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Symmetric edge polytopes are lattice polytopes associated with finite simple graphs that are of interest in both theory
and applications. We investigate the facet structure of symmetric edge polytopes for various models of random graphs.
For an Erdős-Renyi random graph, we identify a threshold probability at which with high probability the symmetric
edge polytope shares many facet-supporting hyperplanes with that of a complete graph. We also investigate the
relationship between the average local clustering, also known as the Watts-Strogatz clustering coefficient, and the
number of facets for graphs with either a fixed number of edges or a fixed degree sequence. We use well-known
Markov Chain Monte Carlo sampling methods to generate empirical evidence that for a fixed degree sequence, higher
average local clustering in a connected graph corresponds to higher facet numbers in the associated symmetric edge
polytope.
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1 Introduction
Given a finite simple graph G, the symmetric edge polytope is defined as

PG := {±(ei − ej) : ij ∈ E(G)} .

Symmetric edge polytopes, also called type PV adjacency polytopes, have been the subject of extensive
recent study (2, 6, 7, 8, 9, 10, 14, 15, 16, 17, 18, 20, 21, 22). One problem of interest is to establish
relationships between the combinatorial structure of G and geometric properties of PG, motivated by
applications in both pure and applied contexts. One major goal is to compute the normalized volume of
PG, where the normalized volume of a lattice polytope P is volume with respect to the integer lattice in
the affine span of P , normalized so that a minimal-volume lattice simplex has volume 1. Symmetric edge
polytopes are known to admit regular unimodular triangulations (15), and thus the normalized volume is
the number of maximal simplices in such a triangulation. Every regular unimodular triangulation of PG

induces a regular unimodular triangulation of the boundary of PG, and hence of each facet. Because PG
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Fig. 1: Above are the complete graph K4 (left), and the complete bipartite graph K3,2 (right).

is reflexive, these techniques involving triangulations and facet structure can be used to study normalized
volume. These triangulations have also been used to study Ehrhart-theoretic properties of PG, e.g., (15).

This is important for applications, because the normalized volume of PG is an upper bound on the
number of non-zero complex solutions to Laurent polynomial systems arising from Kuramoto models
of coupled oscillators (7). These upper bounds provide information regarding the possible number of
synchronization configurations for a Kuramoto model. As discussed in (7), these upper bounds also
provide stopping criteria for iterative- and homotopy-based solvers for these models. In private commu-
nication, Tianran Chen and Robert Davis stated to the authors that it would be interesting to estimate an
upper bound on the number of facets of a symmetric edge polytope in terms of properties of the underly-
ing graph, due to implications regarding the complexity of combinatorial approaches to solving PV-type
power-flow equations (5).

Even when considering the general setting of all connected graphs on n vertices, the maximum and
minimum number of facets of PG has not yet been established. Two of the authors (2) have previously
conjectured the following candidates for facet-maximizing and facet-minimizing connected graphs on a
fixed number of vertices. Note that Kn denotes the complete graph with n vertices, and Ka,b denotes the
complete bipartite graph with shores of having a and b vertices, as shown in Figure 1. Note also that given
a finite list of graphs G1, . . . , Gt with one vertex vi from each Gi, the wedge of the graphs is obtained by
identifying v1, . . . , vt to a single vertex.

Conjecture 1.1 (Braun and Bruegge (2)). Let n ≥ 3.

1. For n = 2k + 1, the maximum number of facets for PG for a connected graph G on n facets is 6k,
which is attained by a wedge of k cycles of length three.

2. For n = 2k, the maximum number of facets for PG for a connected graph G on n facets is 14 ·6k−2,
which is attained by a wedge of K4 with k − 2 cycles of length three.

3. For n = 2k + 1, the minimum number of facets for PG for a connected graph G on n facets is
3 · 2k − 2, which is attained by Kk,k+1.

4. For n = 2k, the minimum number of facets for PG for a connected graph G on n facets is 2k+1−2,
which is attained by Kk,k.

Our goal in this work is to study the facets of PG for various random graph models, with an emphasis
on the number of facets, denoted by N(PG) or N(G). First, we investigate properties of the facets of
PG when G is an Erdős-Renyi random graph, establishing a threshold probability for which PG and PKn

share facet-supporting hyperplanes. Second, we present the results of empirical investigations regarding
the relationship between clustering metrics on G and N(G). The graph metric of interest in this work
is the average local clustering coefficient of G, also called the Watts-Strogatz clustering coefficient. For
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Fig. 2: Average local clustering against number of facets for every connected graph G with 8 vertices.
The line of best fit for this data is also included.

each vertex v of G, define the local clustering coefficient CWS(v) to be the number of edges connecting
two neighbors of v divided by the number of possible edges between neighbors of v. The average local
clustering coefficient is then defined as

CWS =
1

|V (G)|
∑

v∈V (G)

CWS(v) .

This value is a measure of graph transitivity introduced by Watts and Strogatz (25) in the context of
network science.

Figure 2 contains a plot of average local clustering against number of facets for all 11, 117 connected
graphs on 8 vertices. There are some apparent patterns in this data. For example, we have that N(K8) =
254 and there are many graphs with N(G) ≈ 254 having a wide range of clustering values. Further, there
is a general trend that the number of facets increases with the clustering; the slope of the fit line for this
data is approximately 148.46.

Given the rapid rate at which the number of connected graphs on n vertices grows, and the computa-
tional expense of computing the facets of a polytope given its vertices (23), it is not productive to attempt
to compute facet data for all connected graphs on n vertices in general. However, in this paper we ex-
tend our observations for the n = 8 data by considering experimental evidence for various families of
graphs with a fixed graph invariant. These experiments involve generating ensembles of graphs via well-
known Markov Chain Monte Carlo techniques. Specifically, we present experimental evidence that for
connected graphs with a fixed degree sequence, higher average local clustering tends to produce sym-
metric edge polytopes with a larger number of facets than those with lower clustering. All computations
in this work were done with SageMath (24) (for graph generation/sampling and clustering metrics) and
Normaliz (3, 4) (for facet computations). Because it is computationally expensive to compute the number
of facets for a polytope, we limit our empirical studies to ensembles of graphs with less than 20 vertices;
this corresponds to polytopes of dimension at most 19.

This paper is structured as follows. In Section 2, we investigate the number of facets for random graphs
using the Erdős-Renyi model. We provide empirical data and we prove asymptotic results regarding the
existence of certain facets for random graphs. In Section 3, we use Markov Chain Monte Carlo sampling
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techniques to generate random ensembles of graphs with either a fixed number of edges or a fixed degree
sequence, and consider the relationship between average local clustering and facet numbers. Finally, in
Section 4, we provide a toy example of a theoretical study regarding facet-maximizing graphs with a fixed
degree sequence, and we conclude with a general discussion of our results and data.

2 The Erdős-Renyi Model
A standard model for empirically sampling graphs is the Erdős-Renyi model, denoted G(n, p), for n
a positive integer and 0 < p < 1. In G(n, p), each edge occurs independently with probability p;
thus, a graph on n vertices having m edges occurs with probability pm(1 − p)(

n
2)−m. Note that for

G = (V,E) ∼ G(n, p), meaning a random graph sampled from G(n, p), the expected value of CWS is p.

2.1 Facets of G(n, p)

There are many well-known limitations to the model G(n, p), most notably that the expected degree
distribution, average shortest path length, and various clustering metrics often do not match observations
in real-world networks (19). However, one of the major advantages of working with G(n, p) is that it is
defined in a way that often allows theoretical results to be obtained. For example, see (9) for the use of the
G(n, p) model in the study of Ehrhart theory for symmetric edge polytopes. In this subsection, we prove
that for certain values of p, the typical G(n, p) will have facets of a prescribed form.

An established approach to the facet description of PG involves certain functions f : V → Z on the set
V of vertices in G. Specifically, it was shown in (15, Theorem 3.1) that the facets of PG arise as follows.

Theorem 2.1 (Higashitani, Jochemko, Michalek (15)). Let G = (V,E) be a finite simple connected
graph. Then f : V → Z is facet-defining if and only if both of the following hold.

(i) For any edge e = uv we have |f(u)− f(v)| ≤ 1.

(ii) The subset of edges Ef = {e = uv ∈ E : |f(u) − f(v)| = 1} forms a spanning connected
subgraph of G.

Symmetric edge polytopes are contained in the hyperplane orthogonal to the span of the all-ones vector,
and thus two facet-defining functions are identified if they differ by a constant vector. The spanning
connected subgraphs with edge sets Ef arising in Theorem 2.1, called facet subgraphs, have further
structure.

Definition 2.2. Given a facet-defining function f as in Theorem 2.1, we write Gf for the corresponding
facet subgraph, i.e., the subgraph with vertex set V and edge set Ef .

Lemma 2.3 (Chen, Davis, Korchevskaia (6)). Let G be a connected graph. A subgraph H of G is a facet
subgraph of G if and only if it is a maximal connected spanning bipartite subgraph of G.

It is therefore natural to study the expected structure of induced bipartite subgraphs of G(n, p) across
various bipartitions of the verex set.

Definition 2.4. For any bipartition (A, V \ A) of the vertex set V of a graph G, we denote by B(A,G)
the induced bipartite subgraph for the bipartition (A, V \A).
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Note that given any bipartition (A, V \A) of the vertex set of G, if B(A,G) is connected then there are
at least two facets of PG having Gf = B(A,G), specifically the two {0, 1}-labelings of the bipartition.
When G = Kn, any bipartition produces a facet subgraph and these {0, 1}-labelings are the only facet-
supporting functions.

Thus, we are interested in understanding when B(A,G) is connected for an typical G. For the following
theorem, recall that a sequence of events An for n = 1, 2, . . . occurs with high probability (abbreviated
w.h.p.) if limn→∞ Prob(An) = 1.

Theorem 2.5. Let G = (V,E) ∼ G(n, p).

• If p < 1/2 is fixed, then w.h.p. there exists an ⌊n/2⌋-subset A of V such that B(A,G) is not
connected.

• If p > 1/2 is fixed, then w.h.p. for every subset A ⊂ V , B(A,G) consists of a single connected
component unioned with isolated vertices.

• Further, if p = 1/2+ϵ is fixed for some ϵ > 0, then w.h.p. for every subset A ⊂ V with ||A|−n/2| <
ϵ(1/2− ϵ)n we have that B(A,G) is connected and spans V .

The proof of Theorem 2.5 will require the following well-known lemma.

Lemma 2.6. Let p ∈ (0, 1) be fixed, and G ∼ G(n, p). Then w.h.p. every vertex in G has degree ≈ pn.
That is, for every fixed ϵ > 0, w.h.p. every vertex v has degree (1− ϵ)pn < deg(v) < (1 + ϵ)pn.

Proof of Theorem 2.5: For the case where p < 1/2, note that w.h.p. every vertex has degree close to
its mean pn. Since p < 1/2, a typical vertex v is connected to fewer than half of the other vertices.
Thus, there is some ⌊n/2⌋-subset A of V containing the entire neighborhood of v, and the corresponding
B(A,G) is not connected.

Next, let p = 1/2+ ϵ for fixed ϵ > 0. First, we show that for any subset A ⊂ V , there exists a constant
α ∈ R>0 depending only on ϵ such that B(A,G) has no connected component of order i for 2 ≤ i ≤ αn.
Let δ = δ(G) denote the minimum degree of a vertex in G. By Lemma 2.6, w.h.p. δ ≥ (1+ϵ)

2 n − ϵ2n.
For the bipartition (A, V \ A), one of A and V \ A has order less than or equal to n/2. Without loss of
generality, suppose |A| ≤ n/2. If S ⊂ V spans a connected component of B(A,G) and |S| ≥ 2, then
there exists a vertex v of S such that v ∈ A. Then w.h.p. deg(v) ≥ (1+ϵ)

2 n − ϵ2n and the number of
neighbors of v that are in V \A must be at least

δ − |A| ≥ (1 + ϵ)

2
n− ϵ2n− n/2

=
ϵn

2
− ϵ2n

= ϵ(1/2− ϵ)n.

Setting α = ϵ
2 (1/2− ϵ), we see that w.h.p. the order of S is strictly greater than αn, a contradiction.

Next we rule out connected components of order i for αn ≤ i ≤ 2n/3 by bounding the probability that
a given subset of i vertices spans a connected component for some bipartition (A, V \ A). Suppose that
S ⊂ V with |S| = i spans a connected component of B(A,G), and let a = |S∩A| and b = |S∩(V \A)|.
Any edge between S ∩ A and (V \ A) \ S is forbidden. If there was such an edge, S would not span
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its connected component, contradicting our assumption. The same holds for edges between A \ S and
S ∩ (V \ A). So the number of forbidden edges is a(n − b) + b(n − a) = (a + b)n − 2ab, and the
probability that S spans its component in the given bipartition is at most

(1− p)(a+b)n−2ab.

Since a + b = i, ab is maximized when a = ⌊i/2⌋ and b = ⌈i/2⌉. Thus, the number of forbidden edges
is at least

in− 2(i/2)2 = i(n− i/2) ≥ (αn)(n− n/3) =
2α

3
n2.

Applying a union bound, the probability that there is any connected component of size αn ≤ i ≤ 2n
3

in any bipartition is bounded above by

n−1∑
k=1

(
n

k

) 2n/3∑
i=αn

(
n

i

)
(1− p)

2α
3 n2

≤ 2n · 2n(1− p)
2α
3 n2

→ 0

as n → ∞ since p ∈ (0, 1) is fixed. So w.h.p. B(A,G) consists of a single large component of order at
least 2n/3 unioned with isolated vertices.

Now we show that if ||A|−n/2| < ϵ(1/2−ϵ)n, then w.h.p. B(A,G) has no isolated vertices. We know
that for p = 1/2 + ϵ we have δ ≥ (1+ϵ)

2 n− ϵ2n. For a bipartition (A, V \ A), one of the shores has size
greater than n/2; we have already seen that if |A| < n/2, w.h.p. there are no isolated vertices in B(A,G)
contained in A. Thus, we can assume that |A| > n/2 and assume further that |A| − n/2 < ϵ(1/2− ϵ)n.
It follows that

|A| < (1 + ϵ)

2
n− ϵ2n = δ

and thus δ − |A| > 0. Hence, w.h.p. every vertex in A must have a neighbor in V \ A and thus there are
no isolated vertices in B(A,G).

Observe that every facet subgraph must support the two facet-defining functions taking values in {0, 1},
namely those two 0/1-functions that are constant on the shores of the bipartition induced by Gf . Further,
any 0/1-function on the vertices of G is a facet-defining function for the symmetric edge polytope of the
complete graph on those vertices. Thus, Theorem 2.5 shows that when p > 1/2 and n is large, there are
many symmetric pairs of facet-supporting hyperplanes that are identical for G ∼ G(n, p) and Kn. The
corresponding facets might not have the same polyhedral structure in the two symmetric edge polytopes,
but the facet-supporting hyperplanes are the same. This leads to the following corollary.

Corollary 2.7. Let G = (V,E) ∼ G(n, p). For fixed p = 1/2 + ϵ with ϵ > 0, let t(n, p) denote the
number of subsets A ⊂ V satisfying ||A| − n/2| < ϵ(1/2 − ϵ)n. Then w.h.p. we have that the number
of facets of PG is at least t(n, p), i.e., as n → ∞ the probability that G ∼ G(n, p) yields this number of
facets goes to 1.

Example 2.8. Figure 3 shows two graphs, a path with 3 vertices and a complete graph with 3 vertices, and
their symmetric edge polytopes. The bold pairs of facets are supported by the same pair of hyperplanes,
in particular, the hyperplanes xv = 1 and xu + xw = 1, arising from the partition ({u,w}, {v}) of the
vertices. Since the path graph does not contain the edge uw, it is not necessary that the facet-defining
functions be constant on the shores of this partition. Therefore, this same partition also determines the
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other pair of facets for the path graph, supported by the hyperplanes xu − xw = 1 and xw − xu = 1,
which are not support hyperplanes for K3.

u v w

xu

xv

xw

u v

w

xu

xv

xw

Fig. 3: A path graph P3 (top) and the complete graph K3 (bottom) with their symmetric edge polytopes.
Facets arising from the same pair of support hyperplanes are bold.

The next corollary shows that with high probability, there is at least one Gf in G ∼ G(n, 1/2 + ϵ) that
supports for PG only the facet-supporting hyperplanes that the same bipartition supports for PKn

.

Corollary 2.9. Let Gn = (Vn, E) ∼ G(n, p). If p = 1/2 + ϵ is fixed with ϵ > 0, then for a sequence of
subsets An ⊂ Vn with ||An| − n/2| < ϵ(1/2 − ϵ)n, w.h.p. there are only two facet-defining functions f
of PGn with Gf = B(An, G), namely the functions f with values in {0, 1}.

Proof: First note that as n → ∞, w.h.p. the induced subgraph of G on a given subset of vertices A with
|A| > ((1+ϵ)/2−ϵ2)n is connected. To see this, note that since ϵ is fixed, we have ((1+ϵ)/2−ϵ2)n goes
to infinity and thus p = 1/2+ϵ > log(((1+ϵ)/2−ϵ2)n)/((1+ϵ)/2−ϵ2)n. Thus, the induced subgraph is
G(((1+ ϵ)/2− ϵ2)n, p) and, by a well-known theorem of Erdős and Renyi (11), w.h.p. this is connected.
Since both B(A,G) and B(V \A,G) are connected w.h.p. for any A with ||A| − n/2| < ϵ(1/2− ϵ)n, it
follows from Theorem 2.1 that any f with Gf = B(A,G) is constant on both A and V \A.

Example 2.10. The graph G in Figure 4 is the subgraph of the complete graph K4 obtained by removing
the edge vw. The bipartition ({t, v}, {u, w}) of the vertices of G produces the facet subgraph Gf . Since
the edges tv and uw are present in the original graph G, Theorem 2.1 gives that any facet-defining function
must be constant on the shores of this bipartition. In particular, the only facet-supporting hyperplanes of
PG that arise from this partition are xt+xv = 1 and xu+xw = 1, which are exactly the facet-supporting
hyperplanes for PK4

associated with the same partition.

2.2 Data and Observations
While Theorem 2.5 establishes the existence of many facet subgraphs in certain large random graphs,
this does not provide much insight into our consideration of average local clustering. When we direct



8 Benjamin Braun, Kaitlin Bruegge, Matthew Kahle

t

u

v

w

G

t

u

v

w

Gf

Fig. 4: The graph G is formed by removing the edge vw from the complete graph K4. The graph Gf is
the facet subgraph of G associated to the partition ({t, v}, {u, w}) of the vertices.

our attention to empirical data for G(n, p), no apparent correlation between average local clustering and
N(G) is observed, as demonstrated in Figure 5 for an ensemble sampled from G(14, 0.45). This is in
stark contrast to the data for all connected graphs on eight vertices shown in Figure 2. One caveat is that
there are 29, 003, 487, 462, 848, 061 connected graphs on 14 vertices (1, A001349), of which we sample
only 4975. Figure 6 provides further evidence that sampling from G(n, p) does not yield a consistent
trend. This figure contains a table of plots providing data for ensembles of graphs with n = 11, 14, 17 and
p = 0.2, 0.4, 0.6, 0.8.

0.2 0.3 0.4 0.5 0.6 0.7
average local clustering

16000

18000

20000

22000

24000

26000

nu
m

be
r o

f f
ac

et
s

Fig. 5: Data from an ensemble of 4975 connected graphs from G(14, 0.45).

In Figure 6, the number of vertices increases across rows while the value of p increases down columns.
As expected, the mean value of sampled CWS values is approximately p. Further, reading down each col-
umn as p increases, we observe the range of values of N(G) in our sample becomes smaller. Specifically,
these values are getting closer to N(Kn) = 2n − 2, where this formula is a straightforward application of
Theorem 2.1. This makes sense, as higher values of p leads to greater edge density, and thus the typical
sampled graph is closer in structure to Kn.

What we do not see consistently in these samples from G(n, p) is a positive correlation between average
local clustering and number of facets that is observed in Figure 2. For p = 0.2, the first row in Figure 6,
we do observe a positive trend. We also observe that when p = 0.2, there is significantly more variation
in the number of facets that arise; note that for n = 17, the range of the vertical axis when p = 0.2 is from
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(a) n = 11, p = 0.2
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(b) n = 14, p = 0.2
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(c) n = 17, p = 0.2
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(d) n = 11, p = 0.4
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(e) n = 14, p = 0.4
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(f) n = 17, p = 0.4
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(g) n = 11, p = 0.6
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(h) n = 14, p = 0.6
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(i) n = 17, p = 0.6
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(j) n = 11, p = 0.8
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(k) n = 14, p = 0.8
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(l) n = 17, p = 0.8

Fig. 6: Data from ensembles drawn from G(n, p). The target sample size in each ensemble was 500
connected graphs and disconnected graphs were rejected during sampling. Note that for smaller values of
p, the range of the vertical axis is significantly larger than for large values of p.
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less than 100, 000 to over 400, 000. However, for n = 17 and p = 0.8, the range is from around 131, 000
to around 131, 400. Note that N(K17) = 131, 070.

What we will see in Section 3 is that when we sample graphs on n vertices in a more restrictive fash-
ion, fixing also the number of edges or (more strongly) the degree sequence, we do observe a positive
correlation between average local clustering and number of facets.

3 Graph Ensembles via Markov Chain Monte Carlo Sampling
While our samples from G(n, p) for fixed p do not display the relationship between average local clus-
tering and N(G) that was observed in the complete enumeration for small n (as in Figure 2), we do
see correlations when we use other random graph models that differently restrict the space of graphs we
consider. This portion of our study uses Markov Chain Monte Carlo (MCMC) techniques to generate
ensembles of connected graphs having either a fixed number of edges or a fixed degree sequence. These
techniques arise in the study of configuration models for random graphs with a fixed degree sequence, see
the survey (12) and the references given there for more details.

3.1 MCMC Sampling Methods
Sampling from graph spaces via Markov chain traversal is a common technique (12). For a Markov chain
having a certain stationary distribution, sample graphs taken at sufficiently spaced intervals can be treated
as independent, and an ensemble of such graphs can be expected to follow the stationary distribution. In
the case of our study, we employ Markov chains for which the stationary distribution is uniform arising
from processes to produce new graphs from old by local, reversible operations. With this, we can picture
the sample space as a graph of graphs G, where each node represents a graph in the space, and there is a
directed edge from the graph G to the graph G′ if performing an instance of the transition operation on G
produces G′. In general, each edge has a weight signifying the probability of that transition. In our study,
all instances of the transition operation are equally likely. That is, from a state, G, in the Markov chain,
the probability of transitioning to any adjacent state is equal. So we can view edges in the graph of graphs
for our spaces as unweighted.

3.1.1 Fixed Number of Edges
To sample from the space of connected graphs with n vertices and m edges, we employ a single-edge
replacement MCMC technique similar to what is described in (12, Section 2) (in the case of trees, this
technique is known as branch exchange). Define the graph of graphs G(n,m) to be the directed graph
with vertex set all connected graphs with n vertices and m edges. A connected graph G has an arrow in
G(n,m) to a connected graph G′ if G′ is obtained from G by deleting an edge in G and adding an edge
in G′ from the complement of G. This process is demonstrated in Figure 7.

Thus, note that every arrow in G(n,m) is reversible. Further, for an edge e ∈ G and f in the comple-
ment of G, if the edge set (E(G) \ {e})∪ {f} does not form a connected graph, define G(n,m) to have a
loop at G. It is straightforward to show that the directed graph G(n,m) is regular, strongly connected, and
aperiodic, hence we can conclude that ensembles generated by this method asymptotically obey a uniform
distribution (12).

Our sampling method begins by generating a random element G of G(n,m) and then successively
randomly choosing an edge e ∈ E(G) and a non-edge f ∈ E(G)C to generate the next step in a random
walk on the graph of graphs. We use subsampling, typically taking every 11-th graph, in an attempt to
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Fig. 7: An example of a walk through G(7, 8) demonstrating a sequence of two possible single-edge
replacements, first replacing ab with bg, then replacing ad with cd.

generate an ensemble of graphs with more diverse structures, though, due to computational constraints,
our sample sizes are not particularly large. Note that we are not selecting our subsampling frequency
based on any information about the target distribution or mixing time.

3.1.2 Fixed Degree Sequence

To sample from the space of simple connected graphs on n vertices with a fixed degree sequence, we
employ a double-edge swap MCMC technique as described in (12, Section 2). Define the graph of graphs
G(d) to be the directed graph with vertex set all connected graphs with degree sequence d. A connected
graph G has an arrow to G′ in G(d) if G′ is obtained from G via a double-edge swap, i.e., if there exist
edges uv and xy in G such that replacing these edges with ux and vy produces G′. An example is shown
in Figure 8.

a
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g ab, ef → ae, bf
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e

f

g ac, fg → af, cg

a
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c

d

e

f

g

Fig. 8: An example of a walk through G({3, 3, 2, 2, 2, 2, 2}) demonstrating a sequence of two possible
double edge swaps, first swapping the endpoints of ab and ef , then swapping the endpoints of ac and fg.

If performing a particular double-edge swap on G would produce a graph that is outside the space (i.e.
the new graph has a loop or multiedge or is disconnected), that swap will correspond to a loop on the
vertex G in G(d). It is shown in (12) that G(d) is regular, strongly connected, and aperiodic. Thus, as
before, the samples asymptotically obey a uniform distribution.

Our sampling method begins by generating a connected graph with degree sequence d via the Havel-
Hakimi algorithm (13) and randomly performing double-edge swaps. Again, we employ subsampling,
typically taking every 5-th or 11-th graph depending on the number of vertices. As before, our subsam-
pling frequency is not based on any information regarding the target distribution or mixing time.
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3.2 Data and Observations
In each of our experiments, we generated an ensemble of graphs with specified invariants: number of
vertices and either number of edges or degree sequence. For each of our samples, we computed the
average local clustering and the number of facets for PG, and we generated a plot displaying the results.
We discuss these experiments and results in this subsection.

3.2.1 Fixed Number of Edges
We first used single-edge swap MCMC methods to generate ensembles of graphs with a fixed number of
vertices and edges. We computed CWS(G) and N(PG) for each graph in our ensemble, and plotted the
resulting ordered pairs. In each of these plots, the number of facets appears to generally increase as CWS

increases. Additionally, we observe that these plots often exhibit heteroscedasticity, i.e., the variance of
the data changes as CWS increases. Figure 9 shows two representatives of the types of plots we observe.
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(a) 1001 graphs with 11 vertices and 25 edges.
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(b) 201 connected graphs with 15 vertices and 37 edges

Fig. 9: Fixed edge data for 11 and 15 vertices

Figure 10 contains plots for connected graphs on 11 vertices with various fixed numbers of edges.
These plots suggest that the heteroscedasticity phenomenon, where the variance in the number of facets
increases as average local clustering increases, arises across multiple fixed edge counts. It is important
to note that in the data plots for Figure 10, all the axes change scale. Thus, for example, the plot for 11
vertices and 20 edges has average local clustering range from near 0 to 0.8, and facet numbers range from
under 2000 to over 4000. However, the plot with 35 edges has a significantly restricted range for both the
horizontal and vertical axis. This is the same phenomenon that appeared in Figure 6, where higher edge
density yields less variation for both average local clustering and facet numbers. Nevertheless, even at
different scales, a positive correlation is observed.

3.2.2 Graphs with Hubs
Our next experiments used double-edge swap MCMC methods to generate connected graphs with a fixed
degree sequence. In real-world graphs, it is common for there to be a large number of lower-degree
vertices and a small number of higher-degree vertices; the latter are often referred to as hubs. This has
led to the development of various random graph models that exhibit scale-free degree distributions (19).
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(a) 11 vertices, 20 edges
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(c) 11 vertices, 30 edges
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(d) 11 vertices, 35 edges

Fig. 10: Data for graphs on 11 vertices with varying edge numbers

Because we are limited in the dimensions of PG for which we can effectively compute the number of
facets, the magnitude of hubs that we can study are not as great as often found in large real-world networks.
However, Figures 11 and 12 are representative of the data we have observed in ensembles of graphs on
less than 20 vertices where the degree sequence has a small number of high-degree vertices. In all of the
experiments we have conducted for graphs with hubs, a correlation between CWS and N(G) is observed.

3.2.3 k-Regular Graphs
A classic family of graphs with a fixed degree sequence are k-regular graphs, i.e., graphs where every
vertex has degree k. The number of connected regular graphs on n vertices is a well-studied integer
sequence (1, Sequence A005177). Based on our previous observations, for larger values of k the average
local clustering should be higher, due to higher edge density. What is less clear is what to expect from the
number of facets of the symmetric edge polytope as k varies, especially for small k.

Figure 13 provides a plot of average local clustering and number of facets for 3390 connected regular
graphs on 12 vertices (that there are 18979 such graphs), sampled using double-edge MCMC for each
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Fig. 11: Data from 370 connected graphs
having 18 vertices and degree sequence
[3, 3, 4, 4, . . . , 4, 4, 5, 5, 16, 16].
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Fig. 12: Data from an ensemble of 192 con-
nected graphs with 17 vertices and degree se-
quence [3, 3, 3, 4, 4, . . . , 4, 4, 5, 5, 5, 5, 15] obtained
by MCMC with double-edge swaps.

k. Note that for small values of k, there is a trend that N(G) increases as CWS increases. When k is
small, the average local clustering is generally less than 0.4 and the number of facets varies widely. As k
increases, the average local clustering varies less, and the number of facets concentrates near the value of
N(K12) = 4094. In general, it is reasonable to expect that as the edge density of a k-regular graph G in-
creases, and thus as the graph becomes closer to a complete graph, there will be many connected spanning
bipartite subgraphs where the induced subgraph of G on each shore of the bipartition is connected.
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Fig. 13: Data from a sample of 3390 connected k-regular graphs on 12 vertices obtained by MCMC
with double-edge swaps, for k = 3, 4, 5, 6, 7, 8, 9, 10. Each value of k corresponds to a different color
in the plot, with lower k having smaller CWS values. Note that for larger k, the number of facets is
approximately N(K12).

Additional data plots from ensembles of k-regular graphs on 18 vertices for k = 3, 7 are given in
Figures 14 and 15. Both of these plots further illustrate the phenomenon shown in Figure 13, where k-
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regular graphs for smaller k have significantly larger variance in the number of facets (as seen in the range
of the vertical axes), and have lower average local clustering.
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Fig. 14: Data from an ensemble of 397 connected
3-regular graphs on 18 vertices obtained by MCMC
using double-edge swaps. Note the large range of
the vertical axis.
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Fig. 15: Data from an ensemble of 399 connected
7-regular graphs on 18 vertices obtained by MCMC
using double-edge swaps. Note the narrow range on
the vertical axis.

4 Discussion
It is extremely challenging to understand the facet structure of PG for a random graph generated by any
of the models we have considered in this work. We will discuss an example of a toy theoretical result in
this direction prior to our final discussion.

4.1 Case: n Vertices, n Edges, Fixed Degree Sequence
When the number of vertices is equal to the number of edges, we can compute N(PG) for any connected
graph with a fixed degree sequence. Further, we can describe a graph with that degree sequence that
attains the maximum number of facets. This is possible because, in this case, N(PG) depends only on the
length of the unique cycle in G. To get this facet information for a given degree sequence, we need only
know what lengths of cycle are attainable with that sequence.

Proposition 4.1. Let G be a simple graph with n vertices and n edges with degree sequence d = {di}ni=1

(di ≥ di+1). Let mG denote the minimum possible length of a cycle in G, and let MG denote the maximum
possible length of a cycle in G.

(i) If di = 2 for all i, mG = MG = n.

(ii) If dk ≥ 2 and di = 1 for i > k with k < n, mG = 3 and MG = k.

Proof: To show (i), note that the only simple connected graph with this degree sequence is the n cycle.
So mG = MG = n.

To show (ii), we construct a simple, connected graph G with a cycle of length m for 3 ≤ m ≤ k with
the following procedure.
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1. Construct a cycle, C, on vertices 1, . . . ,m.

2. If m = k, skip to (4). Otherwise, construct a path, P , on vertices m+1, . . . , k with k−(m+1) ≥ 0
edges.

3. Now, d1 ≥ 3 and dm+1 ≥ 2, so vertex 1 is incident to at least one edge not on C and vertex m+ 1
is incident to at least one edge not on P . So we connect 1 and m+ 1.

4. The remaining edges are incident to leaves. There are n− k leaves and

n− (number of edges of C)− (number of edges of P )− 1

= n−m− (k −m− 1)− 1

= n− k

edges that must be added. So there are exactly enough open half-edges on the vertices 1, . . . , k to
be filled by the leaves.

1 2 3 4 5 6

3 3 2 2 1 1

1 2 3 4 5 6

3 3 2 2 1 1

1 2 3 4 5 6

3 3 2 2 1 1

1 2 3 4 5 6

3 3 2 2 1 1

Fig. 16: Construction of a graph with degree sequence {3, 3, 2, 2, 1, 1} containing a 3-cycle via the algo-
rithm in Proposition 4.1. The degree of each vertex is given in blue above the vertex.

Example 4.2. Consider the degree sequence {3, 3, 2, 2, 1, 1} for a graph on 6 vertices with 6 edges.
Following the steps in Proposition 4.1, we construct a graph with this degree sequence containing a 3-
cycle (m = 3) as follows. An illustration of this construction is given in Figure 16.

1. Construct the 3-cycle C on the vertices 1, 2, 3 each of which have degree at least 2. The vertex 3
now has the desired degree.

2. Since m = 3 < 4 = k, we construct the path P containing only the vertex 4 (a path with one vertex
and no edges).
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3. Since the degree of vertex 1 is 3, and it is incident to only two edges on C, we can add an edge
between vertices 1 and 4 to connect the cycle to the path. The vertex 1 now has the desired degree.

4. Now, we must add one edge incident to each of the vertices 2 and 4. We have exactly enough
leaves to add these necessary edges. Adding the edges {2, 5} and {4, 6} gives the desired degree
for vertices 2, 4, 5, and 6.

Given Proposition 4.1, we can apply (2, Theorem 3.2) to a class of graphs with n vertices and n edges
that have a specific degree sequence to identify the facet-maximizing graphs for that degree sequence. As
in (2), we use the notation G ∨H to denote a graph obtained by identifying graphs G and H at a single
vertex.

Corollary 4.3. Let G be a simple graph with n vertices and n edges with degree sequence {di}ni=1

(di ≥ di+1). Let N(G) denote the number of facets of the symmetric edge polytope PG.

(i) If dn = 2,
N(G) = N(Cn).

(ii) If dk > 1 and dk+1 = 1 for some k < n, and ℓ is the largest odd number satisfying ℓ ≤ k,

N(G) ≤ N(Cℓ ∨ Pn−ℓ)

Here, Cm denotes a cycle with m edges, and Pm denotes a path with m edges.

Even further than this, the proof of (2, Theorem 3.2) describes how N(G) changes as the cycle length
varies. For any degree sequence that allows a cycle of length at least 5, a graph G that maximizes N(G)
has CWS(G) = 0. In fact, the only graphs on n vertices and n edges that have nonzero average local
clustering are those that have a single 3-cycle. Even these graphs have CWS approaching 0 as n increases.

A precise theoretical result was attainable in this case because the small number of edges relative to
number of vertices significantly restricts the structure of the graphs we consider.

4.2 Final Discussion
The goal of our current investigation of symmetric edge polytopes was to study relationships between
graph structure and facet structure, with a focus on both theoretical and empirical results for various
random graph models. For Erdös-Renyi random graphs G ∼ G(n, p), we observed empirically that
as p increases, the number of facets of PG tends toward 2n − 2, the number of facets of PKn

. We also
established a threshold of p > 1/2 such that, with high probability, any sufficiently even bipartition
(A, V \A) of the vertices of G ∼ G(n, p) induces a facet subgraph of G. Thus, with high probability, the
number of such bipartitions gives a lower bound on N(PG) for Erdös-Renyi graphs. Furthermore, with
high probability, G has a facet subgraph that supports exactly the facet hyperplanes supported by the same
bipartition on the complete graph.

While the trends seen when we sample from G(n, p) have no apparent connection to the average local
clustering coefficient, which is p, correlations are observed when we consider different approaches to
sampling graphs. An exhaustive computation for all connected graphs on eight vertices shows a positive
correlation between average local clustering and number of facets. Using Markov Chain Monte Carlo
methods to sample from the space of connected graphs with a fixed number of vertices and edges, we see
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that graphs with higher CWS tend to produce polytopes with more facets. Additionally, data from these
ensembles indicates that the range in facet counts tends to increase as CWS increases. When we further
restrict to the space of connected graphs with fixed degree sequence (in particular graphs with hubs and
k-regular graphs), this correlation remains and we observe less variety in the range of facet counts across
difference small intervals of clustering values.

0 1000 2000 3000 4000 5000

0.92

0.94

0.96

0.98

1.00

Fig. 17: A collection of sequence plots for a sample of ten 11-regular connected graphs G on 5000 vertices
showing how the fraction of sampled subsets Ai inducing a connected B(Ai, G) changes over time and
appears to stabilize near a value between 0.98 and 1.

In service of counting or bounding the number of facets of symmetric edge polytopes, it would be
useful to understand how many and which induced bipartite subgraphs are facet subgraphs for a given G,
particularly in the case where G is connected and sparse. Toward this end, we can consider plots such as
Figure 17, which shows the results of an experiment identifying facet subgraphs of some 11-regular graphs
on 5000 vertices. To create this plot, we generated ten 11-regular connected graphs on 5000 vertices using
double-edge swap MCMC, sampling after every 100001 swaps. For each graph G, a sequence of 5000
random subsets (A1, . . . , A5000) of the vertex set V was generated. For each 0 < 10j ≤ 5000, we
compute the fraction b10j of the subsets in (A1, . . . , A10j) which induce connected bipartite subgraphs
B(Ai, G) and plot the point (10j, b10j). This process yields a sequence plot for each sampled graph.
As can be seen in this figure, as j increases, for each graph the fraction of subsets inducing a connected
bipartite subgraph appears to stabilize near a value between 0.98 and 1. Note that this is an extremely small
sample of the 25000 subsets of the vertex set, and a small sample of 11-regular graphs. Nonetheless, these
results are surprising given that these graphs, though large, are sparse with only 27, 500 of 12, 497, 500
possible edges, or approximately 0.22%. An open question of interest is to determine, for a fixed k,
asymptotic estimates for the expected number of induced bipartite subgraphs that are facet subgraphs for
a k-regular graph on n vertices.
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