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 ABSTRACT Building efficient and effective road traffic monitoring systems has become a major challenge in 

different countries, mainly due to the rapid growth of the metropolis road network and the booming of 

vehicles. Existing traffic monitoring methods are accurate but typically come with inherent limitations, 

prompting the exploration of alternative techniques. Integrated sensing and communication (ISAC) offers 

an effective approach to traffic monitoring by leveraging the synergy between sensing and communication 

to enhance system efficiency and reduce costs. In this paper, we present a particular ISAC use case tailored 

for radio-based traffic monitoring. Both traffic density and speed estimations take advantage of 

communication functionality, involving the reuse of communication waveforms for the sensing purpose. In 

particular, proactive millimeter-wave (mmWave) beam allocation aided by traffic density estimation is 

studied to enhance communication coverage of vehicular users in the area of interest for bandwidth-

intensive applications. Specifically, we exploit orthogonal frequency division multiplexing (OFDM) 

communication signals of opportunity reflected from targets (vehicles) to efficiently estimate the road traffic 

density and speed in a road section. A hybrid scheme combining model-based and data-driven methods is 

considered to build efficient estimators that require reduced-size training data and are less computationally 

complex. 

Simulationandcomparisonresultsdemonstratethattheproposedtrafficestimationtechniquescanaccurately 

handle a wide range of numbers of vehicles, even with a small-sized dataset. Furthermore, the proactive 

beam allocation analysis shows that the quality of service (QoS, in terms of outage probability) of the 

communication system is effectively improved. 

 INDEX TERMS Intelligent transportation system (ITS), traffic estimation, integrated sensing and 

communication (ISAC), communication signals of opportunity, Jensen-Shannon (JS) divergence, 

leastsquares estimation (LSE), proactive mmWave beam allocation. 

I. INTRODUCTION 

Road traffic monitoring plays an important role in traffic 

management within the Intelligent Transportation System 

(ITS) [1], [2]. Metrics related to road traffic monitoring 

include traffic density (defined as number of vehicles per 

mile) and traffic flow average speed. These metrics can 

provide valuable insights for proactive traffic management, 

optimizing road construction scheduling, and facilitating 

The associate editor coordinating the review of this manuscript and 

prompt emergency responses [3]. Moreover, they have 

positive impacts on the society and environment [4]. For 

instance, real-time traffic density and flow speed 

information could be employed to provide a real-time route 

planning service to guide vehicles to avoid congested roads, 

thus reducing driving time, toxic gas emissions, and air 

pollution [5]. 

Several traffic monitoring techniques have been designed 

and developed over time. Traditional methods primarily rely 

on a large number of detectors, such as cameras, ultrasonic 

approving it for publication was Adao Silva. [7]. Such kinds of systems are accurate but exhibit some 
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detectors, induction loop detectors, and radar sensors [6], 

shortcomings. Sometimes their detection performance is 

affected by the environment and bad weather conditions 

(e.g., fog, rain, etc.). In addition, these detection/estimation 

systems are typically complex and require fixed wired 

infrastructure for installation, which limits coverage of areas 

and leads to significant deployment time and costs, 

especially as the metropolis road networks grow rapidly [8]. 

Therefore, from both application and research perspectives, 

it is necessary to explore alternative techniques for traffic 

monitoring, such as radio-based approaches. 

Numerous studies have explored traffic monitoring 

through vehicle-to-vehicle (V2V), vehicle-to-infrastructure 

(V2I), or vehicle-to-everything (V2X) communication 

methods [9], [10], [11]. These systems rely on connected 

vehicle technology to periodically exchange cooperative 

awareness messages to share information about traffic 

conditions. However, these systems encounter various 

challenges, such as short-range, large channel access delay, 

and huge capital investment. Moreover, as the use of 

connected vehicles becomes widespread, radio resource 

allocation becomes a major challenge. Additionally, these 

systems are vulnerable to security breaches due to the 

broadcast and unencrypted nature of wireless 

communications [12]. Therefore, there is a pressing need for 

cost-effective and scalable radio-based traffic sensing 

methods. 

Over the past few years, ISAC has been emerging as a key 

enabler for future wireless systems to support many new 

applications [13], [14], [15], [16]. ISAC refers to a design 

paradigm and enabling technologies, in which sensing and 

communication systems are integrated to efficiently utilize 

congested resources [13] by sharing infrastructure and 

spectrum. The integration of functions not only reduces the 

overall cost but also leads to higher service quality due to the 

synergy between communication and sensing. 

Indeed,communication-assistedsensingandsensing-assisted 

communication can be achieved synergically in a single ISAC 

setup [16], [17], [18]. These features open up new 

possibilities, including radio-based road traffic monitoring for 

efficient and enhanced road traffic management within the 

ITS. One aspect of ISAC is the reuse of communication 

waveforms for sensing purposes. For instance, 

noncollaborative OFDM signals from illuminators of 

opportunity (IoO) can provide an efficient and effective 

solution to localize, detect, or track targets. The traffic sensing 

outcomes not only contribute to the transportation system but 

also can assist the communication system in allocating its 

resources proactively and effectively. 

Several research works have developed passive radar 

sensing techniques by utilizing the signals transmitted from 

different kinds of IoOs to detect and localize targets. In [19], 

[20], different schemes were proposed for multitarget 

localization and speed estimation using OFDM signals from 

IoOs. In [21], the authors introduced a technique for target 

counting using OFDM signals. In [22], OFDM signals from a 

non-collaborative digital video broadcastingterrestrial (DVB-

T) transmitter were used to detect moving targets. Also, some 

researchers developed a road traffic monitoring system to 

monitor density and speed using GSM-based transmitters 

[23]. Although the aforementioned systems somehow 

outperform the traditional traffic monitoring systems in terms 

of cost and effectiveness, they impose several challenges that 

need to be addressed. One major concern is that these systems 

can only detect a few targets [19], [20], [21], [22], [23], 

preventing them from estimating the traffic density of 

massive vehicles on a road section. Moreover, the idea of 

searching over the whole range-Doppler space to estimate the 

ranges and velocities of the targets requires both large signal 

bandwidth (for range-resolution [24]) and high power, and 

also incurs high computational complexity. On the other 

hand, pure datadriven traffic estimation techniques (e.g., 

machine learning) provide no insight into the physical 

mechanisms, are less traceable [25], and often require very 

large datasets [26]. 

In this paper, we consider an ISAC scheme in the 

fifthgeneration (5G) infrastructure to perform traffic 

monitoring using 6-GHz band signals of opportunity and 

incorporate proactive mmWave beam allocation aided by 

traffic sensing for vehicular users demanding high data rate 

services. Assume the system is capable of multi-beam 

forming and sweeping, possibly in a cloud-radio-access 

network (CRAN) [25], which enables centralized processing 

for joint communication and sensing. With such a 

configuration, multiple base stations (BSs) can perform 

(either communication or sensing) cooperatively. Having 

information about the traffic flow speed efficiently aids in 

route planning, guiding vehicles to the fastest routes [27], 

[28]. The traffic monitoring (sensing) results can be used as 

the prior knowledge to enhance communication 

functionality [29] in addition to its assistant role in traffic 

management. Specifically, the vehicle density information 

can guide proactive allocation of radio resources. 

Major contributions of this paper are summarized as 

follows: 

• We propose an efficient and cost-effective traffic 

density estimation technique that combines model-

based and data-driven approaches. The technique relies 

on JensenShannon (JS)-divergence for classification 

and leastsquares estimation (LSE) for interpolation, 

requiring less labeling and training efforts compared to 

typical artificial intelligence (AI)-based techniques like 

neural networks. 

• A traffic flow average speed estimation method using 

level crossing rate (LCR) is introduced to offer more 

information about the traffic flow without requiring 

additional measurement. This method is extended from 
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the original LCR-based technique that handles one or 

very few number of targets. 

• We present a traffic-density-aware proactive beam 

allocation method for vehicular users demanding high 

data rate services in the area of interest, while 

minimizing the number of idle mmWave beams given 

an acceptable service outage. 
TABLE 1. Major notations. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
• Comprehensive assessment and comparison are made 

based on simulations and analysis. In particular, two 

AI-based techniques, namely artificial neural networks 

(ANN) and K-means clustering, are considered as 

benchmarks in assessing the proposed traffic density 

estimation. 

Generally speaking, our results suggest that the proposed 

scheme can efficiently estimate traffic density without 

requiring complex processing or extensive sets of 

measurement data. When compared to existing radio-based 

traffic estimation schemes, our method can handle a large 

number of targets by reusing communication waveforms, 

without the necessity of complex algorithms. It is worth 

noting that classification based on supervised learning usually 

uses a relatively large training dataset to teach/tune a 

classifier (models) to yield the desired output, while our pre-

designed JS-divergence-based classifier is much more 

efficient. This is because it does not have many parameters to 

tune, and only needs to estimate a probability density function 

(PDF) of the received signal, without requiring a significantly 

large training data set. 

Major notations used in the coming sections are given in 

Table 1. The rest of this paper is organized as follows. Section 

II presents related work. The system model is presented in 

Section III. The proposed schemes are described in Section 

IV. Quantitative assessment and comparison results are 

discussed in Section V, followed by conclusions in Section 

VI. 

II. RELATED WORK 

This section presents an overview of related research works 

that consider traffic density and flow speed estimation. 

A. TRAFFIC DENSITY ESTIMATION 

Extensive research on traffic density estimation systems has 

been conducted, and they can be categorized into four 

groups: 1) ground-sensor-based, 2) aerial-sensor-based, 3) 

connected-vehicle-based, and 4) data-driven approach. 

1) GROUND-SENSOR-BASED SYSTEMS 

Such systems commonly employ a large number of wireless 

sensors to collect road network information accurately [1], 

[30], [31], [32]. These sensors can be installed in various 

ways, either on the road surface or on the side of the road. 

Typical road surface sensors include inductive loops, 

magnetic detectors, and other weigh-in-motion devices. A 

notable example is the freeway performance measurement 

system (PeMS), which is employed by the California 

department of transportation (Caltrans). PeMS relies on 

real-time measurement data [33] gathered from inductive 

loops. The primary drawback of road surface sensors is the 

installation cost including sensors and supporting 

infrastructure, as these sensors are typically installed 

beneath the road surface. Furthermore, the cost of such a 

system increases if more lanes or new road sections need to 

be monitored. Other types of sensors installed on the sides 

of the road include cameras, microwave radars, and passive 

infrared sensors. While these sensors find widespread use, it 

is important to point out that their deployment and 

maintenance costs tend to be relatively high, and their 

performance can be susceptible to adverse weather 

conditions, as discussed in [32]. 
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2) AERIAL-SENSOR-BASED SYSTEMS 

These systems typically utilize unmanned aerial vehicles 

(UAVs) for road traffic monitoring [34]. Cameras mounted 

on UAVs perform traffic detection, making these systems 

costeffective due to their mobility and large geographic 

coverage. Consequently, they are well-suitable for fast data 

collection, but require complex post-processing algorithms 

to analyze images and video frames for traffic detection, as 

proposed in [6] and [35]. 

3) CONNECTED-VEHICLE-BASED SYSTEMS 

These systems are usually in the vehicular ad-hoc network 

(VANET) framework, where vehicles and traffic 

infrastructure periodically exchange data through V2V, V2I, 

or V2X communication links. For instance, in [8], the 

authors proposed a reliable method for estimating traffic 

density by combining vehicle spacing information collected 

from a vehicular network and calculating the average 

spacing between vehicles in a specific area. While this 

technique offers good estimation accuracy, its 

implementation requires a substantial deployment of 

roadside units (RSUs), resulting 

inhighcosts.Certainly,thewidespreadadoptionofconnected 

vehicle technology can result in resource congestion. Also, 

these systems are vulnerable to security and privacy 

breaches due to the use of broadcast messages for 

exchanging information about traffic conditions. 

4) DATA-DRIVEN APPROACH 

In general, the implementation of the estimation methods 

mentioned above often incurs substantial installation efforts 

and high communication costs. Recent advances in wireless 

technology have introduced data-driven sensing techniques 

for traffic monitoring. Tulay and Koksal [36] proposed a 

passive traffic sensing scheme using dedicated shortrange 

communications signals transmitted from an RSU, where 

‘‘passive’’ refers to making use of radio signals designated 

for other purposes. The scheme employs radio signal 

fingerprinting and machine learning for traffic density 

estimation. Furthermore, in their subsequent work [37], they 

introduced a traffic density estimation approach based on 

channel state information derived from signals transmitted by 

a transmitter on the RSU or a vehicle. This method also relies 

on machine learning and incorporates classification and 

regression algorithms to estimate the number of vehicles. 

However, the schemes presented in [36] and [37] can suffer 

from outages due to environmental changes and require a 

large dataset for accurate classification. 

B. TRAFFIC FLOW SPEED ESTIMATION 

Flow speed estimation can be divided into three categories: 1) 

future flow speed estimation (actually, prediction), 2) 

dedicated estimation, and 3) wireless-signal-based 

estimation. 

1) FUTURE FLOW SPEED ESTIMATION 

These systems predict traffic flow for either a short or long 

period in the future. They rely on various time series models, 

such as historic average models [38], Bayesian network 

models [39], hidden Markov model [40], or the auto-

regressive integrated moving average (ARMA) [41]. They 

operate under strict assumptions and conditions for 

prediction: there is clear awareness of the current traffic and 

complete historical speed measurements. Implementing such 

techniques can be challenging in the cases of limited 

measurements. 

2) DEDICATED FLOW SPEED ESTIMATION 

These systems offer traffic flow speed estimation with less 

required data compared to the prediction methods discussed 

above. Some of these approaches, as demonstrated in [42], 

leverage data collected from traffic sensors and employ the 

K-nearest neighbor method to infer real-time traffic speed. 

Other studies, such as [43], utilize videos collected from 

UAVs with an ensemble classifier (Haar cascade & 

convolutional neural network). Moreover, the scheme in [4], 

utilizes crowdsourcing vehicles that provide their real-time 

GPS records for speed estimation over a large region, and 

theyemployagraphconvolutionalgenerativeautoencoderfor 

real-time speed estimation. Although these methods provide 

accurate estimation, they either require complex and highcost 

system implementation [42], are negatively affected by bad 

weather conditions [43], or rely on connected vehicle 

technology [4]. 

3) WIRELESS-SIGNAL-BASED ESTIMATION 

There are some works that explore the use of wireless signals 

for estimating the speed of a single mobile (vehicular) user, 

which could potentially be adapted for speed estimation for 

multiple mobile users. In [44], the authors presented an 

online algorithm for user equipment (UE) speed estimation 

in long term evolution-advanced (LTE-A) networks, using 

time-based spectrum spreading method (TSSM). The 

proposed method utilizes uplink LTE sounding reference 

signal (SRS) measurements conducted at the LTE base 

station. Specifically, the TSSM is employed as a metric for 

speed dependent time variations of the shadowing in the 

SRS measurements. A reference curve or lookup table 

(LUT, database) with respect to the shadowing decorrelation 

distance is created in advance. The computed values of the 

metric are then compared with the reference to determine a 

speed estimate. While this approach demonstrates good 

accuracy, it necessitates a huge database to attain the 

reported level of precision. 

III. SYSTEM MODEL 

A. SYSTEM ARCHITECTURE 
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We consider a system setup illustrated in Fig. 1 with two 

BSs and a number of vehicles on a multi-lane road section 

between the two BSs. The system supports dualband 

communication at mmWave band (e.g., 28 GHz, for 

bandwidth intensive services) and frequency division 

duplex (FDD) mid-band 5G (e.g., 6 GHz band). At the same 

time, the lower frequency band is used for traffic sensing in 

a fashion of bistatic radar using the communication signals 

of opportunity. The system performs dual-band 

communication and traffic sensing simultaneously. In the 

sensing mode, one BS (the left one in Fig. 1) serves as the 

IoO transmitting OFDM signals with radio beamwidth angle 

30◦ (equivalent to a coverage of one mile of the road section), 

and another BS equipped with a dedicated receiver captures 

the signals reflected from vehicles. We assume the sensing 

receiver is able to significantly reduce the impact of the 

directpath component (from the transmitter to the receiver) 

using some techniques such as directional antenna, antenna 

array with nulling, or cancellation algorithm. Of course, 

more BSs can be employed, and the effectively illuminated 

area depends on how the system is geographically deployed 

and the beamwidths of the transmit and receive antennas. 

For mmWave communication, the mmWave transceivers 

can be mounted on one or both BSs. The traffic estimation 

results can be used for resource allocation tasks, such as 

downlink mmWave beam allocation (assuming one beam 

per vehicular user on the serviced road section). In addition, 

we assume certain system features, such as mmWave 

beamforming and beam sweeping, are available. 

B. SIGNAL MODEL 

Consider a transmitted OFDM signal consists of Ns OFDM 

symbols and Nc subcarriers. Such a signal at sample time t can 

be represented in baseband as follows: 

Ns−1 Nc−1 

x(t) = X X Xκ,m e−j2πκ1f (t−mTs) · pg(t) , (1) m=0 κ=0 

where t is a time index, Xκ,m is the communication data symbol 

modulated on the κth subcarrier and mth OFDM transmit 

symbol, where κ = 0,1,...,Nc − 1, and m = 0,1,...,Ns−1, 1f is the 

subcarrier spacing between OFDM symbols, Ts is the length 

of an OFDM symbol, g(t) is the impulse response of the raised 

cosine shaping filter [24]. 

Then, the transmitted passband OFDM signal can be 

expressed as: 

 x˜ fct , (2) 

where fc is the carrier frequency. 

Assume the number of vehicles is Nv in the illuminated road 

section, where all vehicles can be considered as targets. Each 

target has a radar cross section (RCS) σv and an average speed 

sv mph, v = 0,··· ,Nv − 1. In addition, there are Nl clutter objects 

that are not of interest, each of which has an RCS of σl, l = 

0,··· ,Nl − 1. The transmitted signal is reflected from both 

vehicles and clutter objects, leading to the radio frequency 

(RF) passband received signal: 

Nv−1 Ns−1 Nc−1 

y(t) = X X X ξv Xκ,m ej2πfc(t−τv) 

v=0 m=0 κ=0 

· e−j2πκ1f (t−mTs−τv) 
Nl−1 Ns−1 Nc−1 

 X X X j2πfc(t−τl) 

 + ξl Xκ,m e 
l=0 m=0 κ=0 

 · e−j2πκ1f (t−mTs−τl) + n(t) , (3) 

 

FIGURE 1. System setup of the proposed schemes considering a multi-lane scenario with clutter objects. 
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where ξv and ξl represent the whole-path attenuation factors 

accounting for the propagation losses and RCSs (σv’s and 

σl’s) of the targets and clutter objects, respectively; τv and τl 

are the propagation delays corresponding to the targets and 

clutter objects, respectively; and n(t) is the additive band 

limited Gaussian noise. (3) will be used to form a sensing 

channel in the simulation, where the propagation model for 

each path takes into account the total path loss and RCS, 

inthesamewayasusedinray-tracing-basedsimulations[36], 

[37]. Strictly speaking, ξv, ξl, τv and τl are time-varying 

random variables depending on the RCS and location of a 

vehicle. Because the received signal is a superposition of 

many random components, (3) is comparable to a fading 

channel model with many propagation paths, such as the 

Jakes and Cox model [45]. Indeed, observed from our 

simulation results, the received signal y(t) does exhibit some 

fading behavior. 

IV. PROPOSED SOLUTION AND ANALYSIS 

In this section, we present our road traffic density and flow 

speed estimation schemes followed by the proactive beam 

allocation. 

A. ROAD TRAFFIC DENSITY ESTIMATION 

Different from traditional data-driven approaches, we do not 

use the received data directly to infer traffic density. Instead, 

aiming at the use of a smaller dataset and low computation 

complexity, we consider a hybrid approach involving both 

model-based and data-driven methods along with JS-

divergence [46] used as an intermediate variable, where the 

JS-divergence is a distance measure between two 

probability density distributions, hence providing a way to 

compare the statistical characteristics. Two density 

 

FIGURE 2. Architecture of proposed weighted-centroid-based traffic density 

estimator. 

estimators, the weighted-centroid estimator and the optimal 

estimator, are proposed in this paper. The weighted-centroid 

density estimation is performed in four steps: 1) forming 

probability density function (PDF) templates of training 

classes based on the amplitude of the raw data received 

previously, 2) calculating current PDF based on just-received 

data (testing class) that corresponds to an unknown density to 

be estimated, 3) computing JS-divergence between the PDF 

templates of the training classes and current PDF of the 

testing class, and 4) estimating density based on weighted-

centroid technique along with bias correction, using JS-

divergence values as the weights. Fig. 2 shows a conceptual 

architecture of the proposed weighted-centroidbased traffic 

density estimator with M(> 1) parallel branches 

corresponding to the predefined M density levels. The 

optimal estimator contains four steps as well. The first three 

steps are similar to the weighted-centroid estimator, but the 

fourth step is to perform LSE utilizing the obtained JS-

divergence values. 

The proposed traffic density estimators do require labeled 

datasets. It is possible to obtain them by conducting a non-

coordinated experiment without interrupting a normal 

transportation system. In the non-coordinated experiment, 

two raw data time series, i.e., the baseband I/Q sample 

streams and the vehicle-count sample stream, are generated 

and stored simultaneously over a sufficiently long time. Each 

vehicle count sample can be obtained based on an image 

snapshot of the road section, and it serves as the label of a 

segment of data samples. Then, the data sections with labels 

that fall in the required bins corresponding to the predefined 

density levels or classes (specific values of Nv) are selected as 

the templates for PDF estimation. Practical data collection 

and labeling are out scope of this paper. 

In the first step, corresponding to M predefined training 

density classes, experiments are conducted to generate a 

dataset of M measurements {yj[n],n = 1,2,3,··· ,N and j = 

1,2,3,··· ,M}, for training purposes. Here, N represents the 

number of data points for each class. We calculate the PDF 

templates using Kernel density estimation (KDE) [47]. N bins 

are employed in KDE, and the PDF estimated formula is as 

follows: 

 N x − |yj[n]| 

1 X 

 Qj(x) =  K  , (4) 

Nh h n=1 

where K is a non-negative kernel function (e.g., normal) and 

h is a smoothing factor.(4)is used to generate M 

PDFtemplates of the training classes: 

Q1(x),Q2(x),Q3(x),...,QM(x). Similarly, with measurement 

data {y[n],n = 1,2,3,··· ,N}, 

wecanobtainameasuredPDFP(x)ofatestingclassinstep2. This 

testing class corresponds to data from an unknown number 

of vehicles. 

Note that the JS-divergence is a smoothed version of the 

KL-divergence, and it is preferred since it is bounded 0 ≤ JS( 

) ≤ 1 
 
no matter what density Nv is, and symmetric so that the 

distance is independent of the order of the two PDFs under 

test. 

In the third step, the JS-divergence between P(x) and Qj(x) 

is calculated as follows: 
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JS P(x)||Qj(x)
 
= KL P(x)||Gj(x) 

 + KL Qj(x)||Gj(x)
 
, (5) 

KL P(x) Gj(x) P(x) log2, (6) x Gj(x) 

  X 
Qj(x) 

KL Qj(x)||Gj(x) = Qj(x) log2. (7) x Gj(x) 

With M JS-divergence values obtained in the third step, two 

types of estimators are explained as follows. 

1) WEIGHTED-CENTROID ESTIMATOR 

The weighted-centroid-based traffic density estimate is given 

by 

 PMj=1 Nv(j)JS P(x)∥Qj(x) ˆ(Nv), (8) 

 

Nˆv = 
P

Mj=1 JS P(x)∥Qj(x) − B 

(j) 

where Nv is the actual number of vehicles associated with the 

jth PDF template, and B
ˆ
(Nv) is an estimate of the bias 

between the actual and estimated vehicle densities. Note that 

pure weighted-centroid technique with JS-divergences as its 

weights does not guarantee unbiased estimation. Indeed, the 

bias is not zero according to some test results, and both noise 

and clutter should have impacts on the bias. An error 

correction process can be used to improve the estimation if 

the error estimate B
ˆ
(Nv) is available. Practically, the bias 

for a given clutter condition can be calibrated based on a set 

of S measurements N
ˆ

v,s: 

S 

1 

 v v v 

 
JS P(x)∥Q1(x)

 
ζ =

 , 

PM
j=1 JS P(x)∥Qj(x) 

JS P(x)∥QM(x)
 T 

 ··· ,  , 
PM JS P(x)∥Qj(x)

 
j=1 

  
JS Qi(x)∥Q1(x) 

 

ζi = PM ∥ j , 

j=1 JS Qi(x) Q (x) 

JS Qi(x)∥QM(x)
 T 

 ··· ,  , 

PM JS Qi(x)∥Qj(x)
 
j=1 

(11) 

i = 1,2,3,M. (12) 

where (12) can be obtained by replacing P(x) in (11) with 

known PDF Qi(x), i = 1,2,3,M. Form a matrix that is a stack 

of M JS-divergence vectors: 

ζT1  

Z 

 =  ...  . (13) 

 ζTM

 M×

M 

Then, consider a linear model 

 Nv = ζT ω, Nv
(i) = ζT

i ω, i = 1,2,3,··· ,M, (14) 

where ω is an unknown M × 1 weighting vector to be 

determined. Of course, a specific value of ω cannot perfectly 

satisfy all individual equations; instead, we need to find a 

weighting vector ω∗ that is optimal overall. Note that 

(i) 
T ω, i = 1,2,3,··· ,M, in (14) can be rewritten 

Nv = ζi 

in a compact form: 

where Gj(x) = (1/2) P(x) + Qj(x), and KL( 

Kullback-Leibler (KL) divergence given by 

 || 
 
= 

X 
P(x) 

) is the 

 Bˆ(Nv) =  X(Nˆv,s − Nv) . 
S s=1 

2) OPTIMAL ESTIMATOR 

Define vectors η, ζ, and ζj: 

(9) 

η = N(1),N(2),··· ,N(M
)T ,  

(10) 
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Zω = η, 

which leads to the LSE solution: 

(15) 

ω∗ = ZZT −1 Zη, 

and the optimal estimate is given by: 

(16) 

Nˆv = ζT ω∗ . (17) 

Note that only a limited number of templates Qj(x) are 

employed for training, but this does not prevent the estimator 

from handling a wide range of density levels. 

B. TRAFFIC FLOW AVERAGE SPEED ESTIMATION 

For the purpose of traffic management, we care about the 

traffic flow speed as a whole, instead of individual vehicle 

speed. Some existing work based on level crossing rate (LCR) 

[48] can be borrowed and extended for this purpose. The LCR 

of the envelope of post-processed received signal y(t) is 

defined as the number of cross counts per second, where each 

count corresponds to an event that the envelope level down-

crosses a certain threshold Ath. The LCR expression in 

Rayleigh fading channels has been derived in [49] and is 

expressed as: 

 √  2 sv 

 ρ = 2π ρ e−ρ  , (18) 

 NLCR λc 

 

FIGURE 3. Traffic flow average speed estimator of multiple targets 
(vehicles). 

where λc is the carrier wavelength and ρ is the ratio of the 

threshold level Ath to the root mean square level YRMS of the 

envelope of y(t), which can be given as follows: 

 Ath = ρ YRMS . (19) 
ρ 

For a single target, given the LCR value NLCR from the 

received signal envelope, the estimated vehicle speed sv can 

be obtained as: 

 e λc ρ 

 sv = √ NLCR . (20) 

2π 

Note that the value of ρ is used to control the threshold level 

at which the signal crosses. In many cases, ρ = 1 is chosen, 

representing a straightforward and common scenario where 

the signal level crosses a fixed threshold. 

Inspired by what is described above, we consider a traffic 

flow speed estimator as illustrated in Fig. 3, where the low 

pass filter is to reduce the noise impact. The key idea is to 

correct the errors made by the pure LCR-based speed 

estimator originally designed for the single-vehicle case. As 

validated by simulation, the error can be regarded as a 

function 1sv = f (σn,Nv,NLCR). Practically, 1sv = f (σn,Nv,NLCR) 

can be implemented as a lookup table (LUT) approximated 

using experiment. 

C. PROACTIVE BEAM ALLOCATION 

In this application, we make use of our proposed traffic 

density estimation scheme to enhance the QoS of vehicular 

user communication. Specifically, we propose a proactive 

beam allocation technique that enables the BS to allocate 

antenna modules and mmWave beams based on the 

estimated number of vehicles. With proactive beam 

allocation, beam resources can be assigned to required 

vehicular users quickly. For comparison, we also consider 

fixed reservation as a benchmark. Note that beam alignment 

is out of scope of this paper and it can be done based on the 

location information of each vehicle, which can be obtained 

with the use of available positioning technologies during the 

requests process. 

Assume vehicular users request radio beams for data 

communication, and the service requests follow the Poisson 

arrival model [50]. Consider a Poisson process with a mean 

arrival rate λ = α · τ, where α is the number of packets 

transmitted in the time interval τ, and λ > 0. Then, the success 

probability of the BS to serve the vehicles using NB 

mmWave beams can be expressed as: 

X (Nvλ)r e−Nvλ 

 Psuc(NB|Nv,λ) =  , (21) 

r! 
r≤NB 

where r is the number of requests per vehicle. Note that to 

achieve successful communication for the active vehicles, the 

beam assignment should satisfy the constraint r ≤ NB. If the 

probability that r exceeds the number of beams NB, this is 

known as the outage probability, which can be represented 

as: 

X (Nvλ)r e−Nvλ 

 Pout(NB|Nv,λ) =  , (22) 

r! 
r>NB 
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Two beam allocation schemes are considered in this paper. 

Let us start with the fixed beam allocation scheme. In this 

scenario, a fixed number of beams NB is allocated to serve the 

vehicles, where NB can be chosen based on historical traffic 

data and it should not exceed the maximum number of beams 

Nmax that BS can support. The outage probability P
¯ 

out can be 

expressed as: 

 P¯ out(λ) = Xp(Nv)Pout(NB|Nv,λ) , (23) 

Nv 

and the mean number of idle (not used) beams L
¯ 

is given by: 

¯
(λ) = 

X
p(Nv) 

X 
(Nvλ)r e−N

vλ · (NB − r) .

 (24) L 

r! 
 Nv r≤NB 

Note that the fixed beam allocation scenario does not 

provide flexibility and imposes coverage problems when the 

number of vehicles is greater than the number of allocated 

beams. Therefore, we propose a proactive beam allocation, 

which alleviates the problems of the fixed beam allocation. 

For the proactive beam allocation, we introduce a control 

function a(Nv + ϵ) = a(N
ˆ

v) that is a predefined offset function 

(or lookup table) for adjusting the reservation level as Nv 

changes, where ϵ = N
ˆ

v − Nv is the estimation error. Practically, 

there must be a ceiling Nmax for resource availability. The 

number of allocated beams can be expressed as 

Nalo =roundmin Nmax,Nˆvλ + a(Nˆv) 

   , 

= round min Nmax,(Nv + ϵ)λ + a(Nv + ϵ) 

(25) 

where round( ) is the round function. The corresponding 

conditional outage probability (conditioned on Nv and a) is as 

follows: 

 Pout(Nv,a,λ) = Xq(ϵ|Nv) Pout Nalo|Nv,λ , (26) 
ϵ 

where q(ϵ|Nv) is a conditional distribution of estimation 

errors, and Pout Nalo|Nv,λ
 
can be calculated using (22) but 

replacing NB with Nalo. Then, we have the outage probability 

of the proactive scheme: 

 

 Pout(a,λ) 
= X

p(Nv) Pout(Nv,a,λ) . (27) 

Nv 

Another important parameter is the mean number of idle 

beams (conditioned on Nv and a) that can be expressed as: 

 X X 
(Nvλ)r e−Nvλ 

 L(Nv,a,λ) = q(ϵ|Nv)  

r! 
 ϵ r≤Nalo 

· (Nalo − r) , 

and, the mean number of idle beams is: 

(28) 

 

L(a,λ) 
= X

p(Nv) L(Nv,a,λ) . (29) 
Nv 

Finally, the optimal beam allocation is to find the optimal 

control function given by 

a∗(N
ˆ

v,λ) = argminL(a,λ) 

a 

 s.t. Pout(a,λ) ≤ b (30) 

wherebisapre-selectedthresholdrepresentingthemaximum 

tolerance of outage probability. It needs to be pointed out 

that in practice a∗(N
ˆ

v,λ) is not easily obtainable and may be 

replaced by a suboptimal function. 

V. QUANTITATIVE ASSESSMENT AND COMPARISON 

A. SIMULATION SETUP 

In our simulations, we evaluate traffic density estimation, 

flow speed estimation, and proactive beam allocation 

performances, assuming a geometrical-based single-bounce 

channel model and known path loss. The IoO is located at 

(−700,−50) m and a receive BS located at (2500,40) m. In 

the sensing mode, the IoO and the receive BS beamwidths 

intersect to cover a road section of one mile length. We 

consider the transmitted signal as an OFDM signal with Nc 

= 1024 subcarriers and a mid-band carrier frequency fc = 6.8 

GHz. For pulse shaping, a root-raised-cosine filter with a 

roll-off factor of 0.25 is utilized. 

At the sensing receiver side, assume the received signals 

are reflected from vehicles with RCSs σv following the 

uniform distribution U ∼ [1,11] based on the experiments 

reported in [51]. The vehicles’ average speed is sv = 60 mph, 

and the separation distance between vehicles is a random 

number between [10 − 20] m. Note that the distribution of 

the vehicles on the lanes follows a uniform distribution with 

consideration of the specified separation constraint. The 

received signal y(t) is divided into chunks, each chunk 

includes N = 41374 I/Q samples mixed with noise such that 

the signal-to-noise ratio (SNR) is 2.7 dB. Four PDF 

templates for Nv ∈ {2,20,50,100} are considered for density 

estimation, and they are formed based on synthetic datasets 
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generated using simulation. We call these density classes 

{2,20,50,100} used for training as training classes. In 

performance evaluation, we use testing 
TABLE 2. Setting of major simulation parameters. 

 

    

    

    

    

    

    

datasets corresponding to some classes (e.g., 35) that may not 

belong to the training classes, and we call these classes 

testing classes. The same terminologies are used for speed 

estimation. 

For proactive beam allocation, the mmWave beams operate 

at fc = 28 GHz. For the comparison purpose, two additional 

schemes, i.e., fixed reservation and unlimited reservation, are 

considered as benchmarks. A semi-analytical approach, a mix 

of Monte Carlo simulation and analysis, is adopted to 

generate the allocation performance results. 

Simulations are implemented on MATLAB R2020a 

running on a Windows 10 PC with an Intel Core i7 processor 

operating at 3.6 GHz and 16 GB RAM. The major simulation 

parameters used in the system evaluation of this paper are 

summarized in Table 2. 

B. ERROR PERFORMANCE OF PROPOSED TRAFFIC DENSITY 

ESTIMATION 

We initially assess the performance of the weighted-

centroidbased estimator, followed by the evaluation of the 

LSE method. 

Single-lane, two-lane, and three-lane scenarios are tested 

using simulation, and it is found they lead to very similar 

statistics. Fig. 4 shows the estimated PDF of the received 

signals for different numbers of vehicles considering the 

twolane scenario, suggesting that the PDF is close to Gaussian 

and the standard deviation of the received signal increases as 

the number of vehicles increases. Similar behavior is 

observed in both single-lane and three-lane scenarios. 

The four JS-divergence values for a ground true of 35 

vehicles are given in Table 3. First of all, one can see that the 

divergence values at each column are very close at different 

number of lanes. In other words, the divergence values are 

somehow independent of the number of lanes. For the ground 

true of 35 vehicles, the weighted-centroid estimator leads to 

an estimate N
ˆ

v = 37.8 for single-lane scenario, N
ˆ

v = 38 for 

two-lane scenario, and N
ˆ

v = 38.1 for three-lane scenario, 

which are close to the true number Nv = 35. Following that, 

we study the effect of clutter on the PDF templates estimation 

and weighted-centroid traffic density estimator. For the PDF 

templates estimation, we found that adding clutter objects 

does affect the PDF templates estimation, especially when 

there is a small number of vehicles (Nv = 2), as shown in Fig. 

4 (b). Specifically, 

 

FIGURE 4. Estimated PDF of the received signal at different numbers of targets (two-

lane scenario). 

TABLE 3. JS-divergences (averaged over several trials) between the PDF templates 

of training classes and a PDF of testing class (35 vehicles) under no-clutter 

condition. 

     

     

     

     

for the PDF template generated from (Nv = 2), its peak value 

was 0.75 with no clutter (see Fig. 4 (a)), and it was reduced 

to 0.35 when considering clutter (see Fig. 4 (b)). However, 

other PDF templates with a greater number of targets (Nv = 

20,50,100) maintained the same values in both scenarios 

(clutter and no clutter). For traffic density estimation using 

the weighted-centroid method, the accuracy of the estimator 

does not change significantly; there is a slight offset of 15%. 
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Specifically, the estimated number of vehicles increased to 

43 in the presence of clutter, compared to 38 with no clutter. 

Furthermore, we test the optimal traffic density estimation 

using JS-divergence and LSE method. The estimator yields 

estimates of N
ˆ

v = 35.6, N
ˆ

v = 35.7, and N
ˆ

v = 38.4 for 

 

FIGURE 5. Average relative estimation errors over Nv. 

the single-lane scenario, two-lane scenario with no clutter, 

and two-lane scenario with clutter, respectively. For threelane 

scenario, the estimates were N
ˆ

v = 35.7 without clutter and N
ˆ

v 

= 38.8 with clutter. Note that the clutter leads to a slight offset 

in the estimation similar to the weighted-centroid estimator. 

Generally speaking, both estimators’ performance remains 

consistent, whether considering a single-lane or two-lane 

scenario, and the estimation results in both scenarios closely 

align with each other. Additionally, the clutter does not 

degrade the performance of the estimators. Therefore, for 

performanceevaluation,weconsideratwo-lanescenariowith no 

clutter. 

The estimation performance of both estimators is evaluated 

in mean square error (MSE) conditioned on the number of 

vehicles Nv. Specifically, the total absolute and relative MSEs 

conditioned on Nv can be calculated as follows: 

 EAbs(S|Nv) 
= X

ϵ q(ϵ|Nv) , (31) 

ϵ∈S 

E
Abs(S|Nv) 

 ERel(S|Nv) =  , (32) 

Nv 

where error set S refers to ‘‘all’’ (i.e., all possible values for 

error ϵ), ‘‘−ve’’ error (ϵ < 0), or ‘‘+ve’’ error (ϵ > 0). If the 

PDF of Nv, p(Nv), is known, then we have unconditional 

MSEs: 

 E¯Abs(S) = Xp |Nv′) , (33) 

Nv′ 

EAbs(S) 

 E¯Rel(S) =  . (34) 

Nv 

Note that we denote the optimal values of EAbs(S|Nv), 

ERel , 

E
¯∗

Rel(S) which are corresponding to MSE obtained from the 

LSE method. 

Fig. 5 shows the estimation errors conditioned on Nv for 

both weighted-centroid and the LSE method, where only four 

(M = 4) PDF templates are utilized for training, while the 

testing is conducted across {Nv = 10,20,··· ,80}. The LSE 

 

FIGURE 6. Standard deviation of estimation errors over Nv. 

method exhibits lower average estimation error in all cases 

compared to the weighted-centroid. Additionally, in the 

LSE, 

aslightbiasispresent,attributedtodifferencesinthestatistics 

between the training and testing datasets. However, it is 

clear that the weighted-centroid is a biased estimator, where 

the negative relative error E
¯

Rel(−) is smaller compared to the 

positive relative errors E
¯

Rel(+), suggesting that the estimator 

most likely outputs a number N
ˆ

v greater than the true 

number Nv. This biased estimation tends to request slightly 

more mmWave beam allocation to reduce the outage 

probability. Note that the estimation bias B(Nv) is not zero 

and we may intentionally leave it as is for the weighted-

centroid. 

Fig. 6 illustrates the standard deviation (std) of estimation 

errors of both estimators, with the LSE method exhibiting a 

lower standard deviation in comparison to the 

weightedcentroid. 

C. COMPARATIVE ASSESSMENT OF TRAFFIC DENSITY ESTIMATION 

In this subsection, we conduct a thorough assessment by 

comparing our proposed scheme with two distinct AI-based 



 

VOLUME 12, 2024 84963 

W. A. Amiri et al.: Efficient Road Traffic Estimation for Proactive Beam Allocation in an ISAC Setup 

traffic density estimators, followed by a comparison with 

existing traffic density estimation schemes. Three 

estimation schemes are considered for comparison, and each 

scheme consists of two phases. Phase-1 is to measure 

distances between a set of predefined density levels (classes) 

and current density using some distance metric, while phase-

2 estimates current density via some interpolation technique 

based on the distances obtained in phase-1. 

In the AI-based approaches, the first method (see Fig. 7) 

combines artificial neural networks (ANN) and linear 

regression, while the second method employs K-means 

clustering in combination with linear regression. Note that 

linear regression is comparable to LSE. 

1) C-1: SETUP OF MACHINE-LEARNING-BASED BENCHMARK 

DENSITY ESTIMATORS 

For the ANN with linear regression, the ANN is used as a 

feature extractor before applying linear regression. 

Specifically, in our study, the ANN is trained on four classes, 

each corresponding to the signals reflected from a known 

number of targets Nv ∈ {2,20,50,100}. This training allows the 

ANNto capturecomplex patternsand relationshipswithin the 

data. The output of the ANN serves as the input or features 

for the linear regression model. Then, linear regression is 

performed to fit (train) a linear model with the extracted 

feature data for estimating (inferring) an unknown number of 

cars (here Nv = 35 is used for testing) with a test dataset. Fig. 

7 shows the structure of the implemented ANN. It includes 1 

input layer, 3 hidden layers, and 1 output layer. 15, 5, and 1 

neurons are contained at the first, second, and third hidden 

layers, respectively. The activation functions employed are as 

follows: AF1 and AF2 are both Sigmoid functions, while AF3 

is a linear regression function. T 

For the K-means clustering-based density estimator, four 

(K = 4) clusters corresponding to the four levels of target 

densities Nv ∈ {2,20,50,100} are established as references 

using the training dataset. After that, we generate a testing 

cluster using a test dataset with Nv = 35 targets, and calculate 

the distance between the test cluster and the four pre-trained 

reference clusters. Note that the distance between any two 

clusters is defined as the distance between their centroid 

points. Finally, we apply linear regression to find the 

estimated number of cars. 

2) C-2: COMPLEXITY ANALYSIS 

Asymptotic Big O complexity analysis of the three density 

estimators is provided in the following, assuming N is the 

number of training samples and M is the number of classes. 

For the ANN model-based estimator, the time complexity 

is O(N 2M2), primarily due to the algorithm’s training phase, 

which requires the most computational resources. The space 

complexity is determined by the amount of memory required 

for the algorithm to store the neural network parameters 

which is equal to O(N 2M2). Specifically, the algorithm needs 

to store neural network parameters, test data, and training data 

[52]. 

For estimation with K-means clustering, the time 

complexity of various operations is as follows: feature 

extraction takes O(NM), splitting the data into training and 

testing sets requires O(M), clustering the training data using 

Kmeans consumes O(NMk), feature extraction of the testing 

signal is O(M), calculating the average distance from the new 

signal to each cluster center takes O(kM). Then, the overall 

time complexity is O(NMk). The space complexity 
TABLE 4. Comparison between the proposed traffic density estimation scheme and 

two benchmark AI-based approaches we implemented for comparison purpose. 

  
  

    

    

    

    

    

for K-means clustering is determined by several factors. The 

feature matrix and training data both contribute to a space 

complexity of O(NM). Additionally, the cluster centers 

introduce a space complexity of O(kM). When we combine 

these components, we obtain an overall space complexity of 

O(NM + kM) [53]. 

In our proposed estimator, the time complexity is solely 

dependent on the number of training samples, which is equal 

to O(N). On the other hand, the space complexity is related 

to the memory needed for storing the signal samples 

corresponding to the PDF templates, resulting in a space 

complexity of O(NM). 

 

FIGURE 7. The structure of the implemented ANN used for comparison (w :weight, b:bias, and AF :activation function). 
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3) C-3: SUMMARY OF COMPARISON 

The comparison results between our scheme, ANN, and 

Kmeans clustering using the same raw data are summarized 

in Table 4. The evaluation is based on the following five key 

metrics: required size of dataset, relative mean square 

deviation (RMSDRel), running time, time complexity, and 

space (or computational) complexity. Notably, our scheme 

beats the two benchmark estimators with large margins in 

all considered metrics. This observation partially confirms 

that our pre-designed JS-divergence-based classifier has a 

superior structure with fewer parameters to tune, compared 

to the two supervised learning-based classifiers. 

In addition, we qualitatively compare our scheme with 

several existing traffic density estimation schemes, as a 

quantitative comparison is not quite feasible. Table 5 

highlights the major differences between our scheme and the 

traffic density estimation methods presented in [6], [9], [31], 

and [36]. As indicated in Table 5, the majority of existing 
TABLE 5. Comparison with existing traffic density estimation schemes. 

FIGURE 8. Fading amplitude for 20 vehicles moving at speed 60 MPH. 

schemes are considered as ‘‘active’’ estimation schemes, 

which introduce additional communication and computation 

overheads. Also, they rely on AI-based approaches for traffic 

density estimation, requiring large labeled datasets and 

involving complex algorithms. 

Although the scheme proposed in [36] is categorized as a 

passive traffic density estimation scheme, it still requires a 

relatively large training dataset to teach/tune the machine 

learning classifier to produce the desired estimation output. 

In summary, our proposed scheme can effectively and 

efficiently estimate traffic density with a much smaller size of 

dataset. Moreover, it is promising to adapt to bad weather 

conditions and dynamic environments. 

D. ASSESSMENT OF TRAFFIC FLOW AVERAGE SPEED ESTIMATION 

Synthetic data is used to assess the proposed traffic flow 

speed estimation. Specifically, we measure the fading 

amplitude of signals reflected from vehicles moving at speeds 

sv = {45,60,70} mph over different density levels. Fig. 8 

illustrates the fading amplitude of a signal received from 20 

vehicles moving at a speed of 60 mph, and this result is 

utilized for calculating the LCR. Error function 1sv = f 

(σn,Nv,NLCR) is implemented using a LUT based on the 

measurements (synthetic training data). 
FIGURE 9. Average flow speeds estimation errors at different number of vehicles. 

The accuracy of the estimator can be measured in absolute 

root mean square error deviation (RMSD): 

s 

PT
t=1(sˆvt − svt )2 

 RMSD =, (35) 
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T 

where s˜vt is the speed estimation at iteration t, svt is the actual 

average speed, and T is the number of iterations. 

The quality of the proposed traffic speed estimator is 

shown in Fig. 9, displaying the RMSD over diverse numbers 

of vehicles. One can see that the RMSD increases as the 

density and speed increase. This phenomenon seems to 

agree with our observation that moving speed and the 

number of vehicles contribute to the randomness of the 

fading signal. 

E. ASSESSMENT OF BEAM ALLOCATION 

For evaluating the beam allocation strategies, we consider 

five candidates as shown in Fig. 10, where (i) 

simpleproactive with ceiling and (ii) optimal-proactive 

with ceiling are two proposed practical strategies, while the 

rest are three reference candidates for comparison. 

The proactive scheme includes an adjustable control 

function to proactively allocate the beams based on the 

current density estimate obtained using weighted-centroid or 

LSE methods. For the simple version, the control function 

 

FIGURE 10. Beam allocation strategies considered for assessment (‘‘Without 

Ceiling’’ means Nmax → ∞). 

a(N
ˆ

v) is defined as 

 a(N
ˆ

v) = max0,round γ · λ · N
ˆ

v
 
, (36) 

where γ is a positive real constant (γ can be chosen in the 

simulation). For the optimal version, a(N
ˆ

v) is computed 

using (30). 

Fig. 11 (a), 11 (b), and 11 (c) show evaluation results of 

outage and beam waste, respectively, for three strategies of 

fixed, simple-proactive with ceiling and simple-proactive 

withoutceiling. The results are semi-analytically obtained for 

different numbers of vehicles Nv estimated using 

weightedcentroid or LSE methods, assuming a uniform 

distribution of Nv ∈ [10,80]. For the fixed-allocation 

benchmark scheme, NB = 17 is selected. For simple proactive 

allocation, the number of allocated beams is equal to Nalo 

defined in (25) 

withthecontrolfunctiongivenby(36).Forthe‘‘withceiling’’ 

scenario, the ceiling values Nmax are set to either 12, 20, or 30, 

while for the ‘‘without ceiling’’ scenario Nmax → ∞. 

As expected and observed from Fig. 11 (a), the proactive 

schemes experience fewer outages compared to the fixed 

scheme, which improves the QoS accordingly. This 

improvement is attributed to the proactivity backed up by the 

real-time traffic density estimation. Note that the 

simpleproactive ‘‘without ceiling’’ achieves an outage 

probability 

 

lower bound close to zero (Pout ≈ 0) at the cost of unlimited 

resource occupation (Nmax → ∞). However, in scenarios with 

extremely limited resources (e.g., the ceiling Nmax set to a low 

value like 12), the proactive scheme may experience a higher 

outage compared to the fixed scheme. Moreover, it is evident 

that the outage probability for the beam allocation schemes 

over different numbers of vehicles estimated using LSE is 

lower compared to the weighted-centroid-based method. This 

is because the weighted-centroid is biased towards positive 

errors, resulting in a vehicle density estimate greater than the 

actual number, thereby requiring a larger number of beams. 

On the other hand, the level of resource waste is evaluated 

using the mean number of idle beams (L
¯ 

and L
¯
) as a metric. 

As shown in Fig. 11 (b) and 11 (c), the simple-proactive 

‘‘withoutceiling’’exhibitsthehighestlevelofresourcewaste, 

with the level of resource waste increasing gradually as the 

numberofvehiclesrises.ThisbecausethecalculationofNalo 
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FIGURE 11. Evaluation of fixed, simple-proactive with ceiling, and simple-proactive 

without ceiling beam allocation strategies. 

is primarily dependent on the term (N
ˆ

vλ + a(N
ˆ

v)) in (25), 

while it neglects the role of min Nmax,Nevλ + a(Nev)
 
due to 

theoretically unlimited resources available (Nmax → ∞). 

Specifically, when Nv = 80, this level of waste reaches 

approximately L
¯ 

≈ 30 for the weighted-centroid and L
¯ 

≈ 18 

for the LSE. In the case of the simple-proactive 

 

FIGURE 12. Evaluation of fixed, simple-proactive with ceiling, and simple-proactive 

without ceiling beam allocation strategies. 

strategy ‘‘with ceiling’’, the level of resource waste varies 

less as the number of vehicles changes compared to the fixed 

strategy. This is due to the proactivity of our scheme, which 

can adapt the number of reserved beams based on the number 

of estimated vehicles. Interestingly, there is a turning point at 

Nv = 20 in Fig. 11 (b) and 11 (c), and the proactive scheme 

outperforms the fixed counterpart when Nv < 20; as Nv 

increases, the proactive scheme approximately maintains a 

small constant level of idleness. However, in scenarios with 

extremely limited resources (Nmax = 12), the proactive scheme 

exhibits a lower level of idleness. Similar to the outage 

probability analysis, the LSE method exhibits a lower level of 

resource waste (see Fig. 11 (c)) compared to the weighted-

centroid (see Fig. 11 (b) ). This is because the weighted-

centroid, with its positive bias, allocates a larger number of 

beams than needed. Note that the overall beam allocation 

performance is measured by both outage and idleness, and it 

can be stated that as the number of vehicles increases, the 
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simple-proactive ‘‘with ceiling’’ scheme performs 

significantly better than the fixed strategy at a minor penalty 

of L
¯ 

≈ 1.3. 

 

FIGURE 13. Mean number of idle beams comparison with optimal beam allocation 

at different numbers of vehicles estimated using LSE. 

Next, we investigate the impact of the control parameter 

γ on the outage probability and the level of waste resource 

over different numbers of vehicles estimated using 

weightedcentroid and LSE methods. As shown in Fig. 12 

(a), increasing the value γ leads to a decrease in the outage 

probability for both weight-centroid and LSE methods. On 

the other hand, as depicted in Fig. 12 (b), a reduction in γ 

values correlates with a decrease in the level of wasted 

resources. 

The aforementioned (simple) proactive schemes can be 

further improved to reach the optimum by selecting the 

control function a(·) using (30), jointly considering the beam 

waste and outage. We emphasize our focus on the LSE 

method due to its superior estimation accuracy and the fact 

that it serves as an unbiased estimator. Fig. 13 illustrates the 

mean number of idle beams with optimal allocation based 

on (30) for both proactive beam allocation schemes (with 

ceiling and without ceiling). Generally, one can observe that 

the optimal-proactive beam allocation scheme exhibits a 

lower level of waste resource compared to the simple 

proactive schemes (see Fig. 11 (c)). Moreover, according to 

Fig. 13, the optimal beam allocation ‘‘without ceiling’’ 

under a given outage constraint b = 0.1 exhibits a larger 

number of idle beams (L
¯ 

≈ 14) when compared to the 

scenario with ceilings (L
¯ 

≈ 0.8). This behavior remains 

consistent when increasing the threshold b to 0.3. In 

conclusion, it’s evident that for both the simple and optimal 

proactive strategies, scenarios ‘‘without ceiling’’ 

consistently exhibit a larger average number of idle beams, 

which increases gradually as the number of vehicles rises, 

due to the unlimited resources. This highlights the 

importance of the ceiling in effectively restricting L
¯
. 

VI. CONCLUSION AND FUTURE WORK 

This paper presents an efficient and cost-effective traffic 

monitoring scheme to support ITS by leveraging the synergy 

between sensing and communication in an ISAC 

framework. The proposed scheme reuses the 

communication waveform for estimating both traffic density 

and speed, and simultaneously enhances the connectivity 

and QoS for vehicular users via proactively allocating 

mmWave beams aided by the traffic density estimation. The 

performance analysis and comparison show that the 

proposed traffic estimators require less training, are 

computationally efficient, and can yield accurate estimates 

at diverse vehicle density levels. The assessment results also 

suggest that proactive beam allocation is very promising due 

to its superiority over fixed beam allocation. As a matter of 

fact, the traffic sensing outcomes can benefit different 

resource allocation tasks. Also, the proposed mmWave 

beam allocation scheme can be directly used for channel 

allocation in lower frequency bands. Numerous related 

topics can be further explored in the future, such as 

combining beam sweeping techniques with beam allocation, 

considering more practical traffic scenarios, and further 

improving the estimators. 
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