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ABSTRACT Building efficient and effective road traffic monitoring systems has become a major challenge in
different countries, mainly due to the rapid growth of the metropolis road network and the booming of
vehicles. Existing traffic monitoring methods are accurate but typically come with inherent limitations,
prompting the exploration of alternative techniques. Integrated sensing and communication (ISAC) offers
an effective approach to traffic monitoring by leveraging the synergy between sensing and communication
to enhance system efficiency and reduce costs. In this paper, we present a particular ISAC use case tailored
for radio-based traffic monitoring. Both traffic density and speed estimations take advantage of
communication functionality, involving the reuse of communication waveforms for the sensing purpose. In
particular, proactive millimeter-wave (mmWave) beam allocation aided by traffic density estimation is
studied to enhance communication coverage of vehicular users in the area of interest for bandwidth-
intensive applications. Specifically, we exploit orthogonal frequency division multiplexing (OFDM)
communication signals of opportunity reflected from targets (vehicles) to efficiently estimate the road traffic
density and speed in a road section. A hybrid scheme combining model-based and data-driven methods is
considered to build efficient estimators that require reduced-size training data and are less computationally
complex.
Simulationandcomparisonresultsdemonstratethattheproposedtrafficestimationtechniquescanaccurately
handle a wide range of numbers of vehicles, even with a small-sized dataset. Furthermore, the proactive
beam allocation analysis shows that the quality of service (QoS, in terms of outage probability) of the
communication system is effectively improved.

INDEX TERMS Intelligent transportation system (ITS), traffic estimation, integrated sensing and
communication (ISAC), communication signals of opportunity, Jensen-Shannon (JS) divergence,
leastsquares estimation (LSE), proactive mmWave beam allocation.

1. INTRODUCTION prompt emergency responses [3]. Moreover, they have

Road traffic monitoring plays an important role in traffic
management within the Intelligent Transportation System
(ITS) [1], [2]. Metrics related to road traffic monitoring
include traffic density (defined as number of vehicles per
mile) and traffic flow average speed. These metrics can
provide valuable insights for proactive traffic management,
optimizing road construction scheduling, and facilitating
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positive impacts on the society and environment [4]. For
instance, real-time traffic density and flow speed
information could be employed to provide a real-time route
planning service to guide vehicles to avoid congested roads,
thus reducing driving time, toxic gas emissions, and air
pollution [5].

Several traffic monitoring techniques have been designed
and developed over time. Traditional methods primarily rely
on a large number of detectors, such as cameras, ultrasonic

[7]. Such kinds of systems are accurate but exhibit some
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detectors, induction loop detectors, and radar sensors [6],
shortcomings. Sometimes their detection performance is
affected by the environment and bad weather conditions
(e.g., fog, rain, etc.). In addition, these detection/estimation
systems are typically complex and require fixed wired
infrastructure for installation, which limits coverage of areas
and leads to significant deployment time and costs,
especially as the metropolis road networks grow rapidly [8].
Therefore, from both application and research perspectives,
it is necessary to explore alternative techniques for traffic
monitoring, such as radio-based approaches.

Numerous studies have explored traffic monitoring
through vehicle-to-vehicle (V2V), vehicle-to-infrastructure
(V2I), or wvehicle-to-everything (V2X) communication
methods [9], [10], [11]. These systems rely on connected
vehicle technology to periodically exchange cooperative
awareness messages to share information about traffic
conditions. However, these systems encounter various
challenges, such as short-range, large channel access delay,
and huge capital investment. Moreover, as the use of
connected vehicles becomes widespread, radio resource
allocation becomes a major challenge. Additionally, these
systems are vulnerable to security breaches due to the
broadcast and unencrypted nature of  wireless
communications [12]. Therefore, there is a pressing need for
cost-effective and scalable radio-based traffic sensing
methods.

Over the past few years, ISAC has been emerging as a key
enabler for future wireless systems to support many new
applications [13], [14], [15], [16]. ISAC refers to a design
paradigm and enabling technologies, in which sensing and
communication systems are integrated to efficiently utilize
congested resources [13] by sharing infrastructure and
spectrum. The integration of functions not only reduces the
overall cost but also leads to higher service quality due to the
synergy  between  communication and  sensing.
Indeed,communication-assistedsensingandsensing-assisted
communication can be achieved synergically in a single ISAC
setup [16], [17], [18]. These features open up new
possibilities, including radio-based road traffic monitoring for
efficient and enhanced road traffic management within the
ITS. One aspect of ISAC is the reuse of communication
waveforms for sensing purposes. For instance,
noncollaborative OFDM signals from illuminators of
opportunity (IoO) can provide an efficient and effective
solution to localize, detect, or track targets. The traffic sensing
outcomes not only contribute to the transportation system but
also can assist the communication system in allocating its
resources proactively and effectively.

Several research works have developed passive radar
sensing techniques by utilizing the signals transmitted from
different kinds of IoOs to detect and localize targets. In [19],
[20], different schemes were proposed for multitarget
localization and speed estimation using OFDM signals from
VOLUME 12, 2024

100s. In [21], the authors introduced a technique for target
counting using OFDM signals. In [22], OFDM signals from a
non-collaborative digital video broadcastingterrestrial (DVB-
T) transmitter were used to detect moving targets. Also, some
researchers developed a road traffic monitoring system to
monitor density and speed using GSM-based transmitters
[23]. Although the aforementioned systems somehow
outperform the traditional traffic monitoring systems in terms
of cost and effectiveness, they impose several challenges that
need to be addressed. One major concern is that these systems
can only detect a few targets [19], [20], [21], [22], [23],
preventing them from estimating the traffic density of
massive vehicles on a road section. Moreover, the idea of
searching over the whole range-Doppler space to estimate the
ranges and velocities of the targets requires both large signal
bandwidth (for range-resolution [24]) and high power, and
also incurs high computational complexity. On the other
hand, pure datadriven traffic estimation techniques (e.g.,
machine learning) provide no insight into the physical
mechanisms, are less traceable [25], and often require very
large datasets [26].

In this paper, we consider an ISAC scheme in the
fifthgeneration (5G) infrastructure to perform traffic
monitoring using 6-GHz band signals of opportunity and
incorporate proactive mmWave beam allocation aided by
traffic sensing for vehicular users demanding high data rate
services. Assume the system is capable of multi-beam
forming and sweeping, possibly in a cloud-radio-access
network (CRAN) [25], which enables centralized processing
for joint communication and sensing. With such a
configuration, multiple base stations (BSs) can perform
(either communication or sensing) cooperatively. Having
information about the traffic flow speed efficiently aids in
route planning, guiding vehicles to the fastest routes [27],
[28]. The traffic monitoring (sensing) results can be used as
the prior knowledge to enhance communication
functionality [29] in addition to its assistant role in traffic
management. Specifically, the vehicle density information
can guide proactive allocation of radio resources.

Major contributions of this paper are summarized as
follows:

« We propose an efficient and cost-effective traffic
density estimation technique that combines model-
based and data-driven approaches. The technique relies
on JensenShannon (JS)-divergence for classification
and leastsquares estimation (LSE) for interpolation,
requiring less labeling and training efforts compared to
typical artificial intelligence (Al)-based techniques like
neural networks.

« A traffic flow average speed estimation method using
level crossing rate (LCR) is introduced to offer more
information about the traffic flow without requiring
additional measurement. This method is extended from
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the original LCR-based technique that handles one or
very few number of targets.

« We present a traffic-density-aware proactive beam
allocation method for vehicular users demanding high
data rate services in the area of interest, while
minimizing the number of idle mmWave beams given

an acceptable service outage.
TABLE 1. Major notations.

Notation Description
Ny Number of OFDM symbols
Nec Number of OFDM subcarriers
Ny Number of vehicles
e Radar cross section (RCS) of a vehicle
Whole-path attenuation factor due to propagation losses
3 and RCS (o) of a target
Sy Vehicles average speed
N; Number of clutter objects
oy Radar cross section (RCS) of a clutter object
‘Whole-path attenuation factor due to propagation losses
& and RCS (o) of a clutter object
Af Subcarrier spacing
Q(x) Probability density function (PDF) of a modeled template
M Number of modeled PDF templates
P(z) PDF of a testing signal
p(Ny) Distribution of N, vehicles
N Cross number per second when signal envelope down-crosses
Nicr a certain threshold A,y , or the “level crossing rate” (LCR)

Ratio of the threshold Ievel A, to the root mean square
level of the envelope of received signal

p
q(e|Nw) Conditional distribution of estimation error e
EAbs Absolute mean square error
ERel Relative mean square error
Np Number of fixed beams
Nmax Maximum number of proactive beams provided by base station
Naio Number of allocated beams (proactive beam allocation)
Pout Outage probability of fixed beam allocation
Pout Outage probability of proactive beam allocation
L Mean number of idle beams (fixed beam allocation)
L Mean number of idle beams (proactive beam allocation)
N Number of training samples.
M Number of training classes.

« Comprehensive assessment and comparison are made
based on simulations and analysis. In particular, two
Al-based techniques, namely artificial neural networks
(ANN) and K-means clustering, are considered as
benchmarks in assessing the proposed traffic density
estimation.

Generally speaking, our results suggest that the proposed

scheme can efficiently estimate traffic density without
requiring complex processing or extensive sets of

measurement data. When compared to existing radio-based
84954

traffic estimation schemes, our method can handle a large
number of targets by reusing communication waveforms,
without the necessity of complex algorithms. It is worth
noting that classification based on supervised learning usually
uses a relatively large training dataset to teach/tune a
classifier (models) to yield the desired output, while our pre-
designed JS-divergence-based classifier is much more
efficient. This is because it does not have many parameters to
tune, and only needs to estimate a probability density function
(PDF) of the received signal, without requiring a significantly
large training data set.

Major notations used in the coming sections are given in
Table 1. The rest of this paper is organized as follows. Section
II presents related work. The system model is presented in
Section III. The proposed schemes are described in Section
IV. Quantitative assessment and comparison results are
discussed in Section V, followed by conclusions in Section
VL

1. RELATED WORK
This section presents an overview of related research works
that consider traffic density and flow speed estimation.

A. TRAFFIC DENSITY ESTIMATION

Extensive research on traffic density estimation systems has
been conducted, and they can be categorized into four
groups: /) ground-sensor-based, 2) aerial-sensor-based, 3)
connected-vehicle-based, and 4) data-driven approach.

1) GROUND-SENSOR-BASED SYSTEMS

Such systems commonly employ a large number of wireless
sensors to collect road network information accurately [1],
[30], [31], [32]. These sensors can be installed in various
ways, either on the road surface or on the side of the road.
Typical road surface sensors include inductive loops,
magnetic detectors, and other weigh-in-motion devices. A
notable example is the freeway performance measurement
system (PeMS), which is employed by the California
department of transportation (Caltrans). PeMS relies on
real-time measurement data [33] gathered from inductive
loops. The primary drawback of road surface sensors is the
installation cost including sensors and supporting
infrastructure, as these sensors are typically installed
beneath the road surface. Furthermore, the cost of such a
system increases if more lanes or new road sections need to
be monitored. Other types of sensors installed on the sides
of the road include cameras, microwave radars, and passive
infrared sensors. While these sensors find widespread use, it
is important to point out that their deployment and
maintenance costs tend to be relatively high, and their
performance can be susceptible to adverse weather
conditions, as discussed in [32].

VOLUME 12, 2024



W. A. Amiri et al.: Efficient Road Traffic Estimation for Proactive Beam Allocation in an ISAC Setup

IEEE Access

2) AERIAL-SENSOR-BASED SYSTEMS

These systems typically utilize unmanned aerial vehicles
(UAVs) for road traffic monitoring [34]. Cameras mounted
on UAVs perform traffic detection, making these systems
costeffective due to their mobility and large geographic
coverage. Consequently, they are well-suitable for fast data
collection, but require complex post-processing algorithms
to analyze images and video frames for traffic detection, as
proposed in [6] and [35].

3) CONNECTED-VEHICLE-BASED SYSTEMS

These systems are usually in the vehicular ad-hoc network
(VANET) framework, where vehicles and traffic
infrastructure periodically exchange data through V2V, V2I,
or V2X communication links. For instance, in [8], the
authors proposed a reliable method for estimating traffic
density by combining vehicle spacing information collected
from a vehicular network and calculating the average
spacing between vehicles in a specific area. While this
technique offers good estimation accuracy, its
implementation requires a substantial deployment of
roadside units (RSUs), resulting
inhighcosts.Certainly,thewidespreadadoptionofconnected
vehicle technology can result in resource congestion. Also,
these systems are vulnerable to security and privacy
breaches due to the use of broadcast messages for
exchanging information about traffic conditions.

4) DATA-DRIVEN APPROACH

In general, the implementation of the estimation methods
mentioned above often incurs substantial installation efforts
and high communication costs. Recent advances in wireless
technology have introduced data-driven sensing techniques
for traffic monitoring. Tulay and Koksal [36] proposed a
passive traffic sensing scheme using dedicated shortrange
communications signals transmitted from an RSU, where
“‘passive’’ refers to making use of radio signals designated
for other purposes. The scheme employs radio signal
fingerprinting and machine learning for traffic density
estimation. Furthermore, in their subsequent work [37], they
introduced a traffic density estimation approach based on
channel state information derived from signals transmitted by
a transmitter on the RSU or a vehicle. This method also relies
on machine learning and incorporates classification and
regression algorithms to estimate the number of vehicles.
However, the schemes presented in [36] and [37] can suffer
from outages due to environmental changes and require a
large dataset for accurate classification.

B. TRAFFIC FLOW SPEED ESTIMATION

Flow speed estimation can be divided into three categories: /)
future flow speed estimation (actually, prediction), 2)
dedicated estimation, and 3) wireless-signal-based
estimation.

VOLUME 12, 2024

1) FUTURE FLOW SPEED ESTIMATION

These systems predict traffic flow for either a short or long
period in the future. They rely on various time series models,
such as historic average models [38], Bayesian network
models [39], hidden Markov model [40], or the auto-
regressive integrated moving average (ARMA) [41]. They
operate under strict assumptions and conditions for
prediction: there is clear awareness of the current traffic and
complete historical speed measurements. Implementing such
techniques can be challenging in the cases of limited
measurements.

2) DEDICATED FLOW SPEED ESTIMATION

These systems offer traffic flow speed estimation with less
required data compared to the prediction methods discussed
above. Some of these approaches, as demonstrated in [42],
leverage data collected from traffic sensors and employ the
K-nearest neighbor method to infer real-time traffic speed.
Other studies, such as [43], utilize videos collected from
UAVs with an ensemble classifier (Haar cascade &
convolutional neural network). Moreover, the scheme in [4],
utilizes crowdsourcing vehicles that provide their real-time
GPS records for speed estimation over a large region, and
theyemployagraphconvolutionalgenerativeautoencoderfor
real-time speed estimation. Although these methods provide
accurate estimation, they either require complex and highcost
system implementation [42], are negatively affected by bad
weather conditions [43], or rely on connected vehicle
technology [4].

3) WIRELESS-SIGNAL-BASED ESTIMATION

There are some works that explore the use of wireless signals
for estimating the speed of a single mobile (vehicular) user,
which could potentially be adapted for speed estimation for
multiple mobile users. In [44], the authors presented an
online algorithm for user equipment (UE) speed estimation
in long term evolution-advanced (LTE-A) networks, using
time-based spectrum spreading method (TSSM). The
proposed method utilizes uplink LTE sounding reference
signal (SRS) measurements conducted at the LTE base
station. Specifically, the TSSM is employed as a metric for
speed dependent time variations of the shadowing in the
SRS measurements. A reference curve or lookup table
(LUT, database) with respect to the shadowing decorrelation
distance is created in advance. The computed values of the
metric are then compared with the reference to determine a
speed estimate. While this approach demonstrates good
accuracy, it necessitates a huge database to attain the
reported level of precision.

1ll. SYSTEM MODEL
A. SYSTEM ARCHITECTURE
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We consider a system setup illustrated in Fig. 1 with two
BSs and a number of vehicles on a multi-lane road section
between the two BSs. The system supports dualband
communication at mmWave band (e.g., 28 GHz, for
bandwidth intensive services) and frequency division
duplex (FDD) mid-band 5G (e.g., 6 GHz band). At the same
time, the lower frequency band is used for traffic sensing in
a fashion of bistatic radar using the communication signals
of opportunity. The system performs dual-band
communication and traffic sensing simultaneously. In the
sensing mode, one BS (the left one in Fig. 1) serves as the
100 transmitting OFDM signals with radio beamwidth angle
30°(equivalent to a coverage of one mile of the road section),
and another BS equipped with a dedicated receiver captures
the signals reflected from vehicles. We assume the sensing
receiver is able to significantly reduce the impact of the
directpath component (from the transmitter to the receiver)
using some techniques such as directional antenna, antenna
array with nulling, or cancellation algorithm. Of course,
more BSs can be employed, and the effectively illuminated
area depends on how the system is geographically deployed
and the beamwidths of the transmit and receive antennas.
For mmWave communication, the mmWave transceivers
can be mounted on one or both BSs. The traffic estimation

Clutter Object

Target .

i lluminator L
' (100) ..

(1) Schematic of traffic estimation mode

Dual-band ! !

x() = X X Xi,m e-j2neaf (¢&-mTs) - pg(£f), (1) m=0 k=0

where ¢ is a time indeX, Xk, is the communication data symbol
modulated on the kth subcarrier and mth OFDM transmit
symbol, where k = 0,1,...,N.— 1, and m = 0,1,...,Ni-1, 1f’is the
subcarrier spacing between OFDM symbols, 7y is the length
of an OFDM symbol, g(7) is the impulse response of the raised
cosine shaping filter [24].

Then, the transmitted passband OFDM signal can be
expressed as:

XN(I) = RC‘{X(I) e,fZJ'!'ﬁt , ()

where f.is the carrier frequency.

Assume the number of vehicles is N, in the illuminated road
section, where all vehicles can be considered as targets. Each
target has a radar cross section (RCS) o, and an average speed
symph, v=0,--,N, - 1. In addition, there are /V; clutter objects
that are not of interest, each of which has an RCS of g;, [ =
0,- ,N; - 1. The transmitted signal is reflected from both
vehicles and clutter objects, leading to the radio frequency
(RF) passband received signal:

Ny=1 Ny-1 N~1

11 Downlink mmWave !
o beam

BS i

(2) Schematic of proactive mmWave beam allocation

(a) 10O transmits a mid-band 5G signal. (b) Signals reflected from clutter objects. (¢) Signals reflected from targets.

FIGURE 1. System setup of the proposed schemes considering a multi-lane scenario with clutter objects.

results can be used for resource allocation tasks, such as
downlink mmWave beam allocation (assuming one beam
per vehicular user on the serviced road section). In addition,
we assume certain system features, such as mmWave
beamforming and beam sweeping, are available.

B. SIGNAL MODEL

Consider a transmitted OFDM signal consists of Ny OFDM
symbols and N, subcarriers. Such a signal at sample time ¢ can
be represented in baseband as follows:

N1 N~1

84956
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where &, and & represent the whole-path attenuation factors
accounting for the propagation losses and RCSs (o,’s and
or’s) of the targets and clutter objects, respectively; 7, and t;
are the propagation delays corresponding to the targets and
clutter objects, respectively; and n(f) is the additive band
limited Gaussian noise. (3) will be used to form a sensing
channel in the simulation, where the propagation model for
each path takes into account the total path loss and RCS,
inthesamewayasusedinray-tracing-basedsimulations[36],
[37]. Strictly speaking, &, &, T, and 1; are time-varying
random variables depending on the RCS and location of a
vehicle. Because the received signal is a superposition of
many random components, (3) is comparable to a fading
channel model with many propagation paths, such as the
Jakes and Cox model [45]. Indeed, observed from our
simulation results, the received signal y(f) does exhibit some
fading behavior.

IV. PROPOSED SOLUTION AND ANALYSIS

In this section, we present our road traffic density and flow
speed estimation schemes followed by the proactive beam
allocation.

A. ROAD TRAFFIC DENSITY ESTIMATION

Different from traditional data-driven approaches, we do not
use the received data directly to infer traffic density. Instead,
aiming at the use of a smaller dataset and low computation
complexity, we consider a hybrid approach involving both
model-based and data-driven methods along with JS-
divergence [46] used as an intermediate variable, where the
JS-divergence is a distance measure between two
probability density distributions, hence providing a way to
compare the statistical characteristics. Two density

s

divergence |
PDF calculator 1
template 1
Baseband n
1/Q raw diw::wm Weighted | + N,
— B
data PDF calculator 2 centrold [N El
template 2
Bias
5 estimation
divergence — B(N,)

calculator M

PDF
template M

FIGURE 2. Architecture of proposed weighted-centroid-based traffic density
estimator.

estimators, the weighted-centroid estimator and the optimal
estimator, are proposed in this paper. The weighted-centroid
density estimation is performed in four steps: 1) forming
probability density function (PDF) templates of training
classes based on the amplitude of the raw data received
previously, 2) calculating current PDF based on just-received
data (testing class) that corresponds to an unknown density to
be estimated, 3) computing JS-divergence between the PDF
templates of the training classes and current PDF of the
testing class, and 4) estimating density based on weighted-
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centroid technique along with bias correction, using JS-
divergence values as the weights. Fig. 2 shows a conceptual
architecture of the proposed weighted-centroidbased traffic
density estimator with M(> 1) parallel branches
corresponding to the predefined M density levels. The
optimal estimator contains four steps as well. The first three
steps are similar to the weighted-centroid estimator, but the
fourth step is to perform LSE utilizing the obtained JS-
divergence values.

The proposed traffic density estimators do require labeled
datasets. It is possible to obtain them by conducting a non-
coordinated experiment without interrupting a normal
transportation system. In the non-coordinated experiment,
two raw data time series, i.c., the baseband I/Q sample
streams and the vehicle-count sample stream, are generated
and stored simultaneously over a sufficiently long time. Each
vehicle count sample can be obtained based on an image
snapshot of the road section, and it serves as the label of a
segment of data samples. Then, the data sections with labels
that fall in the required bins corresponding to the predefined
density levels or classes (specific values of N,) are selected as
the templates for PDF estimation. Practical data collection
and labeling are out scope of this paper.

In the first step, corresponding to M predefined training
density classes, experiments are conducted to generate a
dataset of M measurements {y/n],n = 1,2,3,- ,N and j =
1,2,3,~- ,M}, for training purposes. Here, N represents the
number of data points for each class. We calculate the PDF
templates using Kernel density estimation (KDE) [47]. N bins
are employed in KDE, and the PDF estimated formula is as
follows:

N x = |ylnll
1x
o= — K — 4)
Nh h n=1

where K is a non-negative kernel function (e.g., normal) and
h is a smoothing factor.(4)is used to generate M
PDFtemplates of the training classes:
O1(x), 02(x), 03(x),...,Om(x). Similarly, with measurement
data {nln = 1,2,3, N,
wecanobtainameasuredPDF P(x)ofatestingclassinstep2. This
testing class corresponds to data from an unknown number
of vehicles.

Note that the JS-divergence is a smoothed version of the
KL-divergence, and it is preferred since it is bounded 0 < JS(
) £ 1 no matter what density N, is, and symmetric so that the
distance is independent of the order of the two PDFs under
test.

In the third step, the JS-divergence between P(x) and Qi(x)
is calculated as follows:
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1
JS P(x)| 1 0/x) = 2KL P(x)| | Gi(x)

where Gi(x) = (1/2) P(x) + Qi(x), and KL(
Kullback-Leibler (KL) divergence given by

) is the

I = P(x)
1

+2KL O 1G(x),  (5)

KLPM)G) P log, TOF  Gix)
X 0w
KLOWIIGI)= O log. (. Gix)

With M JS-divergence values obtained in the third step, two
types of estimators are explained as follows.

1) WEIGHTED-CENTROID ESTIMATOR
The weighted-centroid-based traffic density estimate is given
by

PMj=1 NvlJS POIQi(x) — “(Nv), ®)

N'v= a1 JS PGIO(Y) - B

(0]
where N, is the actual number of vehicles associated with the
jth PDF template, and B (%,) is an estimate of the bias
between the actual and estimated vehicle densities. Note that
pure weighted-centroid technique with JS-divergences as its
weights does not guarantee unbiased estimation. Indeed, the
bias is not zero according to some test results, and both noise
and clutter should have impacts on the bias. An error
correction process can be used to improve the estimation if

the error estimate B (IV,) is available. Practically, the bias

for a given clutter condition can be calibrated based on a set

N

of S measurements N ,,:

B (W) = XN vs—-Nv). )

S s=1
2) OPTIMAL ESTIMATOR
Define vectors n, ¢, and {;:
= N(1),N@), - , N7,
n = N1),NQ2), ( (10)
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vV v v

JS Px)IIO1(x) =

Pay Js POIO(x)
JS PO Qu(x) ™ (11)

7 7

Pit JS POl O)x) j=1

JS Qi O1(x)

Zl = PM ” J 7
718 Qix) O (x)

JS Q)N Omx)

P
MIS Qi) Q)(x) j=1
i=1,23M. (12)
where (12) can be obtained by replacing P(x) in (11) with
known PDF Qi(x), i = 1,2,3,M. Form a matrix that is a stack
of M JS-divergence vectors:

leg
Z
=0... . (13)
™
Mx
M

Then, consider a linear model

No=C"w, NO=7"w, i=1,23,,M, (14)

where w is an unknown M x 1 weighting vector to be
determined. Of course, a specific value of w cannot perfectly
satisfy all individual equations; instead, we need to find a
weighting vector w* that is optimal overall. Note that

0) Tw,i=1,2,3,,M,in (14) can be rewritten
Nv = Zi
in a compact form:
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Zw=n, (15)

which leads to the LSE solution:
wx=Z7Zr-12n, (16)

and the optimal estimate is given by:
NA\/=ZTU.)*. (17)

Note that only a limited number of templates Qj(x) are
employed for training, but this does not prevent the estimator
from handling a wide range of density levels.

B. TRAFFIC FLOW AVERAGE SPEED ESTIMATION

For the purpose of traffic management, we care about the
traffic flow speed as a whole, instead of individual vehicle
speed. Some existing work based on level crossing rate (LCR)
[48] can be borrowed and extended for this purpose. The LCR
of the envelope of post-processed received signal y(f) is
defined as the number of cross counts per second, where each
count corresponds to an event that the envelope level down-
crosses a certain threshold A;. The LCR expression in
Rayleigh fading channels has been derived in [49] and is
expressed as:

v 28v
p = 2mpep —, (18)
Nicr Ac

Baseband

1iQ raw
data | Low Pass Nyier [Calculation|s, + i
> i l l LCR —>» using Eq. —)E}_,
Filter 20)

“A

As,
Calculation| | 4.,
using Eq.
P—» (19)

Noise
Estimation

Density
Estimation 10

FIGURE 3. Traffic flow average speed estimator of multiple targets
(vehicles).

where A. is the carrier wavelength and p is the ratio of the
threshold level A4, to the root mean square level Yzusof the
envelope of y(¢), which can be given as follows:

Ath=p YRMS. (19)
P
For a single target, given the LCR value Nicr from the
received signal envelope, the estimated vehicle speed s, can
be obtained as:

e e P
sv=¥——NLCR. (20)
2
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Note that the value of p is used to control the threshold level
at which the signal crosses. In many cases, p = 1 is chosen,
representing a straightforward and common scenario where
the signal level crosses a fixed threshold.

Inspired by what is described above, we consider a traffic
flow speed estimator as illustrated in Fig. 3, where the low
pass filter is to reduce the noise impact. The key idea is to
correct the errors made by the pure LCR-based speed
estimator originally designed for the single-vehicle case. As
validated by simulation, the error can be regarded as a
function 1s, = f (0, N,,Nicr). Practically, 1s, = f' (0, N, Nrcr)
can be implemented as a lookup table (LUT) approximated
using experiment.

C. PROACTIVE BEAM ALLOCATION

In this application, we make use of our proposed traffic
density estimation scheme to enhance the QoS of vehicular
user communication. Specifically, we propose a proactive
beam allocation technique that enables the BS to allocate
antenna modules and mmWave beams based on the
estimated number of vehicles. With proactive beam
allocation, beam resources can be assigned to required
vehicular users quickly. For comparison, we also consider
fixed reservation as a benchmark. Note that beam alignment
is out of scope of this paper and it can be done based on the
location information of each vehicle, which can be obtained
with the use of available positioning technologies during the
requests process.

Assume vehicular users request radio beams for data
communication, and the service requests follow the Poisson
arrival model [50]. Consider a Poisson process with a mean
arrival rate A = a - T, where a is the number of packets
transmitted in the time interval t, and A > 0. Then, the success
probability of the BS to serve the vehicles using Ng
mmWave beams can be expressed as:

X (N,A)r e-N2
Psuc(NBlNV/A) = _— (21)
rl

r<Np

where r is the number of requests per vehicle. Note that to
achieve successful communication for the active vehicles, the
beam assignment should satisfy the constraint » < Np. If the
probability that » exceeds the number of beams N3, this is
known as the outage probability, which can be represented
as:

X (MA)r e-NA
Pout(NB | Nv,/\) = B — (22)

r!
r>NB
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Two beam allocation schemes are considered in this paper.
Let us start with the fixed beam allocation scheme. In this
scenario, a fixed number of beams N3 is allocated to serve the
vehicles, where Np can be chosen based on historical traffic
data and it should not exceed the maximum number of beams

Nuaxthat BS can support. The outage probability P .. can be

expressed as:

P out(/\) = Xp(Nv)Pout(NB |Nv,/\) ’ (23)
Ny

and the mean number of idle (not used) beams L is given by:

W ="pv) * )
24 L

e-NA - (Npg - 1) .

7l
N, 7<N3p

Note that the fixed beam allocation scenario does not
provide flexibility and imposes coverage problems when the
number of vehicles is greater than the number of allocated
beams. Therefore, we propose a proactive beam allocation,
which alleviates the problems of the fixed beam allocation.

For the proactive beam allocation, we introduce a control

function a(N, + €) = a(N ,) that is a predefined offset function

(or lookup table) for adjusting the reservation level as N,

changes, where e = N , - N, is the estimation error. Practically,

there must be a ceiling N, for resource availability. The
number of allocated beams can be expressed as

Nalo =roundmin Nmax, N"vA + a(N"v)

= round min Nugy, (N, + €)A + a(N, + €)
(25)

where round( ) is the round function. The corresponding
conditional outage probability (conditioned on N,and a) is as
follows:

Pout(Nv,a,/\) = Xq(Ele) Pout Nalo |NV,A , (26)

€

where ¢(€|N,) is a conditional distribution of estimation
errors, and Pou Nao|Ny,A can be calculated using (22) but
replacing Np with Nu,. Then, we have the outage probability
of the proactive scheme:

Pou@A) = Xp(Ny) Pou Ny, 1) . 27)

N,
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Another important parameter is the mean number of idle
beams (conditioned on N, and a) that can be expressed as:

X X (V) e-nn

LVvad) =  qlelVy)

7l
€ r<Nalo

“Naw—1),  (28)
and, the mean number of idle beams is:

L@A) ~"p(V) LV, ) (29)
N,

Finally, the optimal beam allocation is to find the optimal
control function given by
a*(N ,,A) = argminL(a,A)

a

s.t. Pou(@,A) b (30)

wherebisapre-selectedthresholdrepresentingthemaximum
tolerance of outage probability. It needs to be pointed out

that in practice a*(N ,,A) is not easily obtainable and may be

replaced by a suboptimal function.

V. QUANTITATIVE ASSESSMENT AND COMPARISON

A. SIMULATION SETUP

In our simulations, we evaluate traffic density estimation,
flow speed estimation, and proactive beam allocation
performances, assuming a geometrical-based single-bounce
channel model and known path loss. The 100 is located at
(-700,-50) m and a receive BS located at (2500,40) m. In
the sensing mode, the IoO and the receive BS beamwidths
intersect to cover a road section of one mile length. We
consider the transmitted signal as an OFDM signal with N,
= 1024 subcarriers and a mid-band carrier frequency f. = 6.8
GHz. For pulse shaping, a root-raised-cosine filter with a
roll-off factor of 0.25 is utilized.

At the sensing receiver side, assume the received signals
are reflected from vehicles with RCSs o, following the
uniform distribution U ~ [1,11] based on the experiments
reported in [51]. The vehicles’ average speed is s, = 60 mph,
and the separation distance between vehicles is a random
number between [10 - 20] m. Note that the distribution of
the vehicles on the lanes follows a uniform distribution with
consideration of the specified separation constraint. The
received signal y(f) is divided into chunks, each chunk
includes N = 41374 1/Q samples mixed with noise such that
the signal-to-noise ratio (SNR) is 2.7 dB. Four PDF
templates for N, € {2,20,50,100} are considered for density
estimation, and they are formed based on synthetic datasets
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generated using simulation. We call these density classes
{2,20,50,100} used for training as training classes. In

performance evaluation, we use testing
TABLE 2. Setting of major simulation parameters.

‘ Parameter ‘ Value ‘ ‘ Parameter ‘ Value ‘
# of subcarriers N, 1024 RCS o, U~[1,11]
ISAC fe 6.8 GHz mmWave f. 28 GHz
Bandwidth 20 MHz | Vehiclessep.dist. | 10 — 20 m
SNR 2.7dB Average speed sy 60 mph
# of PDF templates M 4 # of iterations 20
# of Proac. beams
# of Fix. beams Np 17 N 30
max

datasets corresponding to some classes (e.g., 35) that may not
belong to the training classes, and we call these classes
testing classes. The same terminologies are used for speed
estimation.

For proactive beam allocation, the mmWave beams operate
at f. = 28 GHz. For the comparison purpose, two additional
schemes, i.e., fixed reservation and unlimited reservation, are
considered as benchmarks. A semi-analytical approach, a mix
of Monte Carlo simulation and analysis, is adopted to
generate the allocation performance results.

Simulations are implemented on MATLAB R2020a
running on a Windows 10 PC with an Intel Core i7 processor
operating at 3.6 GHz and 16 GB RAM. The major simulation
parameters used in the system evaluation of this paper are
summarized in Table 2.

B. ERROR PERFORMANCE OF PROPOSED TRAFFIC DENSITY
ESTIMATION

We initially assess the performance of the weighted-
centroidbased estimator, followed by the evaluation of the
LSE method.

Single-lane, two-lane, and three-lane scenarios are tested
using simulation, and it is found they lead to very similar
statistics. Fig. 4 shows the estimated PDF of the received
signals for different numbers of vehicles considering the
twolane scenario, suggesting that the PDF is close to Gaussian
and the standard deviation of the received signal increases as
the number of vehicles increases. Similar behavior is
observed in both single-lane and three-lane scenarios.

The four JS-divergence values for a ground true of 35
vehicles are given in Table 3. First of all, one can see that the
divergence values at each column are very close at different
number of lanes. In other words, the divergence values are
somehow independent of the number of lanes. For the ground
true of 35 vehicles, the weighted-centroid estimator leads to

an estimate N , = 37.8 for single-lane scenario, N , = 38 for

two-lane scenario, and N , = 38.1 for three-lane scenario,

which are close to the true number N, = 35. Following that,
VOLUME 12, 2024

we study the effect of clutter on the PDF templates estimation
and weighted-centroid traffic density estimator. For the PDF
templates estimation, we found that adding clutter objects
does affect the PDF templates estimation, especially when
there is a small number of vehicles (N, = 2), as shown in Fig.
4 (b). Specifically,

0.8 :
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0.7 —6— 20 Targets |
50 Targets
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(a) Two-lane road section scenario without clutter.
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o 01f 1
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0.05 .
k& 2
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(b) Two-lane road section scenario with clutter.

FIGURE 4. Estimated PDF of the received signal at different numbers of targets (two-
lane scenario).

TABLE 3. JS-divergences (averaged over several trials) between the PDF templates
of training classes and a PDF of testing class (35 vehicles) under no-clutter
condition.

Number of vehicles 2 20 50 100

JS-div. (single-lane) | 0.8018 | 0.3606 | 0.1895 | 0.5288
JS-div. (two-lane) | 0.8192 | 0.3567 | 0.2102 | 0.5508
JS-div. (three-lane) | (0.8130 | 0.3409 | 0.1878 | 0.5362

for the PDF template generated from (I, = 2), its peak value
was 0.75 with no clutter (see Fig. 4 (a)), and it was reduced
to 0.35 when considering clutter (see Fig. 4 (b)). However,
other PDF templates with a greater number of targets (N, =
20,50,100) maintained the same values in both scenarios
(clutter and no clutter). For traffic density estimation using
the weighted-centroid method, the accuracy of the estimator
does not change significantly; there is a slight offset of 15%.
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Specifically, the estimated number of vehicles increased to
43 in the presence of clutter, compared to 38 with no clutter.

Furthermore, we test the optimal traffic density estimation
using JS-divergence and LSE method. The estimator yields

estimates of N ,=35.6, N ,=35.7, and N , = 38.4 for

0.7
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FIGURE 5. Average relative estimation errors over Nv.

the single-lane scenario, two-lane scenario with no clutter,
and two-lane scenario with clutter, respectively. For threelane

N

scenario, the estimates were N ,=35.7 without clutterand N ,

=38.8 with clutter. Note that the clutter leads to a slight offset
in the estimation similar to the weighted-centroid estimator.

Generally speaking, both estimators’ performance remains
consistent, whether considering a single-lane or two-lane
scenario, and the estimation results in both scenarios closely
align with each other. Additionally, the clutter does not
degrade the performance of the estimators. Therefore, for
performanceevaluation,weconsideratwo-lanescenariowith no
clutter.

The estimation performance of both estimators is evaluated
in mean square error (MSE) conditioned on the number of
vehicles N,. Specifically, the total absolute and relative MSEs
conditioned on N, can be calculated as follows:

=X
Eass(SIN) -~ "€ q(€|Ny), (€29)
eeS
EAbs(Sle)
Era(SINy= — (32)
N,

where error set S refers to “‘all’’ (i.e., all possible values for
error €), “‘-=ve’’ error (€ < 0), or ““+ve’’ error (€ > 0). If the
PDF of N,, p(N,), is known, then we have unconditional
MSEs:

E-abs(s) = XpNDEabsS (33)
N,
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E4bs(S)
E"Rel(S)= — . (34)
Ny

Note that we denote the optimal values of E4xsS|n),
- c . Ok * of
ErelSINy: €ab5(S): ERel(S) 38 Ep s,y ERerisIv,y € AbS(S),

E "rexS) which are corresponding to MSE obtained from the

LSE method.

Fig. 5 shows the estimation errors conditioned on N, for
both weighted-centroid and the LSE method, where only four
(M = 4) PDF templates are utilized for training, while the

testing is conducted across {N, = 10,20,---,80}. The LSE
1.1 . . ' ' " '

—&— Weighted-centroid
| |-e-LsE

Std

-
—
e
- -

-

10 20 30 40 50 60 70 80
Number of Vehicles

FIGURE 6. Standard deviation of estimation errors over Nv.

method exhibits lower average estimation error in all cases
compared to the weighted-centroid. Additionally, in the
LSE,
aslightbiasispresent,attributedtodifferencesinthestatistics
between the training and testing datasets. However, it is
clear that the weighted-centroid is a biased estimator, where

the negative relative error E gey-) is smaller compared to the

positive relative errors E ge+), suggesting that the estimator

most likely outputs a number N , greater than the true

number N,. This biased estimation tends to request slightly
more mmWave beam allocation to reduce the outage
probability. Note that the estimation bias B(,) is not zero
and we may intentionally leave it as is for the weighted-
centroid.

Fig. 6 illustrates the standard deviation (std) of estimation
errors of both estimators, with the LSE method exhibiting a
lower standard deviation in comparison to the
weightedcentroid.

C. COMPARATIVE ASSESSMENT OF TRAFFIC DENSITY ESTIMATION

In this subsection, we conduct a thorough assessment by
comparing our proposed scheme with two distinct Al-based
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traffic density estimators, followed by a comparison with
existing traffic density estimation schemes. Three
estimation schemes are considered for comparison, and each
scheme consists of two phases. Phase-1 is to measure
distances between a set of predefined density levels (classes)
and current density using some distance metric, while phase-
2 estimates current density via some interpolation technique
based on the distances obtained in phase-1.

In the Al-based approaches, the first method (see Fig. 7)
combines artificial neural networks (ANN) and linear
regression, while the second method employs K-means
clustering in combination with linear regression. Note that
linear regression is comparable to LSE.

1) C-1: SETUP OF MACHINE-LEARNING-BASED BENCHMARK
DENSITY ESTIMATORS

For the ANN with linear regression, the ANN is used as a
feature extractor before applying linear regression.

2) C-2: COMPLEXITY ANALYSIS

Asymptotic Big O complexity analysis of the three density
estimators is provided in the following, assuming N is the
number of training samples and M is the number of classes.

For the ANN model-based estimator, the time complexity
is O(N 2M?), primarily due to the algorithm’s training phase,
which requires the most computational resources. The space
complexity is determined by the amount of memory required
for the algorithm to store the neural network parameters
which is equal to O(N 2M?). Specifically, the algorithm needs
to store neural network parameters, test data, and training data
[52].

For estimation with K-means -clustering, the time
complexity of various operations is as follows: feature
extraction takes O(NM), splitting the data into training and
testing sets requires O(M), clustering the training data using
Kmeans consumes O(NMk), feature extraction of the testing

Hidden 1 Hidden 2 Hidden 3
Input Output
w w
+ HAFR AF, bAFs
b b
4 15 5 1 1

FIGURE 7. The structure of the implemented ANN used for comparison (w :weight, b:bias, and AF :activation function).

Specifically, in our study, the ANN is trained on four classes,
each corresponding to the signals reflected from a known
number of targets N, € {2,20,50,100}. This training allows the
ANNto capturecomplex patternsand relationshipswithin the
data. The output of the ANN serves as the input or features
for the linear regression model. Then, linear regression is
performed to fit (train) a linear model with the extracted
feature data for estimating (inferring) an unknown number of
cars (here N, = 35 is used for testing) with a test dataset. Fig.
7 shows the structure of the implemented ANN. It includes 1
input layer, 3 hidden layers, and 1 output layer. 15, 5, and 1
neurons are contained at the first, second, and third hidden
layers, respectively. The activation functions employed are as
follows: AF, and AF> are both Sigmoid functions, while AF3
is a linear regression function. T

For the K-means clustering-based density estimator, four
(K = 4) clusters corresponding to the four levels of target
densities N, € {2,20,50,100} are established as references
using the training dataset. After that, we generate a testing
cluster using a test dataset with N, = 35 targets, and calculate
the distance between the test cluster and the four pre-trained
reference clusters. Note that the distance between any two
clusters is defined as the distance between their centroid
points. Finally, we apply linear regression to find the
estimated number of cars.
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signal is O(M), calculating the average distance from the new
signal to each cluster center takes O(kM). Then, the overall
time complexity is O(NMk). The space complexity

TABLE 4. Comparison between the proposed traffic density estimation scheme and
two benchmark Al-based approaches we implemented for comparison purpose.

K-means JS-div. with
Metric ANN Clustering LSE
Size of
Dataset | 41347 x 200 | 41347 x 200 | 41347 x 4
RMSDpge; 28.5% 12.3% 8.7%
Running
Time (s) 17.84 12.77 1.03
Time OWN Mk oW
Complexity oW 2M2) ( ) W)
Space
Complexity ON2M?2) ONM + kM) ONM)

for K-means clustering is determined by several factors. The
feature matrix and training data both contribute to a space
complexity of O(NM). Additionally, the cluster centers
introduce a space complexity of O(kM). When we combine
these components, we obtain an overall space complexity of
O(NM + kM) [53].

In our proposed estimator, the time complexity is solely
dependent on the number of training samples, which is equal
to O(N). On the other hand, the space complexity is related
to the memory needed for storing the signal samples
corresponding to the PDF templates, resulting in a space
complexity of O(NM).
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3) C-3: SUMMARY OF COMPARISON

The comparison results between our scheme, ANN, and
Kmeans clustering using the same raw data are summarized
in Table 4. The evaluation is based on the following five key
metrics: required size of dataset, relative mean square
deviation (RMSDg.;), running time, time complexity, and
space (or computational) complexity. Notably, our scheme
beats the two benchmark estimators with large margins in
all considered metrics. This observation partially confirms
that our pre-designed JS-divergence-based classifier has a
superior structure with fewer parameters to tune, compared
to the two supervised learning-based classifiers.

In addition, we qualitatively compare our scheme with
several existing traffic density estimation schemes, as a
quantitative comparison is not quite feasible. Table 5
highlights the major differences between our scheme and the
traffic density estimation methods presented in [6], [9], [31],
and [36]. As indicated in Table 5, the majority of existing

TABLE 5. Comparison with existing traffic density estimation schemes.

FIGURE 8. Fading amplitude for 20 vehicles moving at speed 60 MPH.

Although the scheme proposed in [36] is categorized as a
passive traffic density estimation scheme, it still requires a
relatively large training dataset to teach/tune the machine
learning classifier to produce the desired estimation output.

In summary, our proposed scheme can effectively and
efficiently estimate traffic density with a much smaller size of
dataset. Moreover, it is promising to adapt to bad weather
conditions and dynamic environments.

D. ASSESSMENT OF TRAFFIC FLOW AVERAGE SPEED ESTIMATION

Synthetic data is used to assess the proposed traffic flow
speed estimation. Specifically, we measure the fading
amplitude of signals reflected from vehicles moving at speeds
sy = {45,60,70} mph over different density levels. Fig. 8
illustrates the fading amplitude of a signal received from 20
vehicles moving at a speed of 60 mph, and this result is
utilized for calculating the LCR. Error function Is, = f
(0w, Ny,Nicr) is implemented using a LUT based on the

measurements (synthetic training data).
FIGURE 9. Average flow speeds estimation errors at different number of vehicles.
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schemes are considered as ‘‘active’’ estimation schemes,
which introduce additional communication and computation
overheads. Also, they rely on Al-based approaches for traffic
density estimation, requiring large labeled datasets and
involving complex algorithms.
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Number of Vehicles
The accuracy of the estimator can be measured in absolute
root mean square error deviation (RMSD):

S
Prel(s vi—sw )2
RMSD =, (35)
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T

where 57, is the speed estimation at iteration ¢, s,,is the actual
average speed, and T is the number of iterations.

The quality of the proposed traffic speed estimator is
shown in Fig. 9, displaying the RMSD over diverse numbers
of vehicles. One can see that the RMSD increases as the
density and speed increase. This phenomenon seems to
agree with our observation that moving speed and the
number of vehicles contribute to the randomness of the
fading signal.

E. ASSESSMENT OF BEAM ALLOCATION

For evaluating the beam allocation strategies, we consider
five candidates as shown in Fig. 10, where (i)
simpleproactive with ceiling and (if) optimal-proactive
with ceiling are two proposed practical strategies, while the
rest are three reference candidates for comparison.

The proactive scheme includes an adjustable control
function to proactively allocate the beams based on the
current density estimate obtained using weighted-centroid or
LSE methods. For the simple version, the control function

[ Beam Allocation ]

v \ v

[ Fixed ] [Proactive (Simple)J [Proactive (Optimal)]

Without

With Without With
Ceiling

Ceiling Ceiling Ceiling

FIGURE 10. Beam allocation strategies considered for assessment (““Without
Ceiling” means Nmax = o).

a(N ) is defined as

a(N ) = max0,roundy-A-N , (36)

where y is a positive real constant (y can be chosen in the

simulation). For the optimal version, a(N ,) is computed
using (30).

Fig. 11 (a), 11 (b), and 11 (c) show evaluation results of
outage and beam waste, respectively, for three strategies of
fixed, simple-proactive with ceiling and simple-proactive
withoutceiling. The results are semi-analytically obtained for
different numbers of vehicles N, estimated using
weightedcentroid or LSE methods, assuming a uniform
distribution of N, € [10,80]. For the fixed-allocation
benchmark scheme, Nz =17 is selected. For simple proactive
allocation, the number of allocated beams is equal to N,

VOLUME 12, 2024

defined in (25)
withthecontrolfunctiongivenby(36).Forthe‘ ‘withceiling”’
scenario, the ceiling values N, are set to either 12, 20, or 30,
while for the ‘“without ceiling’’ scenario Ny —> <.

As expected and observed from Fig. 11 (a), the proactive
schemes experience fewer outages compared to the fixed
scheme, which improves the QoS accordingly. This
improvement is attributed to the proactivity backed up by the
real-time traffic density estimation. Note that the
simpleproactive ‘‘without ceiling’” achieves an outage
probability

lower bound close to zero (Po. = 0) at the cost of unlimited
resource occupation (N > ). However, in scenarios with
extremely limited resources (e.g., the ceiling N, set to a low
value like 12), the proactive scheme may experience a higher
outage compared to the fixed scheme. Moreover, it is evident
that the outage probability for the beam allocation schemes
over different numbers of vehicles estimated using LSE is
lower compared to the weighted-centroid-based method. This
is because the weighted-centroid is biased towards positive
errors, resulting in a vehicle density estimate greater than the
actual number, thereby requiring a larger number of beams.
On the other hand, the level of resource waste is evaluated

using the mean number of idle beams (L and L ) as a metric.

As shown in Fig. 11 (b) and 11 (c), the simple-proactive
“‘withoutceiling’’exhibitsthehighestlevelofresourcewaste,
with the level of resource waste increasing gradually as the
numberofvehiclesrises. ThisbecausethecalculationofNalo
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FIGURE 11. Evaluation of fixed, simple-proactive with ceiling, and simple-proactive
without ceiling beam allocation strategies.
is primarily dependent on the term (N ,A + a(N ,)) in (295),

while it neglects the role of min Nyay, NevA + a(Nev) due to

theoretically unlimited resources available (Nux = ©°).
Specifically, when N, = 80, this level of waste reaches
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approximately L_ = 30 for the weighted-centroid and L_ =18

for the LSE. In the case of the simple-proactive
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FIGURE 12. Evaluation of fixed, simple-proactive with ceiling, and simple-proactive
without ceiling beam allocation strategies.

strategy ‘‘with ceiling”’, the level of resource waste varies
less as the number of vehicles changes compared to the fixed
strategy. This is due to the proactivity of our scheme, which
can adapt the number of reserved beams based on the number
of estimated vehicles. Interestingly, there is a turning point at
N, =20 in Fig. 11 (b) and 11 (c), and the proactive scheme
outperforms the fixed counterpart when N, < 20; as N,
increases, the proactive scheme approximately maintains a
small constant level of idleness. However, in scenarios with
extremely limited resources (Nuqx= 12), the proactive scheme
exhibits a lower level of idleness. Similar to the outage
probability analysis, the LSE method exhibits a lower level of
resource waste (see Fig. 11 (c)) compared to the weighted-
centroid (see Fig. 11 (b) ). This is because the weighted-
centroid, with its positive bias, allocates a larger number of
beams than needed. Note that the overall beam allocation
performance is measured by both outage and idleness, and it
can be stated that as the number of vehicles increases, the
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simple-proactive  “‘with  ceiling”> scheme performs
significantly better than the fixed strategy at a minor penalty

of L =1.3.
14
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FIGURE 13. Mean number of idle beams comparison with optimal beam allocation
at different numbers of vehicles estimated using LSE.

Next, we investigate the impact of the control parameter
y on the outage probability and the level of waste resource
over different numbers of vehicles estimated using
weightedcentroid and LSE methods. As shown in Fig. 12
(a), increasing the value y leads to a decrease in the outage
probability for both weight-centroid and LSE methods. On
the other hand, as depicted in Fig. 12 (b), a reduction in y
values correlates with a decrease in the level of wasted
resources.

The aforementioned (simple) proactive schemes can be
further improved to reach the optimum by selecting the
control function a(-) using (30), jointly considering the beam
waste and outage. We emphasize our focus on the LSE
method due to its superior estimation accuracy and the fact
that it serves as an unbiased estimator. Fig. 13 illustrates the
mean number of idle beams with optimal allocation based
on (30) for both proactive beam allocation schemes (with
ceiling and without ceiling). Generally, one can observe that
the optimal-proactive beam allocation scheme exhibits a
lower level of waste resource compared to the simple
proactive schemes (see Fig. 11 (¢)). Moreover, according to
Fig. 13, the optimal beam allocation ‘without ceiling”’
under a given outage constraint b = 0.1 exhibits a larger

number of idle beams (L_ = 14) when compared to the

scenario with ceilings (L = 0.8). This behavior remains

consistent when increasing the threshold » to 0.3. In
conclusion, it’s evident that for both the simple and optimal
proactive  strategies, scenarios  ‘‘without ceiling”’
consistently exhibit a larger average number of idle beams,
which increases gradually as the number of vehicles rises,
due to the unlimited resources. This highlights the

importance of the ceiling in effectively restricting L .
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VI. CONCLUSION AND FUTURE WORK

This paper presents an efficient and cost-effective traffic
monitoring scheme to support ITS by leveraging the synergy
between sensing and communication in an ISAC
framework. ©The proposed scheme reuses the
communication waveform for estimating both traffic density
and speed, and simultaneously enhances the connectivity
and QoS for vehicular users via proactively allocating
mmWave beams aided by the traffic density estimation. The
performance analysis and comparison show that the
proposed traffic estimators require less training, are
computationally efficient, and can yield accurate estimates
at diverse vehicle density levels. The assessment results also
suggest that proactive beam allocation is very promising due
to its superiority over fixed beam allocation. As a matter of
fact, the traffic sensing outcomes can benefit different
resource allocation tasks. Also, the proposed mmWave
beam allocation scheme can be directly used for channel
allocation in lower frequency bands. Numerous related
topics can be further explored in the future, such as
combining beam sweeping techniques with beam allocation,
considering more practical traffic scenarios, and further
improving the estimators.
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