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The generation and evolution of entanglement in many-body systems is an active area of research that

spans multiple fields, from quantum information science to the simulation of quantum many-body sys-

tems encountered in condensed matter, subatomic physics, and quantum chemistry. Motivated by recent

experiments exploring quantum information processing systems with electrons trapped above the surface

of cryogenic noble gas substrates, we theoretically investigate the generation of motional entanglement

between two electrons via their unscreened Coulomb interaction. The model system consists of two elec-

trons confined in separate electrostatic traps that establish microwave-frequency quantized states of their

motion. We compute the motional energy spectra of the electrons, as well as their entanglement, by diag-

onalizing the model Hamiltonian with respect to a single-particle Hartree product basis. We also compare

our results with the predictions of an effective Hamiltonian. The computational procedure outlined here

can be employed for device design and guidance of experimental implementations. In particular, the the-

oretical tools developed here can be used for fine-tuning and optimization of control parameters in future

experiments with electrons trapped above the surface of superfluid helium or solid neon.

DOI: 10.1103/PRXQuantum.5.030324

I. INTRODUCTION

Entanglement is the fundamental characteristic that dis-

tinguishes interacting quantum many-body systems from

their classical counterparts. The study of entanglement

in precisely engineered quantum systems with countably
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many degrees of freedom is at the forefront of modern

physics, and it is a key resource in quantum informa-

tion science. This is particularly true in the development

of two-qubit logic for quantum computations, which has

been demonstrated in a wide variety of physical systems

used in present-day quantum computing, including super-

conducting circuits [1,2], trapped ions [3,4], semiconduc-

tor quantum dots [5–8], color-center defects in diamond

[9–11], and neutral atoms in optical lattices [12,13]. Inves-

tigating the generation and evolution of entanglement in

quantum many-body systems is also important for quan-

tum simulations [14–17], having the potential to advance

the fundamental understanding of dense nuclear matter
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or high-energy physics [18–22], correlated electron sys-

tems [23–25], and quantum chemistry [26–28]. Quantum

simulators based on natural qubits such as atoms [29–31],

ions [32,33], and photons [34] are particularly appealing

since these systems are highly programmable, control-

lable, and replicable [35]. Additionally, in these systems

the coupling to decohering environmental degrees of free-

dom is minimal, allowing for a tight feedback between

experiments and theory.

Trapped electron systems represent a novel approach

to investigating the generation of entanglement, sharing

many features with platforms based on other natural qubit

systems. Recent experimental efforts have investigated the

feasibility of trapped electron qubits using ion trap tech-

niques [36,37]. In fact, the naturally quantized motion of

electrons trapped in vacuum above the surface of super-

fluid helium was one of the earliest theoretical propos-

als for building a large-scale analog quantum computer

[38]. The surface of the superfluid functions as a pris-

tine substrate [39], shielding the electrons from deleterious

sources of noise at the device layer beneath helium. Since

this initial proposal, a number of theoretical ideas have

been put forward to create both charge [40–44] and spin

[42,44–46] qubits based on these trapped electrons. Addi-

tionally, a wide variety of experimental work, directed

at realizing these electronic qubits, has been performed

to leverage advances in nanofabrication techniques for

precision trapping and control of electrons on helium in

confined geometries [47–51], mesoscopic devices [52–54],

circuit quantum electrodynamic architectures [55,56], and

surface-acoustic-wave devices [57]. Single-electron trap-

ping and detection have been experimentally achieved

[52,56,58], as well as extremely high-fidelity electron

transfer along gated arrays fabricated using standard

CMOS processes [59]. Similarly, electrons trapped above

the surface of solidified noble gases offer an alternative

trapped electron qubit; electrons trapped in vacuum above

the surface of solid neon have recently been experimen-

tally demonstrated as a novel natural charge qubit [60] with

high coherence [61].

In aggregate, these technological advances have opened

the door to exploring the generation and evolution of

entanglement in systems based on trapped electrons. Here

we present a model system for investigating the entangle-

ment between the microwave-frequency motional states

of two electrons trapped in vacuum above the surface of

a layer of superfluid helium. The electrons are confined

laterally by applying voltages to electrodes in a substrate

beneath the condensed helium layer. These voltages are

tuned to set up electrostatic traps on the helium surface to

control the relative position of the electrons and quantize

their in-plane motional states in the gigahertz-frequency

range. We utilize the full configuration-interaction (CI for

short in this work) method [62] for distinguishable par-

ticles to compute the quantized motional excitations of

the system, as well as the entanglement between the elec-

trons generated by Coulomb interaction. These numerical

studies are in turn used to optimize the electrode volt-

ages to maximize the entanglement. We also present an

effective theoretical model of the two-electron system, as a

useful tool to analyze the underlying coupling mechanism

between the electrons. Given the exact solution provided

by the CI calculations, we discuss the limitations of the

approximations of this effective model. Our work can be

used to provide feedback to future experimental realiza-

tions in which, ultimately, control and readout of charged

qubit states can be achieved, via integration of microwave

resonators [42,56,60,61] using standard techniques based

on circuit quantum electrodynamics (cQED) [63].

The system of two electrons electrostatically confined

above the helium surface conceptually shares some simi-

larities with double quantum dots created in semiconduc-

tors [64]. The correlated behavior of electrons in these

double quantum dots have been studied theoretically [8,

65–70], as well as experimentally in gallium arsenide

[6,71,72] and silicon germanium [73] heterostructures.

Unlike these semiconductor systems, electrons on helium

are quantum nondegenerate [74] and do not experience

the decohering environment inherent to these more con-

ventional quantum dot systems. Similarly, the lack of

complicated many-body effects from the environment (i.e.,

the impact of band structure, excitonic degrees of free-

dom, etc.) makes electrons on helium a unique platform

for comparing theory with experiments for charge qubits.

In Sec. II we present a schematic microdevice

that allows for controlled Coulomb-driven entanglement

between two electrons. We also describe a numerical pro-

cedure to find the optimal parameters for this device to

function as a two-qubit quantum computer. Section III

contains our main results, with detailed discussion of the

system properties and comparison to an effective model

Hamiltonian. The final section contains conclusions, per-

spectives, and an outlook for future work. Additional

details are presented in various appendices.

II. DEVICE AND THEORY

Electrons placed in vacuum above a layer of liquid

helium are drawn toward the liquid by an attractive force

produced by positive image charges in the dielectric

liquid. However, the electrons are prevented from entering

the liquid by a large (about 1 eV) Pauli barrier at the liquid-

vacuum interface [75,76]. The balancing of these two

effects creates a ladder of Rydberg-like states for the ver-

tical motion of the electrons, and at low temperatures the

electrons are naturally initialized into the ground state of

this motion approximately 11 nm above the helium surface

[77,78]. The electrons experience only a weak interac-

tion with their environment, which is mainly governed

by interactions with thermally excited ripplons (quantized
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capillary waves on the helium surface) and phonons in the

bulk of the liquid [79]. Based on these interactions, the-

ory predicts long coherence times of both the electron spin

and motional degrees of freedom [40,45,46]. The elec-

tron in-plane motion can be further localized on length

scales approaching an electron separation of around 1 μm

through the integration of microdevices that provide lateral

confinement [50,53,56]. Devices of this type have been

used to demonstrate single-electron trapping [52,56,60],

and to investigate the two-dimensional crystalline elec-

tronic phase known as the Wigner solid [50,80], which

arises from the largely unscreened Coulomb repulsion

between the electrons. As explored in this work, this strong

electron-electron interaction can also in principle be uti-

lized to couple the quantum motion of electrons and create

entanglement between electron charge qubits, in analogy

to a Cirac-Zoller entangling gate [81].

A. Device design

A schematic microdevice for investigating the

Coulomb-driven entanglement of the in-plane motional

states of two electrons on helium is sketched in Fig. 1(a).

Here we consider a (3 × 1)-µm2 size microchannel struc-

ture with a depth of 0.5 μm, filled with superfluid helium

via capillary action [47]. Once the device is filled,

thermionic emission from a tungsten filament located

above the helium surface can be used to generate elec-

trons, which are then naturally trapped above the liquid

surface. We note that trapping one or two electrons also

requires controlled loading and unloading of electrons into

the trap region from a larger reservoir area where electrons

are stored [not shown in Fig. 1(a)]. This type of electron

manipulation is quite standard and has been experimen-

tally demonstrated in multiple devices; see, for example,

Refs. [56,59]. For the purpose of the current theoreti-

cal study, we consider a simple array of electrodes that

allow for the investigation of entanglement between two

electrons, which we assume have already been loaded suc-

cessfully into the device. The rectangular device geometry

and dimensions were chosen to create an in-plane motional

quantization axis along the x direction, with energy gaps

in the frequency range of 5–15 GHz. These states are

decoupled from motional states along the y direction at sig-

nificantly higher, approximately 6 times larger, frequency.

Because of this large separation in frequency, we ignore

the states directed along the y axis in this one-dimensional

study. Voltages applied to seven 200-nm-wide electrodes

spaced by 200 nm beneath the helium layer provide the

degrees of freedom needed to form an electrostatic double-

well potential for the two electrons, as shown in Figs. 1(b)

and 1(c). The electrostatic potential in the trap region is

given by

ϕ(x, y) =
7

∑

i=1

αi(x, y)Vi, (1)
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FIG. 1. (a) Schematic microdevice, in which two electrons are
trapped on the surface of a liquid helium basin in a double-

well potential created by electrodes 1–7. Control and readout

of the quantized motion is provided by two superconducting
coplanar waveguide resonators, dispersively coupled to the in-

plane motional states of the electrons. (b) Example configuration

for the full two-dimensional electrostatic potential at the helium
surface z = 0.5 µm in the device, which realizes two separate

wells. Brighter colors represent a stronger potential given in

arbitrary units. (c) One-dimensional linecut of the potential in
(b) along y = 0. (d) One-dimensional coupling constants from

each individual electrode beneath the helium layer along y = 0

and z = 0.5 µm. These coupling constants give rise to the total
potential as given by Eq. (1).

where αi = Ci/C� is the relative contribution to the poten-

tial defined by the capacitance between a region of space

at position (x, y) on the helium surface and the correspond-

ing electrode. The total capacitance is C� =
∑

i Ci, and Vi
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is the voltage applied to the ith electrode, which can be

adjusted to create particular trapping potential configura-

tions. We note that the top electrodes at the helium sur-

face are held at ground potential. The coupling constants

αi(x, y) are calculated by solving the Laplace equation

for the electrostatic potential numerically, using standard

finite-element modeling techniques [see Fig. 1(d)]. The

double-well trap is achieved by applying a negative volt-

age to the central electrode [electrode 4 in Fig. 1(a)] and

positive voltages to the other electrodes. Particular choices

of applied voltages will be described further in Sec. III,

where we also discuss how this setup allows us to adjust

the electron motional frequencies over a broad range,

thereby enabling the generation of entanglement between

the two electrons at certain conditions. We note that thicker

layers of helium lead to stronger screening of the bottom

electrodes by the top ones, reducing the coupling constants

from the seven control electrodes. By choosing a specific

helium thickness of z = 0.5 µm we aim at ensuring suf-

ficiently high anharmonicities (greater than 500 MHz) of

the traps as thicker layers induce more harmonic trapping

potentials.

Coherent control and readout of the electron motional

states in this type of microdevice is based on coupling

the electron motional states to microwave frequency pho-

tons in superconducting coplanar waveguide resonators

[see Fig. 1(a)], with a coupling gRF/2π = 〈1|d · E|0〉 =
efRF∂αRF/∂x

√
ZRF/meωe [56]. In this expression d is the

dipole moment of the oscillating electron along the x axis,

E = ∂αRF/∂x · Vzpfx̂ is the electric field created by the res-

onator at the position of the electron, e and me are the

electron charge and mass, respectively, αRF is the coupling

constant for the resonator electrode, Vzpf is the voltage

amplitude of zero-point fluctuations in the resonator, fRF

and ZRF are resonator frequency and impedance, and ωe

is the electron motional frequency along the x axis. For

typical values of ∂αRF/∂x = 0.5 × 106 m−1, ZRF = 50 �,

fRF = 7 GHz, and ωe/2π = 5 GHz, we find that gRF/2π �
12 MHz.

At low temperatures, the decay of energy from the

electrons-on-helium system occurs due to its interaction

with helium surface ripplons and bulk phonons (see, for

example, Refs. [40,46]). The total rate of decoherence due

to these processes has been estimated to be approximately

	/2π = 3 × 104 Hz [40], allowing the realization of the

strong coupling regime (gRF � 	) between the microwave

photons and the electron motional states.

In this device, the two electrons are coupled individu-

ally to two superconducting coplanar waveguide (CPW)

λ/4 resonators, each having a different resonant frequency.

The crosstalk coupling between an electron and the other

electron’s resonator is approximately 40 times smaller than

the direct coupling to its own resonator, so we ignore this in

our analysis. It should be noted that this classical crosstalk

can ultimately limit the fidelity of gate operations, but it

can be mitigated by applying appropriate compensation

tones [82]. In the dispersive regime of cQED, in which

gRF/|ωe − ωRF| � 1, the frequency of the resonator is sen-

sitive to the state of the electronic motion, which can

be detected by measuring the transmitted microwave sig-

nals through the CPW feedline connected to the resonators

[42,56,63].

B. Model Hamiltonian

Our model Hamiltonian describes two electrons trapped

in a double-well potential set up by seven electrodes as

given in Eq. (1), but we restrict our calculations along

the x direction only. The interaction between the electrons

is given by a Coulomb term that gives rise to their cor-

related motion. The full Hamiltonian for the system, in

dimensionless units, is then given by

Ĥ =
2

∑

i=1

(

− 1

2

d2

dx2
i

+ v(xi)

)

+ u(x1, x2), (2)

where v(x) = −eϕ(x)/Ed is the trap potential. Here,

ϕ(x) = ϕ(x, 0) is the electrostatic trap potential given in

Eq. (1), and Ed = �2/mex2
0 is our energy unit (� is the

reduced Planck constant). The value x0 = 123 nm is our

length unit, representing the characteristic interelectron

distance corresponding to a typical electron density of

� 2 × 109 cm−2 in microdevices [50]. The soft Coulomb

interaction is given by

u(x1, x2) = κ
√

(x1 − x2)2 + ε2
, (3)

where κ = e2/(4πε0Ed) = 2326 gives the strength of the

Coulomb interaction (ε0 is the vacuum permittivity). We

have introduced a shielding parameter ε = 10−2 to remove

the singularity at x1 = x2 [83]. We note that, due to the

small distance between the electrons and the underlying

electrodes, the Coulomb interaction will be reduced due

to screening effects. However, in our analysis we con-

sider an unscreened Coulomb interaction, which sets an

upper bound for the interaction strength between the two

electrons. We also omit coupling of the electrons to the

ripplons in our study (see details in Appendix A).

Here we consider deep potentials v(x) with barrier

height � 80 meV and separated at the distance � 1.7 µm,

which prohibits tunneling through the barrier between the

wells for the bound electron states.

This encourages us to split the potential into two sepa-

rate wells. Denoting the position of the barrier maximum

by xb, we can define

vL(x) =
{

v(x), x < xb,

v(xb), x ≥ xb,
(4a)
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vR(x) =
{

v(xb), x < xb,

v(x), x ≥ xb,
(4b)

with L and R labeling the left and right wells, respec-

tively. We can then express the total double-well potential

as the sum v(x) = vL(x) + vR(x) − v(xb). Since there is

negligible spatial overlap between single-electron states in

different wells, we can omit spin and focus on motional

product states in which one electron is localized in the left

well while the other electron is localized in the right well.

In essence, a sufficiently deep double-well trap allows

us to treat the electrons as distinguishable particles, labeled

by their position [84]. The one-body Hamiltonian for each

electron can then be written as

ĥA = −1

2

d2

dx2
+ vA(x) (5)

with A ∈ {L, R}, and the two-body Hamiltonian is given by

Eq. (2).

Throughout our analysis we vary the seven electrode

voltages Vi to adjust the shape of the double-well potential

v(x), and hence also the energy spectrum and frequencies

of our system. We refer to each such choice as a well

configuration, and the tuning between configurations is

what allows us to realize various quantum gates.

C. State ansatz

We solve the two-body problem described in the previ-

ous section by exact diagonalization of the Hamiltonian in

Eq. (2) with respect to a single-particle product basis. The

two-body state ansatz we use is

|�n〉 =
N L
∑

i=0

N R
∑

j =0

Cij,n

∣
∣
∣φ

L
i φR

j

〉

. (6)

Here, n is the index of each two-body energy eigen-

state, and
∣
∣
∣φL

i φR
j

〉

=
∣
∣φL

i

〉

⊗
∣
∣
∣φR

j

〉

are two-body product

states built from two single-particle basis sets {|φA
i 〉 | i =

0, . . . , N A} (with A ∈ {L, R}). The above ansatz is analo-

gous to the ansatz of full CI theory, but since our electrons

are effectively distinguishable, we use separable product

states instead of antisymmetrized Slater determinants in

our expansion [62].

The quality of ansatz (6) depends on the choice of

single-particle basis states |φA
i 〉. Even though we consider

only two particles, a large single-particle basis will quickly

make the exact diagonalization procedure prohibitively

time consuming. This limits us to consider small single-

electron basis sets, whose product states span the state

space of our two-electron system to a good approximation.

One option is to consider the eigenstates of the individual

one-body Hamiltonians ĥA defined in Eq. (5). However,

this approach neglects all information about interactions

and, as a consequence, still demands a significant number

of basis states to accurately capture the physics. A more

effective approach is to employ the Hartree method (anal-

ogous to the Hartree-Fock method, but for distinguishable

particles), which incorporates the one-body Hamiltonian

with a mean-field contribution from the Coulomb interac-

tion. This method has the advantage of producing single-

particle basis sets that can be truncated to only a few

states while still capturing the interaction physics of the

entangled two-body states within our system.

The construction of the Hartree basis sets |φA
i 〉 and

derivation of the Hartree method are presented in Appen-

dices B and C. With the single-particle basis sets estab-

lished, the coefficients Cij,n in Eq. (6) can be calculated

to find the full two-body energy eigenstates for each

well configuration. This is done through a diagonalization

procedure, which is explained in detail in Appendix D.

We should add, as discussed in more detail in Appen-

dices B and D, that we also have performed full

configuration-interaction calculations with an antisym-

metrized wave-function basis for the two-electron sys-

tem. For the system we are investigating, the Hartree

ansatz with distinguishable particles gives an excellent

approximation to the antisymmetrized full configuration-

interaction calculations.

D. Entanglement

It is natural to consider the system at hand as bipar-

tite, composed of the two electrons as, ideally, individual

subsystems. Such a bipartition comes with the notion of

entanglement—the inability to discern the exact state of

each subsystem, even though the state of the full system

is known. We aim to find certain well configurations for

which a subset of the energy eigenstates are entangled,

in order to enable the set up of two-qubit gates; see, for

example, the discussions in Refs. [8,85,86].

A common entanglement measure for bipartite systems

is the von Neumann entropy of a quantum state, defined as

S = −tr[ρ̂ log2(ρ̂)], (7)

where ρ̂ is the reduced density operator of either sub-

system. We use this measure to quantify entanglement

and refer to it simply as the entropy. (See Appendix E

for calculational details.) In what follows we denote the

entanglement entropy of each energy eigenstate |�n〉 by Sn.

The two-body state of the full system can be expanded

in any product state basis from the subsystems, such as in

Eq. (6). While the Hartree basis discussed above provides

a succinct picture of the interaction between subsystems,

another basis offering a clear picture of the entanglement

is the Schmidt basis, found by doing a singular-value

decomposition of the coefficient matrix Cij,n, as outlined in

Appendix E. In the Schmidt decomposition of a two-body
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state, each term involves a product of unique, orthogo-

nal Schmidt states. It follows that the Schmidt states are

eigenstates of the reduced density operators of each sub-

system. Then, the mixed state of each subsystem can be

interpreted as a statistical ensemble of its Schmidt states,

and the Schmidt coefficients (the singular values), when

squared, give the occupation number of each Schmidt

state. Our calculations indicate that the Hartree basis actu-

ally serves as an approximate common Schmidt basis for

all the two-body energy eigenstates of our system. In addi-

tion to the von Neumann entropies Sn, we therefore map

the two-body coefficients Cij,n to provide a clear overview

of which products of single-electron states are involved in

each entangled two-body state. For simplicity, we denote

the Hartree product states as

|φL
i φR

j 〉 = |ij 〉 , (8)

but note that these product states are not to be directly

interpreted as computational basis states for quantum com-

puting. We cannot do any measurements to collapse the

two-electron system into any of these separable states, so

they should be interpreted only as an ideal single-particle

product basis for describing the two-body states of our

system. The states that should be interpreted as compu-

tational basis states are four specific energy eigenstates of

configuration I, as defined in Sec. II E below.

E. Gate operation

We target three specific well configurations that are

ideal for operation of one-qubit rotations as well as two-

qubit
√

iSWAP and controlled-Z (CZ) gates [85,87,88]. Each

configuration is defined through specific entanglement

entropies of the two-body energy eigenstates.

Configuration I (see also the discussions in the next

subsection and Fig. 2) corresponds to the case in which

each electron has a distinct transition frequency between

its ground and first excited states. The correlations between

the two electrons are then minimal, and the state of the

electrons can be controlled, i.e., to perform single-qubit

gate operations and readout, independently via their asso-

ciated resonators using cQED techniques [63]. We focus

on cases in which the frequency of the left qubit is larger

than that of the right qubit, and within the resonator work-

ing range of 5–15 GHz. Then the two-body energy eigen-

states |�0〉, |�1〉, |�2〉, and |�4〉 have maximum overlap

with the Hartree product states |00〉, |01〉, |10〉, and |11〉,
respectively, and we interpret these eigenstates as compu-

tational basis states. Because of the minimized correlation,

the entanglement entropy is zero for all energy eigenstates

of this configuration.

Configuration II is designed to realize the two-qubit√
iSWAP gate. It can be achieved by an avoided crossing

of the first and second excited eigenstates, so that they are

given by

|�1〉 = (|10〉 − |01〉)/
√

2,

|�2〉 = (|10〉 + |01〉)/
√

2.
(9)

All other energy eigenstates must remain product states to

ensure that only |10〉 and |01〉 are coupled. The entropy is

then 1 for the two states |�1〉 and |�2〉 and zero for the

rest. For a further discussion of avoided level crossings in

coupled quantum dot systems, see, for example, Ref. [8].

The presence of higher energy levels gives rise to a

different type of correlation between the two electrons
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FIG. 2. (a) Transition frequencies in the noninteracting picture for configuration I. This configuration corresponds to a detuned
system in which all transition energies are distinguishable, and �I = ωL − ωR > 0, with βL = −βR = �I/2. (b) Transition frequencies

in configuration II. Here the detuning is zero, �II = 0, and the two states |10〉 and |01〉 are degenerate in the absence of interactions.

Distinct anharmonicities kept at βL = −βR = �I/2 separate the higher states from one another. (c) Configuration III is realized when
the three states |20〉, |11〉, and |02〉 share the same transition frequency from the ground state. This occurs when βL = −βR = −�III.

The detuning has opposite sign of that in configuration I, �III = −�I/2.
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in our system. We are particularly interested in a spe-

cific type of interaction that enables the realization of a

controlled-phase CZ gate [63,88]. Configuration III real-

izes the conditions to implement this type of two-qubit

gate, which involves a “triple” avoided crossing between

the third, fourth, and fifth excited eigenstates:

|�3〉 = (|20〉 − |02〉 −
√

2 |11〉)/2, (10a)

|�4〉 = (|20〉 + |02〉)/
√

2, (10b)

|�5〉 = (|20〉 − |02〉 +
√

2 |11〉)/2. (10c)

The entropies of these states are 1.5, 1, and 1.5, respec-

tively. In this configuration, too, the remaining energy

eigenstates must stay as close to their noninteracting coun-

terparts as possible, with entropy close to zero. To quantify

the strength of this two-qubit interaction, we define the

ZZ-coupling strength [86,89,90] (see also the discussions

below) as

ζ = E4 − E2 − E1 + E0. (11)

This quantity measures the shift in transition frequency of

one electron when the other electron is excited. The ZZ

coupling plays an important role in our analysis since it

conveys information about the coupling to higher excited

states.

In configurations I and II, ζ should be as small as possi-

ble to minimize phase errors when driving gates. However,

in configuration III the action of the shift can be used to

alter the phase of the computational basis state |�4〉, which

generates the CZ gate [85,88,89].

Tuning the electrode voltages diabatically between con-

figuration I and configuration II or III, the abovementioned

two-body quantum gates are realizable [85,88]. Universal

two-qubit logic can be performed as follows. We begin

with configuration I, where the system is initialized in the

ground state and the electrons are decoupled from each

other. A single-qubit gate can then be applied to either

electron using microwave excitations on corresponding

coplanar waveguide resonators, thereby preparing the elec-

trons in specific quantum states. Subsequently, we tune the

voltages on the gates to diabatically transition the system

to configuration II, allowing the system to evolve for some

time to generate entanglement between the two electrons,

effectively performing a two-qubit gate operation. Finally,

the system is returned to the initial configuration, where

the electrons can be further manipulated using single-qubit

gates or measured via the corresponding resonators. We

proceed to demonstrate that the necessary well configura-

tions and resulting electron entanglement are achievable

through targeted numerical optimization. The remainder of

this work is focused on the resulting configurations, and we

leave actual simulations of time-dependent gate operation

to future work.

F. Configurational search

The three desirable well configurations defined in the

previous section can be targeted through numerical opti-

mization methods, with the seven electrode voltages as

the variational parameters. To achieve the avoided cross-

ings described above, we can use the fact that the Hartree

product basis incorporates much of the Coulomb interac-

tion between the electrons, so that the residual Coulomb

interaction term is small. This means that the energy spec-

trum of the full interacting system should be close to the

spectrum of Hartree product states [91] |ij 〉, with tran-

sition energies given by the sum of the corresponding

Hartree transition energies εL
i − εL

0 + εR
j − εR

0 (where the

εA
i are the eigenvalues of the Hartree states as defined in

Appendix C). This approximation matches the interacting

spectrum well except at the avoided crossings, where the

interaction turns what would have been an energy cross-

ing in the noninteracting case into an avoided crossing

in the interacting case. In other words, we can look at

the Hartree energies of the system and target degenerate

Hartree energies to find avoided crossings.

We also target qubit anharmonicities of equal magnitude

but opposite sign throughout all three configurations. This

was shown to suppress the unwanted ZZ coupling defined

in Eq. (11) for superconducting qubits [88–90], and so

we investigate if the same principle is applicable to our

charge qubits. The anharmonicity of each qubit can again

be defined through the Hartree energies, which serve as a

noninteracting, single-particle guiding picture throughout

this section.

Figure 2 illustrates the noninteracting energy spectra of

the three target configurations. The transition frequency

from |0〉 to |1〉 for subsystem A ∈ {L, R} is denoted by εA
1 −

εA
0 = ωA (with � = 1). In order to selectively address the

ground and first excited energy eigenstates while avoid-

ing population of higher states, the electrostatic potential

is intentionally designed to be anharmonic. We define

the anharmonicity to be the difference in the excitation

energy between |0〉 → |1〉 and |1〉 → |2〉. Consequently,

the transition frequency for |0〉 → |2〉 is given by εA
2 −

εA
0 = 2ωA + βA, where βA is the anharmonicity.

The energy of the noninteracting Hartree product state
|ij 〉 is given by εij = εL

i + εR
j . We refer to the difference in

energy between states |10〉 and |01〉 as the qubit detuning,

and denote it by � ≡ ωL − ωR. Using the detuning and the

anharmonicity, we can express the transition frequencies

for |11〉 → |20〉 and |02〉 → |11〉 by ε20 − ε11 = � + βL

and ε11 − ε02 = � − βR.

Figure 2(a) illustrates the noninteracting energy spec-

trum for configuration I. In this configuration all transition

frequencies are distinct, and we have chosen a detuning of

�I = ωL − ωR > 0 so that the electron in the left well has

higher transition frequencies than the electron in the right

well. Furthermore, we have set βL = −βR = �I/2 such
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that � + βL = � − βR > �, i.e., the energy gaps between
|20〉 and |11〉, and |11〉 and |02〉 are equally large, and

greater than the detuning.

Figure 2(b) shows the target noninteracting energy spec-

trum for configuration II. In this configuration the single-

particle basis states |01〉 and |10〉 are degenerate, while the

higher states |20〉, |11〉, and |02〉 are kept separate from

each other. This implies that �II = ωL − ωR = 0, and we

have maintained the anharmonicities at the same values as

in configuration I, i.e., βL = −βR = �I/2.

Finally, Fig. 2(c) shows the target noninteracting energy

spectrum for configuration III. In this configuration the

higher states |20〉, |11〉, and |02〉 are degenerate, while
|10〉 and |01〉 are distinct. To realize this configuration,

we require � + βL = � − βR = 0, and with βL = −βR

we find that βL = −�. Keeping the anharmonicities of

the two wells the same as in configurations I and II, i.e.,

βL = −βR = �I/2, leads to �III = −�I/2.

The residual Coulomb interaction between the elec-

trons splits the degeneracy in energy levels and leads to

avoided level crossings, entanglement between the two

electrons, and hence the possibility of driving two-qubit

gates. The anharmonicities being nonzero, with equal mag-

nitude and opposite sign also ensure that the avoided

crossing between the first and second excited states and

the triple avoided crossing between the higher states are

separated [88,89].

We note, as indicated in Figs. 2(a) and 2(c), that the

detunings in configuration I and configuration III have

opposite signs. This is not incidental, but has a deliber-

ate purpose; it allows for the realization of configuration

II somewhere in the transitional region between config-

urations I and III, as long as the anharmonicities have a

magnitude greater than zero along the same path. This hap-

pens because the detuning has to change sign in order to

go from configuration I to configuration III, leading to the

characteristic level crossing of configuration II when the

detuning is zero. Hence, our task simplifies to locating con-

figurations I and III with equal anharmonicities by tuning

the electrode voltages. We can then define a parametriza-

tion that interpolates between these two configurations,

and as long as the anharmonicities do not go to zero, we

are guaranteed to get a configuration II somewhere along

the parametrization path.

III. RESULTS AND DISCUSSION

We start this section by summarizing the numerical

optimization procedure that was used to locate the above-

defined configurations I and III in the parameter space of

seven electrode voltages. We then define a parametrization

of the voltages and identify the location of configuration II.

Thereafter we discuss the properties of each configuration

in more detail. Finally, we make an attempt at interpreting

our results in terms of a phenomenological model.

A. Configurational results

To find the electrode voltages corresponding to config-

urations I and III, we express the search as an optimiza-

tion problem by defining cost functions whose minima

align with the desired properties for each configuration, as

described in Sec. II F. Each cost function was minimized

by evaluating its gradient with respect to the voltages. The

optimization of the cost functions was done using stan-

dard gradient descent methods with the so-called ADAM

algorithm [92] for the gradient updates. As is common in

the optimization of multiparameter functions, we found

that our cost functions often exhibit several local minima,

a feature that makes our solution dependent on the ini-

tial guess for the voltages. Because of this, our approach

involved manually adjusting the voltages to obtain an ini-

tial well configuration resembling a double-well trap with

features close to the desired properties, and then running

the optimization search. Appendix G provides an in-depth

discussion of the full optimization process, including spe-

cific expressions for the cost functions.

For configuration I, this procedure successfully achieves

distinct transition frequencies of each well, within the

resonator working range of 5–15 GHz. We also tar-

get anharmonicities with equal magnitude and opposite

signs to suppress ZZ crosstalk in higher-energy states, as

discussed in Sec. II F. However, an arbitrary choice of

transition frequencies and anharmonicities does not nec-

essarily result in an appropriate well configuration. By

performing the optimization process for a range of possible

candidates, we ended up targeting the specific transition

frequency of ωL/2π = 11 GHz between the two lowest-

energy levels in the left well, and a transition frequency

of ωR/2π = 9 GHz in the right well. This corresponds

to a detuning of �I/2π = (ωL − ωR)/2π = 2 GHz. At

the same time, anharmonicities of βL/2π = −βR/2π =
(�I/2)/2π = 1 GHz were targeted. Optimization of the

cost function based on these target values [Eq. (G1) in

Appendix G] yields properties that are very close to

the desired ones. The two-body energies of the result-

ing configuration are E1/2π = 8.99 GHz and E2/2π =
11.01 GHz relative to the ground state, and the anhar-

monicities are equal to the targeted values of ±1 GHz to

three decimal places.

For configuration III, we achieve a triple degeneracy

point between the computational basis state |11〉 and

states |20〉 and |02〉. Here we construct a cost func-

tion targeting the entropies of the energy eigenstates
|�3〉, |�4〉, and |�5〉 to be 1.5, 1.0, and 1.5, respec-

tively, while keeping the entropies of all other eigenstates

small. In addition, we target the detuning �III/2π to be

−1 GHz and the same anharmonicities as for configura-

tion I, βL/2π = −βR/2π = 1 GHz. As discussed earlier,

this guarantees the presence of configuration II for a cer-

tain set of voltages in the transition from configuration I to

configuration III. We use the set of voltages obtained for
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configuration I as an initial guess for the optimization of

this cost function [Eq. (G2) in Appendix G]. This optimiza-

tion results in two-body energies E3/2π = 27.24 GHz,

E4/2π = 27.42 GHz, and E5/2π = 27.61 GHz relative to

the ground state, with entropies of 1.50, 1.00, and 1.49,

respectively.

To visualize properties of the configurations and the

tuning between them, we express the seven electrode volt-

ages with one configuration parameter λ, through a linear

parametrization

V(λ) = (1 − λ)VI + λVIII. (12)

Here, VI and VIII are vectors with the optimized voltages

for configurations I and III. By construction, configura-

tion I then corresponds to λ = 0, while configuration III

corresponds to λ = 1. Explicit values of the voltages for

each optimized configuration are provided in Table I in

Appendix H.

Figure 3 shows CI results for the two-body energy spec-

trum for the five lowest excited states, the corresponding

entanglement entropies, as well as the anharmonicities and

detuning of the wells as a function of the configurational

parameter λ. Two avoided crossings are clearly observed in

the spectrum in Fig. 3(a): a triple avoided crossing at λ = 1

between the three highest-energy states, and an avoided

crossing between the two first excited states at λ ≈ 0.46,

corresponding to configuration II. In the latter case we

extract the coupling strength of gCI ≈ 113 MHz from the

energy gap at the location of the avoided crossing. This

will be discussed in more detail in Sec. III B below.

Qualitatively, the impact of the Coulomb interaction on

the system’s electrons can be understood in two steps.

First, the electric field created by one electron alters the

potential energy experienced by the other electron. This

results in a modified effective potential trap, which gives

rise to the Hartree product states and their associated ener-

gies. These noninteracting energies are depicted by the

dashed lines in the insets of Fig. 3(a). Second, in the

case of a voltage configuration that results in two or more

Hartree product states with the same energies, the resid-

ual Coulomb interaction between the electrons lifts the

degeneracy and leads to an energy gap between the cor-

responding two-body energy eigenstates, resulting in the

abovementioned avoided crossings. Far from the point

of degeneracy, the Hartree product states provide a good

description of the full two-body energy eigenstates. This

can be observed, for example, in configuration I at λ = 0.

In these configurations, the calculated entropy values Sn

demonstrate minimal values, indicating reduced correla-

tions between the electrons. The entropy values reach their

maximum and align with theoretical values precisely at

the locations of the avoided crossings, as illustrated in

Fig. 3(b).
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FIG. 3. (a) Transition frequencies from the ground state of
the five lowest excited energy eigenstates, as a function of the

configurational parameter λ. Solid lines correspond to the tran-

sition energies of the full Hamiltonian. In the insets we have
included thin dashed lines for the transition energies of the non-

interacting Hartree product states. (b) Von Neumann entropies

of the same five eigenstates as functions of the configurational
parameter λ. The entropy is calculated with the binary (base-2)

logarithm. (c) Anharmonicities of the left (βL) and right (βR)

wells as a function of the configurational parameter λ, as well
as the detuning � = ωR − ωL between the two wells. Marked in

all subfigures are configurations I, II, and III at their respective λ

values of 0, 0.46, and 1.

A triple avoided crossing is observed in the higher-

energy states in configuration III at λ = 1, and arises due

to the opposite signs of the anharmonicities [see Fig. 3(c)]
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[88]. It is worth mentioning that the anharmonicities vary

across different values of λ since the linear interpolation of

the voltages does not guarantee that the properties of the

system also behaves linearly.

The two-body coefficients Cij,n corresponding to the

six lowest-energy eigenstates, as defined in ansatz (6),

are depicted in Fig. 4 for the three main configurations.

These coefficients demonstrate a good convergence of

our optimization algorithm towards the target wave func-

tions presented in Eqs. (9) and (10). In configuration I,

the two-body eigenstates are effectively described by sin-

gle Hartree product states, indicating the suppression of

electron-electron correlations when the potential wells are

detuned. In contrast, the coefficients Cij,n for configurations

II and III reveal a high degree of entanglement, which is

quantified using von Neumann entropies. A closer inspec-

tion of these coefficients reveals the presence of small,

undesired Hartree terms in the two-body wave functions.

For instance, for the first excited state in configuration I,

shown in Fig. 4(a), we find that

|�1〉I ≈
√

0.995 |01〉 +
√

0.005 |10〉 (13)

with a corresponding entropy of S1 ≈ 0.04. Furthermore,

we find a small mixing in states |�3〉, |�4〉, and |�5〉,
indicating residual correlations between the two electrons

through interactions with higher-energy states. The degree

of these remaining correlations, quantified by the entropies

Sn, show small but nonzero values for all excited energy

states. The underlying factors contributing to these obser-

vations will be discussed within the framework of the

effective Hamiltonian model presented in the following

subsection.

For the first two excited states in configuration II,

shown in Fig. 4(b), the many-body wave functions are

approximately described by

|�1〉II ≈
√

0.513 |01〉 −
√

0.487 |10〉 ,

|�2〉II ≈
√

0.487 |01〉 +
√

0.513 |10〉 ,
(14)

which are almost identical to the maximally entangled

states in Eq. (9). The entropy for these entangled states

reach a maximum value of 1, as seen in Fig. 3(b). Here too,

none of the higher excited states can be entirely described

by single product states, indicating the presence of small

residual correlations. The entropies of the eigenstates |�3〉,
|�4〉, and |�5〉 for configuration II are around 0.11, 0.23,

and 0.13, respectively.

We display the coefficients of the energy eigenstates for

configuration III in Fig. 4(c). The three states involved in

the triple avoided crossing are close to the target states
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FIG. 4. Two-body wave-function coefficients Cij,n of the six
lowest-energy eigenstates for each configuration, as defined in

Eq. (6). The indices on the x and y axes correspond to the Hartree

product states involved with each coefficient, so that the coef-
ficient at tile (i, j ) is multiplied with the product state |φL

i φR
j 〉

and summed into the expansion of each energy eigenstate.

(a) Coefficients for configuration I. Each energy eigenstate
is well approximated by a single Hartree product state. (b)

Coefficients for configuration II. The first and second excited

eigenstates are close to maximally entangled. (c) Coefficients
for configuration III. Here, the third, fourth, and fifth excited

eigenstates are entangled.
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given in Eqs. (10):

|�3〉III ≈ −
√

0.259 |02〉 +
√

0.244 |20〉 +
√

0.497 |11〉 ,

|�4〉III ≈
√

0.461 |02〉 +
√

0.538 |20〉 −
√

0.001 |11〉 ,

|�5〉III ≈
√

0.279 |02〉 −
√

0.218 |20〉 +
√

0.502 |11〉 .

In this configuration, however, an unwanted coupling is

present in the first and second excited eigenstates |�1〉 and
|�2〉. The degree of entanglement for these states is rather

weak, with entropies of around 0.07, as shown at λ = 1 in

Fig. 3(b).

We note that Fig. 4 demonstrates that the Hartree states

serve as approximate Schmidt states for all the energy

eigenstates of our system, as mentioned in Sec. II D. This

is clearly seen from this figure since each row and column

only have one approximately nonzero coefficient.

For the sake of visualization, we include in Appen-

dices C and F the probability distributions of the one-body

Hartree basis states (Fig. 6) and the particle densities of

the two-body energy states (Fig. 7) for each of the three

configurations.

B. Effective Hamiltonian

In addition to the numerical results above, we present

a simplified model of the system to provide an intu-

itive understanding of the underlying coupling mechanism

between the two electrons. For this purpose, we expand

both the electrostatic potential terms and the Coulomb

interaction in our model Hamiltonian [Eq. (3)] around

equilibrium positions xL and xR for the two electrons.

These equilibrium positions are defined so that the first-

order terms in the displacements �xi cancel each other,

leaving only terms of second order and higher.

The Taylor expansion of the electrostatic potential

around the equilibrium positions results in harmonic traps

ω2
i �x2

i /2, with frequencies defined by the curvature of

the electrostatic potential at the equilibrium positions. The

Coulomb interaction between the two electrons can also be

expanded in terms of the displacements �xi. Considering

only up to second-order terms we obtain

κ

|x1 − x2|
≈ κ

d

(

1 − �x1 − �x2

d
+ (�x1 − �x2)

2

d2

)

,

(15)

where d = xR − xL is the distance between the two elec-

trons in equilibrium. The total potential energy of the

system in displacement-dependent terms takes the form

UC ≈
∑

i=1,2

ω2
i + ω2

C

2
�x2

i + ω2
C�x1�x2, (16)

where ω2
C = 2κ/d3. The first term in this equation

describes how the Coulomb interaction effectively mod-

ifies the potential wells from the electrostatic potential.

This is similar to the Hartree method since it computes

an effective mean potential for each electron, created by

the other electron in the system; however, it is also differ-

ent in that it treats the electrons as point particles instead

of quantum particles. The last term in Eq. (16) gives rise

to correlations between the two electrons. By introducing

canonical transformations for the displacements and apply-

ing the rotating-wave approximation, the Hamiltonian of

the system takes the form

Ĥ ≈ ωLâ†â + ωRb̂†b̂ + g(â†b̂ + âb̂†), (17)

where â and b̂ are ladder operators of displacement in the

left and right wells, respectively, (ωL)2 = ω2
1 + ω2

C and

(ωR)2 = ω2
2 + ω2

C are modified vibrational frequencies,

and g = ω2
C/2

√
ωLωR describes the interaction strength.

This Hamiltonian is diagonalized by a standard Bogoli-

ubov transformation Uθ = exp[θ(â†b̂ − âb̂†)] with a

rotation angle 2θ = arctan(2g/�) [63]. The resulting

Hamiltonian takes the diagonal form Ĥ = �+α̂†α̂ +
�−β̂†β̂. The α̂ and β̂ are transformed ladder operators,

and the eigenfrequencies of the corresponding hybridized

modes are given by

�± = 1

2

(

ωL + ωR ±
√

4g2 + �2
)

. (18)

Here � = ωL − ωR is the detuning between the two wells,

as defined in Sec. II F.

Given the multilevel nature of electronic states in each

well, one has to carefully treat the unitary transforma-

tion of the effective Hamiltonian in Eq. (17). Including

the anharmonicity of each oscillator as additional terms

βLâ†â(â†â − 1)/2 and βRb̂†b̂(b̂†b̂ − 1)/2 in the Hamil-

tonian, which corresponds to including quartic terms

in the expansion of the electrostatic potential, results

in correlations emerging from interactions between the

higher-energy states. After performing a Bogoliubov trans-

formation Uθ similar to that above, the term corresponding

to the anharmonicities takes the form

Ĥ ZZ = ζ

2
α̂†α̂β̂†β̂, (19)

where ζ is given by

ζ =
√

2g

(

tan
θR

2
− tan

θL

2

)

(20)

with tan θL/R = 2
√

2g/(� ± βL/R) [88]. The quantity ζ

corresponds to the energy shift defined in Eq. (11), and is
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FIG. 5. The energy difference ζ defined in Eq. (11). The

orange line represents results from the numerical solution of the

full two-body problem, whereas the teal line shows ζ values cal-
culated from the effective Hamiltonian approach. Frequencies

obtained from Hartree energies and a fixed coupling strength

determined at the avoided crossing of configuration II were used
in the effective model calculations. Configurations I, II, and III

are marked with vertical dashed lines at their respective λ values

of 0, 0.46, and 1.

the result of interactions between the |20〉 and |02〉 states

and the |11〉 state.

In general, unwanted correlations from this type of inter-

action lead to a conditional phase accumulation on the

electron’s states, as discussed in Sec. II E. In Fig. 5 we

show calculations of ζ from our CI calculations and from

the effective Hamiltonian approach. In the framework of

the effective Hamiltonian this quantity strongly depends

on the relative signs of the anharmonicities, which can

be seen from expression (20). For small θL/R � 1 values,

which are realized in configuration I, the coupling strength

can be approximated by ζ ≈ 2g2/(� + βL) − 2g2/(� −
βR). This vanishes at equal but opposite sign anharmonici-

ties of two electrons. However, the CI calculations show

a strong deviation of ζ from the predictions based on

the effective model for well configurations λ < 0.5 and

λ > 1.5 (see Fig. 5). We argue that these residual corre-

lations appear due to a complexity in the shape of the

potential wells. Nonlinearities on the localization length

scale of electrons requires us to include higher-order terms

in the Taylor expansion of the electrostatic and Coulomb

potentials. These terms, together with the anharmonicities,

can change for different voltage configurations, a feature

which further complicates our model. These intricacies are

inherent to the electrostatic field generated by the array

of electrodes in the microdevice considered. Potentially,

the ZZ-coupling strength can be included in the configura-

tional search as another minimization parameter to further

suppress such correlations between the two electrons.

The effective Hamiltonian presented in Eq. (17) repre-

sents one of the most elementary models for describing

coupled two-qubit systems. This model finds widespread

use in various superconducting qubit architectures. Its

simplicity in form facilitates the mapping of diverse entan-

gling gates from these platforms to our system. How-

ever, alongside the simplicity of this model, we have

illustrated its limitations when comparing its predictions

with the results of full CI calculations. These limitations

need to be handled thoughtfully in order to account for

all potential sources of entanglement. Addressing these

limitations becomes crucial for providing an accurate

and complete description of the entanglement dynam-

ics within the system and will be the scope of future

work.

IV. CONCLUSIONS

The results presented in this work highlight how the

Coulomb interaction can induce motional entanglement

between electronic states localized in separate wells above

the surface of superfluid helium. To find the optimal

specific device parameters for generating the entangled

states, we have developed an optimization method based

on many-body methods like full CI theory [62] together

with effective optimization algorithms. Our optimization

methodology allows us to determine the optimal voltage

configuration on the device electrodes needed to generate

entanglement. In this way, the many-body-physics-based

methodology we have developed has the potential to serve

as a valuable tool to guide experimental work and inform

future device design.

As an illustration, in this work we examined three

distinct device parameter configurations (I, II, and III),

leading to different types of entanglement between the two

electrons. The tunability of the microdevice allows us to

adjust the applied voltages and dynamically create highly

anharmonic electrostatic traps, even with varying signs of

anharmonicity. This tunability offers precise control over

the potential landscape experienced by the electrons and

allows for the tailoring of trapping potentials for specific

experimental requirements, such as the experimental real-

ization of specific gates and operations on the electronic

qubits. Additionally we employed an effective Hamilto-

nian to approximate the two-electron system, which was

in turn compared with our exact CI calculations, allow-

ing us to investigate the limitations of the approximations

used to construct this effective model. This comparison

holds promise for a more detailed understanding of errors

in the simulation of quantum devices based on this trapped

electron system.

Finally, recent theoretical investigations have explored

the dynamics and decoherence of electron spins above

the surface of liquid helium [46]. These studies con-

sidered the role of spin-orbit interactions, which can be

030324-12



COULOMB INTERACTION-DRIVEN ENTANGLEMENT... PRX QUANTUM 5, 030324 (2024)

artificially enhanced by applying a spatially inhomoge-

neous magnetic field parallel to the helium surface. In

future studies the methodology developed in our work can

be extended to investigate entangling interactions between

spins, devices containing spatially varying magnetic fields,

as well as dynamical driving fields to investigate the time

dependence of entangled charge states and spin states.

In addition to studies of the time evolution of these

quantum-mechanical systems and thereby the temporal

evolution of entangled states, we plan to extend our stud-

ies to more than two particles, with the aim to explore

the experimental realization of many-body entanglement

for electrons above the surface of liquid helium and solid

neon. Using the Coulomb interaction, as demonstrated in

this work, to facilitate entanglement between motional

states, one could consider a linear chain of electrons

trapped in a long microchannel filled with liquid helium.

Experimental realizations of single chains of electrons with

up to several hundred electrons have been demonstrated

in 100-μm-long channels [50]. In this setup, each electron

can be controlled by its own individual electrodes beneath

the helium surface, similar to the system studied in this

work. Such a scaling up of the system to more electrons

in a linear chain resembles to a large extent linear ion

trap architectures. In a similar way, the interaction between

electrons can be mediated by Coulomb interaction-driven

motional modes of the linear chain, thereby allowing for

an upscaling of the system.

The hope is that these theoretical tools can guide stud-

ies of entanglement, development of experimental devices,

and realization of quantum gates and circuits for systems

of many trapped and interacting electrons.

ACKNOWLEDGMENTS

We are grateful to M.I. Dykman, S.A. Lyon, and

M. Sammon for illuminating discussions. The work of

M.H.-J. is supported by the U.S. Department of Energy,

Office of Science, Office of Nuclear Physics under Grant

No. DE-SC0021152 and U.S. National Science Founda-

tion Grants No. PHY-1404159 and No. PHY-2013047. J.P.

acknowledges support from the National Science Foun-

dation via Grant No. DMR-2003815 as well as the valu-

able support of the Cowen Family Endowment at MSU.

A.K.W. acknowledges support from the U.S. Department

of Energy, Office of Science, Basic Energy Sciences, Grant

No. DE-SC0017889, and support from MSU for a John

A. Hannah Professorship. The work of N.R.B. was sup-

ported by a sponsored research grant from EeroQ Corp. J.P.

and N.R.B. additionally thank J.R. Lane and J.M. Kitzman

for illuminating discussions. O.L. received funding from

the European Union’s Horizon 2020 research and inno-

vation program under the Marie Skłodowska-Curie Grant

Agreement No. 945371.

APPENDIX A: ELECTRON-RIPPLON COUPLING

HAMILTONIAN

The coupling of the electron to the surface deformations

(ripplons) is described with Hamiltonian

Hi = eEξ(r), (A1)

where ξ(r) is the helium surface displacement and E is

the normal component of the total electric field, which

includes both the field produced by the trapping electrodes

as well as a polarization term due to a change of the

helium surface curvature by the electron [40]. To estimate

the electron-ripplon coupling energy, we consider only

the effect of the externally applied field because, for the

typical values of voltages used to create double-well poten-

tial, the applied field E
applied
⊥ ≈ 105 V/m is larger than the

polarization term E
pol
⊥ (q) ≈ 2 × 104 V/m for the ripplon

wavelengths q ∼ 1/lx (where lx is the electron localization

length in the electrostatic trap). The helium surface dis-

placement can be estimated from the thermal average of

the squared helium surface fluctuations δth =
√

〈ξ 2〉th. The

helium surface displacement is related to the creation and

annihilation operators of ripplons by

ξ(r) =
∑

q

√

1

S

�q

2ρωq

(bq + b
†
−q)e

iqr, (A2)

where b
†
q and bq are the ripplon creation and annihila-

tion operators, respectively, ωq =
√

α/ρ · q3 is the ripplon

dispersion relation with helium surface tension α = 3.7 ×
10−4 N/m and density ρ = 145 kg/m3, and S is the area

of the liquid helium surface. At T = 20 mK a character-

istic value for these thermal fluctuations is δth � 0.2 pm.

With these estimates we find that 〈Hi〉/�ωe ≈ 10−3. Rip-

plons, being relatively soft excitations, cause slow electron

relaxation due to limited momentum transfer (�q � �l−1
x )

during scattering processes. The energy of ripplons with

this momentum is much lower than the electron level spac-

ing �ωe in the double dots. Transitions between electron

orbital states, which are of the order of 5–15 GHz, require

emitting or absorbing two ripplons. The coupling of the

electron to these excitations is weak, resulting in long

electron orbital lifetimes, estimated to be around 0.1 ms

[40,46], and therefore we ignore the electron-ripplon inter-

action in our model Hamiltonian.

APPENDIX B: CONSTRUCTING THE

SINGLE-PARTICLE BASIS SETS

For our numerical calculations, we use a pseudospec-

tral basis, i.e., a discrete variable representation (DVR),

and adopt a linear interpolation for the coupling constants

αi(x). Specifically, we use the one-dimensional sinc-DVR
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basis suggested by Colbert and Miller [93]. After dividing

the Hamiltonian into two distinguishable subsystems L and

R, as shown in Eq. (5), we establish two sinc-DVR basis

sets, one for each well. We denote these basis functions

by BA = {χA
α (x) | α = 0, . . . , KA} with the correspond-

ing quadrature of collocation points and weights QA =
{(xA

α , wA
α) | α = 0, . . . , KA} for A ∈ {L, R}. The quadrature

is uniform for the sinc-DVR basis, meaning that wA
α = �xA

and xA
α+1 = xA

α + �xA for all α.

We let xL
KL+1

= xb = xR
0 , i.e., the barrier is only included

as a quadrature point in the right system, and we let �x =
�xL = �xR. The sinc-DVR functions are then given by

χA
α (x) = 1√

�x
sinc

(
x − xA

α

�x

)

with

sinc(x) =

⎧

⎨

⎩

sin(πx)

πx
, x �= 0,

1, x = 0.

This means that χA
α (xA

β) = (�x)−1/2δαβ on the quadrature.

By restricting the grid on each side only up to the barrier,

we have effectively established an infinite potential wall.

This means that the potentials given in Eqs. (4) are altered

to

vL(x) =
{

v(x), x < xb,

∞, x ≥ xb,

vR(x) =
{

∞, x < xb,

v(x), x ≥ xb.

This forces each electron to remain in its own well, and

might seem an extreme limitation. However, the results in

our model are completely unchanged, and it is much more

computationally efficient and practical to use two separate

basis sets.

The matrix elements of the kinetic energy operator are

given by [93]

tAαβ = 〈χA
α | − 1

2

d2

dx2
|χA

β 〉 =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

π2

6(�x)2
, α = β,

(−1)α−β

(�x)2(α − β)2
, α �= β,

and the external potential is approximated using the

quadrature rule, viz.,

vA
αβ = 〈χA

α |v̂A(x)|χA
β 〉

≈ �x

KA
∑

γ=0

χA
α (xA

γ )vA(xA
γ )χA

β (xA
γ ) = δαβvA(xA

β),

that is, the potential is diagonal. The matrix elements of the

full one-body Hamiltonian can then be written as

hA
αβ = tAαβ + δαβvA

β ,

where we have defined the diagonal potential matrix ele-

ments vA
β ≡ vA(xA

β).

To evaluate the two-body Coulomb interaction, we

examine the matrix elements of tensor products of DVR

states., i.e., |χL
αχR

β 〉 = |χL
α 〉 ⊗ |χR

β 〉. We also use the con-

vention that 〈χL
αχR

β | = 〈χL
α | ⊗ 〈χR

β | = |χL
αχR

β 〉†
for the

conjugate states. We are able to directly compute the

matrix elements of the soft Coulomb interaction operator

using the quadrature rule. The matrix elements are thus

uαβ,γ δ = 〈χL
αχR

β |û(x1, x2)|χL
γ χR

δ 〉

≈ �xL�xR

KL
∑

σ=0

KR
∑

τ=0

χL
α (xL

σ )χR
β (xR

τ )u(xL
σ , xR

τ )

× χL
γ (xL

σ )χR
δ (xR

τ )

= δαγ δβδu(xL
γ , xR

δ ),

which is diagonal for each particle axis. We label the

matrix elements of the diagonal Coulomb operator by

uLR
γ δ ≡ u(xL

γ , xR
δ ).

APPENDIX C: THE HARTREE METHOD

In the Hartree method for two distinguishable particles

we approximate the ground state |�0〉 of the full Hamil-

tonian Ĥ in Eq. (2) as the product state |�0〉 ≈ |�〉 =
∣
∣φL

0 φR
0

〉

under the constraint that the Hartree orbitals are

orthonormal, i.e.,
〈

φA
0

∣
∣φA

0

〉

= 1. This lets us set up the

Lagrangian

L = EH − λL(〈φL
0 |φL

0 〉 − 1) − λR(〈φR
0 |φR

0 〉 − 1),

where the λA are Lagrange multipliers, and the Hartree

energy EH = 〈�|Ĥ |�〉 is given by

EH = 〈φL
0 |ĥL|φL

0 〉 + 〈φR
0 |ĥR|φR

0 〉 + 〈φL
0 φR

0 |u|φL
0 φR

0 〉.

Our next objective is to minimize the Lagrangian with

respect to the Hartree states and the multipliers. To do this,

we expand the Hartree states as a linear combination of

sinc-DVR states, i.e.,

∣
∣φA

i

〉

=
KA
∑

α=0

BA
αi

∣
∣χA

α

〉

, (C1)
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and minimize with respect to the coefficients BA
αi. Com-

puting ∂L/∂BA
α0

∗ = 0 gives two coupled eigenvalue equa-

tions,

KL
∑

β=0

(

hL
αβ + δαβ

KR
∑

γ=0

∣
∣BR

γ 0

∣
∣
2

uLR
βγ

)

︸ ︷︷ ︸

≡f L
αβ

BL
β0 = λLBL

α0, (C2a)

KR
∑

β=0

(

hR
αβ + δαβ

KL
∑

γ=0

∣
∣BL

γ 0

∣
∣
2

uLR
γβ

)

︸ ︷︷ ︸

≡f R
αβ

BR
β0 = λRBR

α0, (C2b)

that need to be solved iteratively until self-consistency has

been achieved. The Hartree matrices f A
αβ are defined as

everything inside the parentheses in the equations above.

By diagonalizing the Hartree matrices, we obtain KA

eigenvalues and eigenvectors, not just the lowest pair

λA and BA
α0. We select the N A + 1 lowest eigenvectors,

which gives us the set PA = {
∣
∣φA

i

〉

| i = 0, . . . , N A}, where

N A � KA.

The equations we solve are f̂ A
∣
∣φA

i

〉

= εA
i

∣
∣φA

i

〉

, where

f̂ A is the Hartree matrix defined earlier, and the εA
i are

the eigenvalues with the corresponding eigenvectors
∣
∣φA

i

〉

.

These eigenvalues describe the energy felt by a single par-

ticle trapped in one of the wells under the influence of

a charge in the other well. Formulated in terms of the

coefficients, the equations are

KA
∑

β=0

f A
αβBA

βi = εA
i BA

αi

with the f A
αβ the Hartree matrices from Eqs. (C2). These

equations are solved iteratively until a convergence

of |εA,(k+1)
i − ε

A,(k)
i | < δε with δε = 1 × 10−10 has been

reached. Here k corresponds to an iteration number. We

choose f
A,(0)

αβ = hA
αβ as an initial state such that

KA
∑

β=0

hA
αβB

A,(0)
βi = ε

A,(0)
i B

A,(0)
αi .

For the three target configurations found through numeri-

cal optimization in this work, the probability distributions

of the first four Hartree states in each well are plotted in

Fig. 6.

APPENDIX D: FULL CONFIGURATION

INTERACTION FOR TWO DISTINGUISHABLE

PARTICLES

Once the Hartree equations are solved, we obtain the

coefficients BA
αi, which allow us to construct the Hartree
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FIG. 6. Probability distributions of the first four Hartree states

in the left and right wells for all three configurations. The posi-
tions of the distributions are shifted along the y axis to reflect

their individual Hartree energy. The effective potentials for each

subsystem, i.e., the well potential set up by the electrodes plus
the mean-field contribution from the other electron, are plotted

as dashed lines.

basis PA from the sinc-DVR basis BA using Eq. (C1). We

can perform a basis transformation from the sinc-DVR

basis to the smaller Hartree basis by using the relations

hA
ij =

KA
∑

α=0

KA
∑

β=0

BA∗
αi BA

βj hA
αβ , (D1)
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uij,kl =
KL
∑

α=0

KR
∑

β=0

BL∗
αi BR∗

βj BL
αkBR

βlu
LR
αβ , (D2)

where Greek letters denote matrix elements in the sinc-

DVR basis, and Latin letters are for the Hartree basis.

Upon inserting the wave-function ansatz into the time-

independent Schrödinger equation and projecting onto a

two-body state
〈

φL
i φR

j

∣
∣
∣, we get

〈φL
i φR

j |Ĥ |�n〉 =
N L
∑

k=0

N R
∑

l=0

Hij,klCkl,n = Cij,nEn,

where the Hij,kl ≡ 〈φL
i φR

j |Ĥ |φL
k φR

l 〉 are the matrix elements

of the Hamiltonian in the Hartree product basis. The solu-

tion of this eigenvalue equation yields the coefficients Cij,n,

where each column corresponds to an eigenstate |�n〉 with

corresponding eigenenergy En. The matrix elements of the

two-body Hamiltonian can be expressed as

Hij,kl = hL
ikδjl + δikhR

jl + uij,kl,

where the one- and two-body matrix elements in the

Hartree basis are shown in Eqs. (D1) and (D2).

APPENDIX E: THE VON NEUMANN ENTROPY

The von Neumann entropy is defined by

S = −tr[ρ̂ log2(ρ̂)],

where ρ̂ is the density operator. The entropy of the eigen-

states |�n〉 will be zero as they are pure states. However,

the entropy of the reduced subsystems (L and R) of |�n〉
will in general not be zero. Each subsystem will have the

same entropy, and any nonzero entropy can be attributed to

entanglement. We can evaluate the entanglement entropy

by bypassing the construction of the reduced density oper-

ator and using the Schmidt decomposition instead. Specif-

ically, for a given two-body wave function |�〉 expressed

in terms of the Hartree product states,

|�〉 =
N L
∑

k=0

N R
∑

l=0

Ckl

∣
∣φL

k φR
l

〉

,

we can perform a singular value decomposition of the two-

body coefficients, Ckl =
∑Ñ

p=0 UkpσpV∗
lp , to obtain

|�〉 =
Ñ

∑

p=0

σp

∣
∣
∣ψ

L
p ψR

p

〉

,

where

∣
∣
∣ψ

L
p

〉

≡
N L
∑

k=0

Ukp

∣
∣φL

k

〉

,
∣
∣
∣ψ

R
p

〉

≡
N R
∑

l=0

V∗
lp

∣
∣φR

l

〉

are the Schmidt states, Ñ is either N L or N R depending on

the definition of the singular value decomposition, and the

σp are the singular values with σ 2
p representing the occupa-

tion of the single-particle states
∣
∣
∣ψL

p

〉

and
∣
∣
∣ψR

p

〉

. Using the

singular values, we can then compute the von Neumann

entropy of |�〉 as

S = −
Ñ

∑

p=0

σ 2
p log2(σ

2
p ).

APPENDIX F: PARTICLE DENSITIES

For state |�〉 above, we can compute the particle den-

sity as

ρ(x) =
∫

dy |�(x, y)|2 +
∫

dy |�(y, x)|2

=
N L
∑

i,j =0

N R
∑

l=0

C∗
ilCjlφ

L
i

∗
(x)φL

j (x)

+
N R
∑

i,j =0

N L
∑

k=0

C∗
kiCkj φ

R
i

∗
(x)φR

j (x),

which collapses to the electron density in the case of indis-

tinguishable particles. The calculated particle densities for

the three target configurations found through numerical

optimization in this work are shown in Fig. 7.

APPENDIX G: FINDING OPTIMAL WELL

CONFIGURATIONS

In this appendix, we present a way of finding the optimal

configuration for single motional qubit rotations, configu-

ration I, as well as the optimal configurations for two-qubit

operations, configurations II and III. These are found by

expressing our configurational search in terms of an opti-

mization problem. The seven voltages of the potential from

Eq. (1), denoted V, will be varied to find the optimal solu-

tion. We note that, due to the flexibility provided by the

potential, the optimization landscape consists of several

local minima and the resulting voltages are therefore some-

what arbitrary. The same can also be said for the path

between configurations. We have chosen configurations

and a path such that our results resemble those of Fig. 2(b)

by Zhao et al. [88], but we stress that our model allows for

vastly different solutions. We select a fixed anharmonicity

with equal magnitude and opposite sign for each well, and
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FIG. 7. Calculated particle densities of the first six eigenstates

of the full two-body Hamiltonian for configurations I (a), II (b),
and III (c). Each state is shifted upwards with its transition fre-

quency from the ground state (in teal). The electrostatic potential

wells are shown with dashed lines. Note that these are hybrid
plots; the left y axis gives the unit scale for the transition frequen-

cies, while the right y axis gives the unit scale for the electrostatic

potential energy, as indicated by the arrows.

try to tune the wells such that only the detuning between

each well is altered.

Configuration I is a configuration for which the transi-

tion frequencies are distinct, but at the same time within

the working range of 5–15 GHz of the readout resonators.

Furthermore, we aim for the anharmonicities in the left

and right wells, denoted βL/2π and βR/2π , to have equal

magnitudes but opposite signs. This adjustment is made

to eliminate ZZ crosstalk and facilitate a high on:off ratio

for the implementation of controlled-phase gates [88,89].

There are several possible candidates for the transition

frequencies and anharmonicities that satisfy these require-

ments, and the candidates we end up with are a result

of performing the optimization process for a range of

possible candidates. For the left well, we targeted a tran-

sition frequency between the two lowest-energy levels of

ωL/2π = εL
1 − εL

0 = 11 GHz, and a corresponding transi-

tion frequency for the right well of ωR/2π = εR
1 − εR

0 =
9 GHz. Here the εA

i are the Hartree eigenvalues, i.e., the

single-particle Hartree energies. At the same time, we tar-

geted anharmonicities of βL/2π = −βR/2π = 1 GHz. If

we were allowed to vary the transition frequencies and

anharmonicities independently and freely, a cost function

with minima that coincide with these properties is

CI(V) = [ωL(V)/2π − 11 GHz]2

+ [ωR(V)/2π − 9 GHz]2

+ [βL(V)/2π − 1 GHz]2

+ [βR(V)/2π + 1 GHz]2, (G1)

where ωA(V)/2π is the transition frequency and βA(V)/2π

is the anharmonicity of the wells (with A ∈ {L, R}). To

minimize CI(V), we evaluated its gradient with respect

to the voltages, that is, ∇VCI(V), using the Tensorflow

machine learning library [94]. We then used a variation of

the gradient descent method with an adaptive learning rate

based on the ADAM algorithm [92], to update the voltages.

The learning rate for the Adam optimizer was initially set

to 10−4.

For configuration III, we want to tune into a triple

degeneracy point between states |�3〉, |�4〉, and |�5〉.
This allows for the realization of a controlled-phase gate

[89,90]. In such a configuration, we construct a cost func-

tion based on targeting the von Neumann entropies of the

eigenstates |�3〉, |�4〉, and |�5〉 to be S3 = 1.5, S4 = 1.0,

and S5 = 1.5, respectively, while the entropies of the lower

eigenstates should be kept minimal. We targeted the same

anharmonicities as for configuration I, that is, βL/2π =
−βR/2π = 1 GHz. In order to end up with a configura-

tion close to configuration I in parameter space, we utilized

the parameters for configuration I, denoted VI, as the ini-

tial guess in the optimization algorithm. Finally, we ensure
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TABLE I. Electrode voltages for configurations I, II, and III,
resulting in a total electrostatic potential given by Eq. (1).

I (mV) II (mV) III (mV)

V1 297.45 296.41 295.17
V2 152.33 155.01 158.23

V3 344.36 342.63 340.56

V4 −353.49 −354.66 −356.05
V5 345.93 345.26 344.46

V6 143.94 143.78 143.60

V7 302.24 302.81 303.49

that a linear sweep of voltages from configuration I to con-

figuration III passes through configuration II by targeting a

detuning �III/2π = (ωL − ωR)/2π = −1 GHz for config-

uration III, as explained in Sec. II F. The cost function we

apply is given by

CIII(V) = S1(V)2

+ S2(V)2

+ [S3(V) − 1.5]2

+ [S4(V) − 1.0]2

+ [S5(V) − 1.5]2

+ [βL(V)/2π − 1 GHz]2

+ [βR(V)/2π + 1 GHz]2

+ [ωL(V)/2π − ωR(V)/2π + 1 GHz]2. (G2)

We used the same optimization method and learning rate

as for configuration I.

APPENDIX H: OPTIMIZED ELECTRODE

VOLTAGES

The explicit values of the electrode voltages obtained for

the three optimized configurations are shown in Table I.
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