1 + x3)2x2 + β = b .

Since x2 > 1 implies −x2(1 +x3) < β−2(1 +x3) < 0, it is straightforward to verify

that both sides of Equation (6) are equal to (b− (1 + x3))x1(1 + x3) + x3.

Subcase (vi).1.b: Consider α 6= (1 + x3)x2 with δ > 0 and β > 0. Choosing

c = (γx2 + 1)(1 + x3) < (γx2 + δ)(1 + x3) + β = b ,

it follows that both sides of Equation (6) are equal to ((δ−1)(1+x3)+β)x1(1+x3).

Subcase (vi).1.c: Consider α 6= (1 + x3)x2 with δ > 0 and β = 0. Note that

δ 6= 1 since h((γx2 + 1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x2, so we may consider

c = (γx2 + 1)(1 + x3) < (γx2 + δ)(1 + x3) = b .

Given this choice, we find that both sides of Equation (6) are equal to (δ − 1)(1 +

x3)x1(1 + x3).

Subcase (vi).1.d: Consider α 6= (1 + x3)x2 with δ = 0 and β > 0. If 0 ≤ γ ≤ 1,

then β 6= 1 since h(γx2(1 + x3) + 1) = 1. Thus, it must be that β > 1, thereby

allowing us to consider

c = γx2(1 + x3) + 1 < γx2(1 + x3) + β = b .

With this choice of c, it is straightforward to verify both sides of Equation (6) are

equal to (β − 1)x1(1 + x3). Otherwise, if 1 < γ < 1 + x3, consider

c = 1 + (1 + x3)x2 < γx2(1 + x3) + β = b .

Thus, both sides of Equation (6) are equal to

((γ − 1)x2(1 + x3) + β − 1)x1(1 + x3) + γ − 1 +

⌊
β − γ

1 + (1 + x3)x2

⌋
.

Subcase (vi).1.e: Consider α 6= (1 + x3)x2 with δ = β = 0. In this case,

b = γx2(1 + x3). Moreover, note that γ > 0 since otherwise, b = 0 contradicting
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our bounds on b. If x2 = 1, then h(b) = h(γ(1 + x3)) = 1. Hence, we need only

consider when x2 > 1. Since γ > 0 and x2 > 1, we may take

c = 1 + x3 < γx2(1 + x3) = b ,

from which it is straightforward to find that both sides of Equation (6) are equal

to (γx2 − 1)(1 + x3)2x1 + γ − 1.

This completes our first case.

Case (vi).2: Consider qj = (1+x3)(1+x1(1+x3)(1+(1+x3)x2)). We first identify

those values of b that satisfy Equation (5) and Equation (7). It is straightforward

to verify that

h(b) = b− x1

⌊
b(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x3

⌊
b

1 + x3

⌋
.

Writing b = α(1 + x3) + β, where 0 ≤ β < 1 + x3 and 0 ≤ α ≤ 1 + x1(1 + x3)(1 +

(1 + x3)x2), it follows that

h(b) = h(α(1 + x3) + β)

= α+ β − x1

⌊
(α(1 + x3) + β)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

We can now further divide into cases: either we have α = x1(1+x3)(1+(1+x3)x2)

or we have α = γx1 + δ where 0 ≤ γ < (1 + x3)(1 + (1 + x3)x2) and 0 ≤ δ < x1. If

α = x1(1 + x3)(1 + (1 + x3)x2), then since 0 ≤ β < 1 + x3, we have

h(b) = β − x1

⌊
β(1 + (1 + x3)x2)− (1 + x3)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= β + x1.

If this is equal to 1, then it must be that β = 0 and x1 = 1. Thus, if x1 = 1, we

have that

h((1 + x3)2(1 + (1 + x3)x2)) = 1 .

Otherwise, if α 6= x1(1 + x3)(1 + (1 + x3)x2), we write α = γx1 + δ where 0 ≤ γ <
(1 + x3)(1 + (1 + x3)x2) and 0 ≤ δ < x1. Thus, h(b) simplifies as follows

h(b) = h((γx1 + δ)(1 + x3) + β)

= δ + β − x1

⌊
(δ(1 + x3) + β)(1 + (1 + x3)x2)− γ

1 + x1(1 + x3)(1 + (1 + x3)x2

⌋
.

For α 6= x1(1 + (1 + x3)x2), observe that since

0 ≤ δ(1 + x3)(1 + (1 + x3)x2) ≤ (x1 − 1)(1 + x3)(1 + (1 + x3)x2)
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and

0 ≤ β(1 + (1 + x3)x2) < (1 + x3)(1 + (1 + x3)x2)

with 0 ≤ γ < (1 + x3)(1 + (1 + x3)x2), we have that

0 ≤ (δ(1 + x3) + β)(1 + (1 + x3)x2) < x1(1 + x3)(1 + (1 + x3)x2) .

Let n = (δ(1 + x3) + β)(1 + (1 + x3)x2) − γ. The inequalities above readily imply

|n| < 1 + x1(1 + x3)(1 + (1 + x3)x2). Thus,⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1. We further write γ = ε(1 + (1 + x3)x2) + η, where

0 ≤ η < 1 + (1 + x3)x2 and 0 ≤ ε < 1 + x3. Then, h(b) becomes

h(b) = δ + β − x1

⌊
(δ(1 + x3) + β)(1 + (1 + x3)x2)− (ε(1 + (1 + x3)x2) + η)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

Subcase (vi).2.1: Consider δ = 0 and β > ε. We have that n > 0, implying⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1. Note

that β = 1 implies ε = 0 as β > ε. Thus, we have h(b) = h(ηx1(1 + x3) + 1) = 1

whenever 0 ≤ η ≤ (1 + x3)x2.

Subcase (vi).2.2: Consider δ = 0 and β < ε. Note that ε > 0 since β < ε. We

have that n < 0, implying⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1.

Consequently, our equation for h(b) simplifies to h(b) = β + x1, which forces β = 0

and x1 = 1 since x1 ≥ 1, i.e., h(b) = h((ε(1+(1+x3)x2)+η)(1+x3)) = 1 whenever

0 < ε < 1 + x3 and 0 ≤ η ≤ (1 + x3)x2.

Subcase (vi).2.3: Consider δ = 0 and β = ε. If η > 0, then we have that n < 0,

implying ⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1.

In this case, h(b) simplifies to h(b) = β + x1, which again forces β = 0 and x1 = 1.

Since β = ε, it follows that ε = 0, and so we have that h(b) = h(η(1 + x3) = 1
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whenever 0 < η ≤ (1 + x3)x2. Otherwise, if η = 0, then we have that n = 0,

implying ⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = β, which forces β = 1 (and

thus, ε = 1), i.e., h(b) = h((1 + (1 + x3)x2)x1(1 + x3) + 1) = 1.

Subcase (vi).2.4: Consider δ ≥ 1. We have that n ≥ 0, implying⌊
δ(1 + x3)(1 + (1 + x3)x2) + β(1 + (1 + x3)x2 − γ

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0.

Therefore, our equation for h(b) simplifies to h(b) = δ + β, which forces δ = 1 and

β = 0 since δ ≥ 1. That is, we have

h(b) = h(((ε(1 + (1 + x3)x2) + η)x1 + 1)(1 + x3)) = 1

whenever 0 ≤ ε < 1 + x3 and 0 ≤ η ≤ (1 + x3)x2.

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (vi).2.1-(vi).2.4:

• If x1 = 1, β = 0, and α = (1 + x3)(1 + (1 + x3)x2), we have b = (1 + x3)2(1 +

(1 + x3)x2;

• If x1 = 1, β = δ = 0, 0 < ε < 1 + x3, and 0 ≤ η ≤ (1 + x3)x2, we have

b = (η(1 + (1 + x3)x2) + η)(1 + x3);

• If x1 = 1, β = δ = ε = 0, and 0 < η ≤ (1 + x3)x2, we have b = η(1 + x3);

• If x1 ≥ 1, δ = ε = 0, β = 1, and 0 ≤ η ≤ (1+x3)x2, we have b = ηx1(1+x3)+1;

• If x1 ≥ 1, δ = η = 0, and β = ε = 1, we have b = (1+(1+x3)x2)x1(1+x3)+1;

• If x1 ≥ 1, δ = 1, β = 0, 0 ≤ ε < 1 + x3, and 0 ≤ η ≤ (1 + x3)x2, we have

b = ((ε(1 + (1 + x3)x2) + η)x1 + 1)(1 + x3).

Our next goal is to establish that Equation (6) is always satisfied; recall that we

are in the case where qj = (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)). If

qi = (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)) ,

the result is trivial. If

qi = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) ,
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note that b 6= 1 + x3 since h(1 + x3) = 1. If b > 1 + x3, we set c = 1 + x3 from

which it is straightforward to compute that both sides of Equation (6) are equal to

bx2 − (1 + (1 + x3)x2) +

⌊
b

1 + x3

⌋
.

Otherwise, if b < 1 + x3, we may choose c = 1 from which it follows that both sides

of Equation (6) are equal to (b−1)x2 since 1 < b < 1+x3 implies 1 ≤ b−1 < 1+x3.

Finally, if qi = (1 + x3)(1 + (1 + x3)x2), we again write b = α(1 + x3) + β, where

0 ≤ β < 1+x3 and 0 ≤ α < 1+x1(1+x3)(1+(1+x3)x2). Moreover, in the case that

α 6= x1(1+x3)(1+(1+x3)x2), we write α = γx1 +δ with γ = (ε(1+(1+x3)x2)+η),

where 0 ≤ δ < x1, 0 ≤ ε < (1 + x3), and 0 ≤ η ≤ (1 + x3)x2. We consider the

following possible cases:

Subcase (vi).2.a: Consider α = x1(1 + x3)(1 + (1 + x3)x2). If x1 = 1, note that

β 6= 0 since h((1 + x3)2(1 + (1 + x3)x2)) = 1. Thus, we may consider

c = (1 + x3)2(1 + (1 + x3)x2) < (1 + x3)2(1 + (1 + x3)x2) + β = b .

With this choice of c, it is straightforward to verify that both sides of Equation (6)

are equal to 0. Otherwise, if x1 > 1, we consider c = 1. Since x1 > 1 implies

−x1(1 + x3)(1 + (1 + x3)x2) < (β − x3 − 2)(1 + (1 + x3)x2) < 0 ,

it is straightforward to verify that both sides of Equation (6) are equal to

(1 + x3)(1 + (1 + x3)x2)− 1 .

Subcase (vi).2.b: Consider α 6= x1(1+x3)(1+(1+x3)x2) with δ > 0 and β > 0.

In this case, choosing

c = (γx1 + 1)(1 + x3) < (γx1 + δ)(1 + x3) + β = b ,

it follows that both sides of Equation (6) are equal to 0 since 0 ≤ δ − 1 < x1 − 1

and 0 < β < 1 + x3 together imply

0 < (δ − 1)(1 + x3) + β < x1(1 + x3) .

Subcase (vi).2.c: Consider α 6= x1(1+x3)(1+(1+x3)x2) with δ > 0 and β = 0.

Note that δ 6= 1 since h((γx1 + 1)(1 + x3)) = 1. Therefore, 2 ≤ δ < x2, so we may

consider

c = (γx1 + 1)(1 + x3) < (γx1 + δ)(1 + x3) = b .

Given this choice, we find that both sides of Equation (6) are equal to 0 since

0 < δ < x1.
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Subcase (vi).2.d: Consider α 6= x1(1 + x3)(1 + (1 + x3)x2) with δ = 0 and

β > 0. If β > ε, then β 6= 1 since otherwise, β = 1 would force ε = 0 and

h(ηx1(1 + x3) + 1) = 1. Thus, it must be that β > 1, thereby allowing us to

consider

c = ηx1(1 + x3) < (ε(1 + (1 + x3)x2) + η)x1(1 + x3) + β = b .

With this choice of c and since β − 1 ≥ ε with β > 1, it is straightforward to verify

both sides of Equation (6) are equal to ε(1 + (1 + x3)x2). Now, if β < ε, we have

that ε > 1 since we assumed β > 0. Therefore, we consider

c = (1 + (1 + x3)x2)x1(1 + x3) + 1 < (ε(1 + (1 + x3)x2) + η)x1(1 + x3) + β = b .

Then, both sides of Equation (6) are equal to (ε−1)(1+(1+x3)x2)+η−1. Lastly,

if β = ε, we consider two possibilities. If η > 0, we may again choose

c = (1 + (1 + x3)x2)x1(1 + x3) + 1 < (ε(1 + (1 + x3)x2) + η)x1(1 + x3) + β = b

and find that both sides of Equation (6) are equal to (ε− 1)(1 + (1 +x3)x2) + η− 1.

Otherwise, if η = 0, note that ε = β 6= 1 since otherwise,

h(b) = h((1 + (1 + x3)x2)x1(1 + x3) + 1) = 1 .

Therefore, the same value of c, namely

c = (1 + (1 + x3)x2)x1(1 + x3) + 1 ,

will again be strictly less than b, from which it follows that both sides of Equation (6)

are equal to (ε− 1)(1 + (1 + x3)x2) + η − 1.

Subcase (vi).2.e: Consider α 6= x1(1+x3)(1+(1+x3)x2) with δ = 0 and β = 0.

In this case, b = γx1(1 + x3). Moreover, note that γ > 0 since otherwise, b = 0

contradicting our bounds on b. If x1 = 1, then h(b) = h(γ(1 + x3)) = 1. Hence, we

need only consider when x1 > 1. Since γ > 0 and x2 > 1, we may take

c = 1 + x3 < γx1(1 + x3) = b ,

from which it is straightforward to find that both sides of Equation (6) are equal

to γ − 1.

This completes our second case.

Case (vi).3: Consider qj = (1+(1+x3)(1+(1+x3)x2)x1)(1+(1+x3)x2). Thus,

we consider

1 ≤ b ≤ (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2)− 1 .
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Again, we will start by identifying those values of b that satisfy Equation (5) and

Equation (7). It is straightforward to verify that

h(b) = b− x1

⌊
b(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
b(1 + x3)

1 + (1 + x3)x2

⌋
.

Writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β < 1 + x3 and

0 ≤ α < 1 + x1(1 + x3)(1 + (1 + x3)x2)

for α, β ∈ Z, it follows that

h(b) = h(α(1 + (1 + x3)x2) + β)

= α+ β − x1

⌊
(α(1 + (1 + x3)x2) + β)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

There are two different possibilities for both α and β: either

α = x1(1 + x3)(1 + (1 + x3)x2)

or α = εx1 + η where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), and either

β = (1 + x3)x2 or β = γx2 + δ where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3. We consider

the following subcases.

Subcase (vi).3.1: Consider α = x1(1 + x3)(1 + (1 + x3)x2) and β = (1 + x3)x2.

In this case,

h(b) = x1(1 + x3)(1 + (1 + x3)x2) + (1 + x3)x2

− x1

⌊
x1(1 + x3)2(1 + (1 + x3)x2)2 + (1 + x3)2x2

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(1 + x3)2x2

1 + (1 + x3)x2

⌋
= x1 + x2

> 1.

Subcase (vi).3.2: Consider α = x1(1 + x3)(1 + (1 + x3)x2) and β 6= (1 + x3)x2.

Writing β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3, we have that

h(b) = x1(1 + x3)(1 + (1 + x3)x2) + γx2 + δ

− x1

⌊
(x1(1 + x3)(1 + (1 + x3)x2)2 + β)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(γx2 + δ)(1 + x3)

1 + (1 + x3)x2

⌋
= δ − x1

⌊
β(1 + x3)− (1 + x3)(1 + (1 + x3)x2)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= δ + x1 − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.
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If δ = 0 and γ > 0, then h(b) = x1 +x2 > 1. Otherwise, we have that h(b) = δ+x1.

For this to be equal to 1, it must be the case that δ = 0 and x1 = 1 since x1 ≥ 1.

Moreover, note that β = 0 here since δ = 0 implies γ = 0 (otherwise, we are in

the previous case that δ = 0 and γ > 0). Therefore, when x1 = 1, we have that

h((1 + x3)(1 + (1 + x3)x2)2) = 1.

Subcase (vi).3.3: Consider α 6= x1(1 + x3)(1 + (1 + x3)x2) and β = (1 + x3)x2.

Writing α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), we

have that

h(b) = εx1 + η + (1 + x3)x2

− x1

⌊
((εx1 + η)(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(1 + x3)2x2

1 + (1 + x3)x2

⌋
= η − x1

⌊
(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
+ x2 .

Given that 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), observe that

|(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε| < 1 + x1(1 + x3)(1 + (1 + x3)x2).

Therefore, ⌊
(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1. If⌊

(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε
1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

then h(b) = η + x1 + x2 > 1. Otherwise, if⌊
(η(1 + (1 + x3)x2) + (1 + x3)x2)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,

then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ (1+x3)2x2. If (A) holds, then

h(b) = η + x2 > 1 since η > 0. If (B) holds, then our same equation forces η = 0

and x2 = 1 when ε ≤ (1 + x3)2, which means that h(εx1(2 + x3) + (1 + x3)) = 1

whenever 0 ≤ ε ≤ (1 + x3)2.

Subcase (vi).3.4: Consider α 6= x1(1 + x3)(1 + (1 + x3)x2) and β 6= (1 + x3)x2.

Writing α = εx1 + η where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2) and
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β = γx2 + δ where 0 ≤ δ < x2 and 0 ≤ γ < 1 + x3, we have that

h(b) = εx1 + η + γx2 + δ − x1

⌊
((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
(γx2 + δ)(1 + x3)

1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
− x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Given the bounds on η, γ, δ, and ε, observe that

|(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε| < 1 + x1(1 + x3)(1 + (1 + x3)x2).

Therefore, ⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1.

Suppose δ = 0 and γ > 0. If⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

then h(b) = η + x1 + x2 > 1. Otherwise, if⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,

then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ γx2(1 + x3). If (A) holds,

then h(b) = η+x2 > 1 since η > 0 and x2 ≥ 1. If (B) holds, then our same equation

forces η = 0 and x2 = 1 when ε ≤ γ(1+x3), which means that h(εx1(2+x3)+γ) = 1

whenever 0 ≤ ε ≤ γ(1 + x3).

Suppose otherwise, i.e., δ = 0 and γ > 0 does not hold. If⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= −1 ,

note that η = 0. Then, h(b) = δ + x1. For this to equal 1, it must be the case

that δ = 0 (and hence γ = 0 since otherwise, we would be in the previous case) and
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x1 = 1. Since γ = δ = 0, we have that β = 0. Therefore, given that η = 0 as well,

it must be that ε > 0 since otherwise, b = 0 contradicting our bounds on b. In this

case, we have that h(ε(1+(1+x3)x2)) = 1 whenever 0 < ε < (1+x3)(1+(1+x3)x2).

Otherwise, if ⌊
(η(1 + (1 + x3)x2) + γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
= 0 ,

then either (A) 0 < η < x1 or (B) η = 0 with 0 ≤ ε ≤ (γx2 + δ)(1 + x3). If

(A) holds, then h(b) = η + δ, which setting equal to 1 forces η = 1 and δ = 0

since η > 0. Note that δ = 0 forces γ = 0 since otherwise, we would be in the

previous case. Therefore, we have that h((εx1 + 1)(1 + (1 + x3)x2)) = 1 whenever

0 ≤ ε < (1 + x3)(1 + (1 + x3)x2). On the other hand, if (B) holds, then our

same equation forces η = 0 and δ = 1 when 0 ≤ ε ≤ (γx2 + 1)(1 + x3), which

means that h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1 whenever 0 ≤ γ < 1 + x3 and

0 ≤ ε ≤ (γx2 + 1)(1 + x3).

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (vi).3.1-(vi).3.4:

• If x1 = 1, β = 0, and 0 < ε ≤ (1 + x3)(1 + (1 + x3)x2), we have b =

ε(1 + (1 + x3)x2);

• If x2 = 1, δ = η = 0, 0 < γ ≤ 1 + x3, and 0 ≤ ε ≤ γ(1 + x3), we have

b = εx1(2 + x3) + γ;

• If β = 0, η = 1, and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), we have b = (εx1 +

1)(1 + (1 + x3)x2);

• If η = 0, δ = 1, 0 ≤ γ < 1 + x3, and 0 ≤ ε ≤ (γx2 + 1)(1 + x3), we have

b = εx1(1 + (1 + x3)x2) + γx2 + 1.

Our next goal is to establish that Equation (6) is always satisfied; recall that we

are in the case where qj = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2). If

qi = (1 + (1 + x3)(1 + (1 + x3)x2)x1)(1 + (1 + x3)x2) ,

the result is trivial. If

qi = (1 + x3)(1 + x1(1 + x3)(1 + (1 + x3)x2)) ,

we write b = α(1 + (1 + x3)x2) + β, where 0 ≤ β < 1 + (1 + x3)x2 and 0 ≤ α <

1+x1(1+x3)(1+(1+x3)x2). Note that b 6= 1+(1+x3)x2 since h(1+(1+x3)x2) = 1.

If b > 1 + (1 + x3)x2, we set c = 1 + (1 + x3)x2 from which it is straightforward to

compute that both sides of Equation (6) are equal to

(α− 1)(1 + x3) +

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.
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Otherwise, if b < 1 + (1 + x3)x2, note that α = 0 and b = β. Therefore, to ensure

we satisfy Equation (5), we consider 2 ≤ β < 1 + (1 + x3)x2. Moreover, note that

β 6≡ 1 mod x2 since otherwise h(b) = h(β) = 1. Now, suppose β = (1 + x3)x2. If

x2 = 1, then h(β) = h(1 + x3) = 1, so we may assume x2 > 1. Setting c = 1 and

since x2 > 1, it is straightforward to compute that both sides of Equation (6) are

equal to x3. Otherwise, if β 6= (1 + x3)x2, we write β = γx2 + δ, where 0 ≤ δ < x2

and 0 ≤ γ < 1 + x3. Note that δ 6= 1 since h(γx2 + 1) = 1 for 0 ≤ γ < 1 + x3.

Suppose δ > 1. Then, choosing

c = γx2 + 1 < γx2 + δ = b ,

it is straightforward to show that both sides of Equation (6) are equal to 0. On the

other hand suppose δ = 0, so β = γx2, where γ > 0. If x2 = 1, then h(β) = 1,

so we may assume x2 > 1. Taking c = 1 and observing that x2 > 1 implies

−x2(1 + x3) < −(1 + x3) − γ, it is straightforward to compute that both sides of

Equation (6) are equal to γ − 1.

Finally, if qi = (1 + x3)(1 + (1 + x3)x2), the analysis becomes a bit more

complicated. We start by again writing b = α(1 + (1 + x3)x2) + β, where 0 ≤
β < 1 + (1 + x3)x2 and 0 ≤ α < 1 + x1(1 + x3)(1 + (1 + x3)x2). Suppose

α = x1(1 + x3)(1 + (1 + x3)x2). If x1 = 1, then β 6= 0 since otherwise h(b) = 1.

Thus, we may consider

c = (1 + x3)(1 + (1 + x3)x2)2 < (1 + x3)(1 + (1 + x3)x2)2 + β = b

from which it is straightforward to compute that both sides of Equation (6) are

equal to 0. If x1 > 1, observe that

−x1(1 + x3)(1 + (1 + x3)x2) < −(1 + x3)(2 + (1 + x3)x2)

≤ (β − 1)(1 + x3)− (1 + x3)(1 + (1 + x3)x2)

< 0 .

Choosing c = 1, the previous inequality readily gives that both sides of Equation (6)

are equal to (1 + x3)(1 + (1 + x3)x2)− 1.

Now, suppose α 6= x1(1 + x3)(1 + (1 + x3)x2). Then, we may write α = εx1 + η,

where 0 ≤ η < x1 and 0 ≤ ε < (1 + x3)(1 + (1 + x3)x2), and so b = (εx1 + η)(1 +

(1 + x3)x2) + β. Suppose β = (1 + x3)x2. If η ≥ 1, then we may consider

c = (εx1 + 1)(1 + (1 + x3)x2) < (εx1 + η)(1 + (1 + x3)x2) + (1 + x3)x2 = b

from which it is straightforward to show that both sides of Equation (6) are equal

to 0. Otherwise, if η = 0, note that we may assume x2 > 1 since x2 = 1 gives that

h(b) = h(εx1(2 + x3) + (1 + x3)) = 1.

We consider two possible cases, namely when 0 ≤ ε < 1 + x3 and when 1 + x3 ≤
ε < (1 + x3)(1 + (1 + x3)x2). If 0 ≤ ε < 1 + x3, we consider

c = εx1(1 + (1 + x3)x2) + x2x3 + 1



INTEGERS: 24 (2024) 48

which is strictly less than b = εx1(1 + (1 +x3)x2) + (1 +x3)x2 as x2 > 1. With this

choice of c and since 0 ≤ ε < 1 + x3, it is straightforward to show that both sides

of Equation (6) are equal to 0. On the other hand, if

1 + x3 ≤ ε < (1 + x3)(1 + (1 + x3)x2) ,

we may consider

c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + (1 + x3)x2 = b

from which it is straightforward to compute that both sides of Equation (6) are

equal to

ε− (1 + x3) +

⌊
(1 + x3)2x2 − ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.

Now, suppose β 6= (1 + x3)x2. Then, we may write β = γx2 + δ, where 0 ≤ δ < x2

and 0 ≤ γ < 1+x3, and so b can be written as b = (εx1 +η)(1+(1+x3)x2)+γx2 +δ.

We consider the following possible subcases.

Subcase (vi).3.a: Let η > 0 and δ > 0. We consider

c = (εx1 + 1)(1 + (1 + x3)x2) < (εx1 + 1)(1 + (1 + x3)x2) + γx2 + δ = b .

Since 0 < η < x1 and 0 < γx2 + δ < (1 + x3)x2, it follows that

0 < (η − 1)(1 + (1 + x3)x2) + γx2 + δ < x1(1 + (1 + x3)x2) .

Therefore, it is straightforward to verify that both sides of Equation (6) are equal

to 0.

Subcase (vi).3.b: Let η = 0 and δ > 0. If ε ≤ (γx2 + 1)(1 +x3), note that δ 6= 1

since otherwise, h(b) = h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1. Thus, we have that

δ > 1, and we consider

c = εx1(1 + (1 + x3)x2) + γx2 + 1 < εx1(1 + (1 + x3)x2) + γx2 + δ = b .

Given that ε ≤ (γx2 +1)(1+x3) and 1 < δ < x2, it is straightforward to verify that

our choice of c gives that both sides of Equation (6) are equal to 0. Otherwise, if

(γx2 + 1)(1 + x3) < ε (and hence, ε > 1 + x3), we consider

c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + γx2 + δ = b .

With this choice of c, it is straightforward to verify that both sides of Equation (6)

are equal to

ε− (1 + x3) +

⌊
(γx2 + δ)(1 + x3)− ε

1 + x1(1 + x3)(1 + (1 + x3)x2)

⌋
.
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Subcase (vi).3.c: Let η > 0 and δ = 0. If γ > 0, we may consider

c = (εx1 + 1)(1 + (1 + x3)x2) < (εx1 + η)(1 + (1 + x3)x2) + γx2 = b

from which it is straightforward to compute that both sides of Equation (6) are

equal to 0. On the other hand, if γ = 0, note that η 6= 1 since otherwise, h(b) =

h((εx1 + η)(1 + (1 + x3)x2)) = 1. Therefore, we may again choose

c = (εx1 + 1)(1 + (1 + x3)x2) < (εx1 + η)(1 + (1 + x3)x2) = b .

Since 1 < η < x1, it is straightforward to verify that both sides of Equation (6) are

equal to 0.

Subcase (vi).3.d: Let η = δ = 0. Further suppose γx2(1 + x3) < ε. If γ > 0,

then it follows that γx2 ≥ 1. Therefore, our assumed inequality implies ε > 1 + x3,

so we may consider

c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + γx2 = b .

Since γx2(1 + x3) < ε, our choice of c readily gives that both sides of Equation (6)

are equal to ε − x3 − 2. Otherwise, if γ = 0 (and hence, ε > 0 since we assumed

γx2(1 + x3) < ε), we may assume x1 > 1 since otherwise, we would have that

h(b) = h(ε(1 + (1 + x3)x2)) = 1. Thus, since x1 > 1, we may take

c = 1 + (1 + x3)x2 < εx1(1 + (1 + x3)x2) = b .

Observe that the bounds on ε and x1 > 1 imply

−x1(1 + x3)(1 + (1 + x3)x2) ≤ −2(1 + x3)(1 + (1 + x3)x2)

< −(1 + x3)(1 + (1 + x3)x2)− ε
< 0 .

Consequently, it is straightforward to verify that both sides of Equation (6) are

equal to ε − 1. Now, suppose γx2(1 + x3) > ε. Note that γ 6= 0 since otherwise,

ε < 0 contradicting our initial bounds on ε. Thus, we have that γ > 0. Moreover,

if x2 = 1, it follows that h(b) = h(εx1(2 + x3) + γ) = 1, so we may assume x2 > 1.

Given the addition restriction that ε ≤ (γx2−1)(1+x3), we may choose c = 1 from

which the inequality ε ≤ (γx2−1)(1+x3) readily implies both sides of Equation (6)

are equal to ε. However, for (γx2 − 1)(1 + x3) < ε < γx2(1 + x3), we consider

c = 1 + x1(1 + x3)(1 + (1 + x3)x2) .

Note that x2 > 1 and γ > 0 together with our restriction on ε imply that ε > 1+x3.

Therefore, we satisfy

c < εx1(1 + (1 + x3)x2) + γx2 = b ,
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and a straightforward computation gives that both sides of Equation (6) are equal

to ε − (1 + x3). Finally, suppose ε = γx2(1 + x3). Given this equality, note that

neither γ nor ε can be equal to 0 since otherwise, we would have

η = δ = γ = ε = 0 ,

implying b = 0. This, of course, contradicts the bounds on b. Moreover, we may

again assume x2 > 1 (and thus, ε > 1 +x3) since otherwise, h(b) = h(εx1(2 +x3) +

γ) = 1. Since ε > 1 + x3, we may consider

c = 1 + x1(1 + x3)(1 + (1 + x3)x2) < εx1(1 + (1 + x3)x2) + γx2 = b .

This choice of c readily gives that both sides of Equation (6) are equal to ε−(1+x3).

In any case, we find that both sides of Equation (6) are equivalent for each

possible qi, thereby completing our third and final case. Thus, we have established

IDP for r-vectors of type (vi).

Case: Type (vii). Here, we verify IDP for r-vectors of type (vii) using Theo-

rem 4. Again, we must consider three cases corresponding to three possible values

of qj .

Case (vii).1: Consider qj = 1 + x3. Since 1 ≤ b ≤ x3 in this case, it is

straightforward to verify that h(b) = b. Hence, the b-values we are required to

check in Equation (5) are 2 ≤ b ≤ x3. To verify that Equation (6) always has

the desired solution, we consider three cases. If qi = 1 + x3, the result is triv-

ial. If qi = (1 + x3)(1 + x1(1 + x3)), then we may select c = 1, from which

it follows that both sides of Equation (6) are equal to (b − 1)(1 + x1(1 + x3)).

If qi = (1 + (1 + x3)x1)(1 + (1 + x3)x2), then we may again set c = 1, from

which it is straightforward to compute that both sides of Equation (6) are equal to

(b− 1)(x1 + x2 + x1x2(1 + x3)). This completes our first case.

Case (vii).2: Consider qj = (1 + x3)(1 + x1(1 + x3)). It is straightforward to

verify that

h(b) = b− x1

⌊
b

1 + x1(1 + x3)

⌋
− x3

⌊
b

1 + x3

⌋
,

where the values of b range from 1 to (1 + x3)(1 + x1(1 + x3)) − 1. To verify

that Equation (6) always has the desired solution, we consider three cases. If

qi = (1 + x3)(1 + x1(1 + x3)), the result is trivial. If qi = 1 + x3, then we write

b = α(1 + x1(1 + x3)) + β, where 0 ≤ β < 1 + x1(1 + x3) and 0 ≤ α < 1 + x3 for
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α, β ∈ Z. Consequently, we have that

h(b) = h(α(1 + x1(1 + x3)) + β)

= α(1 + x1(1 + x3)) + β − αx1 − αx1x3 − x3

⌊
α+ β

1 + x3

⌋
= α+ β − x3

⌊
α+ β

1 + x3

⌋
.

If β > 0, we may select c = 1, from which it follows that both sides of Equation (6)

are equal to α. If β = 0, then our formula for h(b) reduces to

h(b) = h(α(1 + x1(1 + x3))) = α

since 0 ≤ α < 1+x3. Thus, to satisfy Equation (5), it must be that α > 1, implying

b = α(1 + x1(1 + x3)) > 1 + x1(1 + x3) .

In this case, taking c = 1+x1(1+x3), it is straightforward to verify that both sides of

Equation (6) are equal to α−1, and Equation (7) is satisfied as h(1+x1(1+x3)) = 1.

Finally, if qi = (1 + (1 + x3)x1)(1 + (1 + x3)x2), then we write b = α(1 + x3) + β,

where 0 ≤ β < 1 + x3 and 0 ≤ α < 1 + x1(1 + x3) for α, β ∈ Z. Consequently, since

0 ≤ β < 1 + x3, we have that

h(b) = h(α(1 + x3) + β)

= α(1 + x3) + β − x1

⌊
α(1 + x3) + β

1 + x1(1 + x3)

⌋
− αx3 − x3

⌊
β

1 + x3

⌋
= α+ β − x1

⌊
α(1 + x3) + β

1 + x1(1 + x3)

⌋
.

If β > 0, we may select c = 1, from which it is straightforward to verify that both

sides of Equation (6) are equal to α(1+(1+x3)x2)+(β−1)x2 (since 0 ≤ β−1 < x3).

On the other hand, if β = 0, then our formula for h(b) reduces to

h(b) = h(α(1 + x3)) = α−
⌊

α(1 + x3)

1 + x1(1 + x3)

⌋
.

In order to satisfy Equation (5), it must be that α > 1, which implies

b = α(1 + x+ 3) > 1 + x3 .

Thus, in this case, we consider c = 1+x3. Clearly, h(1+x3) = 1, giving Equation (7),

and moreover, it is straightforward to verify that both sides of Equation (6) when

c = 1 + x3 are equal to (α− 1)(1 + (1 + x3)x2). This completes our second case.
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Case (vii).3: Consider qj = (1 + (1 + x3)x1)(1 + (1 + x3)x2). We first identify

those values of b that satisfy Equation (5) and Equation (7). It is straightforward

to verify that

h(b) = b− x1

⌊
b(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
b(1 + x3)

(1 + (1 + x3)x2)

⌋
.

Writing b = α(1+(1+x3)x2)+β, where 0 ≤ β ≤ (1+x3)x2 and 0 ≤ α ≤ (1+x3)x1,

it follows that

h(b) = h(α(1 + (1 + x3)x2) + β)

= α+ β − x1

⌊
α(1 + x3)(1 + (1 + x3)x2) + β(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

Now, writing β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, it follows that

h(b) = α+ δ − x1

⌊
α(1 + x3)(1 + (1 + x3)x2) + (γx2 + δ)(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
.

Since 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, observe that⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
=

{
−1, δ = 0, γ > 0

0, otherwise.

We further write α = εx1 + η, where 0 ≤ η < x1 and 0 ≤ ε ≤ 1 + x3. Then,

h(b) = η + δ − x1

⌊
(η(1 + x3)− ε)(1 + (1 + x3)x2) + (γx2 + δ)(1 + x3)

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
= η + δ − x1

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
− x2

⌊
δ(1 + x3)− γ
1 + (1 + x3)x2

⌋
.

Given the bounds on ε, η, γ, and δ, note that

−(1 + x3) ≤ δ(1 + x3)− γ < 1 + (1 + x3)x2

and

−(1 + x3) ≤ η(1 + x3)− ε+ γ ≤ (1 + x3)x1 .



INTEGERS: 24 (2024) 53

Consequently, it follows that

|(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ|

is strictly less than

(1 + (1 + x3)x1)(1 + (1 + x3)x2),

and this implies that⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
is equal to either 0 or −1. To resolve this floor function, we consider the following

subcases which analyze the sign of the numerator of its argument.

Subcase (vii).3.1: Consider η = 0 and ε > γ. Since δ(1+x3)−γ < 1+(1+x3)x2,

the numerator above will be negative, implying⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= −1.

Therefore, our equation for h(b) simplifies to

h(b) = δ + x1 − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

If δ = 0 and γ > 0, then

h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x1 + x2 > 1 .

If δ = γ = 0, then

h(b) = h(εx1(1 + (1 + x3)x2)) = x1 .

Thus, if x1 = 1, we have that h(εx1(1 + (1 + x3)x2)) = 1 whenever ε > 0. If δ > 0,

then

h(b) = h(εx1(1 + (1 + x3)x2) + γx2 + δ) = δ + x1 > 1 .

Subcase (vii).3.2: Consider η = 0 and ε < γ. In this case, η(1+x3)−ε+γ > 0,

and consequently, the numerator of our floor function argument will be positive.

Hence, ⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

simplifying our formula for h(b) to

h(b) = δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.
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If δ = 0 and γ > 0, then h(b) = h(εx1(1 + (1 + x3)x2) + γx2) = x2. Thus, if x2 = 1,

we have that h(b) = h(εx1(2 + x3) + γ) = 1 whenever ε < γ. Otherwise, h(b) = δ,

which forces δ = 1, i.e., h(εx1(1 + (1 + x3)x2) + γx2 + 1) = 1 whenever ε < γ.

Subcase (vii).3.3: Consider η = 0 and ε = γ. In this case, η(1+x3)−ε+γ = 0,

so the numerator of our floor function argument reduces to δ(1 + x3)− γ. If δ = 0

and γ > 0, then δ(1 + x3)− γ < 0 which implies⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= −1.

Hence, for ε = γ > 0, we have

h(b) = h(γx1(1 + (1 + x3)x2) + γx2) = x1 + x2 > 1 .

If δ = γ = 0, then δ(1 + x3)− γ = 0 which implies⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0.

Hence, h(b) = h(0) = 0. If δ > 0, then δ(1 + x3) − γ > 0 since 0 ≤ γ ≤ (1 + x3).

Therefore, ⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0.

As such, we have that h(b) = h(γx1(1 + (1 + x3)x2) + γx2 + δ) = δ, which forces

δ = 1, i.e., h(b) = h(γx1(1 + (1 + x3)x2) + γx2 + 1) = 1 for 0 ≤ γ ≤ 1 + x3.

Subcase (vii).3.4: Consider η = 1 and 0 ≤ ε < 1 + x3. It follows that

η(1 + x3)− ε+ γ > 0 .

Consequently, since δ(1 + x3)− γ < 1 + (1 + x3)x2, we have that the numerator of

our floor function argument is positive, implying⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0

for any 0 ≤ γ ≤ 1 + x3 and 0 ≤ δ < x2. As a result, if δ = 0 and γ > 0, then

h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2) = 1 + x2 > 1 .

If δ = γ = 0, then

h(b) = h((εx1 + 1)(1 + (1 + x3)x2)) = η = 1

whenever 0 ≤ ε < 1 + x3.
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If δ > 0, then

h(b) = h((εx1 + 1)(1 + (1 + x3)x2) + γx2 + δ) = 1 + δ > 1 .

Subcase (vii).3.5: Consider η = 1 and ε = 1 + x3. The numerator of our floor

function argument reduces to γ(1+x3)x2+δ(1+x3), which is certainly nonnegative.

Therefore, it follows that⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

which simplifies our formula for h(b) to

h(b) =h((1 + (1 + x3)x1)(1 + (1 + x3)x2) + γx2 + δ)

=1 + δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Therefore, if δ = 0 and γ > 0, it follows that

h(b) = h((1 + (1 + x3)x1)(1 + (1 + x3)x2) + γx2) = 1 + x2 > 1 .

Otherwise,

h(b) = h((1 + (1 + x3)x1)(1 + (1 + x3)x2) + γx2 + δ) = 1 + δ .

So, for this to be equal to 1, it must be that δ = γ = 0, i.e.,

h((1 + (1 + x3)x1)(1 + (1 + x3)x2)) = 1 .

Subcase (vii).3.6: Consider η > 1. It follows that η(1 + x3) − ε + γ > 0, and

consequently, since δ(1 + x3)− γ < 1 + (1 + x3)x2, we have that the numerator of

our floor function argument is positive. Therefore, we have that⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + (1 + x3)x2)

⌋
= 0,

which simplifies our formula for h(b) to

h(b) = h((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ)

= η + δ − x2 ·

{
−1, δ = 0, γ > 0

0, otherwise

}
.

Therefore, if δ = 0 and γ > 0, it follows that

h(b) = h((εx1 + η)(1 + (1 + x3)x2) + γx2) = η + x2 > 1 .
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Otherwise,

h(b) = h((εx1 + η)(1 + (1 + x3)x2) + γx2 + δ) = η + δ > 1 .

We summarize the values of b for which h(b) = 1 that were just derived in

Subcases (vii).3.1-(vii).3.6:

• If x1 = 1, η = δ = γ = 0, and 0 < ε ≤ 1 + x3, we have b = ε(1 + (1 + x3)x2);

• If x2 = 1, η = δ = 0, and 0 ≤ ε < γ ≤ 1 + x3, we have b = εx1(2 + x3) + γx2;

• If η = 0, δ = 1, and 0 ≤ ε ≤ γ ≤ 1 + x3, we have b = εx1(1 + (1 + x3)x2) +

γx2 + 1;

• If η = 1, δ = γ = 0, and 0 ≤ ε ≤ 1+x3, we have b = (1+εx1)(1+(1+x3)x2).

Our next goal is to establish that Equation (6) is always satisfied; recall that we

are in the case where qj = (1 + (1 + x3)x1)(1 + (1 + x3)x2). If

qi = (1 + (1 + x3)x1)(1 + (1 + x3)x2) ,

the result is trivial. If qi = (1+x3)(1+(1+x3)x1), we write b = α(1+(1+x3)x2)+β,

where 0 ≤ β < 1+(1+x3)x2 and 0 ≤ α < 1+(1+x3)x1. If b > 1+(1+x3)x2 (and

thus, α ≥ 1), we can take c = 1+(1+x3)x2 as this makes both sides of Equation (6)

equal to

(α− 1)(1 + x3) +

⌊
β(1 + x3)

1 + (1 + x3)x2

⌋
.

If 2 ≤ b < 1 + (1 + x3)x2, note that α must be 0 and hence b = β. We write

β = γx2 + δ, where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3. In the case that δ > 1, we set

c = γx2 +1 as this makes both sides of Equation (6) equal to 0. Moreover, note that

we need not consider the case where δ = 1 since h(γx2 + 1) = 1. Therefore, it only

remains to find a c-value when δ = 0. If δ = 0, then b = β = γx2. Observe that

γ > 0 since γ = 0 would imply h(b) = 0 � 2. In this case, we set c = (γ − 1)x2 + 1.

Since 1 ≤ γ ≤ 1 + x3 implies that 1 ≤ 2 + x3 − γ ≤ 1 + x3, it is straightforward to

check that both sides of Equation (6) will again be equal to 0.

Finally, if qi = 1 + x3, the analysis becomes slightly more complicated. As in

the previous case, we begin by writing b = α(1 + (1 + x3)x2) + β, where 0 ≤ β <

1 + (1 + x3)x2 and 0 ≤ α < 1 + (1 + x3)x1. Furthermore, we write β = γx2 + δ,

where 0 ≤ δ < x2 and 0 ≤ γ ≤ 1 + x3, and we write α = εx1 + η, where 0 ≤ η < x1

and 0 ≤ ε ≤ 1 + x3. If b > 1 + (1 + x3)x2, we consider c = 1. Substituting c = 1

and the alternate form for b into the left-hand side of Equation (6), yields

ε+

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

(1 + (1 + x3)x1)(1 + 1 + x3)x2)

⌋
︸ ︷︷ ︸

=:F1

.
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On the other hand, substituting into the right-hand side of Equation (6) yields

ε+

⌊
(η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ

(1 + (1 + x3)x1)(1 + 1 + x3)x2)

⌋
︸ ︷︷ ︸

=:F2

.

We must show that F1 = F2. To this end, let

n1 = (η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + δ(1 + x3)− γ

and

n2 = (η(1 + x3)− ε+ γ)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ ,

that is, n1 and n2 are the numerators of the arguments in F1 and F2, respectively.

Given the bounds on ε, η, γ, and δ, note that

−(1 + x3) ≤ δ(1 + x3)− γ < 1 + (1 + x3)x2 ,

also

−2(1 + x3) ≤ (δ − 1)(1 + x3)− γ < 1 + (1 + x3)x2 ,

and

−(1 + x3) ≤ η(1 + x3)− ε+ γ ≤ (1 + x3)x1 .

Consequently, it follows that |nk| < (1 + (1 + x3)x1)(1 + (1 + x3)x2) for k ∈ {1, 2},
and this implies that Fk is equal to either 0 or −1. Therefore, to achieve our goal, we

must verify that either n1, n2 < 0 or n1, n2 ≥ 0. Now, observe that b > 1+(1+x3)x2

implies that either (A) α = 1 and β > 0, or (B) α > 1. For each of these scenarios,

we consider subcases. First assume (A) holds, i.e., α = 1 and β > 0.

Subcase (vii).3.a: Consider x1 = 1. Since 0 ≤ η < x1 = 1, it follows that η = 0.

Consequently, as 1 = α = εx1 + η, we have that ε = 1. Thus, n1 and n2 reduce to

n1 = (γ − 1)(1 + (1 + x3)x2) + δ(1 + x3)− γ

and

n2 = (γ − 1)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ .

If γ = 0, then the numerators n1, n2 < 0 and hence F1 = F2 = −1. If γ = 1, note

that δ 6= 1 (since η = 0, ε = γ, and δ = 1 imply h(b) = 1). So, if δ = 0, then

n1, n2 < 0 and hence F1 = F2 = −1. Otherwise, if δ > 1, then n1, n2 > 0 and thus

F1 = F2 = 0. If γ > 1, then n1, n2 > 0, implying F1 = F2 = 0.

Subcase (vii).3.b: Consider x1 > 1. Given that α = 1, it must be the case

that ε = 0 and η = 1. Therefore, it immediately follows that F1 = F2 = 0 since

n1, n2 > 0.

Thus, we can conclude that F1 = F2 in situation (A). Now, we must consider

situation (B), i.e., when α > 1. We again consider subcases.
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Subcase (vii).3.I: Let η = 0. It follows that ε > 0, and our numerators reduce

to

n1 = (γ − ε)(1 + (1 + x3)x2) + δ(1 + x3)− γ

and

n2 = (γ − ε)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ.

If γ > ε, then the numerators of both arguments will be positive, implying F1 =

F2 = 0. If γ = ε, note that δ 6= 1 (since η = 0, ε = γ, and δ = 1 imply h(b) = 1).

So, if δ = 0, we have that n1, n2 < 0, and hence F1 = F2 = −1. Otherwise, if δ > 1,

it follows that n1, n2 ≥ 0 which implies F1 = F2 = 0. Finally, if γ < ε, it follows

that F1 = F2 = −1 since n1, n2 < 0.

Subcase (vii).3.II: Let η = 1. Again, since α > 1, this implies ε > 0. As a

result, we have the following reduction of n1 and n2:

n1 = (1 + x3 − ε+ ε)(1 + (1 + x3)x2) + δ(1 + x3)− γ

and

n2 = (1 + x3 − ε+ γ)(1 + (1 + x3)x2) + (δ − 1)(1 + x3)− γ.

If ε < 1+x3 then we have n1, n2 > 0, and thus F1 = F2 = 0. Otherwise, ε = 1+x3.

Note that since η = 1, δ and γ cannot both be 0 as this would imply h(b) = 1.

Therefore, if γ = 0, it must be that δ > 0 which implies n1, n2 > 0 and F1 = F2 = 0.

Otherwise, if γ > 0, n1, n2 > 0, and thus F1 = F2 = 0.

Subcase (vii).3.III: Let η > 1. It immediately follows that n1, n2 > 0, and we

have that F1 = F2 = 0.

Thus, we find that F1 = F2. Therefore, we have that Equation (6) is satisfied

with c = 1 for b > 1 + (1 + x3)x2. It remains to consider 2 ≤ b < 1 + (1 + x3)x2. If

2 ≤ b < 1+(1+x3)x2, note that α must be 0 and hence b = β. Therefore, to ensure

we satisfy Equation (5), we consider 2 ≤ β < 1 + (1 + x3)x2. Since β > 1 in this

case, we may take c = 1 from which it is straightforward to verify that both sides

of Equation (6) are equal to 0. This completes our third and final case, thereby

establishing IDP for r-vectors of type (vii).
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