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Abstract

Reflexive lattice polytopes play a key role in combinatorics, algebraic geometry,
physics, and other areas. One important class of lattice polytopes are lattice sim-
plices defining weighted projective spaces. We investigate the question of when
a reflexive weighted projective space simplex has the integer decomposition prop-
erty. We provide a complete classification of reflexive weighted projective space
simplices having the integer decomposition property for the case when there are at
most three distinct non-unit weights, and conjecture a general classification for an
arbitrary number of distinct non-unit weights. Further, for any weighted projective
space simplex and m > 1, we define the m-th reflexive stabilization, a reflexive
weighted projective space simplex. We prove that when m is 2 or greater, reflexive
stabilizations do not have the integer decomposition property. We also prove that
as long as one weight is at least three, the Ehrhart h*-polynomial of any sufficiently
large reflexive stabilization is not unimodal and has only 1 and 2 as coefficients.
We use this construction to generate interesting examples of reflexive weighted pro-
jective space simplices that are near the boundary of both A*-unimodality and the
integer decomposition property.
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1. Introduction

1.1. Motivation

Consider an integer partition q € Z%, with the convention ¢; < --- < g,. A lattice
simplex defined by q is

n
A(1,q) = conv {el, ce, €, — Z Qiei}
i=1

where e; denotes the i*" standard basis vector in R"™. Set N(q) := 1+ >, ¢;.
One can show, as for instance in [17, Proposition 4.5], that N(q) is the normalized
volume of A(; o). Let Q denote the set of all lattice simplices of the form A q).

We call elements of Q weighted projective space simplices, as the simplices in
Q correspond to a subset of the simplices defining weighted projective spaces [11],
namely those for which the vector (1,q) gives the weights of the projective coordi-
nates. The set Q is the focus of active study [2, 4, 5, 6, 7, 16, 18], motivated by
questions regarding Ehrhart positivity, Ehrhart h*-unimodality and real-rootedness,
existence of unimodular triangulations, and other topics. One reason for this interest
is that Q is a relatively general family of simplices with diverse lattice-point com-
binatorics, and another is because elements of @ admit tractable number-theoretic
characterizations of several important geometric and combinatorial properties. This
makes Q a natural testing ground for exploring combinatorial and geometric prop-
erties of lattice simplices, while maintaining some combinatorial control over the
examples at hand. Another reason for this interest is that algebraic and geometric
properties of simplices in Q correspond to geometric properties of weighted projec-
tive spaces, and thus are of interest to algebraic geometers.

Our focus in this paper is on two properties, reflexivity and the integer decompo-
sition property, that are defined for general lattice polytopes as follows. Recall that
a subset P C R" is a d-dimensional (convez) lattice polytope if it is the convex hull
of finitely many points vV, ... v(¥) € Z" that span a d-dimensional affine subspace
of R™. Many interesting geometric and algebraic properties of P are revealed by
considering the cone over P, defined as the non-negative span of the vectors formed
by prepending a 1 to each vertex of P, i.e.,

cone (P) := spanR>o{(1,v(i)) ci=1,...,k}.

A lattice polytope P is said to have the integer decomposition property (or to be
IDP) if for every positive integer m and each (m,w) € cone (P) NZ"*!, there exist
m points X1, ..., Xy, € PNZ" for which (m,w) = 3".(1,x;). IDP polytopes are also
known as projectively normal polytopes. Letting K° denote the topological interior
of a space K, P is said to be reflezive if there exists an integer vector ¢ € P°NZ"+!
such that

(1,¢) + (cone (P) NZ"*!) = cone (P)° N Z".
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Equivalently, P is reflexive if, possibly after translation by an integer vector, the
origin is contained in P° and the geometric dual (or polar body) of P is also a
lattice polytope.

There are many interesting questions about polytopes that are IDP and/or re-
flexive. For example, it is typically difficult to identify when a given polytope is
IDP. As another example, the number of reflexive polytopes of a fixed dimension is
not known in dimension five and above. Our interest is determining when a reflexive
simplex in @ is IDP. One motivation for this paper is the conjecture, which appeared
first in the survey [8], that the h-polynomial of a standard graded Gorenstein domain
is unimodal. (Recall that a polynomial p = po+p12+- - -+pax? € Z>o|x] is unimodal
if there exists t € [d] U {0} := {1,...,d} U {0} such that pg < --- <py > --+ > pg.)
It is known that the Ehrhart h*-polynomial of an IDP lattice polytope is the h-
polynomial of a corresponding standard graded semigroup algebra, and that reflex-
ive polytopes produce Gorenstein algebras. Thus, h*-polynomials of IDP reflexive
polytopes yield a special case of this conjecture. A proof of this special case, that the
h*-polynomial of an IDP reflexive lattice polytope is unimodal, has recently been
announced in a preprint by Adiprasito, Papadakis, Petrotou, and Steinmeyer [1].
It was previously known, due to work of Bruns and Rémer [9], that if a reflexive
lattice polytope P admits a regular unimodular triangulation (implying IDP), then
the h*-polynomial of P is unimodal. Given this context, it is of interest to determine
when a reflexive lattice polytope is IDP.

1.2. Our Contributions

In Section 2, we review properties of the weighted projective space simplices Ay ),
for q € Z%,, that correspond to weighted projective spaces in which one projective
coordinate has weight 1 and the others are given by the entries in q.

In Section 3, we state our main result, Theorem 9, a classification of all IDP
reflexive A(; q) where q has three distinct entries. Because the proof of Theorem 9
is long and technical, we provide the proof in Section 5. We prove Theorem 7, which
gives a bound on the possible entries of an IDP reflexive q with fixed multiplicities
on the distinct entries. Motivated by these results and further experiments, we
propose in Conjecture 1 a classification of all reflexive IDP elements of Q.

In Section 4, we define for all m > 1 the m-th reflexive stabilization of A(; o). We
prove that for m > 2, reflexive stabilizations produce non-IDP simplices, and for
large m they have non-unimodal Ehrhart h*-polynomials with all coefficients taking
values in {1,2}. Finally, we show that reflexive stabilizations can be used to pro-
duce interesting examples of lattice simplices; for example, Theorem 13 provides an
example of a A(; q) that is simultaneously “almost IDP” and “almost h*-unimodal”.
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2. Properties of Simplices in Q

2.1. Reflexivity and Q

The simplices in Q admit a natural parametrization (or stratification), based on
the distinct entries in the vector q, that allows us to test for the reflexive and IDP
conditions even when A(; 4 is high-dimensional and/or has large volume. Given a

vector of distinct positive integers r = (r1,...,7r4) € Z<4,, write
x x Td\ . __
(P, re?, ) = (P, Ty e T T2 T2y e ey T2y e e Ty Ty -5 Td) -
x1 times xo times x4 times

Ifaq=(q,....qu) = (r{*,7r3?,...,73"), we say that both q and Ay q) are supported
by the vector r = (r1,...,74), which has distinct entries, with multiplicity x =
(z1,...,24). We write q = (r,x) in this case and say that q is d-supported.

We are particularly interested in the case when the simplex A(; o) is reflexive,
and we say that q is reflexive whenever A q) is reflexive. The following theorem,
due to Conrads, and setup provide us with a number-theoretic basis for studying
reflexive simplices in Q.

Theorem 1 ([11]). The simplex Ay q) € Q is reflexive if and only if

q; divides 1+ qu foralll<i<n . (1)
j=1
Equivalently, if q = (r,x), then Aq q) is reflexive if and only if lem (rq,...,7q)
divides 1 + Zle TiT;.
Setup 1. Let q be reflexive and supported by the vector r = (r1,...,714) € Zél
with multiplicity x = (z1,...,24) € Zér Let ¢ = £(q) be the integer defined by

d
1+Z$j7“j :€'10m<’r‘1,7"2,...,7“d). (2)
j=1
Finally, we define s := (s1, ..., s4) where
1
s o= 0L T0) 3)

for each 1 <17 <d.

This setup provides useful restrictions on q, such as the following lemma due to
Braun and Liu.

Lemma 1 ([7]). In Setup 1, we have that ged(r,...,74) =1 and thus

lem (s1,...,8q4) =lem (rq,...,74) . (4)



INTEGERS: 24 (2024) )

Remark 1. The Hermite normal form for the simplex A q) — ey is

01 0 0 N(q)— ¢
0 0 1 0 N(q)—gs
000 -+ 1 N(q) —qu
000 --- 0 N(q)

that is, A(;,q) is unimodularly equivalent to the convex hull of the columns of this
matrix. This is an example of a simplex with what Hibi, Higashitani, and Li [14]
call a one-column Hermite normal form. Their work provides a partial study of
Ehrhart-theoretic properties of such simplices.

2.2. The Integer Decomposition Property and Q

For each r-vector, it is known [5] that there are infinitely many reflexive A q)’s
supported on r. Given a pair A(; q) and Ay p), both reflexive and IDP, Braun and
Davis [4] proved that a new reflexive IDP Ay y) can be constructed as shown in the
following theorem. Suppose that A q) C R™ and A 5y C R™ are reflexive and
the vertices of A(; ) are labeled as vg, v1, ..., vy,. For every i = 0,1,...,m, define
the affine free sum

A(Lq) *5 A(LP) = conv {(A(qu) X Om) @] (On X A(Lp) — ’Uz)} C Rner.

The notion of an affine free sum can be generalized significantly [3], but in this
article it will not be necessary.

Theorem 2 ([4]). The simplex Ay q) is reflexive and arises as a free sum A py*o
A ,w) if and only if Ay )y and Ag w) are reflexive and q = (p, (1 + >, pi)w). If
Aq,p) s IDP reflexive and Ay q) is IDP, then A q) %0 Aq1,py i IDP. Further, if
Aqpy and A q) are reflexive, IDP, and h*-unimodal (defined in Subsection 2.3),
then so is A(1,q) *0 A(1,p)-

Thus, there are infinitely many reflexive IDP A(; o)’s that arise as a result of
the affine free sum operation. However, the support vector for A q) *0 A¢1,p) 18
distinct from that of p and q, so this operation does not respect the stratification of
Q given by support vectors. In fact, for many r-vectors, it is impossible to generate
infinitely many reflexive IDP Ay 4)’s supported on r, as the following theorem due
to Braun, Davis, and Solus shows.

Theorem 3 ([5]). Given a support vector r € Z‘él, if there exists some j < d such
that rj { rq, then only finitely many reflexive IDP Ay q)’s are supported on r.

Computational experiments show that IDP reflexive A(; o) satisfying the criteria
in Theorem 3 are uncommon when q is supported on a small partition. Specifically,
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consider all r-vectors that are partitions of M < 75 with distinct entries, such that
there exist some r; such that r; f r4. Table 1 shows that only 509 IDP reflexive
A(1,q) are supported on r-vectors of this type. While IDP reflexive A(; o)’s are
uncommon among this sample, it is important to keep in mind that this represents
a relatively small sample set of simplices. For example,

q = (210,211,211, 211,211, 1055, 1055, . . ., 1055)
41 times

is not among this sample, but it is both IDP and reflexive with 210 t 1055.

# of r-vectors with some r; {4 | # of IDP reflexives supported by these
501350 509

Table 1: Experimental results for r-vectors that are partitions of M < 75.

Fortunately, the following theorem due to Braun, Davis, and Solus provides a
number-theoretic characterization of the IDP property for reflexive A(; ).

Theorem 4 ([5]). The reflexive simplex A q) is IDP if and only if for every
j=1,...,n, forallb=1,...,q; — 1 satisfying

() .

there exists a positive integer ¢ < b satisfying the following equations, where the first
is considered for all 1 <i <n withi # j:

HINEIRC

¢ (1 iz qi) -y qu ~1. (7)

4 Ly

The next corollary of Theorem 4 provides a necessary condition for a reflexive
A(1,q) to be IDP. This condition is an essential tool in our study of IDP reflexive
elements of Q. Note that in this corollary, and throughout the paper, we use the
notation (a¢ mod b) to denote the remainder 0 < r < b obtained when dividing a by

b.
Corollary 1 ([5]). If Aq,q) is reflexive and IDP, then for all j =1,2,...,n,

n

1+ (g mod g;) = g
i=1

or equivalently

1+ sz(n mod r;) =1;.
i=1
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Definition 1. If q satisfies one (hence both) of these equations for all j =1,...,n,
we say q satisfies the necessary condition for IDP.

Note that if q satisfies the necessary condition, then A q) must be reflexive
because the necessary condition implies the divisibility condition in Equation (1).

2.3. Ehrhart Theory and Q

The Ehrhart function of P is the lattice point enumerator i(P;t) := [tPNZ"™|, where
tP := {tp : p € P} denotes the t'" dilate of the polytope P. It is well-known [12]
that i(P;t) is a polynomial in ¢ of degree d = dim(P). The Ehrhart series of P is
the rational function

B+ Bzt o+ et
o ooyt 1 d
Ehrp(z) := gz(P,t)z T (- p)dmPyEr

where the coefficients h{j, hi, ..., h} are all nonnegative integers [19]. The polyno-
mial h*(P;2) = hi + hiz + --- + h%z? is called the (Ehrhart) h*-polynomial of
P.

Remark 2. A result of Stanley [20] states that P is Gorenstein if and only if
h*(P; z) is symmetric with respect to its degree s; i.e., hf = h%_, for all i. Hibi [13]
proved the special case that P is reflexive if and only if h] = h};_, for all . Further,
Bruns and Romer [9] proved that if P is IDP and Gorenstein, then h*(P; z) is the h*-
polynomial of an IDP reflexive polytope. Thus, reflexive polytopes are identifiable
via Ehrhart theory and play a key role in the general study of Gorenstein lattice
polytopes.

Unlike the situation for general lattice polytopes, for A ) there is an explicit
formula for h*(A (1, q); 2) due to Braun, Davis, and Solus.

Theorem 5 ([5]). The h*-polynomial of A q) is

ql +' "+Qn
h*(A(l,q);Z) = Z Z“’(va)
b=0
where .
o qib
wmwy—b—22{1+m+“.+%J- ()

i=1

b b
Example 1. Let q = (2,2,3). Then w(q,b) :==b— 2 hJ — R‘SJ, and thus

R (Aq,q);2) =142z +42° + 2°.
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For the case where A(j q) is IDP reflexive, we will need to know that the h*-
polynomial of A(; q) often admits a geometric sum as a factor, as the following
definition and theorem due to Braun and Liu demonstrate.

Definition 2. Suppose r,x, ¢ and s are as given in Setup 1. We define

HOE DD

0<a<lem(ri,...,rq)

where

w(@) = u¥(a) == al — ix V‘J .

Si
Theorem 6 ([7]). Using the notation in Setup 1, we have that
-1
R (An,q);2) = (Z zt) g (2).
t=0
Example 2. For q = (17,3%,5%), we have
(22 + 24+ D) (a™ + 2 + 221 + 228 + 327 4225 + 220 + 23+ 1)

Note that in this case, £ = 3 and a factor of 22+ z+ 1 appears in the h*-polynomial.

3. Classifying IDP Reflexive A q)

Our goal in this section is to classify all reflexive IDP elements of Q that are
supported on up to three distinct entries. We begin by observing that the necessary
condition for IDP allows us to deduce the following refinement of Theorem 3.

Theorem 7. Let (r,x) = q € Z%,, where q has at least two distinct entries and
ry<rg <---<rg; henced > 2. If A(lyq) 1s reflexive and IDP, then

rp < i1 /T
for all i < d —1. Further, if there exists some j < d such that r; { rq, then
g <rj/(rqmodr;).

Thus, if there exists some j < d such that rj t rq, then there are at most finitely
many IDP reflexives supported on r.

Proof. Let j < d, and assume that A q) is reflexive and IDP. Then by Corollary 1,

we have
d

xzjr; <14 le(n mod 7j11) = Tj41,
i=1
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from which the first inequality follows. Similarly, if r; { rq, then

d
za(rg mod rj) <1+ Zl‘i(ﬁ' mod rj) =15,
=1

from which the second inequality follows. O

Theorem 7 indicates that there are important relationships between the multi-
plicity vector x of q and the support vector r. By shifting our primary focus to
the multiplicity vector, we are able to give a complete classification of all reflexive
IDP A(y,q)’s that are supported on up to 3 distinct entries. If x has one entry, it is
straightforward to prove the following using Equation (1) and Corollary 1.

Proposition 1. For q = (r1"), if Aq,q) is IDP reflexive, then rq = 1.

If x has two entries, meaning that r has two distinct entries, the following theorem
due to Braun, Davis, and Solus applies.

Theorem 8 ([5]). For the vector q = (r{*,75°), Aq1,q) i IDP reflexive if and only
if it satisfies the necessary condition. The following is a classification of all such
vectors, for xy,xo > 1:

1. g= (1", (1 + x1)%2)
2. ¢g=((T+z2)",(1+ (1 + x2)x1)™).

Note that in the first case r; | o while in the second case r1 t 7. We can extend
these results as follows to the 3-supported case using Theorem 7 and Corollary 1.
The proof of Theorem 9 is long and technical, so we include it separately in Section 5.

Theorem 9. Consider a 3-supported vector q = (r,X) such that A q) satisfies
the necessary condition given in Corollary 1. If x = (x1,x2,x3) is the multiplicity
vector, then r is of one of the following forms:

(i) r= (1,142, (1 +z1)(1 4+ x2));
(i) r=1+z2,14+x1(1+22), T +21(1 +22))(1 + 22));
(i) r=(1+z2)I+a3), 1 +z1(1+z2)(1+23), L +21(1+22)(1 +23)) (1 + 22));
(iv) r=(1,14+z1)(1+z3), 1 +21)(1 + 22(1 + x3)));
(v) I+ A +azz)z, (I4+a3)(1+2(14+(14+23)22)), 14+ 1+ (14+23)22)21)(1+

(1 + 2)22);

(vi) r = (14 23) 1+ (1 4+ 2z3)z2), 1+ 23)(1 + 21 (1 + 23)(1 + (1 + z3)z2)), (1 +
(1 +23)(1+ (1 +a3)z2)21) (1 + (1 + 23)22));
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(vil) r=(1+ a3, 1+ 2z3) 1+ 211+ 23)), (1 4+ (1 4+ 23)21) (1 + (1 + 23)22));
(viii) There exists some k,s > 1, where
r = (14+kxo, (skxots+k)(1+x1 (14+kze)), (1421 (1+kxo)) 14z (skra+s+k)))

and
x = (21,29, 8kxa +s—k+1).

Further, the first seven r-vectors produce IDP Ay q)’s, while (viii) does not.

Note that the first seven r-vectors in Theorem 9 each correspond to a unique
divisibility criteria for r = (r1,72,73), as follows:

(i 7“1|7“277“1\7“3,7“2|7“3
(11 T1J[T27T‘1 "I"g,’l’g | T3
(iil) rytro,r1frs,ra |73

(v

(vi) ri{ra,mitrs,rafrs

81 J(7"277"1 \ 3,72 Jf7’3

(vii) 71 | re,r1 73,2t 3

)
)
)
(iv) 71| ra,r1 | 73,m2frs
)
)
)
)

(viii) r1tre,r | T3, 72113

We see that (v) and (viii) share the same divisibility pattern, yet of these two
families only (v) contains IDP simplices. Note that for each positive integer vector
x of length three, and for each divisibility condition on the support vector r, there
is at most one support vector r such that q = (r,x) is reflexive IDP. We extend
these observations to a general conjecture in the following manner.

Given a support vector r = (r1,...,74) and a naturally labeled poset Q on
{1,2,...,d}, we say that r is division compatible with Q if we have i <q j if and
only if r;|r;. For example, an r-vector of the form (ii) above is division compatible
with the poset Q on {1, 2,3} having relations 1 <q 3 and 2 <q 3. Posets that arise
from a set of integers in this way are called divisibility posets [10, 15].

Conjecture 1. Given x = (21,%2,...,24) € Z%l and a divisibility poset € that is
not an antichain, there is a unique IDP reflexive A(; ) with multiplicity vector x
and support vector that is division compatible with €.
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4. Reflexive Stabilizations

It is unlikely that a random integer partition q is reflexive. Further, Theorem 7 tells
us that for many support vectors r, r supports infinitely many reflexives but finitely
many IDP reflexives. Thus, it is interesting to consider both how to assign reflexive
elements of Q to an arbitrary integer partition and the behavior of h*-vectors for
reflexive elements of Q where at least one entry has a large multiplicity. We can
begin investigating both of these through a process we call reflezive stabilization,
which allows us to assign to each integer partition q a sequence of reflexive simplices
in Q.

Definition 3. Let q € ZZ2,. The first reflezive stabilization of q, denoted rs(q),
is the vector (1,1,...,1, qj such that A s
prepended to q is the minimum necessary for this condition to hold; if q is reflexive,
then no 1’s are prepended. Note that rs(q) exists due to Theorem 1. We say the
number of 1’s prepended to q in rs(q) is the reflexive stabilization number of q,
denoted rsn(q). Thus, we can write

rs(q) := (19, q).
More generally, the m-th reflexive stabilization of q, denoted rs(q, m), is defined as

rs(q7 m) — (1rsn(q)+(m—1).lcm(q)’ q) )

) is reflexive and the number of 1’s

Note that by Theorem 1, when prepending lem (q) copies of 1 as many times as
desired, the resulting simplex is reflexive.

Example 3. Let q = (2,2,3). Then 1 + 2 + 2+ 3 = 8, and thus rs(q) =
(1,1,1,1,2,2,3) is reflexive with rsn(q) = 4. Further,
rs(q,3) = (r,x) = ((1,2,3),(16,2,1)).

We can restrict ourselves to only q € Z%,, since if 1 is an entry of q, then rs(q)
is rs(q’, m) for some m with q’ given by the entries of q that are not equal to 1.
We begin by observing that for m > 2, reflexive stabilizations are not IDP.

Theorem 10. Assume that q € Z%,. For m > 2, Aq rs(q,m)) 8 not IDP.
Proof. For q = (r,x), we again set rs(q,m) = (r(m),x(m)). Assume that r is

indexed from 1 to d and that r(m) is indexed from 0 to d, i.e., that r(m)g = 1. We
use Corollary 1 in the case where j = 1. Observe that for all m > 2, we have

d d

1+ Z x;(r(m); mod r(m),) =1+ x(m)o + Z x;(r; mod rq)
i=0 i=1
d

>1+lem(r) + chl(rZ mod r1) > 71,
i=1
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where the left-most inequality follows from, by definition, xz(m)q = rsn(q) + (m —
D)lem (r). Thus, A rs(q,m)) is not IDP. O

We next show that for large m, the h*-polynomial for reflexive stabilizations has
coefficients from {1,2}. This is the motivation for the term reflexive stabilization;
as m goes to infinity, the h*-polynomial coeflicient values stabilize to a fixed set.

Theorem 11. Assume that q € Z%, and lem (@) > 3. For m sufficiently large,
A1 rs(q,m)) 8 not h*-unimodal. Further, h* (A vs(q,m))) contains only 1’s and 2’s.

Proof. For q = (r,x), set rs(q,m) = (r(m),x(m)). Assume that r is indexed from
1 to d and that r(m) is indexed from 0 to d, i.e., that r(m)y = 1. Define ¢(m) by

d

14 r(m)iz(m); = 1+ z(m 0+Z%—f )em (q) = £(m)lem () .

=0

Using the fact that r(m)o = 1 implies s(m)o = lem (r), Definition 2 gives

X(m al(m)— d Ti|la/s;
gr((m))(z) — Z Lob(m) =370 wila/si]
0<a<lem(r)
d
Note that in the exponent af(m) — Z x;|a/s;], the only term that varies with m
i=1

d

d
is £(m). Note also that for all &« we have (Z xz> lem (r) > Z xila/si].
i=1

Assume that m is large enough so that

d

d
m)—1> (sz> lem (r Z lae/s;| for all «.
i=1

By Theorem 6, we have that

£(m)—1
BBz = | 2 2 | a0
t=0
£(m)—1
- 5 (5 et
0<a<lem(r)

Our strategy is to show that for each value of ¢, the polynomial

£(m)—1

d i |/ S;
pa(z) = Z zt+a£(m)* i1 Tila/s:]
t=0
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has common terms with only p,—1(2) and p,41(z). Thus, the coefficients are either
1 or 2 for h*(A(l,rs(q,m)); Z)
Observe that the largest term in p,_1(z) has degree

sz /SZJ_ )

while the smallest term in p,41(2z) has degree

d
(a+ 1)f(m) — inL(a +1)/s:] -

Because of our assumption regarding m, we have that

d
(@ +1)(m) =Y zil(a+1)/si] = (a+ 1)e(m) - (¢(m) - 1)
i=1

=al(m)+1> al(m)
d
> al(m) — Zxﬂ(a —1)/si] —1.
i=1
Thus, the lowest degree term in p,1(z) is strictly greater than the highest degree
term in po_1(2). Further, the coefficient of z*/(™) in h* (A rs(q,m)); 2) 1s equal
to 1, which is contributed by p,(z). Thus, all coefficients in A* (A1 15(q,m)); 2) are
equal to either 1 or 2. If lem (r) > 3, then there are at least two 2’s arising from
po(z) + p1(2) and p1(2) + p2(z) with a 1 in between them contributed by p;(z).
Thus, h* (A1 rs(q,m)); 2) is not unimodal. O

Theorems 10 and 11 imply that if reflexive stabilizations will result in simplices
that are IDP and/or h*-unimodal, we need to focus on the case m = 1. Further, it
makes sense to begin by considering the case where both rsn(q) and ¢(q) are small.
For example, when rsn(q) = 1 and ¢(rs(q)) = 1, we have the following curious
result.

Theorem 12. Suppose that rsn(q) = 1 and that £(rs(q)) = 1, i.e., that 1 +
Yo g =lem(q) — 1. Then for all 0 < b < Y. q;, we have w(q,b) = w(rs(q),b)
and hence

h*(A(l,rs(q)); z) = h*(A(Lq); z) + P

Proof. Let q be reflexive and supported by the vector r = (rq,...,74) € 2%1 with
multiplicity x = (21,...,24) € Z%l. Using Setup 1, we have that r; = lem (q) /s;.
By Theorem 5, it follows that

ixl Lcm J - ixl {llccr][rln))bl)J

i=1 =1
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with 0 < b <lem(q) — 2. Rewriting lem (q) b as (Iem (q) — 1)b + b implies that

w(q,b) :=b—gxi {:H(lcm?q)—l)J '

Additionally, it follows from Theorem 5 that

w(rs(q), b) ;:b_zd:xi L rib J _ b_Za:i KJ

em (q) -

with 0 < b <lem(q) — 1. For all 0 <b <lem(q) — 2, we have

0<lL<l implies £<£+ b <b+1
~ s lem(q)—1 " s P si ~ s; si(lem(q) —1) si
If we let b = ks; + a with some integer k and 0 < a < s;, then L—l’l = k. Since
s O ) O S
silem(q) —1) = s’ si| s si(lem (q) —1) ]

This implies that w(q, b) = w(rs(q),b) for all 0 < b < lem (q) —2. When considering
rs(q), for b = lem (q) — 1 we have w(rs(q), b) = n+1, and our proof is complete. [

It would be interesting to determine whether or not there are similar additive
structures for the A*-polynomial in other cases where rsn(q) and £(rs(q)) are small.
Note that while h*-unimodality is typically broken in reflexive stabilizations for
m > 1 by Theorem 12, it can be preserved for reflexive stabilizations with m = 1
as the following example illustrates.

Example 4. For q = (4,4,5,5), we have that 1+ >""" ;| ¢; = lem(q) — 1, and
h* (A(l,rs(q)); z)=1+4+2z+ 7224728 422 4 20

with
(A gy 2) = 1422+ 72% + 72% + 22

It is interesting that among the A(; 4y simplices, we can find examples that are
“near the boundary” of both h*-unimodality and IDP using reflexive stabilizations.
One sequence of examples is the following. Recall that for a lattice polytope P, the
Hilbert basis of cone (P) is the minimal generating set of the monoid cone (P)NZ"*1.
Thus, P is IDP if and only if the Hilbert basis of cone (P) consists of the elements
at height 1 in cone (P), i.e., (1, P) N Z"+1.

Theorem 13. Forn > 1, definer(n) = (1,3n,10n,15n) andx(n) = (2n—1,1,1,1).
Thus, q(n) := (r(n),x(n)) = rs((3n,10n,15n)). For q = (r(n),x(n)), let V(n) =
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{(1,v) : v a vertez of A1,q)}. The Hilbert basis for cone (A(1.q)) consists of V(n)
and the columns of the following matriz (where the height coordinate is the first
entry):

11+ 1 1 1 1 1 2 2
o o o0 o0 o o0 o o0 o

o 0 0 0 0 0 0 0
o 0 0 0 -1 -2 -3
0 -1 -1 -2 -3 —4 -7 —10
-1 -1 -2 -3 -5 —6 —10 —15

o

Thus, there are exactly two elements in the Hilbert basis of height greater than 1,
both of which are at height 2. For n > 2 with q = (r(n),x(n)), we have

W (Aqgiz) =14+22+2"+20+ 422772 (14 72+ 1422 + 7% + 24,
which has coefficient vector
(1,7,15,14,16,14,16, 14, ...,16,14,16,14,15,7,1)..

Proof. We first prove that the h*-polynomial is correct. Fix n > 2 and set q =
(r(n),x(n)). Since lem (q) = 30n, it follows from Theorem 5 that, for 0 < b < 30n,

w(rs(q),b) :=b— (2n — 1) {S(I))nJ _ fggan B {1(?))8an B {1?8an

P R R A
10 3 2
Let b =30a+ 3, with 0 < o <n and 0 < 8 < 30. Then

w(rs(q), b) :=30a + § — {3001(?% ~ {3004; ﬁJ - {3004; BJ

s (a8
This implies that

S oo [ 5 ] [ 3 L8182

0<b<30n 0<a<n 0<B<30

which evaluates to
(I+22 424+ 28+ 42272 (L T2+ 1422 + 723 + 2.

We next prove our claim regarding the Hilbert basis for A(; q). For each 0 <
b < 30n, there exist unique values 0 < «, 8,7 < 30n such that the following linear
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combination of ray generators for A(; ) produces an element in the fundamental
parallelepiped for the cone over A q):

1 0 0 .- 00 -1 B b/30n T
0 1 0 00 -1 b/30n
— . 2(n+1
PO=10 0 0o . 00 -3n a/3on | €2V
0 0 0 1 0 —10n B/30n
0 0 0 0 1 —15n 7/30n
11 1 11 1 | Lb/30n ]

From the final four entries of the resulting vector, we observe that each of the
following values must be an integer:

a—3m B —10n ~—15bn 2nb+a+ S+~
30n ' 30n  30n 30n '

To determine «, we write b = 10p1g + 719 where 0 < 719 < 10 and evaluate in the

first expression, yielding
a — 30pion — 3rign

30n
from which it follows that o = 3nrip = 3n(b mod 10) and

e

o — 30]710?1 — 37"107L
30n

= p1o = [b/10] .

Similarly, it can be shown (by expressing b = 3ps + r3) that 8 = 10n(b mod 3) with

B — 10bn
EET ps = [b/3].
Similarly, v = 15n(b mod 2) and
v — 15bn
Taon 2
Thus, we have that
_ 0 -
0
p(b) = —|b/10]
—[b/3]
—[b/2]
| (204 3(b mod 10) 4 10(b mod 3) 4+ 15(b mod 2))/30n |
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We now show that we can reduce p(b) for 30 < b < 30n to a case where 0 < b < 30.
If 30 < b, then

0
0
p(b) — p(30) = —16/10] +3
—1b/3] +10
~[b/2] +15
| (26 + 3(b mod 10) + 10(b mod 3) + 15(b mod 2))/30n — 2 |
0
0
—L(b—30)/10]
- (b 30)/3]
~ (b 30)/2]
2b + 3((b — 30) mod 10)+
(1/30n) 10((b — 30) mod 3)+
15((b — 30)b mod 2) ]

— p(b—30).

Thus, every lattice point in A(; q) is a sum of elements from {p(b) : 0 < b < 30}.
It is straightforward but tedious to check (either by hand or via computer algebra
system) that the minimal additive generators of this set are precisely the columns
of the matrix in the theorem statement. Thus, our proof is complete. O

While reflexive stabilizations are one way to obtain elements of Q that exhibit
extremal behavior for heights of Hilbert basis elements and A*-unimodality, the
following example demonstrates that this phenomenon occurs outside of reflexive
stabilizations as well.

Example 5. For n > 2, let
a=(n,2n-1)(n+1),2n(n+1)),(1,1,2(n — 1))).
For n < 20, it has been verified that
R (Aqqiz) = (1, (n+1)% 2n+1)(n+1)+1,2n+1)(n+1),
Cn+1)(n+1)+1,...,2n+1)(n+1)+1,2n+1)(n+ 1),
@n+1)(n+1)+1,(n+1)%1)

and that the Hilbert basis of cone (A(l,q)) consists of the points (1, A(1,q)) N Z72nt+1
together with the following lattice point at height two (as given by the first coordi-
nate):

(2,-1,-2n—1,-2(n—1),-2(n —1),-2(n —1),...,—2(n — 1)T.
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Thus, this family of simplices is another example of polytopes on the boundary of
both IDP and A*-unimodality. These simplices are more arithmetically complicated
than those given in Theorem 13.

5. Proof of Theorem 9

We now give a proof of Theorem 9.

Proof. We begin with the derivation that, under the assumption that (r,x) satisfies
the necessity condition, any resulting r-vectors must be of one of the eight types
listed in the statement of Theorem 9 as types (i)-(viii). Since 11 < rg < r3, reducing
modulo 73 gives r3 = 1 4+ 7121 + roxo . If we next consider the modulo 7o necessary
condition, then substituting the above for r3 and simplifying gives

ro =1+ 217 + 23((1 + r21) mod rs) .

The challenge here is that we would like to specify ro using this formula, but it
involves a remainder which could fluctuate. The key observation is to recall that if
the necessary condition for IDP holds, then Theorem 7 implies x; < r9/r;. Thus,
we have

1+axrm <14 (ro/ri)ri=14rs. (9)

There are now three cases to consider.

Derivation Case 1: Consider 1+ z17; = 1+ ro in Equation (9). It is immediate
that in this case

(I+7rx)modry = (1+7re) modre =1,

and thus ro =14+ 2171 + 23 =719+ 1 4+ x3. As x3 > 1, this yields a contradiction,
and thus this case does not occur.

Derivation Case 2: Consider 1+ x1r; = 79 in Equation (9). In this case,
(14 7121) mod ro =rg mod ro =0.
Thus, we have (r,x) = ((r1,1 + x17r1,73), (z1, 22, 23)) . However, we know that
rg =14+ ra +rowe = (1 4+ 21r1)(1 + 22),

and thus (r,x) = ((r1, 1 +x1r1, (1 +2171) (1 +22)), (21,22, 23)) . If 1 = 1, then the
result is (r,x) = ((1,1 4+ z1, (1 + z1)(1 + z2)), (z1, 2, x3)) , which satisfies type (i)
in Theorem 9. If r; > 2, we consider our necessary condition modulo r; and obtain
r1 =14 29+ 23((1 + 22) mod r1) . Since (by this equality) we have 1+ zo < rq, it
follows that there are two subcases.
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Derivation Subcase 2.1: Supposing 1 + x5 = r1, then our vector is

(I'7X) = ((1 + 29,1+ a:l(l + 372), (1 + .1'1(1 + .1'2))(1 + 56‘2)), (£L‘1, 1‘2,1’3)) s
which satisfies type (ii) in Theorem 9.
Derivation Subcase 2.2: Supposing 1+ x5 < r1, then

ri1 =14z +a3((l+x2) modry) =14z +23(1+2x2) = (14 22)(1 + x3).

Then our vector is

(r,%) =(((1 + 22)(1 + z3),
1 —+ 171(1 —+ 172)(1 —+ 1‘3),
(L a1 (14 22)(1+ 23)) (1 + 22)), (21, 22, 73)) ,

which satisfies type (iii) in Theorem 9.

Derivation Case 3: Consider 1417 < 79 in Equation (9). It is immediate that
(I+7x1) modro =14z,

and thus
ro =1+x171 + (1 + 7“1.231)])3 = (1 + l‘3)(1 + 3317“1) .

Combining this with

r3 =1+4+riz + roxo
=14+nriz + (1 +z3)(1 4+ z17m1) 22
= (1 + 7’11‘1)(1 + (1 + I3)£C2) y

we obtain that
(r,x) = ((r1, 1+ 23)(1 + 217r1), (1 + r21) (1 + (1 + 23)22)), (21, 22, 23)) ,
which is a function of the multiplicities and the value r{. If r{ = 1, then we obtain
(L (A +21)(A + 33), (L + 21) (1 + 22(1 + 23))),

which satisfies type (iv) in Theorem 9. If r; > 2, we again consider the necessary
condition modulo rq, for which we obtain

r1 =14+ 2z2((1 +23)(1 + z1r1) mod r1) + x3((1 + m21)(1 + (1 + 23)z2) mod r1)
=14 22((1 + 23) mod r1) + 23((1 4+ (1 4+ 23)22) mod rq).

We now have three subcases to consider.
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Derivation Subcase 3.1: If 1 + x3 < rq, then
r1 =14 x2(1 4+ 23) + 23((1 + (1 + 23)z2) mod 1) .

This requires two subsubcases.

Derivation Subsubcase 3.1.1: Supposing (1 + (1 + x3)x2) = 71, then z3 is
arbitrary, and we have

(r,x) =((1+ (1 4+ z3)z2, (1 + 23)(L + z1(1 + (1 + x3)22)),
(1 —+ (]. -+ (1 + l’g)xg)xl)(l + (]. + 1’3)%2)), (xl,xg,xg)) s

which satisfies type (v) in Theorem 9.

Derivation Subsubcase 3.1.2: Supposing (1 + (1 + x3)x2) < rq1, then

r1=14+zo(1+2a3)+axs(l+(1+ wg)mg)
= (1+$3)(1+(1+$3)1‘2)7

and thus it follows that for x = (x1, z2, x3), we have

r=((14+2z3)(1+ (14 z3)x2),
(1 +23)(1+21(1 + 23)(1 + (1 + 23)72)),
1+ (1 +z3)(1+ (1 + z3)z2)21)(1 + (1 + 23)72))

which satisfies type (vi) in Theorem 9.

Derivation Subcase 3.2: Supposing 1 + x5 = 71, then for x = (1,22, 23) we
have

r=(1+x3,(1+z3) 1+ 21 (1+x3)), 1+ 1+ z3)z)(1+ (1 +2x3)22)),

which satisfies type (vii) in Theorem 9.

Derivation Subcase 3.3: Suppose 1+ x3 > r1. If 71 | (1 4+ x3), then we have

r1 =14 22((1 4+ 23) mod 1) + 23((1 + (1 4+ z3)x2) mod rq)
=1 +x3.

This is a contradiction, and thus it follows that r1 { 1 + 3. If 71 | 22, then
r1 =14 x9((1 + 23) mod 1) + 23,

which implies that 71 | (1 4+ z3), again a contradiction. Thus, we must have that
r1 1 22, and because 7 1 (1 + x3) we also know r; > x5 since

r1 =14 29((1 + 23) mod 1) + 23((1 + (1 4+ z3)z2) mod r1) > zo .
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‘We now consider two subsubcases.

Derivation Subsubcase 3.3.1: Supposing r1 | (1 + z2(1 + 23)), then
r1 =14+ 25((1+ 23) mod ry).
Thus, there exists some k > 1 where vy = 1 + a2k, and we are forced to have
r1 =1+ xk
=1+ x2((1 + x3) mod ry),
implying that k = (1 + x3) mod 1 + zok. Thus, for some s > 1 we set
r3=skro+s—k+1,

and we have the case

r =(14 kxo, (2 + skxa + s — k)(1 + 21 (1 + kza)),
(T4 z1 (1 + kxo))(1 + x2(2 + skxy + s — k))),
with
x = (z1, 20, skxe +s—k+1),
which satisfies type (viii) in Theorem 9.

Derivation Subsubcase 3.3.2: Suppose 1 { (1 + z2(1 + x3)), so we have
r1 =14+ 22((1 + z3) mod r1) + 23((1 4+ (1 + z3)z2) mod rq).
We also have that 1 + x3 > r1 > x2. However, r1 { (1 4+ 22(1 + z3)) implies that
r1 =14 22((1 4+ 23) mod 1) + 23((1 + (1 + 23)z2) mod r1) > 1 4 x5,

yielding a contradiction.

This completes our derivation of possible cases based on the necessary condition.
In particular, by Theorem 1, it is straightforward to check that all of the types
listed in Theorem 9 yield reflexive simplices.

We next consider the proofs of the IDP condition (or lack thereof) for each of
types (i)-(viii) from Theorem 9 on a case-by-case basis.

Case: Type (viii). We show that type (viii) r-vectors yield non-IDP simplices,
where we apply Theorem 4 and the notation therein. Let

g =12 = (skxe + s+ k)(1+ 21 (1 + kxo)),

and set b = skxo + s + k which is strictly less than 7o as needed for Theorem 4. It
is tedious but straightforward to reduce the left-hand side of Equation (5) to the
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form 3+ (23 — 1)xa(skxs + s + k). Note that by the assumption of type (viii), we
have
xz3=s+1+k(sxe —1)>2,

and thus
3+ (x5 — Dxa(skrg + s+ k) > 2+ xo(skza +s+ k) > 2,

satisfying Equation (5). Setting g; = r3, we now ask if there is a solution 0 < ¢ < b
satisfying Equation (6) and Equation (7). Using the fact that we must have

0<c<b=skxs+s+k,

we obtain that the left-hand side of 6 is:
{(skzxz + s+ k)1 +z1(1+ kxa))(1 + zo(skzy + s + k;))J
(skxo + s+ k)(1 + z1(1 + ko))
| e + zo(skas + 5+ k))
skxo + s+ k

c
=1 k k) —cxg— | —
+za(skzy + 5+ k) — oz Lka:z +8+kJ

=1+ ao(skza+s+k—c).

On the other hand, using 0 < ¢ < b = skxs + s+ k, we find that the right-hand side
of 6 is:

(skxo + s+ k —c)(1 + zo(skxy + s+ k))
(skxa + s+ k)
c
— 2o (sk _ 1 ¢
xo(skxe + s+ k c)+{ sk:c2+s+kJ
=xy(skxa +s+k—c).

Thus, there is no ¢ value in this range that satisfies Equation (6), and hence we find
that simplices of type (viii) in Theorem 9 are not IDP.

Case: Types (i), (ii), and (iv). That types (i), (ii), and (iv) in Theorem 9
are IDP all follow from affine free sum decompositions as follows. For type (i),
observe that
r = (1) xg (1%2) %q (1%3),
and thus Theorem 2 applies. For type (ii), observe that
r = ((1 + l‘l)zz, (1 + 1‘1(1 + xg))m) *Q (1m3) 5

and thus Theorem 8 and Theorem 2 apply to finish this case. Finally, for type (iv),
observe that
r= (1) %o (1 +22)", (1 + 22(1 + 23))*),
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and thus again Theorem 8 and Theorem 2 apply to finish this case.

Note that types (iii), (v), (vi), and (vii) do not follow from affine free sum de-
compositions, and thus we must use Theorem 4 directly. Throughout the remainder
of this proof, we use the notation

h(b) == b (1 - Z#j qi) -y V’%'J

q; Py q;

to denote the left-hand side of Equation (5).

Case: Type (iii). We next verify IDP for r-vectors of type (iii) using The-
orem 4. We must consider three cases corresponding to three possible values of
4q;-

Case (iii).1: Consider ¢; = (14 x2)(1+ x3). It is straightforward to verify that

h(b) =b— x5 {mb%)J ,

and using this formula one can check that
h(k(1+z3)) =k.

Combining these two observations, it follows that h(b) = 1 only when b = 1 and
b = (1 + z3), thus identifying the b-values we are required to check in (5). To
verify that Equation (6) always has the desired solution, we consider three cases. If
qi = (1 + x9)(1 + x3), the result is trivial. If ¢; = 21(1 4+ z2)(1 + x3) + 1, then we
may select ¢ = 1, from which it follows that both sides of Equation (6) are equal to
z1(b—1). If ¢ = (1 4+ z2)(z1(1 + 22)(1 + x3) + 1), then we set ¢ = (1 + x3), from
which it is straightforward to compute that both sides of Equation (6) are equal to

b(14+zo)xy — 21 (1 +22)(1+23) — 14 [b/(1 +23)] .

This completes our first case.

Case (iii).2: Consider ¢; = x1(14+x2)(14x3)+ 1. It is straightforward to verify
that

h(b):b_m{ b(1+ ) (1 + x3) J

where the values of b range from 1 to z1(1+2z2)(1+x3). To verify that Equation (6)
always has the desired solution, we consider three cases. If ¢; = x1(14+xz2)(14+x3)+1,
the result is trivial. If ¢; = (1 + z2)(1 + x3), then we write b = az; + 8, where
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0<B<x and 0 < a < (14 x2)(1+ z3) for a, B € Z. Consequently, we have

{ b(1+ z2)(1 + x3) J: {(aazl—i—ﬁ)(l—i—xg)(l—}—xg)J

1(1+x2)(1+23) + 1 x1(1+x2)(1+23) + 1
W B(l+z2)(1+23) —
- *{x1(1+x2>(1+x3>+1J

=a+ { 0, 8> 0} )
-1, =0
In the case that 8 > 0, we have that h(b) = b — z7a = 5. Hence, the viable
candidates for c-values from 1 to x1 (14x2)(14x3) that satisfy equation Equation (7)
are precisely those ¢ such that ¢ = 1 mod x;. Therefore, the b-values we are required
to check in Equation (5) are all b = axy + 8, where 2 < 8 < x; — 1. In this case,
we may choose ¢ = axy + 1, from which it follows that both sides of Equation (6)

are equal to 0, giving the desired result. On the other hand, if 5 = 0, then we have
that

h(b) = h(axy) = ary —x1(a—1) =z .
If 1 = 1, then h(b) = 1. Thus, we need only consider when z; > 1. In order to
satisfy Equation (5), it must be that & > 0. Given that z; > 1 and « > 0, it is
straightforward to verify that both sides of Equation (6) when ¢ = 1 are equal to
a— 1. Finally, if ¢; = (1 4+ z2)(z1(1 + 22)(1 + 23) + 1), then we can set ¢ = 1 and
the result is immediate. This completes our second case.

Case (iii).3: Consider ¢; = (14 z2)(x1(1 + x2)(1 + x3) + 1). We first identify
those values of b that satisfy Equation (5) and Equation (7). It is straightforward
to verify that

B b(1+1'3) b
M) =b-m h1<1+x2><1+x3)+1J ~ (4 m) = 1) hlm)J |

Writing b = m(1 + 23) + ¢ where 0 < m < z1(1+ x2)(1 + 23) and 0 < ¢t < (1 + x2),
it follows that

h(b) = h(m(1 + x2) +t) =m +t — x; {m(l +x2)(1 +x3) +t(1 + xS)J .

z1(1+22)(1 +23) + 1

We can now further divide into cases: either we have m = x1(1 + x2)(1 + z3) or we
have m = kxq + w where 0 < k < (1 + x2)(1 + x3) and 0 < w < x1, which yields

h(b) = h((kzy +w)(1+22) +1) =w+t -1 {w(l - 22)(L+25) + (1 +a3) kJ .

r1(1+ ) (1 +23) +1

For m # x1(1 + z2)(1 4 x3), observe that since

O0<w(l4+mz)(l4azs)<z—1
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and
0 S t(l +ZE3) < (1 +IZ’2)(1 +IL‘3),

with 0 < k < (1 4+ x2)(1 4 z3), we have that
0<wl+z2)(1+z3) +t(1+23) <ar1(l4+22)(1 4 23).

Thus

)

{w(l +2)(1 + x3) + (1 + z3) — k‘J

is equal to either 0 or —1.
Subcase (iii).3.1: Suppose m = z1(1 + x2)(1 + x3). Since
0< t(]. +$3) < (1 +£L’2)(1 +£E3),

we have

t(l + CE3) — (1 + 1'2)(1 + $3)
$1(1 + $2)(1 + I3) +1

(14 z2)(1+a3)r1(1+x2) +t) =t — 21 { J =t+ ;.

If this is equal to 1, then it must be that ¢ = 0 and x; = 1. Thus, if ;1 = 1, we
have that A((1 4+ z2)(1 4+ 23)(1 + 22)) = 1.
Subcase (iii).3.2: Suppose now that m # x1(1 4+ 22)(1 4+ x3) and that

{w(l +22)(1+ 23) + (1 + 23) — kJ -1
z1(1+z2)(1+23) +1 a .

Since w,t > 0 and z7 > 1, we have h(b) = w+ ¢ + 21 = 1 which forces w =t =0
and zq = 1. In this case, h(k(1+ x2)) = 1 any time that & > 0. Thus, if z; = 1, we
have that hA(k(1+2z2)) =1 when 0 < k < (1 4+ 22)(1 + x3).

Subcase (iii).3.3: Suppose again that m # z1(1 + 22)(1 + x3) and that

{w(l +x2)(1 + 23) + t(1 + x3) — kJ —0
211+ @) (1 + 23) + 1 o

In this case,
0<k<w(l+zo)(1l+z3)+t(1l+x3),

which implies that either (A) 0 < w < 27 with 0 <t < (1 4+ 23) or (B) w = 0 with
k <t(14xz3). If (A) holds, then h(b) = w+t = 1 forces w = 1 and ¢ = 0 since w > 0,
which means that h(b) =1 when b = (kx1 +1)(1+x2) for 0 < k < (14 z2)(1+z3).
If (B) holds, then our same equation forces w = 0 and ¢t = 1 when k < (1 + z3),
which means that h(b) =1 when b = kx1(1 + x2) + 1 for 0 < k < (1 + z2)(1 + z3)
and k < (14 x3).

We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (iii).3.1-(iii).3.3:
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e Ifzy =1and 0 <k < (1+x2)(1+ x3) we have b = k(1 + x2);
o Ifzy >1and 0 <k < (1+x2)(1+ a3), we have b = (kzq1 + 1)(1 + z2);

eIfzxy >1and 0 < k < (14 22)(1 +23) and k < (1 + x3), we have b =
kx1(1+x2)+1.

Our next goal is to establish that Equation (6) is always satisfied; recall that we
are in the case where ¢; = (1 4+ x2)(x1(1 4+ x2)(1 + x3) + 1). If

¢ =1+z)(x1(14+a2)(1+23)+1),

then Equation (6) is trivially satisfied. If ¢; = x1(1 + 22)(1 + z3) + 1, we write
b=m(l+x2)+twhere 0 <m < z1(1+z2)(1+23)+1and 0 <t < (1+x2).
Substituting this form of b into Equation (6) yields the equation

c _ t—c
- {(1 +1’2)J B {(1+1’2)J '
If b > (14 x2), we set ¢ = (1 +x2) and the equation is satisfied. If 2 < b < (1 +x2),
then we set ¢ = 1 and the equation is satisfied.

If ¢ = (14 z2)(1 4 x3), the analysis becomes more complicated. We write
b=m(l+x3)+twhere 0 <m < dand 0 <t < (1+a22). Our argument will
proceed by considering x1 = 1 and z; > 1 separately.

If 1 = 1, then the left-hand-side of Equation (6) is reduced to

(e eznr Rl e e=Eai

and the right-hand-side to

V(l +x3) —m—c(l+ xg)J
(I4+ao)(14+z3)+1

Since m < (1 + x3), if (1 + 23) —m < 0 this forces t = 0 and 0 < m, thus b is a
multiple of (1 + z3), and we found earlier that h(m(1 + z2)) = 1. Thus, we need
proceed no further. If ¢(1 4+ z3) — m > 0, then since m < (1 + z3) we must have
t > 1, and we also have ¢(1 + z3) —m < (1 + x2)(1 + x3). Thus,

t(1+$3)7m N
{(1+x2>(1+x3>+1J =0

from which it follows that Equation (6) reduces to

_{ c(1+ x3) J _ V(l—l—xg)—m—c(l—i—xg)J
(1+x9)(1+x3) +1 (1+x2)(1+23) +1 ’
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If m = 0, set ¢ = 1 and this equation is solved. If m > 1, set ¢ = m(1 + 22) + 1
which is less than b in this case, and this equation is again satisfied. This completes
our proof for 1 = 1.

We next consider when x; > 2, maintaining our previous notation of b = m(1 +
x9) +t. Write m = fa; + g where 0 < f < [(1 4+ 23)/21] and 0 < g < 2
except in the case where f = (1 + x3)/x1] in which case g is bounded above by
(I+a3) — (1 +a3)[(1 + x3)/x1]. This leads to the left-hand-side of Equation (6)
having the form

9(1+$2)(1+$3)+t(1+$3)—fJ B { c(1+ x3) J
1‘1(1+1‘2)(1+5€3)+1 131(1—|—172)(1—|—Q?3)—|—1 ’

fﬂ

while the right-hand-side has the form

g(1+x2)(1+l‘3)+t(1+$3)—f—C(1+.’L‘3)
U { (14 z2)(1 4+ 23) +1 J '

We thus need to solve the equation

{g(l +ao)(1 +23) +t(1 +23) — fJ 3 { c(l +x3) J
x1(l+x2)(1+23) + 1 x1(l+x2)(14+23) + 1
_ {9(1 o)1 tas) +t(l+as)—f—c(l+ $3)J
(1 +a2)(1+x3)+1 ’

subject to the constraints 0 < g < x7 (with the exception mentioned above), 0 <
t<(1+z),and 0 < f < |(14x3)/x1]. Note that the first two inequalities imply
that

0<g(l4+z)(1+z3)+t(l+2x3) <z1(1+22)(1+23),

and also
[ (M4 zs)/a] < (1 +22)(1+23),
hence
{9(1 + 22) (1 + 23) + (1 +23) — fJ
21(1+22)(1 +23) + 1
is equal to
-1 ifg(l+a)(l+as)+t(l+as)<f °

Subcase (iii).3.a: If g(1+ x2)(1 + x3) +¢(1 +z3) — f > 0, then Equation (6)
reduces to

3 L c(1+x3) J _ {g(1+x2)(1+m3)+t(1+x3) fc(lJr:zzg)J
r1(14z2)(1+a3) + 1 (14 22)(1 +23) + 1 '
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Note that f < |(1 4+ x3)/z1] < (1 + x3), and thus we can set ¢ = fx1(1 + x2) + 1
which is less than b. The left-hand-side of our above equation is given by

B {(fm(l—l—xz)—kl)(l-i—xg)J _ Vxl(1+x2)(1+x3)+(1+x3)J
(14 22)(14+23)+1 (14 22)(14+23)+1
_ {fx1(1+x2)(1+x3)+f+(1+x3) fJ
x1(14+29)(14+23)+1

=—f.

Similarly, the right-hand-side of our equation is given by

f= (U +x3) + g(1+x2)(1 + 23) +t(1 + 23) — fJ
(1+23) +g(1 +x2)(1 +23) + (1 + xs)J
$1(1+$2)(1+.’E3)—|—1 '

-1+

—-r+|

Since h(b) is assumed to be at least 2, we have that one or both of g and t are
non-zero. Combining this observation with

g(l+a)(I+as)+t(l+x3)—f>0
it follows that
g(1 + z2)(1 4+ z3) + (1 + z3) > 0.

Note that
(L+a3) [ (91 +22)(1 +23) + (1 + 23)),

and thus
(1 +22)(1+33) + 1> g(1+ 22)(1 4+ @3) + (1 +a3) — (1 +23) >0,

which forces the right-hand-side of our equation to equal —f, satisfying Equa-
tion (6).

Subcase (iii).3.b: Consider the case when g(1+xz2)(1+z3)+t(1+z3)— f < 0.
Since g, (1 + 22)(1 4+ x3),t, (1 + x3) > 0, it follows that f > 1 and thus
b=(fr1+9) (1 +xz2)+t>(1+x2).

Set ¢ = (1 + x3), which is less than b. With these conditions, the left-hand-side
of Equation (6) is easily seen to equal —1. The right-hand-side of Equation (6) is
given by

{g(l tag)(+as) +t(l+as) = f— (L+a2)(1+ m)J
Since
gl +a)(l+as)+t(l+x3)— f <0
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and —(1 4+ z2)(1 + z3) < 0, the numerator above is strictly negative. Also, since
g, (1 + z2)(1 + x3),t, (1 + x3) > 0, the numerator is minimized by

= +z)(1+a3)>—(1+az3) — (1 +x2)(1 +23) > —2(1 + 22)(1 + 3) .
But, since we assumed that x; > 2, it follows that

and thus the floor function above is equal to —1, satisfying equality for Equation (6).
This completes the proof establishing IDP for r-vectors of type (iii).

Case: Type (v). We next verify IDP for r-vectors of type (v) using Theorem 4.
Again, we must consider three cases corresponding to three possible values of g;.

Case (v).1: Consider ¢; =1+ (1 + z3)xs. It is straightforward to verify that

b(1 + 23) J

h(b) =b -z L+ (14 z3)as

where 1 < b < (1 4 x3)xy. To verify that Equation (6) always has the desired
solution, we consider three cases. If ¢; = 1 4 (1 + x3)x2, the result is trivial. If
gi =1 +23)(1+21(1+ (14 z3)xe)), then we write b = axg + 8, where 0 < 8 < x5
and 0 < a <1+ x3 for a, 8 € Z. Consequently, observe that

{ b(1+ x3) J _ {(amz-Fﬁ)(l%-ng
1+ (1 + x3)zs L+ (14 x3)zo

=a+ { 0, 6> 0} )
-1, =0
In the case that 8 > 0, this formula implies that h(b) = b — zoa = 8. Hence, the
viable candidates for c-values that satisfy Equation (7) are precisely those ¢ such
that ¢ = 1 mod x5. Therefore, the b-values we are required to check in Equation (5)
are all b = axs + 8, where 2 < 3 < x5 — 1. In this case, we may choose ¢ = axs +1,

from which it follows that both sides of Equation (6) are equal to (8 —1)(1+z3)x;.
On the other hand, if 8 = 0, then we have that

h(b) = h(axs) = axg — xa(a— 1) = x4

If x5 = 1, then h(b) = 1. Thus, we need only consider when x5 > 1. Given that
o > 1l and 0 < a < 1+ x3, it is straightforward to verify that both sides of
Equation (6) when ¢ = 1 are equal to (axs — 1)(1 + z3)z1 +a— 1. If
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then we may again set ¢ = 1, from which it is straightforward to compute that both
sides of Equation (6) are equal to (b —1)(1 + (1 + (1 + z3)x2)x1). This completes
our first case.

Case (v).2: Consider ¢; = (14 x3)(1 + z1(1 + (1 + 23)x2)). We first identify
those values of b that satisfy Equation (5) and Equation (7). It is straightforward
to verify that

h(b):b_a;{ b(1+ (1 + z3)as) J"f‘{ b J

(1 +z3)(L+ 21 (1 + (1 + 23)72)) 1+x3
Writing b = a(1 4+ z3) + 5, where 0 < f <1423 and 0 < a < z1(1 + (1 + x3)x2),
it follows that

h(b) = h(a(l + z3) + B)

W . a(l+z3)(1+ (1 +2x3)z2) + B(1 + (1 4 z3)22)
=a+h 1{ (14 23)(1+ 21 (1 + (1 + 23)z2)) J

We can now further divide into cases: either we have o = z1(1 + (1 + x3)x2) or we
have a = yz1 + § where 0 < < 1+ (14 x3)a2 and 0 < & < 21, which yields

h(b) = h((yx1 +6)(1 + x3) + B)

_ _ o |00+ zs) (A4 (A +a3)ae) + B(L+ (A +23)x2) —v(1 +a3)
=0Hp { U+ 23)(1+ 21 (1 (15 75)22)) J

For v # 21 (1 + (1 + x3)x2), observe that since
0<6(1+x3)(1+ (1+x3)m2) < (11— 1)(L+23)(1 + (1 + 23)72)

and

with 0 < (14 z3) < (1 +x3)(1 4 (1 + x3)x2), we have that
0<6(1+z3)(1+ (1+z3)a2) + AL+ (1 +a3)x2) <21 (1+23)(1+ (14 23)22) -

Thus,

{6(1 +a3)(1+ (1 +a3)w2) + B+ (1 + z3)z0 — (1 + ws)J

is equal to either 0 or —1.

Subcase (v).2.1: Suppose o = z1(1 + (1 + x3)x2). Since

0< B+ (1 +z3)ze) < (1+23)(1+ (1+z3)22),
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we have

h((1+x3)z1(1+ (1 + 23)22) + B)

—B-u {5(1 + (14 z3)22) — (14 23) (14 (1 + xs)xz)J
! (14 23)(1 + 21 (1 + (1 + 23)22))
= B+£C1

If this is equal to 1, then it must be that 5 = 0 and x; = 1. Thus, if z; = 1, we
have that A((1 + z3)(1 4+ (1 + z3)z2)) = 1.

Subcase (v).2.2: Suppose now that a # x1(1 + (1 + z3)z2) and that
\‘(5(1 + .%'3)(1 + (1 + 1’3):E2) + 6(1 + (1 + 113).%'2 — ’7(1 + {I,‘d)J -1
(1+1‘3)(1+5€1(1+(1+$3)$2)) ’
Writing o = yz1 + 6 where 0 < v < 1+ (1 4+ z3)ze and 0 < § < x1, we have
h(b) = 6 + B+ x1. Since 6,8 > 0 and 7 > 1, for this to equal 1, we must have

0 =0 =0and 21 = 1. In this case, h(y(1 + z3)) = 1 whenever v > 0. Thus, if
x1 = 1, we have that h(y(1 +x3)) =1 when 0 < v < 1+ (1 + x3)za.

Subcase (v).2.3: Suppose now that o # x1(1 + (1 4+ 23)x2) and that

{5(1 +3)(1+ (14 z3)wa) + B+ (1 + 23)79 — (1 + fﬂs)J —0
(I+z3) 1+ 211+ (1 + z3)z2)) .

It follows that
0<~v(14+2z3) <61+ z3)(1+ (1 +z3)z2) + B(1 + (1 + 23)22) ,

which given the bounds on 7, 4, and §, implies that either (A) 0 < 6 < x; or (B)
0 =0 with v(1+x3) < B(1+ (1 +x3)x2). If (A) holds, then h(b) =6+ 8 = 1 forces
0 =1and =0 since § > 0. Therefore, h(b) =1 when b = (yz; + 1)(1 + z3) for
0 <~ <14 (1+z3)ze. If (B) holds, then our same equation forces § =0 and 5 =1
when (1 4+ z3) < 1+ 1(1 + x3)x2, which further implies 0 < v < xo. This means
h(b) =1 when b = yx1(1 +z3) + 1 for 0 <y < z,.

We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (v).2.1-(v).2.3:

e Ifry =1and 0 <y <14 (14 x3)x2, we have b = y(1 + z3);
o If zy >1and 0 <+ <14 (14 x3)xe, we have b = (yz1 + 1)(1 + z3);
o Ifry >1and 0 <7y <14 (1+x3)ze and v < xo, we have b = yx1(14+z3) + 1.

Next, we establish that Equation (6) is always satisfied; recall that we are in the case
where ¢; = (1+a3)(1+z1(1+ (1 +2x3)xe)). If ¢ = (L+a3)(L+21(1+ (1 +23)x2)),
then Equation (6) is trivially satisfied. Now suppose
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Note that b # 1 + x3 since h(1 + 23) = 1. If b > 14 x5, we set ¢ = 1 + x5 from
which it is straightforward to compute that both sides of Equation (6) are equal to

bay — (14 (1+ 23)z2) + foSJ .

Otherwise, if b < 1+ x3, we may choose ¢ = 1 from which it follows that both sides
of Equation (6) are equal to (b—1)zg since 1 < b < 143 implies 0 < b—1 < 1+x3.
Finally, if ¢; = 1+ (1 +x3)x2, we write b = a(1+x3)+ 5, where 0 < 8 < 1+ 23 and
0<a<l+z1(1+(1+xz3)x2). Moreover, we write « = yx1 + 9, where 0 < § < a1
and 0 <y <1+ (1+ x3)xze. We consider the following possible cases:

Subcase (v).2.a: Suppose 5 > 0 and § > 0. Choosing
c=(yr1+1)(1+a3) < (yo1 +0)(1 +x3) + =,

it follows that both sides of Equation (6) are equal to 0.

Subcase (v).2.b: Suppose 8 = 0 and 6 > 0. Note that 6 # 1 since h((yx1 +
1)(1 4 z3)) = 1. Therefore, 2 < § < x1, so we may consider

c=(yr1 +1)(1+a3) < (yo1 +0)(1+23) =b.

Since 2 < 6 < 27 and 0 < < 14 (1 + z3)z2, both sides of Equation (6) are equal
to 0.

Subcase (v).2.c: Suppose > 0and § = 0. If 0 < < xg, then 8 # 1 since
h(yx1(1+x3)+1) = 1. Thus, it must be that 5 > 1, thereby allowing us to consider

c=vr1(l+as3)+1<yz1(l+a3)+B=0.

With this choice of ¢, it is straightforward to verify that both sides of Equation (6)
will again be equal to 0. Otherwise, if 5 < v <1+ (1 + z3)x2, consider

c=xx1(1+23)+1<vyr1(1+23)+5=>0.
Thus, we have that n > 1, and we consider
c=(ex1 + 1)1+ (1 4 z3)m2) + 22 < (21 + 1) (1 4+ (1 + 23)22) + Y22 = b.

Since 1 < 1 < x1, it is straightforward to verify that both sides of Equation (6) are
equal to 0.

Subcase (v).3.d: Consider n = § = 0. Further suppose yzs < & (and hence,
e >0). If x; =1, then h(b) = h(e(1 + (1 + z3)z2) + ya2) = 1, so we may assume
x1 > 1. Consider

c=1+1+z3)ze <ex1(14+ (14 x3)x2) +y22 =b.
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Since x7 > 1 and yzx2 < €, it follows that
—z1(1+ (1 +z3)30) <910 — — (1 + (1 + 23)72) < 0.

Given this, it is straightforward to verify that both sides of Equation (6) are equal to
€ — 1. Now, suppose yx2 > €. Note that v # 0 since otherwise, ¢ < 0 contradicting
our initial bounds on €. Thus, we have that v > 0. Moreover, if x5 = 1, it follows
that h(b) = h(ex1(2 + x3) + ) = 1, so we may assume x5 > 1. Taking ¢ = 1,
the inequality vz > ¢ readily implies that both sides of Equation (6) are equal to
€. Finally, suppose vxo2 = €. Note that neither v nor £ can be equal to 0 since
otherwise, we would have
n= §= Y=&= Oa

implying b = 0. This, of course, contradicts the bounds on b. Moreover, we may
again assume x > 1 (and thus, € > 1) since otherwise, h(b) = h(ez1(24x3)+7) = 1.
Since yxg = €, observe that b = e(14x1(1+ (1 +z3)z2)). As such, we may consider
¢=1421(14 (1 4+ 2z3)xz2) which is strictly less than b since £ > 1. This choice of ¢
readily gives that both sides of Equation (6) are equal to € — 1.

Finally, if ¢; = (1 + 23)(1 + 21(1 + (1 4+ x3)z2)), we begin again by writing

b=a(l+(1+ax3)x2)+ 8

where 0 < 8 <14 (14 23)z2 and 0 < o < 1+ (1 + (1 +x3)x2)x1. Furthermore, we
write 8 = yxo +J, where 0 < § < x5 and 0 < v < 1+ x3, and we write a = ex1 + 17,
where 0 <n <z and 0 < e <14 (1 + z3)ze. We consider the following possible
cases:

Subcase (v).3.I: Consider § > 1. Combined with our bounds on ~, this implies
that
0<(0—1)(1+4x3) =y <1+ (1+z3)2.

Taking ¢ = 1, it follows that both sides of Equation (6) are equal to «(1 + z3) + 7.
Subcase (v).3.II: Consider § = 1. If yzo+1 > ¢, note that n # 0 since otherwise,

h(b) = h(ex1(1+ (1 +z3)z2) + Y22+ 1) = 1.
Thus, n > 1, and we may consider
c=(ex1+ 1)1+ 1 +z3)r2) < (621 + 1)1+ (1 + 23)x2) + Y22 +1=0.

Since v < 14 a3, it is straightforward to show both sides of Equation (6) are equal
to (n — 1)(1 + x3) + . On the other hand, if yz3 + 1 < € (and hence, € > 1), we
may consider

c=14+1+a3)xs < (ex1+n)(1+ (1 +ax3)x) +y22+1=0,
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from which it follows that both sides of Equation (6) are equal to (ex; +n7—1)(1+
x3) + .

Subcase (v).3.III: Consider § = 0. Note that n # 1 since otherwise, h(b) = 1.
This lends itself to two possibilities: (A) n =0 or (B) n > 1. If (A) holds, we first
suppose vz < € (and hence, € > 0). If z; = 1, then h(b) = 1, so we may assume
1 > 1. Since € > 0 and z; > 1, we may consider

c=14+1+azs3)re <ex1(1+ (14 x3)z2) + Y22 =b.

For this choice of ¢, it readily follows that both sides of Equation (6) are equal to

VT2
exy —1)(14+z3)+ | —————| .
(o= 0+ o) + | e
Now, suppose yzs > ¢. Since € > 0 by construction, this inequality implies 7 # 0.
Moreover, note that if o = 1, then h(b) = 1. Thus, we may assume x5 > 1, and
we simply consider ¢ = 1. Given that 0 <y <1+ z3 and x5 > 1, it follows that

0<’Y+(1+$3)<1+(1+13)£L’2

Therefore, with ¢ = 1, we find that both sides of Equation (6) are equal to ex1(1 +
x3) + v — 1. Finally, suppose yxa = €. Since b # 0, this equality implies that both
v and ¢ cannot be 0. Moreover, we may again assume x5 > 1 since x5 = 1 would
imply h(b) = 1. Since yas = €, it follows that b = (1 + 21 (1 + (1 4 z3)z2)), and
we also get that € > 1 since we assume x5 > 1. Combining, we may consider

c=14+21(1+ 1 +x3)xe) <e(l+x1(1+ (1 4+ x3)22)) =0.
As before, the inequality
0<’Y+(1+£B3) < 1+(1+$3)$2

still holds in this case, from which it is straightforward to verify that both sides of
Equation (6) are equal to (¢ — 1)z1(1 + a3) + v — 1.
On the other hand, if (B) holds, we have that n > 1. Therefore, we consider

c=(ex1+ 1)(1+ (1 + x3)z2) + Y22 < (21 +1)(1 4+ (1 + z3)x2) + Y22 = b,

from which it follows that both sides of Equation (6) simplify to (n —1)(1+z3). In
any case, we find that both sides of Equation (6) are equivalent for each possible
¢;, thereby completing our third and final case. Thus, we have established IDP for
r-vectors of type (v).

Case: Type (vi). We next verify IDP for r-vectors of type (vi) using Theorem 4.
Again, we must consider three cases corresponding to three possible values of g;.
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Case (vi).1: Consider ¢; = (14 a3)(1+(1+23)x2). We first identify those values
of b that satisfy Equation (5) and Equation (7). It is straightforward to verify that

S N )

where 1 < b < (1 + 23)(1 + (1 4+ x3)z2) — 1. Writing b = a(1 + x3) + 8, where
0<pB<l+azand 0 <a <1+ (1+x3)zs for a,f € Z, it follows that

h(b) = h(a(l +z3) + 5)

o a(1+x3)+ﬂ
_OZ—Fﬂ—l‘Q {1+(1+$3)$2J

We can now further divide into cases: either we have a = (1 + x3)xz2 or we have
a =~x9+ 0 where 0 <y <1+ 23 and 0 < § < x9, which yields
h(b) = h((yx2 + 6)(1 + x3) + B)

_ | tas)+B—
=0+5 x2L1+u+xg@ J

For o # (1 + x3)x2, let n = 0(1 4 x3) + 8 — 7. Observe that since
0<o(1+a3)+8<1+(1+x3)xe
and 0 < v < 1+ x3, it follows that [n| < 14 (1 4 23)xs. Thus,

R

is equal to either 0 or —1.
Subcase (vi).1.1: Consider a = (1 + x3)x2. Since 0 < 8 < 1+ x3, we have

h((1+25)°22 + 8) = (1 +a3)ze + B — (L + z3)a2 — 22 {WJ
:ﬁ—f'itg.

If this is equal to 1, then it must be that § = 0 and x5 = 1. Thus, if zo = 1, we
have that h((1 + x3)?) = 1.

For the next three subcases, we assume a # (1 + x3)z2, so we may write a =
yro 4+ 0 where 0 < § < zg and 0 < v < 1+ z3.

Subcase (vi).1.2: Consider § =0 and 8 > . We have that n > 0, implying

RE
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Therefore, our equation for h(b) simplifies to h(b) = 3, which forces § = 1, i.e.,
h(b) = h(yaa(l + x3) + 1) = 1 whenever 0 <~ < 1.

Subcase (vi).1.3: Consider § =0 and 8 < . We have that n < 0, implying

{6(1+z3)+ﬂ—vJ _
1+ (1+zg)ze |

B + 2, which forces f = 0 and

Therefore, our equation for h(b) simplifies to h(b) =
lfor 0 <y <1+as.

x9 = 1 since x9 > 1, i.e., h(b) = h(y(1 4+ z3)) =

Subcase (vi).1.4: Consider 6 > 1. Since 0 < v < 1 + x3, we have that n > 0,
implying

[ tion ),

Therefore, our equation for h(b) simplifies to h(b) = § + B, which forces § = 0 and
0 = 1 since we assume ¢ > 1, i.e., h(b) = h((yz2+1)(1+z3)) = 1for 0 < v < 1+4=x3.

We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (vi).1.1-(vi).1.4:

o If o =1and 0 <y <1+ x3, we have b = y(1 + x3);
e Ifzo>1,6=0,8=1,and 0 <+ <1, we have b = yzo(1 + x3) + 1;
e Ifuy>1,0=1,8=0,and 0 <~ <1+ x5, we have b = (yzz + 1)(1 + x3).

Our next goal is to establish that Equation (6) is always satisfied; recall that we
are in the case where g; = (1 +a3)(1+ (1+a3)z2). If ¢; = (1 +a3)(1+ (14 23)z2),
the result is trivial. If

¢ =1+ 1 +a3)(I+ (1 +23)r2)r) (14 (14 23)22),

we write b = a(1+x3)+ 3, where 0 < S < 1+z3and 0 < a < 1+ (1 +23)x2. Note
that b # 1 + x3 since h(1 +23) = 1. If b > 1 + 3, we set ¢ = 1 + x3 from which it
is straightforward to compute that both sides of Equation (6) are equal to

(=11 +z3)+B) 1+ (1 +ax3)x2)rr +0—1.

Otherwise, if b < 14 x3, note that @ = 0 and hence b = 8. To satisfy Equation (5),
we need only consider 1 < 8 < 1+ z3. Thus, we may choose ¢ = 1 from which it
follows that both sides of Equation (6) are equal to (8 — 1)(1 4 (1 + z3)z2)z since
1<b< 1+ x3implies1 < —1<1+4 x3. Finally, if

¢=1+z3)(1+z1(1+23)(1+ (14 x3)x2)) ,
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we again write b = a(14+23)+ 8, where 0 < f < 1+ 23 and 0 < o < 1+ (1 + x3)x2.
Moreover, in the case that « # (1 + z3)ze, we write a = yxo + J, where 0 < § < x4
and 0 < < (14 x3). We consider the following possible cases:

Subcase (vi).l.a: Consider a = (14 z3)xs. If 23 =1, then 8 # 0 since h((1 +
r3)?) = 1. Thus, we may consider

c=1+z)?<(1+z3)?+B=0.

With this choice of ¢, it is straightforward to verify that both sides of Equation (6)
are equal to Sz1(1 4 x3). Otherwise, if 9 > 1, we consider

c=1+x3<(14a3)?z2+B8=0.

Since x5 > 1 implies —x2(1+x3) < 8—2(1+x3) < 0, it is straightforward to verify
that both sides of Equation (6) are equal to (b — (1 4 x3))x1(1 4+ 23) + z3.

Subcase (vi).1.b: Consider a # (1 + z3)z2 with § > 0 and 5 > 0. Choosing
¢= (2 +1)(1+a3) < (yo2 +0)(1+x3) + f =,
it follows that both sides of Equation (6) are equal to ((6 —1)(14x3)+8)z1(1+x3).

Subcase (vi).l.c: Consider a # (1 + x3)ze with 6 > 0 and 8 = 0. Note that
0 # 1 since h((yx2 + 1)(1 4+ x3)) = 1. Therefore, 2 < § < x2, so we may consider

c=(yr2+1)(1+z3) < (ya2 +0)(1+a3) =b.

Given this choice, we find that both sides of Equation (6) are equal to (§ — 1)(1 +
$3)$1(1 + 1‘3).

Subcase (vi).1.d: Consider a # (1 + z3)axs withd =0and 8> 0. If 0 <~y <1,
then 8 # 1 since h(yz2(1 4 x3) + 1) = 1. Thus, it must be that S > 1, thereby
allowing us to consider

c=7xo(l+x3) +1<vyr2(l+z3)+B=0.

With this choice of ¢, it is straightforward to verify both sides of Equation (6) are
equal to (8 — 1)z1(1 + z3). Otherwise, if 1 < v < 1+ z3, consider

c=1+(1+az3)z2 <vya2(l+az3)+B=0.

Thus, both sides of Equation (6) are equal to
(v = Dara(1 + ) + B — Dy (L a5) 7 — 14 | — =T |
]. —+ (]. + l’g)iCQ
Subcase (vi).l.e: Consider o # (1 + x3)axs with 6 = 8 = 0. In this case,
b = yx2(1 + x3). Moreover, note that v > 0 since otherwise, b = 0 contradicting
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our bounds on b. If zo = 1, then h(b) = h(y(1 + z3)) = 1. Hence, we need only
consider when x5 > 1. Since 7 > 0 and z2 > 1, we may take

c=1+z35 <~yre(l+x3)=0h,

from which it is straightforward to find that both sides of Equation (6) are equal
to (yre — 1)(1 + 23)%x; +v — 1.
This completes our first case.

Case (vi).2: Consider ¢; = (14x3)(1+z1(1+z3)(1+(1+x3)x2)). We first identify
those values of b that satisfy Equation (5) and Equation (7). It is straightforward
to verify that

h(b)bz{ b(1+ (1+ 25)72) ngt b J

L+21(1423)(1 4+ (14 x3)x2) 1+ 23
Writing b = a(l +x3) + 8, where 0 < S <1+4+zz3and 0 < a <1+ ax1(1 4+ z3)(1 +
(14 z3)x2), it follows that

h(b) = h(a(l + z3) + B)

_ . [e(i+zs) +B) (1 + (1 + 25)70)
=ath 1{1+x1(1+x3)(1+(1+m3)x2)J'

We can now further divide into cases: either we have o = a1 (14 23)(1+ (1+23)x2)
or we have a = yx1 + d where 0 <y < (1 +23)(1 + (1 + x3)x2) and 0 < § < x;. If
a=x1(1+z3)(1+ (1 + x3)x2), then since 0 < 5 < 1+ x3, we have

h(b):B—mll
=f+ ;.

5(1 + (1 + 56'3)3;‘2) — (1 + xg)(l + (1 + 1‘3)1‘2)J
1+ 21(1+x3)(1+ (1 +x3)22)

If this is equal to 1, then it must be that 8 = 0 and x1 = 1. Thus, if 1 = 1, we
have that

R((1 4 23)*(1 + (1 + a3)z2)) = 1.
Otherwise, if a # z1(1 + z3)(1 + (1 + z3)x2), we write o = yx1 + 0 where 0 < v <
(I1+23)(1+ (1+2x3)x2) and 0 < § < x1. Thus, h(b) simplifies as follows

h(b) = h((yx1 + 0)(1 + x3) + B3)

g | O @) £ A (14 ws)as) —
=o+5 1L L+ 21 (1+z3)(1+ (14 23)22 J

For o # z1(1 + (1 + x3)x2), observe that since

0<6(1+23)(1+ (1 +z3)22) < (21 — 1)1+ 23)(1 + (1 + 23)22)
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and
0<pBl4+(1+x3)x) < (14+z3)(1+ (1+ z3)x2)
with 0 <~y < (14 23)(1 4 (1 4 x3)x2), we have that
0<(6(1+m3)+ B)(1+ (1 +as)z2) <@1(1+23)(1+ (14 23)22).

Let n = (6(1 + x3) + 8)(1 + (1 + x3)x2) — v. The inequalities above readily imply
[n| <14+ 21(1 4 x3)(1+ (1 + x3)z2). Thus,

{5(1 +a3)(1 4+ (1+a3)2s) + B(1+ (1 + x3)z — vJ
1+ J}l(l + xg)(l + (1 + 1‘3)352)

is equal to either 0 or —1. We further write v = (1 + (1 + x3)x2) + 7, where
0<n<1l4+(1+z3)z2and 0 <e <1+ xz3. Then, h(b) becomes

M) — 54 6oy {(6(1 +5) + B)(1+ (1 + 25)5) = (e(1+ (1 + 23)72) +n)J |

1+ 33‘1(1 + l‘g)(l + (1 + l‘g).ﬁg)

Subcase (vi).2.1: Consider § =0 and § > . We have that n > 0, implying

{5(1 +23)(1+ (1 + @3)ws) + B(1+ (1 + x3)7s — VJ _ 0
1+ 21(1 + 23) (1 + (1 + 23)72) o

Therefore, our equation for h(b) simplifies to h(b) = 3, which forces § = 1. Note
that 8 = 1 implies ¢ = 0 as 8 > . Thus, we have h(b) = h(nz1(1 4+ z3) +1) =1
whenever 0 < n < (1 + x3)xs.

Subcase (vi).2.2: Consider § = 0 and 5 < . Note that € > 0 since 5 < . We
have that n < 0, implying

{5(1 +a3)(1+ (14 23)x2) + (1 + (1 + 23)x0 — WJ _ 4
1+a1(1+ax3)(1+ (1 + x3)z2) o

Consequently, our equation for h(b) simplifies to h(b) = 5 + x1, which forces 5 =0
and z; = 1 since x; > 1, i.e., h(b) = h((e(1+ (1 +x3)x2) +n)(1+23)) = 1 whenever
0<e<l4azzand 0<n<(1+x3)xs.

Subcase (vi).2.3: Consider § =0 and 8 =e. If n > 0, then we have that n < 0,
implying

{5(1 +23)(1 + (1 +x3)z2) + B(1 + (1 + 23)72 — VJ -1
1+ a1(1+23)(1+ (1 + z3)x2) '

In this case, h(b) simplifies to h(b) = § + x1, which again forces § =0 and x; = 1.
Since = ¢, it follows that ¢ = 0, and so we have that h(b) = h(n(1 4+ z3) =1
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whenever 0 < 7 < (1 4 x3)xe. Otherwise, if n = 0, then we have that n = 0,
implying

L5<1+x3><1+<1+x3>m>+ﬁ<1+(1”3)“_w =0
1+ z1(1+23)(1+ (1 + x3)xe) '

Therefore, our equation for A(b) simplifies to h(b) = 3, which forces 8 = 1 (and
thus, e = 1), i.e., (b)) = h((1 4+ (1 + z3)z2)z1 (1 + 23) + 1) = 1.

Subcase (vi).2.4: Consider § > 1. We have that n > 0, implying

{5(1+x3)(1+(1+x3)x2) + B+ (1 + z3)zs —vJ _0
T+ 21 (1 +23)(1 4 (1 + 23)22) o

Therefore, our equation for h(b) simplifies to h(b) = § + S, which forces § = 1 and
B = 0 since 6 > 1. That is, we have

h(b) = h(((e(1 + (1 4+ x3)w2) +n)x1 +1)(1 +23)) =1

whenever 0 <e <14 z3 and 0 <n < (1+ x3)xs.
We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (vi).2.1-(vi).2.4:

e Ilfz;=1,8=0,and a = (1 +z3)(1 + (1 +x3)z2), we have b = (1 + z3)%(1 +
(1 + z3)w2;

Ifey =1,6=6d=0,0<e < 1+4+uz3 and 0 < 7y < (14 x3)x2, we have
b= (n(1+ (14 x3)za) +n)(1 + x3);

Ifey=1,=0=e=0,and 0 <n < (14 x3)x2, we have b = n(1 + z3);

Ife1 >1,0=e=0,8=1,and 0 < n < (1+x3)xs, we have b = nr; (1+x3)+1;

Ifzy >1,6=n=0,and 8 =e =1, wehave b = (1+(1+z3)x2)z1 (1+23)+1;

Ife; >21,6=1,=0,0<e <14z, and 0 <n < (1+ x3)x2, we have
b= ((e(1+ (1 +x3)x2) + n)x1 + 1)(1 + z3).

Our next goal is to establish that Equation (6) is always satisfied; recall that we
are in the case where ¢; = (1 4+ x3)(1 + z1(1 + z3)(1 + (1 + z3)x2)). If

¢ =1 +x3)(1+z1(1+23)(1 + (1 + 23)22)),
the result is trivial. If

¢ =1+ 14z35)1+ (1 +z3)x2)z1)(1 + (1 + z3)x2),
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note that b # 1 + x3 since h(l +x3) = 1. If b > 1 + a3, we set ¢ = 1 + z3 from
which it is straightforward to compute that both sides of Equation (6) are equal to

basy — (1+ (1+ 23)z2) + Lf%J .

Otherwise, if b < 1+ x3, we may choose ¢ = 1 from which it follows that both sides
of Equation (6) are equal to (b—1)zg since 1 < b < 143 implies 1 <b—1 < 14+x3.
Finally, if ¢; = (1 + x3)(1 + (1 + z3)z2), we again write b = a(l + x3) + [, where
0<B8<14zzand 0 < a < 1+x1(1+23)(1+(1+2x3)x2). Moreover, in the case that
a# x1(1+23)(1+ (14+x3)x2), we write a = vy +d with v = (e(14+ (1 +x3)z2)+ 1),
where 0 < § < 1,0 < e < (14 x3), and 0 < n < (1 + z3)x2. We consider the
following possible cases:

Subcase (vi).2.a: Consider a = z1(1 4+ 23)(1 + (1 +x3)x2). If 21 = 1, note that
B # 0 since h((1 + z3)%(1 + (1 + z3)z2)) = 1. Thus, we may consider

With this choice of ¢, it is straightforward to verify that both sides of Equation (6)
are equal to 0. Otherwise, if 1 > 1, we consider ¢ = 1. Since x; > 1 implies

71‘1(1 + 1‘3)(1 —+ (1 —+ 1173)562) < (ﬂ — I3 — 2)(1 + (1 —+ 173).%2) < 0,
it is straightforward to verify that both sides of Equation (6) are equal to

(T4 z3)(1+ (1 + a3)z2) — 1.

Subcase (vi).2.b: Consider o # z1(1+x3)(1+ (1+x3)x2) with 6 > 0 and 5 > 0.
In this case, choosing

c=(yz1+1)(1+m3) < (yz1 +)(1+23)+8=0,

it follows that both sides of Equation (6) are equal to 0 since 0 < § —1 <z — 1
and 0 < 8 < 1+ x3 together imply

0<((5_1)(1+$3)+ﬁ<.’)31(1+.’173).

Subcase (vi).2.c: Consider o # z1(1+a3)(1+ (1+x3)x2) with 6 > 0 and 8 = 0.
Note that § # 1 since h((yz1 + 1)(1 + x3)) = 1. Therefore, 2 < § < z3, so we may
consider

c=(yr1+ 1)1 +z3) < (yx1 +0)(L+23) =b.

Given this choice, we find that both sides of Equation (6) are equal to 0 since
0<d<um.
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Subcase (vi).2.d: Consider o # z1(1 + z3)(1 + (1 + 23)22) with 6 = 0 and
B > 0. If B > ¢, then § # 1 since otherwise, § = 1 would force ¢ = 0 and
h(nz1(1 + z3) + 1) = 1. Thus, it must be that 8 > 1, thereby allowing us to
consider

c=nr1(1+z3) < (e(1+ (1 +z3)x2) +n)x1(l+23)+ 5 =0.

With this choice of ¢ and since § — 1 > ¢ with 8 > 1, it is straightforward to verify
both sides of Equation (6) are equal to (1 4 (1 + xz3)z2). Now, if 8 < &, we have
that € > 1 since we assumed S > 0. Therefore, we consider

c=(1+1+ax3)z2)r1(1+23) +1 < (e(14+ (1 +a3)22) + )21 (1 +23) + 3 =0b.

Then, both sides of Equation (6) are equal to (¢ —1)(1+ (14 x3)z2) +71— 1. Lastly,
if 8 = e, we consider two possibilities. If n > 0, we may again choose

c=1+ A +z3)z)r1(1+23)+1 < (e(1+ (1 +2x3)x2) +n)x1(1+23)+8="0

and find that both sides of Equation (6) are equal to (¢ — 1)(1+ (1 +x3)z2) +n— 1.
Otherwise, if n = 0, note that e = 8 # 1 since otherwise,

h(d) =h((1+ (1 +z3)z2)r1(1+23)+1)=1.
Therefore, the same value of ¢, namely
c= 14 (1+z3)xa)r1(1+23)+1,
will again be strictly less than b, from which it follows that both sides of Equation (6)

are equal to (¢ — 1)(1+ (1 + x3)z2) +n— 1.

Subcase (vi).2.e: Consider o # z1(1+x3)(1+ (1+x3)x2) with 6 = 0 and 5 = 0.
In this case, b = yx1(1 + x3). Moreover, note that v > 0 since otherwise, b = 0
contradicting our bounds on b. If 1 = 1, then h(b) = h(vy(1 + z3)) = 1. Hence, we
need only consider when x; > 1. Since v > 0 and z2 > 1, we may take

c=1+a35 <~vyr1(1+x3)=h,

from which it is straightforward to find that both sides of Equation (6) are equal
toy—1.

This completes our second case.
Case (vi).3: Consider ¢; = (14+(1+z3)(1+(1+z3)x2)z1)(1+ (1 +23)22). Thus,

we consider
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Again, we will start by identifying those values of b that satisfy Equation (5) and
Equation (7). It is straightforward to verify that

h(b):b_m{ b(1 4+ x3) b(1 + x3) J .

T+ o (1+ag)(1+ (1+ xg)xg)J o {1 + (1 + a3)x2

Writing b = «(1 + (1 + x3)z2) + 8, where 0 < 8 < 1+ z3 and
O0<a<l+4+az(l+ax3)(1+(1+a3)x)

for a, B € 7Z, it follows that

h(b) = h(a(l + (1 + z3)x2) + 5)

B |2+ At as)za) + B+ 2s) | B+ z3)
=ath 1{1+$1(1+$3)(1+(1+$3)$2)J 2{1+(1+$3)$2J '

There are two different possibilities for both « and §: either
a=z1(1+z3)(1+ (1 + x3)x2)

or a =ex; +1n where 0 <7 <z and 0 <e < (14 23)(1 4+ (1 + z3)z2), and either
B = (14 z3)xs or B =~yxs+ 0 where 0 < § < 29 and 0 <y < 1+ x3. We consider
the following subcases.

Subcase (vi).3.1: Consider a = z1(1 + z3)(1 + (1 + z3)z2) and S = (1 + x3)xe.
In this case,

h(b) = 21(1 + 23)(1 + (1 + 23)22) + (1 + 23)22
. {961(1 +23)? (14 (1 +2z3)z2)? + (1 + $3)2$2J . { (1+ z3)%2s J
! T+ 21(1+ 23)(1+ (1+23)z2) 11+ (14 z3)a2

= X1+ 29

> 1.

Subcase (vi).3.2: Consider a = z1(1 + x3)(1 + (1 + z3)z2) and S # (1 + x3)x2.
Writing 8 = yx4 4+ d, where 0 < § < 29 and 0 < 7 < 1 + z3, we have that

h(b) =21(1 + x3)(1 + (1 4+ z3)z2) + Y2 + 0
. {(xl(l+x3)(1+(1+x3)z2)2+ﬂ>(1+x3)J 3 {(vxﬁé)(lﬂs)J
! 14z (14 23)(1 + (1 + 23)x2) U T+ (1 23)as

—5—u {5(14‘&3)—(1+$3)(1+(1+x3)x2)J_x {5(14_333)_7J
1o (U a1+ (1 a)x2) 21141+ 23)22

. {—17 5:0,7>0}'

0, otherwise
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If § =0 and v > 0, then h(b) = 1 + 22 > 1. Otherwise, we have that h(b) = 0+ 2.
For this to be equal to 1, it must be the case that 6 = 0 and x1 = 1 since z; > 1.
Moreover, note that § = 0 here since § = 0 implies v = 0 (otherwise, we are in
the previous case that 6 = 0 and v > 0). Therefore, when z; = 1, we have that
R((1+ 23)(1 + (14 23)32)?) = 1.

Subcase (vi).3.3: Consider a # x1(1+ x3)(1+ (1 + 23)x2) and 8 = (1 + x3)x2
Writing o = ex1 +n, where 0 <n < 27 and 0 < e < (1 4+ z3)(1 + (1 + z3)x2), we
have that

h(db) =ex1 +n+ (1 + z3)22
{((5171 +n)(1+ (1 +x3)w2) + (1 +23)22)(1 + $3)J
1+ (,Cl(l =+ xd)(l =+ (1 + 1'3).1‘2)

(1 + 23)%
L 1+ x3) sz
{ 1—|— (1 + z3)32) + (1+x3)x2)(1+x3)—5J+x2
1+a1(I+ax3)(1+ (1 +x3)z2)

Given that 0 < n < x; and 0 <& < (1 4+ 23)(1 + (1 + x3)x2), observe that
[(n(14+ (14 23)x2) + (T +23)z2)(1+23) —e] <1+ 21 (1 +23)(1 + (1 + 23)x2).

Therefore,

{(n(l + (14 z3)z2) + (1 + x3)22) (1 + 223) — sJ
1+ J}l(l + xg)(l + (1 + 1‘3).2?2)

is equal to either 0 or —1. If

L(n(l + (1 +23)22) + (1 + 23)22) (1 + 73) — sJ _
1+$1(1+$3)(1+(1+J!3),’E2) ’

then h(b) =n+ z1 + xz2 > 1. Otherwise, if

{(77(1 + (1 + x3)2) + (1 + 73)72)(1 + 23) — EJ —0

then either (A) 0 <1 < z1 or (B) n =0 with 0 < e < (1+x3)%x,. If (A) holds, then
h(b) = n+ x2 > 1 since n > 0. If (B) holds, then our same equation forces n = 0
and 22 = 1 when ¢ < (1 + x3)?, which means that h(sz1(2 + 23) + (1 + 23)) = 1
whenever 0 < e < (1 + z3)2.

Subcase (vi).3.4: Consider a # z1(1 + z3)(1 + (1 + z3)z2) and S # (1 + x3)xe.
Writing @ = ex1 + 1 where 0 <n < 27 and 0 < e < (14 23)(1 + (1 + 23)z2) and
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B =~xs+ 9 where 0 < § < x9 and 0 <y < 1+ x3, we have that

((ex1 +n)(A + (1 +23)72) + 722 +6)(1 + $3)J

h(b) = 5—
(b) = ex1 4+ yms+ xl{ T+ 21(1+ 23)(1+ (1 + 23)22)

. {(m +0)(1 +x3)J

1+(1+I3)LE2
_ 0 M1+ (1 +z3)z2) +y22 +0) (1 +23) — €
_?7+5 ! { 1+l‘1(1+l‘3)(1+ (1+1‘3)$2) J
P11+ (1 + 23)zy

(n(1 + (1 + x3)z2) + Y2 + 0)(1 + 73) — 5J
L+ z(1+23)(1 + (1 + 23)72)

-1, 6=0,v>0
— X9 - .
0, otherwise

Given the bounds on 7, 7, §, and &, observe that

=77+5—9€1{

|(n(1 + (1 +23)z2) + 722 +6)(1 + 23) — ] <L+ 21 (14 23)(1 + (1 +23)22).

Therefore,

{(77(1 + (1 +23)x2) + 722 +6)(1 + 23) — 5J
1+a(1+ax3)(1+ (14 x3)z2)
is equal to either 0 or —1.
Suppose § =0 and v > 0. If

{(n(l + (L+ x3)w) + yws + 0)(1 + 23) — €J _

then h(b) =n+ 1 + 2 > 1. Otherwise, if

{(77(1 + (14 x3)22) + y22 + 0)(1 + 23) — EJ _ 0
1 —+ 1‘1(1 —+ 1‘3)(1 —+ (1 + Ig)ﬂ?g) - ’

then either (A) 0 < n < 3 or (B) n =0 with 0 < e < yxo(1l + x3). If (A) holds,
then h(b) = n+x2 > 1since n > 0 and 2 > 1. If (B) holds, then our same equation
forcesn = 0 and x5 = 1 when & < y(1+x3), which means that h(ex;(2+23)+7) =1
whenever 0 < e < (1 + x3).

Suppose otherwise, i.e., § = 0 and ~y > 0 does not hold. If

{(n(l + (L+ 23)w9) + yws + 0)(1 + 3) — €J _ 4
]. —+ .’ﬂl(]. =+ .%3)(]. =+ (1 —+ ﬂfg):ﬂg) - ’

note that n = 0. Then, h(b) = § + x;. For this to equal 1, it must be the case
that 6 = 0 (and hence v = 0 since otherwise, we would be in the previous case) and
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x1 = 1. Since v = § = 0, we have that § = 0. Therefore, given that n = 0 as well,
it must be that € > 0 since otherwise, b = 0 contradicting our bounds on b. In this
case, we have that h(e(14(14+xz3)z2)) = 1 whenever 0 < & < (14z3)(1+(1+x3)x2).
Otherwise, if

L(U(l + (1 +23)22) +y22 +6)(1 +23) — €J -0
T+ 211+ 23)(1+ (1 4+ x3)z2) 7

then either (A) 0 < n < 7 or (B) n = 0 with 0 < ¢ < (yzg + §)(1 + z3). If
(A) holds, then h(b) = n + ¢, which setting equal to 1 forces n = 1 and § = 0
since 7 > 0. Note that § = 0 forces v = 0 since otherwise, we would be in the
previous case. Therefore, we have that h((ez1 + 1)(1 + (1 4+ 23)z2)) = 1 whenever
0 <e < (I1+x3)(1+ (1+ x3)xz). On the other hand, if (B) holds, then our
same equation forces n = 0 and 6 = 1 when 0 < ¢ < (yz2 + 1)(1 + z3), which
means that h(ex1(1+ (1 4+ z3)z2) + y22 + 1) = 1 whenever 0 < v < 1+ z3 and
0<e< (yre+1)(1+x3).

We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (vi).3.1-(vi).3.4:

elfx; =1, =0,and 0 < ¢ < (1 +x3)(1 + (1 + z3)x2), we have b =
5(1 + (1 + $3)IE2);

elfzso =1,0=n=0,0<vy<1+4+uz3 and 0 < e < (1 + x3), we have
b=cx1(24 x3) +7;

o If3=0,n=1and 0 <e < (1 +x3)(1+ (1+ z3)z2), we have b = (ez1 +
D1+ (14 x3)x2);

eIfn=0,0=1,0<~vy<1+uz3 and 0 <e < (yxa+ 1)(1 + z3), we have
b=-cx1(14+ (14 z3)x2) +y22 + 1.

Our next goal is to establish that Equation (6) is always satisfied; recall that we
are in the case where ¢; = (1 + (1 + x3)(1 + (1 + x3)z2)z1)(1 + (1 + z3)x2). If

g =0+ 04+z3)1+ (1 +x3)x)z1)(1 + (1 + z3)x2),
the result is trivial. If
g = (1+z3)(1+21(1 +23)(1 + (1 + x3)72))

we write b = a(l + (14 z3)z2) + 5, where 0 < S < 1+ (1 4+ z3)z2 and 0 < a <
14z (1+23)(14+(14xz3)x2). Note that b # 1+ (1+x3)xs since h(14 (14xz3)x2) = 1.
IfFb>1+ (14 x3)ze, we set ¢ =1+ (1 + x3)z2 from which it is straightforward to
compute that both sides of Equation (6) are equal to

B(1+ z3) J .

(a — 1)(1 + l‘3) + {HOW
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Otherwise, if b < 1+ (1 + x3)x2, note that & = 0 and b = 3. Therefore, to ensure
we satisfy Equation (5), we consider 2 < 8 < 1+ (1 4 x3)x2. Moreover, note that
B # 1 mod x5 since otherwise h(b) = h(8) = 1. Now, suppose 8 = (1 + x3)zo. If
xo = 1, then h(B) = h(1 + x3) = 1, so we may assume x5 > 1. Setting ¢ = 1 and
since x5 > 1, it is straightforward to compute that both sides of Equation (6) are
equal to x3. Otherwise, if 8 # (1 + x3)xa, we write § = yzo + d, where 0 < § < x4
and 0 < v < 1+ x3. Note that § # 1 since h(yze +1) =1 for 0 < v < 1+ 3.
Suppose § > 1. Then, choosing

c=yra+1<~vyx9+d=0b,

it is straightforward to show that both sides of Equation (6) are equal to 0. On the
other hand suppose § = 0, so 8 = yx2, where v > 0. If 29 = 1, then h(8) = 1,
so we may assume zg > 1. Taking ¢ = 1 and observing that xo > 1 implies
—x2(1 4+ x3) < —(1 + x3) — 7, it is straightforward to compute that both sides of
Equation (6) are equal to v — 1.

Finally, if ¢; = (1 + x3)(1 + (1 + x3)x2), the analysis becomes a bit more
complicated. We start by again writing b = «(l + (1 + z3)z2) + 8, where 0 <
B <14+(14+z3)r and 0 < a < 1+ 21(1 + 2z3)(1 + (1 + z3)z2). Suppose
a=1z1(14+z3)(1 + (1 +2x3)x2). If 21 =1, then 8 # 0 since otherwise h(b) = 1.
Thus, we may consider

c=(1+x3) 1+ (1 +23)22)* < (1 +a3)(1+ (1 + 23)22)> + B=10

from which it is straightforward to compute that both sides of Equation (6) are
equal to 0. If 1 > 1, observe that

—111(1 + 1]3)(1 + (1 + 3?3)31‘2) < —(1 + 1}3)(2 + (1 + 3?3)31‘2)
<@B-1)1+az3) - (1 +z3)(1+ (1 + z3)22)
<0.

Choosing ¢ = 1, the previous inequality readily gives that both sides of Equation (6)
are equal to (1 + z3)(1 4+ (1 + x3)xs) — 1.

Now, suppose a # x1(1+ 23)(1 4+ (1 + z3)z2). Then, we may write a = ex1 + 1,
where 0 <np <z and 0 <e < (1 +23)(1 + (1 + x3)x2), and so b = (gz1 +n)(1 +
(14 23)x2) + S. Suppose B = (1 + x3)x. If n > 1, then we may consider

c=(ex1+ 1)1+ (1 +z3)x2) < (ex1+n)(1+ (1 +z3)22) + 1+ 23)22 =

from which it is straightforward to show that both sides of Equation (6) are equal
to 0. Otherwise, if n = 0, note that we may assume x5 > 1 since zo = 1 gives that
B(b) = hlew1 (2 +w3) + (1 4+ a3)) = 1.

We consider two possible cases, namely when 0 < e < 14 z3 and when 1+ z3 <
e<(14+23)(14+ (14 x3)x2). If 0 <e <1+ z3, we consider

c=cx1(1+ (1 + z3)x2) + T23 + 1
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which is strictly less than b = ex1 (1 + (1 + x3)x2) + (1 +23)x2 as x2 > 1. With this
choice of ¢ and since 0 < € < 1 4 z3, it is straightforward to show that both sides
of Equation (6) are equal to 0. On the other hand, if

I1+z3<e<(l+az3)(1+(1+x3)x2),
we may consider
c=1+ l'l(l -+ Ig)(l -+ (1 -+ IEg)JZQ) < 61131(1 + (1 -+ Il'g)l’z) —+ (1 + ’133){1?2 =)

from which it is straightforward to compute that both sides of Equation (6) are
equal to

(14 z3)%w2 — € J

e—(I+as)+ L a1 (1 +23)(1 + (14 23)72)

Now, suppose 3 # (1 + xz3)xs. Then, we may write 5 = yrgo + 0, where 0 < § < x4
and 0 <y < 1423, and so b can be written as b = (ex1+n)(1+ (14 z3)x2) +yx2+0.
We consider the following possible subcases.

Subcase (vi).3.a: Let 7> 0 and 6 > 0. We consider
c=(ex1+ 1)1+ (1 +z3)z2) < (61 + 1)(1 + (1 + 23)z2) + Y22 + 0 =b.
Since 0 < n < 21 and 0 < yza + § < (1 + x3)xze, it follows that
0<(n—1)1+Q+xz3)x2) +7y22+06 <1(14 (14 23)22) .

Therefore, it is straightforward to verify that both sides of Equation (6) are equal
to 0.

Subcase (vi).3.b: Letn=0and § > 0. If ¢ < (yzo+1)(14x3), note that § # 1
since otherwise, h(b) = h(ex1(1 + (1 + z3)x2) + ya2 + 1) = 1. Thus, we have that
6 > 1, and we consider

c=cex1(1+ (1 +z3)xs) +y22+ 1 < ez (1+ (1 + z3)xe) + yro + 0 =b.

Given that € < (yza+1)(1+23) and 1 < § < 9, it is straightforward to verify that
our choice of ¢ gives that both sides of Equation (6) are equal to 0. Otherwise, if
(yze +1)(1 4+ x3) < & (and hence, € > 1 + x3), we consider

c=1 +.’E1(1 +.’E3)(1 + (1 +ZL’3)(E2) < 5%1(1 + (1 +.’E3)$2) + yxo +5 =b.

With this choice of ¢, it is straightforward to verify that both sides of Equation (6)
are equal to

s—(1+x3)+{ (2o +8)(1 + 23) — & J
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Subcase (vi).3.c: Let n >0 and § =0. If v > 0, we may consider
c=(ex1+ 1)1+ (1 4+ x3)x2) < (621 + 1) (1 + (1 + z3)x2) + Y22 = b

from which it is straightforward to compute that both sides of Equation (6) are
equal to 0. On the other hand, if v = 0, note that n # 1 since otherwise, h(b) =
h((exy +n)(1 + (1 4+ z3)x2)) = 1. Therefore, we may again choose

c=(ex1+ 1)1+ (1 +z3)22) < (621 +71)(1 + (1 + 23)22) = b.

Since 1 < 7 < x1, it is straightforward to verify that both sides of Equation (6) are
equal to 0.

Subcase (vi).3.d: Let n = § = 0. Further suppose yza(1l + z3) < e. If v > 0,
then it follows that yzo > 1. Therefore, our assumed inequality implies € > 1 4 z3,
so we may consider

c=14x21(1+23)(14+ (1 +x3)x2) <ex1(1+ (14 x3)z2) + Y22 = .

Since y2(1 + 3) < &, our choice of ¢ readily gives that both sides of Equation (6)
are equal to € — g — 2. Otherwise, if v = 0 (and hence, € > 0 since we assumed
vx2(l + x3) < €), we may assume z; > 1 since otherwise, we would have that
h(b) = h(e(1 4+ (1 4+ x3)x2)) = 1. Thus, since z; > 1, we may take

c=14+1+z3)ze <ex1(14+ (14 2x3)2) =0.
Observe that the bounds on € and z1 > 1 imply

—1]1(1 + .Z'g)(l + (1 + .’133)3’,‘2) < —2(1 + .’1?3)(1 +(1+ $3).T2)
<—=(+a3)(1+ (1+z3)22) — ¢
<0.

Consequently, it is straightforward to verify that both sides of Equation (6) are
equal to € — 1. Now, suppose yza2(1 + x3) > . Note that v # 0 since otherwise,
€ < 0 contradicting our initial bounds on . Thus, we have that v > 0. Moreover,
if x5 = 1, it follows that h(b) = h(ex1(2 + x3) + ) = 1, so we may assume x5 > 1.
Given the addition restriction that € < (yz2 —1)(1+x3), we may choose ¢ = 1 from
which the inequality € < (yz2 —1)(1+z3) readily implies both sides of Equation (6)
are equal to €. However, for (yze —1)(1 + z3) < € < yx2(1 + x3), we consider

c=14z1(1+z3)(1 + (14 z3)z2) .

Note that o > 1 and v > 0 together with our restriction on € imply that ¢ > 1+x3.
Therefore, we satisfy

c<exi(1+ (14 x3)z2) +yz2 =0,
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and a straightforward computation gives that both sides of Equation (6) are equal
to € — (1 + x3). Finally, suppose € = yx3(1 + x3). Given this equality, note that
neither v nor € can be equal to 0 since otherwise, we would have

n:d:’y:gzo’

implying b = 0. This, of course, contradicts the bounds on b. Moreover, we may
again assume o > 1 (and thus, € > 1+ x3) since otherwise, h(b) = h(ex1(2+z3) +
~) = 1. Since € > 1 4 z3, we may consider

c=1+z1(1+23)(1+ (1 +x3)x2) <ex1(l14+ (14 x3)x2) + Y22 =b.

This choice of ¢ readily gives that both sides of Equation (6) are equal to e —(1+x3).

In any case, we find that both sides of Equation (6) are equivalent for each
possible g;, thereby completing our third and final case. Thus, we have established
IDP for r-vectors of type (vi).

Case: Type (vii). Here, we verify IDP for r-vectors of type (vii) using Theo-
rem 4. Again, we must consider three cases corresponding to three possible values
of g;.

Case (vii).1: Consider g; = 1+ 3. Since 1 < b < 3 in this case, it is
straightforward to verify that h(b) = b. Hence, the b-values we are required to
check in Equation (5) are 2 < b < x3. To verify that Equation (6) always has
the desired solution, we consider three cases. If ¢; = 1 + z3, the result is triv-
ial. If ¢ = (1 + x3)(1 + z1(1 + x3)), then we may select ¢ = 1, from which
it follows that both sides of Equation (6) are equal to (b — 1)(1 + z1(1 + x3)).
If ¢ = (1+ (14 23)x1)(1 + (1 + x3)x2), then we may again set ¢ = 1, from
which it is straightforward to compute that both sides of Equation (6) are equal to
(b—1)(x1 + 2 + 2122(1 + x3)). This completes our first case.

Case (vii).2: Consider ¢; = (1 + 23)(1 4+ z1(1 + x3)). It is straightforward to

verify that
=0 |ty o [
=b—x1 | —— | — —,
"1+ 2 (1 + a3) Sl1+as

where the values of b range from 1 to (1 + z3)(1 + z1(1 + x3)) — 1. To verify
that Equation (6) always has the desired solution, we consider three cases. If
gi = (1 + 23)(1 + x1(1 + x3)), the result is trivial. If ¢; = 1 + x3, then we write
b=ca(l+z1(1+23))+ 3, where 0 < 8 <1+ z1(1+23) and 0 < a < 1 + z3 for
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a, B € Z. Consequently, we have that

h(b) = h(a(l 4 z1(1 + x3)) + B)

a+p3
— a(l+x(1 — oz — —
a(l+z(1+a3)) + 8 — ary — aryrs $3{1+x3J
a+f
_a—l—ﬂ—xg\‘lergJ.

If B > 0, we may select ¢ = 1, from which it follows that both sides of Equation (6)
are equal to a. If 8 =0, then our formula for h(b) reduces to

h(b) = h(a(l4+z1(1 + 23))) = «
since 0 < a < 14x3. Thus, to satisfy Equation (5), it must be that o > 1, implying
b=a(l+z(l+x3)) >14+21(1+23).

In this case, taking ¢ = 1421 (14x3), it is straightforward to verify that both sides of
Equation (6) are equal to a—1, and Equation (7) is satisfied as h(1+x1(1+23)) = 1.
Finally, if ¢; = (1 + (1 + x3)21)(1 4+ (1 + x3)22), then we write b = a1l + x3) + 3,
where 0 < <1423 and 0 < a <14 z1(1+x3) for o, 8 € Z. Consequently, since
0 < B <1+ z3, we have that

h(b) = h(a(l +23) + 5)

=a(l+z)+ 58— \‘mJ —06.173—1‘3\‘

aa+xw+BJ
1 —I—xl(l +$3)

1+ $3J
=a+f-—m {
If B8 > 0, we may select ¢ = 1, from which it is straightforward to verify that both

sides of Equation (6) are equal to a(1+(1+x3)x2)+(8—1)x2 (since 0 < f—1 < x3).
On the other hand, if 5 = 0, then our formula for h(b) reduces to

a(l+zx3)

h(b) = h(a(l +a3)) = a — | —T23)

) = Ha(l+a) —a- | 0D

In order to satisfy Equation (5), it must be that o > 1, which implies
b=a(l+z+3)>1+a3.

Thus, in this case, we consider ¢ = 14x3. Clearly, h(14+23) = 1, giving Equation (7),
and moreover, it is straightforward to verify that both sides of Equation (6) when
¢ =1+ x3 are equal to (o« — 1)(1 + (1 + x3)z2). This completes our second case.
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Case (vii).3: Consider ¢; = (14 (1 4+ x3)z1)(1 + (1 + z3)x2). We first identify
those values of b that satisfy Equation (5) and Equation (7). It is straightforward
to verify that

h(b):b_x{ b(1 + 3) J_wz{( b(1 + ) J

(1+ (14 z3)z1)(1+ (1 + 23)72) T+ (11 23)72)
Writing b = a1+ (14x3)z2)+ 5, where 0 < 8 < (1+z3)zs and 0 < o < (14-23)21,
it follows that
h(b) = h(a(l+ (1 + z3)x2) + B)
ot B—m {a(l +x3)(1+ (1 + z3)z2) + B(1 + x3)J

I+ (1 +z3)z1)(1+ (1 +23)22)

B(1+ z3) J .

—x PR A,
2 _1+(1+1‘3)1‘2

Now, writing 8 = yzs + §, where 0 < § < 25 and 0 < v < 1+ x3, it follows that

o . a(l+x3)(L+ (14 z3)z2) + (yxo + 0)(1 + 23)
) = a - |

Since 0 < § < 29 and 0 < v < 1+ x3, observe that

V(Hm)—wJ_ -1, 6=0,vy>0
14 (14 z3)xz 0, otherwise.
We further write o = ex1 + 1, where 0 < n <z and 0 < e < 1+ 3. Then,

(n(1 +23) — &) (1 4 (1 + z3)z2) + (yz2 + 0)(1 + 23)

h(b)=77+6—:v1

B 0(1+az3)—~
2 |1+ (1 + 23)2 |
Y S (M1 4+a3) —e+v)(1+ (14 x3)x2) + 0(1 +23) — 7
Hl (I+ (1 +a23)z1)(1 + (1 + z3)22) ]
_ 6(1+mz3) —y
2 |14+ (1 +a3)z2 |

Given the bounds on €, 7, v, and §, note that
—(1423) <d(1+z3) =7 <1+ (1+x3)x2

and
—(I4z3) <n(l+4+ax3)—ec+v<(1+ax3)x;:.
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Consequently, it follows that
[(n(14+23) —e+9)(1+ (1 +x3)x2) +6(1 + x3) — 7|

is strictly less than
(1 + (1 + 1‘3)$1)(1 + (1 + 563).’132),

and this implies that

L(n(l +a3)—e+v) 1+ 1+ z3)x2) + (1 + 223) — WJ
1+ (14 zz)2)(1+ (1 +23)x2)

is equal to either 0 or —1. To resolve this floor function, we consider the following
subcases which analyze the sign of the numerator of its argument.

Subcase (vii).3.1: Consider n = 0ande > 7. Since §(1+z3)—vy < 14+(1+x3)xe,

the numerator above will be negative, implying

{(77(1 +x3) —e +7)(1 + (14 x3)x9) + (1 + 73) — VJ _
1+ (1 +z3)z1)(1+ (14 23)72)

Therefore, our equation for h(b) simplifies to

-1, 6=0,v>0
h(b) =9 —xg - ’ ’ .
®) o { 0, otherwise }

If § =0 and v > 0, then
h(b) = h(ex1(1+ (1 + z3)x) + yw2) =21 + 22 > 1.

If § = v = 0, then
h(b) = h(ex1(1 + (1 + z3)x2)) = 21 .
Thus, if ;1 = 1, we have that h(ez1(1 + (1 + x3)z2)) = 1 whenever € > 0. If § > 0,

then
h(b) =h(ex1(1+ (1 +z3)z2) + Y22+ ) =0+ 21 > 1.

Subcase (vii).3.2: Consider n =0 and € < . In this case, n(1+x3)—e+~v > 0,
and consequently, the numerator of our floor function argument will be positive.
Hence,

) e L+ o) L4) )

I+ (1 +az3)z)(1+ (1 4+ x3)x2)

simplifying our formula for h(b) to

-1, 6=
hp) =6 —ap- {1 007 =0L
0, otherwise
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If § =0 and v > 0, then h(b) = h(ex1(1+ (14 x3)x2) + yx2) = 2. Thus, if 25 = 1,
we have that h(b) = h(ex1(2 + x3) + ) = 1 whenever ¢ < 7. Otherwise, h(b) = J,
which forces § = 1, i.e., h(ex1(1 4+ (1 4+ x3)x2) + y22 + 1) = 1 whenever € < 7.

Subcase (vii).3.3: Consider n =0 and € = +. In this case, n(1+x3)—e+~v =0,
so the numerator of our floor function argument reduces to 6(1 4+ xz3) —~. If § =0
and v > 0, then §(1 + x3) — v < 0 which implies

W(l +3) —e+ )1+ (1+ 25)x0) + (1 + 23) — vJ _
(1+ (1 + za)) (1 + (1 + z3)a2) '

Hence, for e = v > 0, we have
h(b) = h(yz1(1 + (1 + 23)x2) + y22) = 71 + 72 > 1.

If 6 = =0, then 6(1 + x3) — v = 0 which implies

) et L () 64 )
(1 + (1 =+ 1‘3).1'1)(1 + (1 + .’1?3)5(52) ’

Hence, h(b) = h(0) = 0. If § > 0, then 6(1 + x3) — v > 0 since 0 < v < (1 + x3).
Therefore,

) et L () 64 )|
(1 + (1 =+ $3)$1)(1 + (1 + .’1?3)5(52) ’

As such, we have that h(b) = h(yx1(1 + (1 + z3)22) + Y22 + §) = §, which forces
0=1,1e, h(b) =h(yr1(1+ (1 +23)z2) + 722 +1) =1 for 0 <y <1+ x3.

Subcase (vii).3.4: Consider n =1 and 0 < e < 1+ x3. It follows that
n(l4+xz3)—e+~>0.

Consequently, since §(1 + z3) — v < 1+ (1 + x3)z2, we have that the numerator of
our floor function argument is positive, implying

{(n(l +a3)—e+v) 1+ (14 23)x2) + (1 + 23) — ’yJ _ 0
(1 + (1 + .’L‘3)LL‘1)(1 + (1 =+ $3)$2)

forany 0 <~y <1+ x3 and 0 < < zo. As aresult, if § =0 and v > 0, then
h(d) = h((ex1 + 1)(1 4+ (1 + x3)x2) +y22) =1+ 22 > 1.
If § =~ =0, then
B(®) = (e + 1)(1 + (1 + 23)22)) = n = 1

whenever 0 < e < 1+ z3.
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If 6 > 0, then
h(b) =h((ex1 + 1)1+ (1 4+ z3)x2) + 722 +9) =1+ > 1.
Subcase (vii).3.5: Consider n =1 and € = 1 + x3. The numerator of our floor

function argument reduces to y(1+x3)zs+0(1+x3), which is certainly nonnegative.
Therefore, it follows that

{(77(1 +a3) —e+ 7)1+ (14 z3)x2) + 6(1 + 23) —WJ 0

(1 + (1 +23)z) (1 + (1 + z3)72)

which simplifies our formula for h(b) to

h(b) :h((l + (1 =+ 3?3).’131)(1 + (1 + .%‘3).%‘2) + yT2 + (5)

-1, §d=0,v>0
=140 —xy- ’ ' :
2 { 0, otherwise }

Therefore, if § = 0 and v > 0, it follows that

h(b) = h((1 4+ (1 + 23)21)(1 + (1 4 @3)x2) + y22) =1+ 22 > 1.
Otherwise,

h(b)=h((1+ (14 23)z1)(1 + (1 + x3)22) +y22+ ) =1+49.
So, for this to be equal to 1, it must be that § =~ =0, i.e.,

Subcase (vii).3.6: Consider n > 1. It follows that n(1 + x3) — e + v > 0, and
consequently, since 6(1 + x3) — v < 14 (1 + x3)x2, we have that the numerator of
our floor function argument is positive. Therefore, we have that

{(77(1 +x3) —e+ 7)1+ (1 +23)x0) + (1 + 73) — VJ _0
(1+ 1 +z3)z1) (1 + (14 23)72) ’

which simplifies our formula for h(b) to

h(b) = h((eey +m)(1+ (1 + ws)az) + a2 + )

~1, §=0,7>0
ZT]+5—$2~{ K }

0, otherwise
Therefore, if § = 0 and v > 0, it follows that

h(b) = h((ex1 +n)(1 + (1 + z3)xs) +y22) =0+ 29 > 1.
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Otherwise,
h(b) = h((ex1 +n)(1+ (1 +x3)x2) +y22 +6) =0+ 35> 1.

We summarize the values of b for which h(b) = 1 that were just derived in
Subcases (vii).3.1-(vii).3.6:

e lfzy=1,n==v7=0,and 0 <e <1+ z3, we have b =¢(1 + (1 + z3)z2);
e lfao=1n=06=0,and 0 <e <~y <1+ x3, we have b = ex1(2 + x3) + yxo;

elfn=0,=1,and 0 < e <y <1+ x3, we have b = ex1(1 + (1 + x3)w2) +
yx2 + 1

o lfn=1,=v=0,and 0 <e < 1+x3, we have b = (1 +ex1)(1+ (1 +x3)x2).

Our next goal is to establish that Equation (6) is always satisfied; recall that we
are in the case where ¢; = (1 + (1 4+ x3)z1)(1 + (1 + x3)z2). If

the result is trivial. If ¢; = (14+23)(14+(14+z3)x1), we write b = (14 (14+xz3)x2)+ 5,
where 0 < f <14+ (1+2a3)zzand 0 < a <14+ (1+a3)x;. Ifb > 1+ (1+23)x2 (and
thus, @ > 1), we can take ¢ = 14 (1+23)z2 as this makes both sides of Equation (6)
equal to : )

B(1+ x3
If 2 <b <1+ (14 x3)x2, note that @ must be 0 and hence b = . We write
B =~yxo+ 0, where 0 < § < x5 and 0 <y <1+ x3. In the case that § > 1, we set
¢ = yx2+1 as this makes both sides of Equation (6) equal to 0. Moreover, note that
we need not consider the case where § = 1 since h(yxa + 1) = 1. Therefore, it only
remains to find a c-value when § = 0. If 6 = 0, then b = 8 = ~x2. Observe that
v > 0 since v = 0 would imply h(b) = 0 # 2. In this case, we set ¢ = (y — 1)z + 1.
Since 1 < v <14 x3 implies that 1 <2+ x3 — v < 1 + x3, it is straightforward to
check that both sides of Equation (6) will again be equal to 0.

Finally, if ¢; = 1 4 x3, the analysis becomes slightly more complicated. As in
the previous case, we begin by writing b = a(1 + (1 + x3)x2) + 5, where 0 < 8 <
14+ (14 x3)xe and 0 < a < 1 4 (1 4 x3)x;. Furthermore, we write 8 = yxs + 4,
where 0 < § < 22 and 0 <y <1+ x3, and we write o = ex1 + 7, where 0 < 1 < 1
and 0 <e <1-+ux3. Ifb>14 (1+ x3)xe, we consider ¢ = 1. Substituting ¢ = 1
and the alternate form for b into the left-hand side of Equation (6), yields

- {(77(1 +a3) —e+ 7)1+ (1 +a3)x9) + (1 + 23) — WJ

::Fl
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On the other hand, substituting into the right-hand side of Equation (6) yields

- {(77(1 +x3) —e4+7)(1+ (1 +x3)x2) + (6 — 1)(1 4 23) — ’YJ
(1 4+ (1 + 1‘3).131)(1 +1+ 563).1‘2) '

= F2

We must show that Fy; = F5. To this end, let
n = (1 +ws) —e+7) (1 + (1 +a3)72) + (1 + 23) — 7

and
no =M1 +xz3)—e+7) 1+ A+ z3)z2) + (6 — 1)(1+23) — 7,

that is, n1 and no are the numerators of the arguments in F; and Fb, respectively.
Given the bounds on ¢, 1, 7, and d, note that

—(1+.’E3)§5(1+$3)—’}/<1+(1+(E3)5L’2,

also
—2(14+23) < (0 —1)(1+z3) — v <1+ (1+z3)z2,

and
—(1+a3) <n(l+z3)—e+v < (1+x3)27.

Consequently, it follows that |ng| < (1 + (1 + z3)z1)(1 + (1 + x3)x2) for k € {1, 2},
and this implies that F}, is equal to either 0 or —1. Therefore, to achieve our goal, we
must verify that either ny,n9 < 0 or ny,ns > 0. Now, observe that b > 14+ (14xz3)x2
implies that either (A) a =1 and 8 > 0, or (B) @ > 1. For each of these scenarios,
we consider subcases. First assume (A) holds, i.e., « =1 and 8 > 0.

Subcase (vii).3.a: Consider z; = 1. Since 0 < n < x; = 1, it follows that n = 0.
Consequently, as 1 = a = ex; + 1, we have that € = 1. Thus, n; and ns reduce to

ny = (y— 11+ (1+z3)20) +6(1 +23) —

and
no=n—-1DA+(1+z3)x2)+ (0 —1)(1+z3)— 7.

If v = 0, then the numerators ni,ny < 0 and hence F} = F, = —1. If v = 1, note
that 6 # 1 (since n = 0,e = «, and 6 = 1 imply h(b) = 1). So, if § = 0, then
ni,no < 0 and hence F} = F5 = —1. Otherwise, if § > 1, then ny,ns > 0 and thus
Fy =F,=0. If v > 1, then ny,ne > 0, implying F; = F5 = 0.

Subcase (vii).3.b: Consider x; > 1. Given that a = 1, it must be the case
that e = 0 and n = 1. Therefore, it immediately follows that F; = F» = 0 since
ny,ng > 0.

Thus, we can conclude that Fy; = F in situation (A). Now, we must consider
situation (B), i.e., when o > 1. We again consider subcases.
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Subcase (vii).3.I: Let n = 0. It follows that ¢ > 0, and our numerators reduce
to
ni = (y—¢e)(1+ (1 +zs)x2) +0(1 +23) — 7

and
ny = (v —¢e)(L+ (14 z3)x2) + (§ — 1)(1 + 23) — 7.

If v > ¢, then the numerators of both arguments will be positive, implying F; =
F, =0. If v = ¢, note that § # 1 (since n =0, e = v, and 6 = 1 imply h(b) = 1).
So, if § = 0, we have that ny,ns < 0, and hence F} = F5 = —1. Otherwise, if § > 1,
it follows that ni,no > 0 which implies F; = F> = 0. Finally, if v < ¢, it follows
that F; = F5 = —1 since ny,no < 0.

Subcase (vii).3.II: Let n = 1. Again, since a > 1, this implies € > 0. As a
result, we have the following reduction of n; and ns:

ny=1+as—e+e)(1+(1+a5)x2) +6(1+a3) =7

and
no=0+z3—e+v) 1+ A +z3)z2) + (6 —1)(1+23) — 7.

If e < 1+ z3 then we have ny,ns > 0, and thus F} = F5 = 0. Otherwise, ¢ = 1+ x3.
Note that since 7 = 1, 6 and v cannot both be 0 as this would imply h(b) = 1.
Therefore, if v = 0, it must be that § > 0 which implies ny,ne > 0 and F; = F» = 0.
Otherwise, if v > 0, n1,n9 > 0, and thus F; = F;, = 0.

Subcase (vii).3.III: Let > 1. It immediately follows that ni,no > 0, and we
have that F}, = F5, = 0.

Thus, we find that F; = Fy. Therefore, we have that Equation (6) is satisfied
with ¢ =1 for b > 1+ (1 + z3)zo. It remains to consider 2 < b < 1+ (1 4 x3)xs. If
2 <b < 14+ (1+4x3)x2, note that o must be 0 and hence b = 5. Therefore, to ensure
we satisfy Equation (5), we consider 2 < f < 1+ (1 4 z3)z3. Since f > 1 in this
case, we may take ¢ = 1 from which it is straightforward to verify that both sides
of Equation (6) are equal to 0. This completes our third and final case, thereby
establishing IDP for r-vectors of type (vii). O
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