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The generation and evolution of entanglement in many-body systems is an active area of research that
spans multiple fields, from quantum information science to the simulation of quantum many-body sys-
tems encountered in condensed matter, subatomic physics, and quantum chemistry. Motivated by recent
experiments exploring quantum information processing systems with electrons trapped above the surface
of cryogenic noble gas substrates, we theoretically investigate the generation of motional entanglement
between two electrons via their unscreened Coulomb interaction. The model system consists of two elec-
trons confined in separate electrostatic traps that establish microwave-frequency quantized states of their
motion. We compute the motional energy spectra of the electrons, as well as their entanglement, by diag-
onalizing the model Hamiltonian with respect to a single-particle Hartree product basis. We also compare
our results with the predictions of an effective Hamiltonian. The computational procedure outlined here
can be employed for device design and guidance of experimental implementations. In particular, the the-
oretical tools developed here can be used for fine-tuning and optimization of control parameters in future

experiments with electrons trapped above the surface of superfluid helium or solid neon.
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L. INTRODUCTION

Entanglement is the fundamental characteristic that dis-
tinguishes interacting quantum many-body systems from
their classical counterparts. The study of entanglement
in precisely engineered quantum systems with countably
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many degrees of freedom is at the forefront of modern
physics, and it is a key resource in quantum informa-
tion science. This is particularly true in the development
of two-qubit logic for quantum computations, which has
been demonstrated in a wide variety of physical systems
used in present-day quantum computing, including super-
conducting circuits [1,2], trapped ions [3,4], semiconduc-
tor quantum dots [5—8], color-center defects in diamond
[9—11], and neutral atoms in optical lattices [12,13]. Inves-
tigating the generation and evolution of entanglement in
quantum many-body systems is also important for quan-
tum simulations [14—17], having the potential to advance
the fundamental understanding of dense nuclear matter
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or high-energy physics [18-22], correlated electron sys-
tems [23-25], and quantum chemistry [26-28]. Quantum
simulators based on natural qubits such as atoms [29-31],
ions [32,33], and photons [34] are particularly appealing
since these systems are highly programmable, control-
lable, and replicable [35]. Additionally, in these systems
the coupling to decohering environmental degrees of free-
dom is minimal, allowing for a tight feedback between
experiments and theory.

Trapped electron systems represent a novel approach
to investigating the generation of entanglement, sharing
many features with platforms based on other natural qubit
systems. Recent experimental efforts have investigated the
feasibility of trapped electron qubits using ion trap tech-
niques [36,37]. In fact, the naturally quantized motion of
electrons trapped in vacuum above the surface of super-
fluid helium was one of the earliest theoretical propos-
als for building a large-scale analog quantum computer
[38]. The surface of the superfluid functions as a pris-
tine substrate [39], shielding the electrons from deleterious
sources of noise at the device layer beneath helium. Since
this initial proposal, a number of theoretical ideas have
been put forward to create both charge [40—44] and spin
[42,44-46] qubits based on these trapped electrons. Addi-
tionally, a wide variety of experimental work, directed
at realizing these electronic qubits, has been performed
to leverage advances in nanofabrication techniques for
precision trapping and control of electrons on helium in
confined geometries [47—51], mesoscopic devices [52—54],
circuit quantum electrodynamic architectures [55,56], and
surface-acoustic-wave devices [57]. Single-electron trap-
ping and detection have been experimentally achieved
[52,56,58], as well as extremely high-fidelity electron
transfer along gated arrays fabricated using standard
CMOS processes [59]. Similarly, electrons trapped above
the surface of solidified noble gases offer an alternative
trapped electron qubit; electrons trapped in vacuum above
the surface of solid neon have recently been experimen-
tally demonstrated as a novel natural charge qubit [60] with
high coherence [61].

In aggregate, these technological advances have opened
the door to exploring the generation and evolution of
entanglement in systems based on trapped electrons. Here
we present a model system for investigating the entangle-
ment between the microwave-frequency motional states
of two electrons trapped in vacuum above the surface of
a layer of superfluid helium. The electrons are confined
laterally by applying voltages to electrodes in a substrate
beneath the condensed helium layer. These voltages are
tuned to set up electrostatic traps on the helium surface to
control the relative position of the electrons and quantize
their in-plane motional states in the gigahertz-frequency
range. We utilize the full configuration-interaction (CI for
short in this work) method [62] for distinguishable par-
ticles to compute the quantized motional excitations of

the system, as well as the entanglement between the elec-
trons generated by Coulomb interaction. These numerical
studies are in turn used to optimize the electrode volt-
ages to maximize the entanglement. We also present an
effective theoretical model of the two-electron system, as a
useful tool to analyze the underlying coupling mechanism
between the electrons. Given the exact solution provided
by the CI calculations, we discuss the limitations of the
approximations of this effective model. Our work can be
used to provide feedback to future experimental realiza-
tions in which, ultimately, control and readout of charged
qubit states can be achieved, via integration of microwave
resonators [42,56,60,61] using standard techniques based
on circuit quantum electrodynamics (cQED) [63].

The system of two electrons electrostatically confined
above the helium surface conceptually shares some simi-
larities with double quantum dots created in semiconduc-
tors [64]. The correlated behavior of electrons in these
double quantum dots have been studied theoretically [8,
65—70], as well as experimentally in gallium arsenide
[6,71,72] and silicon germanium [73] heterostructures.
Unlike these semiconductor systems, electrons on helium
are quantum nondegenerate [74] and do not experience
the decohering environment inherent to these more con-
ventional quantum dot systems. Similarly, the lack of
complicated many-body effects from the environment (i.e.,
the impact of band structure, excitonic degrees of free-
dom, etc.) makes electrons on helium a unique platform
for comparing theory with experiments for charge qubits.

In Sec. II we present a schematic microdevice
that allows for controlled Coulomb-driven entanglement
between two electrons. We also describe a numerical pro-
cedure to find the optimal parameters for this device to
function as a two-qubit quantum computer. Section III
contains our main results, with detailed discussion of the
system properties and comparison to an effective model
Hamiltonian. The final section contains conclusions, per-
spectives, and an outlook for future work. Additional
details are presented in various appendices.

II. DEVICE AND THEORY

Electrons placed in vacuum above a layer of liquid
helium are drawn toward the liquid by an attractive force
produced by positive image charges in the dielectric
liquid. However, the electrons are prevented from entering
the liquid by a large (about 1 eV) Pauli barrier at the liquid-
vacuum interface [75,76]. The balancing of these two
effects creates a ladder of Rydberg-like states for the ver-
tical motion of the electrons, and at low temperatures the
electrons are naturally initialized into the ground state of
this motion approximately 11 nm above the helium surface
[77,78]. The electrons experience only a weak interac-
tion with their environment, which is mainly governed
by interactions with thermally excited ripplons (quantized
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capillary waves on the helium surface) and phonons in the
bulk of the liquid [79]. Based on these interactions, the-
ory predicts long coherence times of both the electron spin
and motional degrees of freedom [40,45,46]. The elec-
tron in-plane motion can be further localized on length
scales approaching an electron separation of around 1 um
through the integration of microdevices that provide lateral
confinement [50,53,56]. Devices of this type have been
used to demonstrate single-electron trapping [52,56,60],
and to investigate the two-dimensional crystalline elec-
tronic phase known as the Wigner solid [50,80], which
arises from the largely unscreened Coulomb repulsion
between the electrons. As explored in this work, this strong
electron-electron interaction can also in principle be uti-
lized to couple the quantum motion of electrons and create
entanglement between electron charge qubits, in analogy
to a Cirac-Zoller entangling gate [81].

A. Device design

A schematic microdevice for investigating the
Coulomb-driven entanglement of the in-plane motional
states of two electrons on helium is sketched in Fig. 1(a).
Here we consider a (3 x 1)-um? size microchannel struc-
ture with a depth of 0.5 um, filled with superfluid helium
via capillary action [47]. Once the device is filled,
thermionic emission from a tungsten filament located
above the helium surface can be used to generate elec-
trons, which are then naturally trapped above the liquid
surface. We note that trapping one or two electrons also
requires controlled loading and unloading of electrons into
the trap region from a larger reservoir area where electrons
are stored [not shown in Fig. 1(a)]. This type of electron
manipulation is quite standard and has been experimen-
tally demonstrated in multiple devices; see, for example,
Refs. [56,59]. For the purpose of the current theoreti-
cal study, we consider a simple array of electrodes that
allow for the investigation of entanglement between two
electrons, which we assume have already been loaded suc-
cessfully into the device. The rectangular device geometry
and dimensions were chosen to create an in-plane motional
quantization axis along the x direction, with energy gaps
in the frequency range of 5—15 GHz. These states are
decoupled from motional states along the y direction at sig-
nificantly higher, approximately 6 times larger, frequency.
Because of this large separation in frequency, we ignore
the states directed along the y axis in this one-dimensional
study. Voltages applied to seven 200-nm-wide electrodes
spaced by 200 nm beneath the helium layer provide the
degrees of freedom needed to form an electrostatic double-
well potential for the two electrons, as shown in Figs. 1(b)
and 1(c). The electrostatic potential in the trap region is
given by
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FIG. 1. (a) Schematic microdevice, in which two electrons are

trapped on the surface of a liquid helium basin in a double-
well potential created by electrodes 1—7. Control and readout
of the quantized motion is provided by two superconducting
coplanar waveguide resonators, dispersively coupled to the in-
plane motional states of the electrons. (b) Example configuration
for the full two-dimensional electrostatic potential at the helium
surface z = 0.5 wm in the device, which realizes two separate
wells. Brighter colors represent a stronger potential given in
arbitrary units. (c) One-dimensional linecut of the potential in
(b) along y = 0. (d) One-dimensional coupling constants from
each individual electrode beneath the helium layer along y = 0
and z = 0.5 wm. These coupling constants give rise to the total
potential as given by Eq. (1).

where o; = C;/Cy is the relative contribution to the poten-
tial defined by the capacitance between a region of space
at position (x, y) on the helium surface and the correspond-
ing electrode. The total capacitance is Cx = ), C;, and V;
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is the voltage applied to the ith electrode, which can be
adjusted to create particular trapping potential configura-
tions. We note that the top electrodes at the helium sur-
face are held at ground potential. The coupling constants
a;(x,y) are calculated by solving the Laplace equation
for the electrostatic potential numerically, using standard
finite-element modeling techniques [see Fig. 1(d)]. The
double-well trap is achieved by applying a negative volt-
age to the central electrode [electrode 4 in Fig. 1(a)] and
positive voltages to the other electrodes. Particular choices
of applied voltages will be described further in Sec. III,
where we also discuss how this setup allows us to adjust
the electron motional frequencies over a broad range,
thereby enabling the generation of entanglement between
the two electrons at certain conditions. We note that thicker
layers of helium lead to stronger screening of the bottom
electrodes by the top ones, reducing the coupling constants
from the seven control electrodes. By choosing a specific
helium thickness of z = 0.5 wm we aim at ensuring suf-
ficiently high anharmonicities (greater than 500 MHz) of
the traps as thicker layers induce more harmonic trapping
potentials.

Coherent control and readout of the electron motional
states in this type of microdevice is based on coupling
the electron motional states to microwave frequency pho-
tons in superconducting coplanar waveguide resonators
[see Fig. 1(a)], with a coupling grr/27 = (1|d - E|0) =
efrRrOURE/0X/ZRF/M.we [56]. In this expression d is the
dipole moment of the oscillating electron along the x axis,
E = darp/0x- VX is the electric field created by the res-
onator at the position of the electron, e and m, are the
electron charge and mass, respectively, agr is the coupling
constant for the resonator electrode, V¢ is the voltage
amplitude of zero-point fluctuations in the resonator, frg
and Zgr are resonator frequency and impedance, and w,
is the electron motional frequency along the x axis. For
typical values of darp/dx = 0.5 x 10° m™!, Zzgp = 50 ,
frr = 7 GHz, and w./27w = 5 GHz, we find that grp /27 ~
12 MHz.

At low temperatures, the decay of energy from the
electrons-on-helium system occurs due to its interaction
with helium surface ripplons and bulk phonons (see, for
example, Refs. [40,46]). The total rate of decoherence due
to these processes has been estimated to be approximately
I'/2m =3 x 10* Hz [40], allowing the realization of the
strong coupling regime (ggrr > ') between the microwave
photons and the electron motional states.

In this device, the two electrons are coupled individu-
ally to two superconducting coplanar waveguide (CPW)
A /4 resonators, each having a different resonant frequency.
The crosstalk coupling between an electron and the other
electron’s resonator is approximately 40 times smaller than
the direct coupling to its own resonator, so we ignore this in
our analysis. It should be noted that this classical crosstalk
can ultimately limit the fidelity of gate operations, but it

can be mitigated by applying appropriate compensation
tones [82]. In the dispersive regime of cQED, in which
grr/|we — wrr| K 1, the frequency of the resonator is sen-
sitive to the state of the electronic motion, which can
be detected by measuring the transmitted microwave sig-
nals through the CPW feedline connected to the resonators
[42,56,63].

B. Model Hamiltonian

Our model Hamiltonian describes two electrons trapped
in a double-well potential set up by seven electrodes as
given in Eq. (1), but we restrict our calculations along
the x direction only. The interaction between the electrons
is given by a Coulomb term that gives rise to their cor-
related motion. The full Hamiltonian for the system, in
dimensionless units, is then given by

P 1 &
H= Z ( T al + U(xi)> + u(x1,x2), 2
i=1 i

where v(x) = —ep(x)/E; is the trap potential. Here,
©(x) = ¢(x,0) is the electrostatic trap potential given in
Eq. (1), and Eq = h*/mex} is our energy unit (1 is the
reduced Planck constant). The value xo = 123 nm is our
length unit, representing the characteristic interelectron
distance corresponding to a typical electron density of
~ 2 x 10° cm™? in microdevices [50]. The soft Coulomb
interaction is given by

K
u(xy,xz) = ’
Vo —x2)% + €2

where k = €?/(4meoEq) = 2326 gives the strength of the
Coulomb interaction (g is the vacuum permittivity). We
have introduced a shielding parameter € = 1072 to remove
the singularity at x; = x, [83]. We note that, due to the
small distance between the electrons and the underlying
electrodes, the Coulomb interaction will be reduced due
to screening effects. However, in our analysis we con-
sider an unscreened Coulomb interaction, which sets an
upper bound for the interaction strength between the two
electrons. We also omit coupling of the electrons to the
ripplons in our study (see details in Appendix A).

Here we consider deep potentials v(x) with barrier
height >~ 80 meV and separated at the distance >~ 1.7 um,
which prohibits tunneling through the barrier between the
wells for the bound electron states.

This encourages us to split the potential into two sepa-
rate wells. Denoting the position of the barrier maximum
by xp, we can define

€)

v(x), x <Xxp,

Loy
P v(xp),

4a
X = Xp, (42)

030324-4



COULOMB INTERACTION-DRIVEN ENTANGLEMENT...

PRX QUANTUM 5, 030324 (2024)

v(xp),

v (),

X <X
i () = >

(4b)

X = Xp,

with L and R labeling the left and right wells, respec-
tively. We can then express the total double-well potential
as the sum v(x) = vX(x) + vR(x) — v(xp). Since there is
negligible spatial overlap between single-electron states in
different wells, we can omit spin and focus on motional
product states in which one electron is localized in the left
well while the other electron is localized in the right well.
In essence, a sufficiently deep double-well trap allows
us to treat the electrons as distinguishable particles, labeled
by their position [84]. The one-body Hamiltonian for each
electron can then be written as
5 1 &
hA:—§@+vA(x) (5)

with 4 € {L, R}, and the two-body Hamiltonian is given by
Eq. (2).

Throughout our analysis we vary the seven electrode
voltages V; to adjust the shape of the double-well potential
v(x), and hence also the energy spectrum and frequencies
of our system. We refer to each such choice as a well
configuration, and the tuning between configurations is
what allows us to realize various quantum gates.

C. State ansatz

We solve the two-body problem described in the previ-
ous section by exact diagonalization of the Hamiltonian in
Eq. (2) with respect to a single-particle product basis. The
two-body state ansatz we use is

NL NR

1©,) =YD Cya

i=0 j=0

oLef). (6)

Here, n is the index of each two-body energy eigen-
¢iL¢]R> = [¢f) ® ‘q&f) are two-body product
states built from two single-particle basis sets {|¢7) | i =
0,...,N4} (with 4 € {L,R}). The above ansatz is analo-
gous to the ansatz of full CI theory, but since our electrons
are effectively distinguishable, we use separable product
states instead of antisymmetrized Slater determinants in
our expansion [62].

The quality of ansatz (6) depends on the choice of
single-particle basis states |¢7). Even though we consider
only two particles, a large single-particle basis will quickly
make the exact diagonalization procedure prohibitively
time consuming. This limits us to consider small single-
electron basis sets, whose product states span the state
space of our two-electron system to a good approximation.
One option is to consider the eigenstates of the individual
one-body Hamiltonians " defined in Eq. (5). However,

state, and

this approach neglects all information about interactions
and, as a consequence, still demands a significant number
of basis states to accurately capture the physics. A more
effective approach is to employ the Hartree method (anal-
ogous to the Hartree-Fock method, but for distinguishable
particles), which incorporates the one-body Hamiltonian
with a mean-field contribution from the Coulomb interac-
tion. This method has the advantage of producing single-
particle basis sets that can be truncated to only a few
states while still capturing the interaction physics of the
entangled two-body states within our system.

The construction of the Hartree basis sets |¢;4> and
derivation of the Hartree method are presented in Appen-
dices B and C. With the single-particle basis sets estab-
lished, the coefficients Cj;, in Eq. (6) can be calculated
to find the full two-body energy eigenstates for each
well configuration. This is done through a diagonalization
procedure, which is explained in detail in Appendix D.

We should add, as discussed in more detail in Appen-
dices B and D, that we also have performed full
configuration-interaction calculations with an antisym-
metrized wave-function basis for the two-electron sys-
tem. For the system we are investigating, the Hartree
ansatz with distinguishable particles gives an excellent
approximation to the antisymmetrized full configuration-
interaction calculations.

D. Entanglement

It is natural to consider the system at hand as bipar-
tite, composed of the two electrons as, ideally, individual
subsystems. Such a bipartition comes with the notion of
entanglement—the inability to discern the exact state of
each subsystem, even though the state of the full system
is known. We aim to find certain well configurations for
which a subset of the energy eigenstates are entangled,
in order to enable the set up of two-qubit gates; see, for
example, the discussions in Refs. [8,85,86].

A common entanglement measure for bipartite systems
is the von Neumann entropy of a quantum state, defined as

S = —tp logy (D)1, (7)

where p is the reduced density operator of either sub-
system. We use this measure to quantify entanglement
and refer to it simply as the entropy. (See Appendix E
for calculational details.) In what follows we denote the
entanglement entropy of each energy eigenstate |®,) by S,.

The two-body state of the full system can be expanded
in any product state basis from the subsystems, such as in
Eq. (6). While the Hartree basis discussed above provides
a succinct picture of the interaction between subsystems,
another basis offering a clear picture of the entanglement
is the Schmidt basis, found by doing a singular-value
decomposition of the coefficient matrix Cj;,, as outlined in
Appendix E. In the Schmidt decomposition of a two-body
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state, each term involves a product of unique, orthogo-
nal Schmidt states. It follows that the Schmidt states are
eigenstates of the reduced density operators of each sub-
system. Then, the mixed state of each subsystem can be
interpreted as a statistical ensemble of its Schmidt states,
and the Schmidt coefficients (the singular values), when
squared, give the occupation number of each Schmidt
state. Our calculations indicate that the Hartree basis actu-
ally serves as an approximate common Schmidt basis for
all the two-body energy eigenstates of our system. In addi-
tion to the von Neumann entropies S,, we therefore map
the two-body coefficients Cj;, to provide a clear overview
of which products of single-electron states are involved in
each entangled two-body state. For simplicity, we denote
the Hartree product states as

i) = 1ij) (8)

but note that these product states are not to be directly
interpreted as computational basis states for quantum com-
puting. We cannot do any measurements to collapse the
two-electron system into any of these separable states, so
they should be interpreted only as an ideal single-particle
product basis for describing the two-body states of our
system. The states that should be interpreted as compu-
tational basis states are four specific energy eigenstates of
configuration I, as defined in Sec. II E below.

E. Gate operation

We target three specific well configurations that are
ideal for operation of one-qubit rotations as well as two-
qubit +/iSWAP and controlled-Z (Cz) gates [85,87,88]. Each
configuration is defined through specific entanglement
entropies of the two-body energy eigenstates.

Configuration I (see also the discussions in the next
subsection and Fig. 2) corresponds to the case in which
each electron has a distinct transition frequency between
its ground and first excited states. The correlations between
the two electrons are then minimal, and the state of the
electrons can be controlled, i.e., to perform single-qubit
gate operations and readout, independently via their asso-
ciated resonators using cQED techniques [63]. We focus
on cases in which the frequency of the left qubit is larger
than that of the right qubit, and within the resonator work-
ing range of 5—15 GHz. Then the two-body energy eigen-
states |Dy), |P1), |D2), and |P4) have maximum overlap
with the Hartree product states [00), |01), |10), and |11),
respectively, and we interpret these eigenstates as compu-
tational basis states. Because of the minimized correlation,
the entanglement entropy is zero for all energy eigenstates
of this configuration.

Configuration II is designed to realize the two-qubit
~/ISWAP gate. It can be achieved by an avoided crossing
of the first and second excited eigenstates, so that they are
given by

|1) = (10) — [01))/v/2,

)
@) = (110) + [01))/v/2.

All other energy eigenstates must remain product states to
ensure that only |10) and |01) are coupled. The entropy is
then 1 for the two states |®;) and |®,) and zero for the
rest. For a further discussion of avoided level crossings in
coupled quantum dot systems, see, for example, Ref. [8].
The presence of higher energy levels gives rise to a
different type of correlation between the two electrons

b
@ (b)
] 120)
Do
S
™~
_[\') _l’_
& =
N S
+ |10)
)
=
&
h

FIG. 2.
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1 20 11 02
b 02) |20) 11) 02)
_— [\}
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_|_
3 + € =
= =z |01
o01) | |01) 5
Em Em

(a) Transition frequencies in the noninteracting picture for configuration I. This configuration corresponds to a detuned

system in which all transition energies are distinguishable, and A; = " — o® > 0, with £ = —B% = A;/2. (b) Transition frequencies
in configuration II. Here the detuning is zero, Ay = 0, and the two states |10) and |01) are degenerate in the absence of interactions.
Distinct anharmonicities kept at 8 = —BR = A;/2 separate the higher states from one another. (c) Configuration III is realized when
the three states |20), |11), and |02) share the same transition frequency from the ground state. This occurs when 8- = —g% = —Apy.
The detuning has opposite sign of that in configuration I, Ay = —A;/2.
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in our system. We are particularly interested in a spe-
cific type of interaction that enables the realization of a
controlled-phase cz gate [63,88]. Configuration III real-
izes the conditions to implement this type of two-qubit
gate, which involves a “triple” avoided crossing between
the third, fourth, and fifth excited eigenstates:

|d3) = (120) — 02) — /2]11))/2, (10a)
|dy) = (120) + 102))/+/2, (10b)
|s) = (|20) — [02) + /2 [11))/2. (10c)

The entropies of these states are 1.5, 1, and 1.5, respec-
tively. In this configuration, too, the remaining energy
eigenstates must stay as close to their noninteracting coun-
terparts as possible, with entropy close to zero. To quantify
the strength of this two-qubit interaction, we define the
ZZ-coupling strength [86,89,90] (see also the discussions
below) as

{ =FE4— E, — E| + Ey. (11)

This quantity measures the shift in transition frequency of
one electron when the other electron is excited. The ZZ
coupling plays an important role in our analysis since it
conveys information about the coupling to higher excited
states.

In configurations I and 11, ¢ should be as small as possi-
ble to minimize phase errors when driving gates. However,
in configuration III the action of the shift can be used to
alter the phase of the computational basis state |®4), which
generates the Cz gate [85,88,89].

Tuning the electrode voltages diabatically between con-
figuration I and configuration II or III, the abovementioned
two-body quantum gates are realizable [85,88]. Universal
two-qubit logic can be performed as follows. We begin
with configuration I, where the system is initialized in the
ground state and the electrons are decoupled from each
other. A single-qubit gate can then be applied to either
electron using microwave excitations on corresponding
coplanar waveguide resonators, thereby preparing the elec-
trons in specific quantum states. Subsequently, we tune the
voltages on the gates to diabatically transition the system
to configuration II, allowing the system to evolve for some
time to generate entanglement between the two electrons,
effectively performing a two-qubit gate operation. Finally,
the system is returned to the initial configuration, where
the electrons can be further manipulated using single-qubit
gates or measured via the corresponding resonators. We
proceed to demonstrate that the necessary well configura-
tions and resulting electron entanglement are achievable
through targeted numerical optimization. The remainder of
this work is focused on the resulting configurations, and we
leave actual simulations of time-dependent gate operation
to future work.

F. Configurational search

The three desirable well configurations defined in the
previous section can be targeted through numerical opti-
mization methods, with the seven electrode voltages as
the variational parameters. To achieve the avoided cross-
ings described above, we can use the fact that the Hartree
product basis incorporates much of the Coulomb interac-
tion between the electrons, so that the residual Coulomb
interaction term is small. This means that the energy spec-
trum of the full interacting system should be close to the
spectrum of Hartree product states [91] |ij), with tran-
sition energies given by the sum of the corresponding

Hartree transition energies €/ — €; + € — € (where the

e/l are the eigenvalues of the Hartree states as defined in

Appendix C). This approximation matches the interacting
spectrum well except at the avoided crossings, where the
interaction turns what would have been an energy cross-
ing in the noninteracting case into an avoided crossing
in the interacting case. In other words, we can look at
the Hartree energies of the system and target degenerate
Hartree energies to find avoided crossings.

We also target qubit anharmonicities of equal magnitude
but opposite sign throughout all three configurations. This
was shown to suppress the unwanted ZZ coupling defined
in Eq. (11) for superconducting qubits [88-90], and so
we investigate if the same principle is applicable to our
charge qubits. The anharmonicity of each qubit can again
be defined through the Hartree energies, which serve as a
noninteracting, single-particle guiding picture throughout
this section.

Figure 2 illustrates the noninteracting energy spectra of
the three target configurations. The transition frequency
from |0) to |1) for subsystem 4 € {L, R} is denoted by ef —
el = ! (with i = 1). In order to selectively address the
ground and first excited energy eigenstates while avoid-
ing population of higher states, the electrostatic potential
is intentionally designed to be anharmonic. We define
the anharmonicity to be the difference in the excitation
energy between |0) — |1) and |1) — |2). Consequently,
the transition frequency for |0) — |2) is given by e —
el = 20" + p*, where p* is the anharmonicity.

The energy of the noninteracting Hartree product state
|ij) is given by €; = €] + €. We refer to the difference in
energy between states |10) and |01) as the qubit detuning,
and denote it by A = w’ — wf. Using the detuning and the
anharmonicity, we can express the transition frequencies
for |11) — |20) and [02) — |11) by €30 — €11 = A + B
and €11 — € = A — ,BR.

Figure 2(a) illustrates the noninteracting energy spec-
trum for configuration I. In this configuration all transition
frequencies are distinct, and we have chosen a detuning of
A = o' — w® > 0 so that the electron in the left well has
higher transition frequencies than the electron in the right
well. Furthermore, we have set X = —p% = A;/2 such
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that A + B/ = A — BR > A, i.e., the energy gaps between
|20) and |11), and |11) and |02) are equally large, and
greater than the detuning.

Figure 2(b) shows the target noninteracting energy spec-
trum for configuration II. In this configuration the single-
particle basis states |01) and |10) are degenerate, while the
higher states |20), |11), and |02) are kept separate from
each other. This implies that Aj; = w* — w® = 0, and we
have maintained the anharmonicities at the same values as
in configuration I, i.e., 8- = — g% = A;/2.

Finally, Fig. 2(c) shows the target noninteracting energy
spectrum for configuration III. In this configuration the
higher states |20), |11), and |02) are degenerate, while
[10) and |01) are distinct. To realize this configuration,
we require A 4+ L = A — R =0, and with - = —pg~R
we find that 8L = —A. Keeping the anharmonicities of
the two wells the same as in configurations I and II, i.e.,
,BL = —ﬂR = A1/2, leads to Ay = —A1/2.

The residual Coulomb interaction between the elec-
trons splits the degeneracy in energy levels and leads to
avoided level crossings, entanglement between the two
electrons, and hence the possibility of driving two-qubit
gates. The anharmonicities being nonzero, with equal mag-
nitude and opposite sign also ensure that the avoided
crossing between the first and second excited states and
the triple avoided crossing between the higher states are
separated [88,89].

We note, as indicated in Figs. 2(a) and 2(c), that the
detunings in configuration I and configuration III have
opposite signs. This is not incidental, but has a deliber-
ate purpose; it allows for the realization of configuration
II somewhere in the transitional region between config-
urations I and III, as long as the anharmonicities have a
magnitude greater than zero along the same path. This hap-
pens because the detuning has to change sign in order to
go from configuration I to configuration III, leading to the
characteristic level crossing of configuration II when the
detuning is zero. Hence, our task simplifies to locating con-
figurations I and III with equal anharmonicities by tuning
the electrode voltages. We can then define a parametriza-
tion that interpolates between these two configurations,
and as long as the anharmonicities do not go to zero, we
are guaranteed to get a configuration Il somewhere along
the parametrization path.

IT1. RESULTS AND DISCUSSION

We start this section by summarizing the numerical
optimization procedure that was used to locate the above-
defined configurations I and III in the parameter space of
seven electrode voltages. We then define a parametrization
of the voltages and identify the location of configuration II.
Thereafter we discuss the properties of each configuration
in more detail. Finally, we make an attempt at interpreting
our results in terms of a phenomenological model.

A. Configurational results

To find the electrode voltages corresponding to config-
urations I and III, we express the search as an optimiza-
tion problem by defining cost functions whose minima
align with the desired properties for each configuration, as
described in Sec. ITF. Each cost function was minimized
by evaluating its gradient with respect to the voltages. The
optimization of the cost functions was done using stan-
dard gradient descent methods with the so-called ADAM
algorithm [92] for the gradient updates. As is common in
the optimization of multiparameter functions, we found
that our cost functions often exhibit several local minima,
a feature that makes our solution dependent on the ini-
tial guess for the voltages. Because of this, our approach
involved manually adjusting the voltages to obtain an ini-
tial well configuration resembling a double-well trap with
features close to the desired properties, and then running
the optimization search. Appendix G provides an in-depth
discussion of the full optimization process, including spe-
cific expressions for the cost functions.

For configuration I, this procedure successfully achieves
distinct transition frequencies of each well, within the
resonator working range of 5-15 GHz. We also tar-
get anharmonicities with equal magnitude and opposite
signs to suppress ZZ crosstalk in higher-energy states, as
discussed in Sec. IIF. However, an arbitrary choice of
transition frequencies and anharmonicities does not nec-
essarily result in an appropriate well configuration. By
performing the optimization process for a range of possible
candidates, we ended up targeting the specific transition
frequency of w’/2m = 11 GHz between the two lowest-
energy levels in the left well, and a transition frequency
of w®/2m = 9GHz in the right well. This corresponds
to a detuning of A/2m = (o' — ®)/2m = 2GHz. At
the same time, anharmonicities of g*/27 = —pR/2n =
(A1/2)/2n = 1 GHz were targeted. Optimization of the
cost function based on these target values [Eq. (G1) in
Appendix G] yields properties that are very close to
the desired ones. The two-body energies of the result-
ing configuration are F;/27 = 8.99GHz and E,/27 =
11.01 GHz relative to the ground state, and the anhar-
monicities are equal to the targeted values of £1 GHz to
three decimal places.

For configuration III, we achieve a triple degeneracy
point between the computational basis state [11) and
states |20) and |02). Here we construct a cost func-
tion targeting the entropies of the energy eigenstates
|®3), |Dy), and |Ps) to be 1.5, 1.0, and 1.5, respec-
tively, while keeping the entropies of all other eigenstates
small. In addition, we target the detuning Ayg/2m to be
—1GHz and the same anharmonicities as for configura-
tion I, 8% /2w = —BR/2m = 1 GHz. As discussed earlier,
this guarantees the presence of configuration II for a cer-
tain set of voltages in the transition from configuration I to
configuration III. We use the set of voltages obtained for
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configuration I as an initial guess for the optimization of
this cost function [Eq. (G2) in Appendix G]. This optimiza-
tion results in two-body energies E;/2m = 27.24 GHz,
E4/2m = 27.42GHz, and Es/2m = 27.61 GHz relative to
the ground state, with entropies of 1.50, 1.00, and 1.49,
respectively.

To visualize properties of the configurations and the
tuning between them, we express the seven electrode volt-
ages with one configuration parameter A, through a linear
parametrization

V(&) =1 = AV + AV (12)

Here, V| and Vyj are vectors with the optimized voltages
for configurations I and IIl. By construction, configura-
tion I then corresponds to A = 0, while configuration III
corresponds to A = 1. Explicit values of the voltages for
each optimized configuration are provided in Table I in
Appendix H.

Figure 3 shows CI results for the two-body energy spec-
trum for the five lowest excited states, the corresponding
entanglement entropies, as well as the anharmonicities and
detuning of the wells as a function of the configurational
parameter A. Two avoided crossings are clearly observed in
the spectrum in Fig. 3(a): a triple avoided crossing at A = 1
between the three highest-energy states, and an avoided
crossing between the two first excited states at A &~ 0.46,
corresponding to configuration II. In the latter case we
extract the coupling strength of g¢; &~ 113 MHz from the
energy gap at the location of the avoided crossing. This
will be discussed in more detail in Sec. 111 B below.

Qualitatively, the impact of the Coulomb interaction on
the system’s electrons can be understood in two steps.
First, the electric field created by one electron alters the
potential energy experienced by the other electron. This
results in a modified effective potential trap, which gives
rise to the Hartree product states and their associated ener-
gies. These noninteracting energies are depicted by the
dashed lines in the insets of Fig. 3(a). Second, in the
case of a voltage configuration that results in two or more
Hartree product states with the same energies, the resid-
ual Coulomb interaction between the electrons lifts the
degeneracy and leads to an energy gap between the cor-
responding two-body energy eigenstates, resulting in the
abovementioned avoided crossings. Far from the point
of degeneracy, the Hartree product states provide a good
description of the full two-body energy eigenstates. This
can be observed, for example, in configuration I at A = 0.
In these configurations, the calculated entropy values S,
demonstrate minimal values, indicating reduced correla-
tions between the electrons. The entropy values reach their
maximum and align with theoretical values precisely at
the locations of the avoided crossings, as illustrated in
Fig. 3(b).

— [®1) — D) — [P3) — [|Dy) |®5)

20

w/2m (GHz)

0.95 1.00 1.05

15 111

10

(b)

0.0 0.5 1.0 1.5 2.0
A

FIG. 3. (a) Transition frequencies from the ground state of
the five lowest excited energy eigenstates, as a function of the
configurational parameter A. Solid lines correspond to the tran-
sition energies of the full Hamiltonian. In the insets we have
included thin dashed lines for the transition energies of the non-
interacting Hartree product states. (b) Von Neumann entropies
of the same five eigenstates as functions of the configurational
parameter A. The entropy is calculated with the binary (base-2)
logarithm. (c) Anharmonicities of the left (8%) and right (8%)
wells as a function of the configurational parameter A, as well
as the detuning A = w® — w’ between the two wells. Marked in
all subfigures are configurations I, II, and III at their respective A
values of 0, 0.46, and 1.

A triple avoided crossing is observed in the higher-
energy states in configuration III at A = 1, and arises due
to the opposite signs of the anharmonicities [see Fig. 3(c)]
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[88]. It is worth mentioning that the anharmonicities vary
across different values of A since the linear interpolation of
the voltages does not guarantee that the properties of the
system also behaves linearly.

The two-body coefficients Cj;, corresponding to the
six lowest-energy eigenstates, as defined in ansatz (6),
are depicted in Fig. 4 for the three main configurations.
These coefficients demonstrate a good convergence of
our optimization algorithm towards the target wave func-
tions presented in Egs. (9) and (10). In configuration I,
the two-body eigenstates are effectively described by sin-
gle Hartree product states, indicating the suppression of
electron-electron correlations when the potential wells are
detuned. In contrast, the coefficients Cj; , for configurations
IT and III reveal a high degree of entanglement, which is
quantified using von Neumann entropies. A closer inspec-
tion of these coefficients reveals the presence of small,
undesired Hartree terms in the two-body wave functions.
For instance, for the first excited state in configuration I,
shown in Fig. 4(a), we find that

|®1); & +/0.995 |01) + +/0.005 |10) (13)

with a corresponding entropy of S; ~ 0.04. Furthermore,
we find a small mixing in states |®P3), |Py4), and |Ds),
indicating residual correlations between the two electrons
through interactions with higher-energy states. The degree
of these remaining correlations, quantified by the entropies
Sy, show small but nonzero values for all excited energy
states. The underlying factors contributing to these obser-
vations will be discussed within the framework of the
effective Hamiltonian model presented in the following
subsection.

For the first two excited states in configuration II,
shown in Fig. 4(b), the many-body wave functions are
approximately described by

|®1); &~ +/0.513]01) — +/0.487]10) ,
|®5) & +/0.487101) + +/0.513 |10),

which are almost identical to the maximally entangled
states in Eq. (9). The entropy for these entangled states
reach a maximum value of 1, as seen in Fig. 3(b). Here too,
none of the higher excited states can be entirely described
by single product states, indicating the presence of small
residual correlations. The entropies of the eigenstates |D3),
|®4), and |Ps) for configuration II are around 0.11, 0.23,
and 0.13, respectively.

We display the coefficients of the energy eigenstates for
configuration III in Fig. 4(c). The three states involved in
the triple avoided crossing are close to the target states

— |®g) — |®1) — [D2)
— |®3) — |Py) |®5)

(a) Configuration I

N

O HF N W O~ N W

(b) Configuration II

m "w "m

SO P N W O~ N W

| | B |

(c) Configuration III

3
L2
1
ol
3
L2
1 IR O
0 - O
01 23 0123 01 2 3
J J J
E |

-1.0 -0.5 0.0 0.5 1.0

FIG. 4. Two-body wave-function coefficients C;;,, of the six
lowest-energy eigenstates for each configuration, as defined in
Eq. (6). The indices on the x and y axes correspond to the Hartree
product states involved with each coefficient, so that the coef-
ficient at tile (7, j) is multiplied with the product state |¢} @)
and summed into the expansion of each energy eigenstate.
(a) Coeflicients for configuration I. Each energy eigenstate
is well approximated by a single Hartree product state. (b)
Coefficients for configuration II. The first and second excited
eigenstates are close to maximally entangled. (c) Coefficients
for configuration III. Here, the third, fourth, and fifth excited
eigenstates are entangled.
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given in Egs. (10):

|D3)m ~ —+/0.259 02) + +/0.244 [20) + +/0.497 |11),
|D4) i ~ +/0.461102) + +/0.538 |20) — +/0.001 [11),
|®s) & +/0.27902) — +/0.218 |20) 4+ +/0.502|11) .

In this configuration, however, an unwanted coupling is
present in the first and second excited eigenstates |®;) and
|®,). The degree of entanglement for these states is rather
weak, with entropies of around 0.07, as shown at A = 1 in
Fig. 3(b).

We note that Fig. 4 demonstrates that the Hartree states
serve as approximate Schmidt states for all the energy
eigenstates of our system, as mentioned in Sec. II D. This
is clearly seen from this figure since each row and column
only have one approximately nonzero coefficient.

For the sake of visualization, we include in Appen-
dices C and F the probability distributions of the one-body
Hartree basis states (Fig. 6) and the particle densities of
the two-body energy states (Fig. 7) for each of the three
configurations.

B. Effective Hamiltonian

In addition to the numerical results above, we present
a simplified model of the system to provide an intu-
itive understanding of the underlying coupling mechanism
between the two electrons. For this purpose, we expand
both the electrostatic potential terms and the Coulomb
interaction in our model Hamiltonian [Eq. (3)] around
equilibrium positions x; and xz for the two electrons.
These equilibrium positions are defined so that the first-
order terms in the displacements Ax; cancel each other,
leaving only terms of second order and higher.

The Taylor expansion of the electrostatic potential
around the equilibrium positions results in harmonic traps
w?Ax?/2, with frequencies defined by the curvature of
the electrostatic potential at the equilibrium positions. The
Coulomb interaction between the two electrons can also be
expanded in terms of the displacements Ax;. Considering
only up to second-order terms we obtain

K K Ax; — Axy N (Ax; — Axy)?
xi—x| d d d? ’

(15)

where d = xz — x;, is the distance between the two elec-
trons in equilibrium. The total potential energy of the
system in displacement-dependent terms takes the form

2 2
w: +
UC%E ’TCAx,?eréAxlez, (16)
i=1,2

where f = 2«/d?. The first term in this equation
describes how the Coulomb interaction effectively mod-
ifies the potential wells from the electrostatic potential.
This is similar to the Hartree method since it computes
an effective mean potential for each electron, created by
the other electron in the system; however, it is also differ-
ent in that it treats the electrons as point particles instead
of quantum particles. The last term in Eq. (16) gives rise
to correlations between the two electrons. By introducing
canonical transformations for the displacements and apply-
ing the rotating-wave approximation, the Hamiltonian of
the system takes the form
H=~otdta+ o®b'b+g@'b+ab",  (17)

where & and b are ladder operators of displacement in the
left and right wells, respectively, (0)? = @? + w? and
(w®)? = @} + w? are modified vibrational frequencies,
and g = w2 /2v w R describes the interaction strength.

This Hamiltonian is diagonalized by a standard Bogoli-
ubov transformation Uy = exp[6 (a'h —abh] with a
rotation angle 26 = arctan(2g/A) [63]. The resulting
Hamiltonian takes the diagonal form H = Qtéata +
Q BTB. The & and B are transformed ladder operators,
and the eigenfrequencies of the corresponding hybridized
modes are given by

QFf = l(a)L + o £ /4g% + A?).

: ()
Here A = w* — of is the detuning between the two wells,
as defined in Sec. I F.

Given the multilevel nature of electronic states in each
well, one has to carefully treat the unitary transforma-
tion of the effective Hamiltonian in Eq. (17). Including
the anharmonicity of each oscillator as additional terms
pLata@ta — 1)/2 and BRBTH(HTH — 1)/2 in the Hamil-
tonian, which corresponds to including quartic terms
in the expansion of the electrostatic potential, results
in correlations emerging from interactions between the
higher-energy states. After performing a Bogoliubov trans-
formation Uy similar to that above, the term corresponding
to the anharmonicities takes the form

= 2a1ah'5, (19

where ¢ is given by

&= ﬁg(tan%R — tan 9—L> (20)

2

with tan 6z = 2+/2g/(A £ B“/R) [88]. The quantity ¢
corresponds to the energy shift defined in Eq. (11), and is
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FIG. 5. The energy difference ¢ defined in Eq. (11). The

orange line represents results from the numerical solution of the
full two-body problem, whereas the teal line shows ¢ values cal-
culated from the effective Hamiltonian approach. Frequencies
obtained from Hartree energies and a fixed coupling strength
determined at the avoided crossing of configuration IT were used
in the effective model calculations. Configurations I, II, and III
are marked with vertical dashed lines at their respective A values
of 0, 0.46, and 1.

the result of interactions between the |20) and |02) states
and the |11) state.

In general, unwanted correlations from this type of inter-
action lead to a conditional phase accumulation on the
electron’s states, as discussed in Sec. IIE. In Fig. 5 we
show calculations of ¢ from our CI calculations and from
the effective Hamiltonian approach. In the framework of
the effective Hamiltonian this quantity strongly depends
on the relative signs of the anharmonicities, which can
be seen from expression (20). For small 67,z < 1 values,
which are realized in configuration I, the coupling strength
can be approximated by ¢ &~ 2g%/(A + BY) — 2g% /(A —
BR). This vanishes at equal but opposite sign anharmonici-
ties of two electrons. However, the CI calculations show
a strong deviation of ¢ from the predictions based on
the effective model for well configurations A < 0.5 and
A > 1.5 (see Fig. 5). We argue that these residual corre-
lations appear due to a complexity in the shape of the
potential wells. Nonlinearities on the localization length
scale of electrons requires us to include higher-order terms
in the Taylor expansion of the electrostatic and Coulomb
potentials. These terms, together with the anharmonicities,
can change for different voltage configurations, a feature
which further complicates our model. These intricacies are
inherent to the electrostatic field generated by the array
of electrodes in the microdevice considered. Potentially,
the ZZ-coupling strength can be included in the configura-
tional search as another minimization parameter to further
suppress such correlations between the two electrons.

The effective Hamiltonian presented in Eq. (17) repre-
sents one of the most elementary models for describing
coupled two-qubit systems. This model finds widespread
use in various superconducting qubit architectures. Its
simplicity in form facilitates the mapping of diverse entan-
gling gates from these platforms to our system. How-
ever, alongside the simplicity of this model, we have
illustrated its limitations when comparing its predictions
with the results of full CI calculations. These limitations
need to be handled thoughtfully in order to account for
all potential sources of entanglement. Addressing these
limitations becomes crucial for providing an accurate
and complete description of the entanglement dynam-
ics within the system and will be the scope of future
work.

IV. CONCLUSIONS

The results presented in this work highlight how the
Coulomb interaction can induce motional entanglement
between electronic states localized in separate wells above
the surface of superfluid helium. To find the optimal
specific device parameters for generating the entangled
states, we have developed an optimization method based
on many-body methods like full CI theory [62] together
with effective optimization algorithms. Our optimization
methodology allows us to determine the optimal voltage
configuration on the device electrodes needed to generate
entanglement. In this way, the many-body-physics-based
methodology we have developed has the potential to serve
as a valuable tool to guide experimental work and inform
future device design.

As an illustration, in this work we examined three
distinct device parameter configurations (I, II, and III),
leading to different types of entanglement between the two
electrons. The tunability of the microdevice allows us to
adjust the applied voltages and dynamically create highly
anharmonic electrostatic traps, even with varying signs of
anharmonicity. This tunability offers precise control over
the potential landscape experienced by the electrons and
allows for the tailoring of trapping potentials for specific
experimental requirements, such as the experimental real-
ization of specific gates and operations on the electronic
qubits. Additionally we employed an effective Hamilto-
nian to approximate the two-electron system, which was
in turn compared with our exact CI calculations, allow-
ing us to investigate the limitations of the approximations
used to construct this effective model. This comparison
holds promise for a more detailed understanding of errors
in the simulation of quantum devices based on this trapped
electron system.

Finally, recent theoretical investigations have explored
the dynamics and decoherence of electron spins above
the surface of liquid helium [46]. These studies con-
sidered the role of spin-orbit interactions, which can be
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artificially enhanced by applying a spatially inhomoge-
neous magnetic field parallel to the helium surface. In
future studies the methodology developed in our work can
be extended to investigate entangling interactions between
spins, devices containing spatially varying magnetic fields,
as well as dynamical driving fields to investigate the time
dependence of entangled charge states and spin states.

In addition to studies of the time evolution of these
quantum-mechanical systems and thereby the temporal
evolution of entangled states, we plan to extend our stud-
ies to more than two particles, with the aim to explore
the experimental realization of many-body entanglement
for electrons above the surface of liquid helium and solid
neon. Using the Coulomb interaction, as demonstrated in
this work, to facilitate entanglement between motional
states, one could consider a linear chain of electrons
trapped in a long microchannel filled with liquid helium.
Experimental realizations of single chains of electrons with
up to several hundred electrons have been demonstrated
in 100-um-long channels [50]. In this setup, each electron
can be controlled by its own individual electrodes beneath
the helium surface, similar to the system studied in this
work. Such a scaling up of the system to more electrons
in a linear chain resembles to a large extent linear ion
trap architectures. In a similar way, the interaction between
electrons can be mediated by Coulomb interaction-driven
motional modes of the linear chain, thereby allowing for
an upscaling of the system.

The hope is that these theoretical tools can guide stud-
ies of entanglement, development of experimental devices,
and realization of quantum gates and circuits for systems
of many trapped and interacting electrons.
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APPENDIX A: ELECTRON-RIPPLON COUPLING
HAMILTONIAN

The coupling of the electron to the surface deformations
(ripplons) is described with Hamiltonian
H; = eE&(1), (A1)

where £(r) is the helium surface displacement and E is
the normal component of the total electric field, which
includes both the field produced by the trapping electrodes
as well as a polarization term due to a change of the
helium surface curvature by the electron [40]. To estimate
the electron-ripplon coupling energy, we consider only
the effect of the externally applied field because, for the
typical values of voltages used to create double-well poten-
tial, the applied field Eipphed ~ 10° V/m is larger than the

polarization term Epfl(q) ~ 2 x 10* V/m for the ripplon
wavelengths g ~ 1/, (where /, is the electron localization
length in the electrostatic trap). The helium surface dis-
placement can be estimated from the thermal average of
the squared helium surface fluctuations &g, = 1/ (£2)y,. The
helium surface displacement is related to the creation and
annihilation operators of ripplons by

1 P
=Y E%wﬁbfq)e'qt (A2)
q

where bji and bq are the ripplon creation and annihila-
tion operators, respectively, w, = \/a/p - ¢* is the ripplon
dispersion relation with helium surface tension o« = 3.7 x
10~* N/m and density p = 145 kg/m3, and S is the area
of the liquid helium surface. At 7= 20 mK a character-
istic value for these thermal fluctuations is &y =~ 0.2 pm.
With these estimates we find that (H;)/hw, ~ 1073, Rip-
plons, being relatively soft excitations, cause slow electron
relaxation due to limited momentum transfer (g < hi7!)
during scattering processes. The energy of ripplons with
this momentum is much lower than the electron level spac-
ing hw, in the double dots. Transitions between electron
orbital states, which are of the order of 5—15 GHz, require
emitting or absorbing two ripplons. The coupling of the
electron to these excitations is weak, resulting in long
electron orbital lifetimes, estimated to be around 0.1 ms
[40,46], and therefore we ignore the electron-ripplon inter-
action in our model Hamiltonian.

APPENDIX B: CONSTRUCTING THE
SINGLE-PARTICLE BASIS SETS

For our numerical calculations, we use a pseudospec-
tral basis, i.e., a discrete variable representation (DVR),
and adopt a linear interpolation for the coupling constants
a;(x). Specifically, we use the one-dimensional sinc-DVR

030324-13



NIYAZ R. BEYSENGULOV et al.

PRX QUANTUM 5, 030324 (2024)

basis suggested by Colbert and Miller [93]. After dividing
the Hamiltonian into two distinguishable subsystems L and
R, as shown in Eq. (5), we establish two sinc-DVR basis
sets, one for each well. We denote these basis functions
by B'={x4(x) |a=0,...,K4} with the correspond-
ing quadrature of collocation points and weights 04 =
{ch,why|a=0,...,K4)} for 4 € {L,R}. The quadrature
is uniform for the sinc-DVR basis, meaning that w! = Ax"
andx?, | = x4 + Ax? forall a.

We let xKL =X = xo , 1.e., the barrier is only included
as a quadrature point in the right system, and we let Ax =
Ax! = AxR. The sinc-DVR functions are then given by

xA ) = ! sinc(x — xﬁ)
* ~ Ax Ax

with
sin(7rx)
sinc(x) = Tx x#0,
1, x=0.

This means that x/ (x§) = (Ax)~'/?8,4 on the quadrature.
By restricting the grid on each side only up to the barrier,
we have effectively established an infinite potential wall.
This means that the potentials given in Eqs. (4) are altered
to

VX X < X
UL(X) — ( )3 b
0, X = Xp,
0 X < X,
UR(X) — B b
v(x), x> Xp.

This forces each electron to remain in its own well, and
might seem an extreme limitation. However, the results in
our model are completely unchanged, and it is much more
computationally efficient and practical to use two separate
basis sets.

The matrix elements of the kinetic energy operator are
given by [93]

2

T
_ 1 Jean” «=r
thy = (x| — 2dbCz|ﬂ> 1y

@oa—pr C7F

and the external potential is approximated using the
quadrature rule, viz.,

vis = (X107 @) x4)
KA
~ Ax Y xd vt () xg () = Sapv (),
y=0

that is, the potential is diagonal. The matrix elements of the
full one-body Hamiltonian can then be written as

4 4
haﬂ = téﬁ + 5aﬂvﬂs

where we have defined the diagonal potential matrix ele-
ments vj = v (x}).

To evaluate the two-body Coulomb interaction, we
examine the matrix elements of tensor products of DVR
states., i.e., [x4x5) = [x&) ® |xj). We also use the con-

vention that (XaX,s| = (X<f| ® ()(ﬁ| |)(Ot)(/3)T for the
conjugate states. We are able to directly compute the
matrix elements of the soft Coulomb interaction operator
using the quadrature rule. The matrix elements are thus

= (xexp Gy, x2) x5 x8)
KL kR

~ AxFAR Y N xEGE X euek, xF)

o=0 =0

UaB,ys

X xp ) X ()

= 5(1)/8135”()(:)1;,)(:?),

which is diagonal for each particle axis. We label the
matrix elements of the diagonal Coulomb operator by

LR — L R
uys = u(xy,,xs).

APPENDIX C: THE HARTREE METHOD

In the Hartree method for two distinguishable particles
we approximate the ground state |®,) of the full Hamil-
tonian A in Eq. (2) as the product state |®g) ~ |W) =
|¢5#X) under the constraint that the Hartree orbitals are
orthonormal, i.e., (¢d|@7) = 1. This lets us set up the
Lagrangian

L=Ey —A(k1es) — 1) — A2 (@818 — 1),

where the A4 are Lagrange multipliers, and the Hartree
energy Ey = (W|H|W) is given by

Eyr = (g5 lh*195) + (@5 1h"165) + (@56 luldgép).

Our next objective is to minimize the Lagrangian with
respect to the Hartree states and the multipliers. To do this,
we expand the Hartree states as a linear combination of

sinc-DVR states, i.e.,

(CI)

ZB %),
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and minimize with respect to the coefficients B4;. Com-
puting oL/ 8330* = 0 gives two coupled eigenvalue equa-
tions,

Kt KR
3 (50 3 85 ) 8 = 88, (20
£=0 y=0

Efl/‘g
KR Kt ,
S (0 s 3 85 Bl =78 (20
B=0 y=0

—_rR
=R

that need to be solved iteratively until self-consistency has
been achieved. The Hartree matrices J%fé are defined as
everything inside the parentheses in the equations above.
By diagonalizing the Hartree matrices, we obtain K
eigenvalues and eigenvectors, not just the lowest pair
A1 and B4, We select the N + 1 lowest eigenvectors,
which gives us the set P/ = {|¢/) | i = 0,..., N4}, where
N < KA. R

The equations we solve are f }qﬁ{‘) =€ \(bf), where
f* is the Hartree matrix defined earlier, and the e are
the eigenvalues with the corresponding eigenvectors |¢{‘).
These eigenvalues describe the energy felt by a single par-
ticle trapped in one of the wells under the influence of
a charge in the other well. Formulated in terms of the
coefficients, the equations are

KA

A pd A
ZfaﬁB = €'By;
=0

with the fag the Hartree matrices from Eqs. (C2). These
equations are solved iteratively until a convergence

of et — M) < s5¢ with 5e =1 x 1071° has been
reached. Here k corresponds to an iteration number. We
choose fa‘g’(o) = h‘;ﬂ as an initial state such that

KA

A4 pA.0) 4,(0) pA,(0)
ZhaﬁB’;i ="V,
p=0

For the three target configurations found through numeri-
cal optimization in this work, the probability distributions
of the first four Hartree states in each well are plotted in
Fig. 6.

APPENDIX D: FULL CONFIGURATION
INTERACTION FOR TWO DISTINGUISHABLE
PARTICLES

Once the Hartree equations are solved, we obtain the
coefficients B4 which allow us to construct the Hartree

ol
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FIG. 6. Probability distributions of the first four Hartree states

in the left and right wells for all three configurations. The posi-
tions of the distributions are shifted along the y axis to reflect
their individual Hartree energy. The effective potentials for each
subsystem, i.e., the well potential set up by the electrodes plus
the mean-field contribution from the other electron, are plotted
as dashed lines.

basis P4 from the sinc-DVR basis B? using Eq. (C1). We
can perform a basis transformation from the sinc-DVR
basis to the smaller Hartree basis by using the relations

k4 k4

Hy =22 BiiByihop:

a=0 =0

(DI)
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kL kR
wa =) ) BuiB Bu B, (D2)
a=0 =0

where Greek letters denote matrix elements in the sinc-

DVR basis, and Latin letters are for the Hartree basis.
Upon inserting the wave-function ansatz into the time-

independent Schrodinger equation and projecting onto a

two-body state <¢f¢f ,

NL NR

Z ZHU 1WCrin = CijnEn,

k=0 [=0

(D of1H | D,)

where the Hj;j = (¢iL¢f|H |pF ) are the matrix elements
of the Hamiltonian in the Hartree product basis. The solu-
tion of this eigenvalue equation yields the coefficients Cj; ,,
where each column corresponds to an eigenstate |®,) with
corresponding eigenenergy E,. The matrix elements of the
two-body Hamiltonian can be expressed as

Hij,kl = hlLk(Sjl + 81kh[ + Ui ki

where the one- and two-body matrix elements in the
Hartree basis are shown in Egs. (D1) and (D2).

APPENDIX E: THE VON NEUMANN ENTROPY

The von Neumann entropy is defined by

S = —tr[p log (A1,

where p is the density operator. The entropy of the eigen-
states |®,) will be zero as they are pure states. However,
the entropy of the reduced subsystems (L and R) of |®,,)
will in general not be zero. Each subsystem will have the
same entropy, and any nonzero entropy can be attributed to
entanglement. We can evaluate the entanglement entropy
by bypassing the construction of the reduced density oper-
ator and using the Schmidt decomposition instead. Specif-
ically, for a given two-body wave function |W) expressed
in terms of the Hartree product states,

NL NR

W) =" Culorerf),

k=0 [=0

we can perform a singular value decomposition of the two-

body coefficients, Cy; = Z;V:O Upo, Vi

jpo O obtain

é)ww)

where

)=o), v = Z o

are the Schmidt states, N is either N* or N® depending on
the definition of the singular value decomposition, and the

o), are the singular values with apz representing the occupa-

tion of the single-particle states ’pr> and ’wlf>. Using the

singular values, we can then compute the von Neumann
entropy of |W) as

N
— Z crpz logz(apz).
p=0

APPENDIX F: PARTICLE DENSITIES

For state |\W) above, we can compute the particle den-
sity as

() =/dy|w<x,y>|2+/dy|w,x>|2

N N
=3 GGl @) (x)

ij=0 =0

NR NL

+ ) Gl ef (),

ij=0 k=0

which collapses to the electron density in the case of indis-
tinguishable particles. The calculated particle densities for
the three target configurations found through numerical
optimization in this work are shown in Fig. 7.

APPENDIX G: FINDING OPTIMAL WELL
CONFIGURATIONS

In this appendix, we present a way of finding the optimal
configuration for single motional qubit rotations, configu-
ration I, as well as the optimal configurations for two-qubit
operations, configurations II and III. These are found by
expressing our configurational search in terms of an opti-
mization problem. The seven voltages of the potential from
Eq. (1), denoted V, will be varied to find the optimal solu-
tion. We note that, due to the flexibility provided by the
potential, the optimization landscape consists of several
local minima and the resulting voltages are therefore some-
what arbitrary. The same can also be said for the path
between configurations. We have chosen configurations
and a path such that our results resemble those of Fig. 2(b)
by Zhao et al. [88], but we stress that our model allows for
vastly different solutions. We select a fixed anharmonicity
with equal magnitude and opposite sign for each well, and
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FIG. 7. Calculated particle densities of the first six eigenstates
of the full two-body Hamiltonian for configurations I (a), II (b),
and III (c). Each state is shifted upwards with its transition fre-
quency from the ground state (in teal). The electrostatic potential
wells are shown with dashed lines. Note that these are hybrid
plots; the left y axis gives the unit scale for the transition frequen-
cies, while the right y axis gives the unit scale for the electrostatic
potential energy, as indicated by the arrows.

try to tune the wells such that only the detuning between
each well is altered.

Configuration I is a configuration for which the transi-
tion frequencies are distinct, but at the same time within
the working range of 515 GHz of the readout resonators.
Furthermore, we aim for the anharmonicities in the left
and right wells, denoted /27 and % /2m, to have equal
magnitudes but opposite signs. This adjustment is made
to eliminate ZZ crosstalk and facilitate a high on:off ratio
for the implementation of controlled-phase gates [88,89].
There are several possible candidates for the transition
frequencies and anharmonicities that satisfy these require-
ments, and the candidates we end up with are a result
of performing the optimization process for a range of
possible candidates. For the left well, we targeted a tran-
sition frequency between the two lowest-energy levels of
w'/2m = eF — €k = 11 GHz, and a corresponding transi-
tion frequency for the right well of @®/27r = €f — €l =
9 GHz. Here the eiA are the Hartree eigenvalues, i.e., the
single-particle Hartree energies. At the same time, we tar-
geted anharmonicities of ¢/2wr = —pR/2m = 1 GHz. If
we were allowed to vary the transition frequencies and
anharmonicities independently and freely, a cost function
with minima that coincide with these properties is

Ci(V) = [0*(V) /27 — 11 GHz]?
+ [0®(V) /2 — 9 GHz]?
+ [BL(V)/2n — 1 GHz]?

+ [BR(V) /27 + 1 GHz]?, (G1)

where w? (V) /27 is the transition frequency and g4 (V) /27
is the anharmonicity of the wells (with 4 € {L,R}). To
minimize Ci(V), we evaluated its gradient with respect
to the voltages, that is, VyCi(V), using the Tensorflow
machine learning library [94]. We then used a variation of
the gradient descent method with an adaptive learning rate
based on the ADAM algorithm [92], to update the voltages.
The learning rate for the Adam optimizer was initially set
to 1074,

For configuration III, we want to tune into a triple
degeneracy point between states |P3), |D4), and |Ps).
This allows for the realization of a controlled-phase gate
[89,90]. In such a configuration, we construct a cost func-
tion based on targeting the von Neumann entropies of the
eigenstates |®3), |P4), and |Ds) to be S5 = 1.5, Sy = 1.0,
and S5 = 1.5, respectively, while the entropies of the lower
eigenstates should be kept minimal. We targeted the same
anharmonicities as for configuration I, that is, BL/27 =
—pBR/2m = 1 GHz. In order to end up with a configura-
tion close to configuration I in parameter space, we utilized
the parameters for configuration I, denoted Vi, as the ini-
tial guess in the optimization algorithm. Finally, we ensure
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TABLE 1. Electrode voltages for configurations I, II, and III,
resulting in a total electrostatic potential given by Eq. (1).

I(mV) II (mV) 11T (mV)
" 297.45 296.41 295.17
v, 152.33 155.01 158.23
Vs 344.36 342.63 340.56
Va —353.49 —354.66 —356.05
Vs 345.93 345.26 344.46
Ve 143.94 143.78 143.60
2 302.24 302.81 303.49

that a linear sweep of voltages from configuration I to con-
figuration III passes through configuration II by targeting a
detuning Ay /27w = (0* — w®)/2m = —1 GHz for config-
uration III, as explained in Sec. ITF. The cost function we
apply is given by
= 51(V)’

+85,(V)?

+[S(V) - 15T

+ [S4(V) — 1.0

+[S5(V) — 1.5
+[BL(V) /2 — 1 GHZ)?
+ 1
+1

Cui (V)

BR(V)/2m + 1 GHz)?

" (V)2 — o®(V) /27 + 1 GHZz]*. (G2)
We used the same optimization method and learning rate

as for configuration I.

APPENDIX H: OPTIMIZED ELECTRODE
VOLTAGES

The explicit values of the electrode voltages obtained for
the three optimized configurations are shown in Table 1.
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