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We discuss numerical aspects of instantons in two- and three-dimensional ¢* theories with an internal
O(N) symmetry group, the so-called N-vector model. By combining asymptotic transseries expansions for
large arguments with convergence acceleration techniques, we obtain high-precision values for certain
integrals of the instanton that naturally occur in loop corrections around instanton configurations.
Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order

factorial growth of perturbation theory in ¢* theories. The results contribute to the understanding of the
mathematical structures underlying the instanton configurations.
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L. ORIENTATION

The N-vector model (the self-interacting ¢* field
theory in D =2 and D =3 dimensions) gives rise to
instanton configurations, whose structure is more compli-
cated than the corresponding configurations in quantum
mechanics (in one space dimension), which is equivalent
to a D = 1-dimensional field theory (see Figs. 2 and 3 of
Ref. [1]). The instantons provide nontrivial saddle points of
the Euclidean action, about which we expand partition
functions, and generating functions [2-6]. Instantons also
constitute fundamental objects in statistical and optimiza-
tion problems possessing hard phases (see Refs. [7-9]).
Here, we derive a semianalytic representation which can be
used to describe the instanton uniformly over the radial
variable, to a relative accuracy of 1072% or better.

In one dimension (1D), one canonically identifies the
argument of the instanton as the Euclidean “time” #, with
the notion that —co < ¢ < oo (see Ref. [1]). In 2D and 3D,
this is not so easy, because the angular symmetry dictates
that one should choose a radial variable. The radial variable
r, in turn, can only take values in the range 0 < r < 0.
The connection to the 1D case [4] is found if we consider
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that in 1D, we can interpret the “radial” variable with the Z,
symmetry (positive and negative real numbers). The surface
area of the zero-dimensional unit sphere embedded in
one-dimensional space is 2zP=V/2/T((D = 1)/2) = 2;
the result confirms the Z, symmetry of the (analytically
known) instantons in one-dimensional theories [1,4].

In two-dimensional and three-dimensional ¢* theories,
the instanton is not known analytically. Here, we aim to
demonstrate that the analytic structure of the instanton
is linked to the concept of transseries and resurgent
expansions (see Refs. [10-18]). Specifically, we derive
an asymptotic representation of the instanton, for large
argument, in the form of a transseries (resurgent expansion)
in the variables y = 1/r and exp(—1/y) = exp(—r), where
r is the distance from the origin. The transseries repre-
sentation for large r is complemented by a power-series
representation for small », which is augmented by Padé
approximants and nonlinear sequence transformations to
enhance its applicability for intermediate values of the
radial variable. The goal is to match the large-r and small-r
representations at a suitable intermediate transition value of
the radial variable, to obtain a uniform, high-precision
representation of the instanton in 2D and 3D.

We organize the paper as follows. Fundamentals of
instantons in ¢* theories are discussed in Sec. II. The
three-dimensional instanton in a three-dimensional ¢*
theory is analyzed in Sec. III. Our analysis of the instanton
configuration in a two-dimensional field theory follows in
Sec. IV. Virial theorems and the asymptotic behavior of the
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instanton are discussed in Sec. V. The high-precision
evaluation of instanton integrals and of instanton actions
is discussed in Sec. VI. Conclusions are drawn in Sec. VIIL.

II. FUNDAMENTALS OF INSTANTONS
IN ¢* THEORIES

A. Instanton equations

For the consideration of the instanton configuration, it is
sufficient to consider the D-dimensional scalar theory, with
the action

sl = [ @[3 (900)" + 3007+ Lo )

where X is a D-dimensional vector. Consideration of the
variation 8S[¢p] leads to the defining equation of the
instanton,

V2 $a(F) + ¢a(E) + gha(3)* = 0. (2)

Differentiation with respect to a coordinate leads to the
equation of the zero mode 9,¢(X),

(-9 +1 430003200 ® = 0. (3)

where £ =1, ..., D. The zero mode constitutes an eigen-
state (with zero eigenvalue) of the longitudinal fluctuation
operator given in Eq. (47); the zero mode is included here
in the discussion in order to illustrate that the instanton
configuration is crucial in the exploration of several
fundamental properties of the fluctuation operator of
quartic theories [4,5].

In a quartic theory, the instanton solution exists only for
negative g, because the tunneling can proceed only through
a barrier. Therefore, with the scaling

N
d)cl(x) - \/:{fcl( )* (4)

the equations for the instanton and the zero mode are,
respectively,

(V" + 1 - (@) 2a® = 0. (5)

(V" + 1=36(#7) 9,80(5) = 0. (6)

The presence of the prefactor \/—1/g in Eq. (4) illustrates
the fact that the instanton solution exists only for negative
values of the coupling parameter ¢, i.e., in the unstable
sector of the theory where the self-interaction term § ¢ (X)*
becomes negative [4,5].

In a theory with an internal O(N) symmetry group, one
has the following instanton:

X) = ¢a(X)u = 1 X)u
ch(x) - ¢cl( )—' \/: cl( )_’ (7)

where vectors in the internal space are designated by
underlining, and we can choose

u={1,0,....0}T. (8)

Hence, up to multiplication by a (constant) unit vector u
in the internal O(N) space of the theory, the instanton
configuration, whose radial part is governed by Eq. (2),
does not depend on the dimension N of the internal
symmetry group.

The instanton equation (2) is invariant under the replace-
ment ¢ (X) = —¢p(X). Hence, there is a sign ambiguity in
the choice of the instanton, and the degeneracy under the
operation £, — —&, needs to be taken into account when
using dispersion relations. Indeed, via dispersion relations,
one can establish that the instanton action A, defined via

S[¢al = —Alg, 9)

governs the large-order behavior of the perturbative coef-
ficients Gg in the Kth order of the expansion in g of the
n-point correlation functions in a D-dimensional O(N)
theory [4]. In the notation adopted in Eq. (1.9) of Ref. [4],
we have

G — ¢(N.D) (l) (n+N+D-1)/2 (_l)K (10)

b1 A A

n+N+D-1

I'' K
X<+ :

)[1 +O(1/K)].  (11)
Here, ¢(N, D) is a constant coefficient to be determined
separately for each N and D.

B. Instantons and large-order behavior

The connection between instantons and large-order
behavior is usually obtained by saddle-point evaluations
of contour integrals [19]. In the following, we will mention
a less known derivation [20] that has the advantage of
being simpler and more intuitive. The basic idea is that
Feynman diagrams of the ¢* theory at large orders K > 1
are essentially random regular graphs with connectivity 4
and size K. For a large number of vertices, it is known that
random regular graphs have a locally tree-like structure
(with the size of the loops growing as log K). This allows us
to write an iterative equation that turns out to be equivalent
to the instanton equation (2). The Feynman rules imply that

there is a factor 1/ (l;,2 + m?) for each line i in the graph and

036003-2



INSTANTONS IN ¢* THEORIES: TRANSSERIES, ...

PHYS. REV. D 110, 036003 (2024)

g(k)

FIG. 1. Tree diagram illustrating the emergence of the instanton.

a Dirac-6 function on each vertex ensuring the conservation
of momentum. Invoking the tree-like structure, one can
then write the following equation (see also Fig. 1):

- 1 de1 de2 de3
0~z | o [ | o

x g(ky)g(ka) g(ks)8 ) (k) + ky + ks — k). (12)

So, multiplying everything by K+ m?, the previous
equation in real space is equivalent to

(-V2 + m2)g() = £ (), (13)

which is the instanton equation for the ¢* theory for
9(%) = &a(¥).

Using a standard procedure (similar in spirit to the cavity
method from spin-glass theory [21]), one can identify the
action in Eq. (1) as the Bethe free energy of the problem.
This allows us to derive in a simple way the instanton
equation and the action; the 1/K correction about the
instanton [4,5] corresponds to the 1/K finite size correction
to the Bethe lattice random graphs.

III. THREE-DIMENSIONAL INSTANTON

A. Large argument

We use the fact that &,(X) = £,4(|X]) = &,(r) is radially
symmetric and this constitutes am “S state” in the formal-
ism adopted in atomic physics [22,23]. The equation
fulfilled by the instanton &(r) = &(r) (including the
dimension D in the superscript) in three dimensions is

[see Eq. (5)],

g 20
~ 2 b ()=~ &) () +ed () - [& () =0, (14)

We are attempting to find a systematic expansion of the
solution of Eq. (14), and do so for large argument r — oo in
the current section. A remark might be in order. Namely,
linear second-order differential equations typically have
solutions regular and irregular at infinite argument. The
equations defining the instanton, by contrast, are highly
nonlinear, and hence this consideration does not apply. In
fact, the asymptotics for large argument uniquely determine
the instanton solution. In this context, it is instructive to
recall [24] that the uniqueness of the solution for a non-
linear differential equation, determined by a given initial
condition or asymptotic behavior, constitutes a pivotal
factor in the emergence of a range of complex phenomena,
including chaos. This uniqueness leads to behaviors which
are sensitive to the small variations in the initial condi-
tions [25-27]. Furthermore, this intrinsic uniqueness in
nonlinear differential equations is analogous to the sensitive
dependence on initial conditions observed in fluid dynam-
ics, particularly in the transition from laminar to turbulent
flow, where even minor perturbations can drastically alter
the flow patterns, echoing the underlying chaotic dynamics
described in fluid mechanics research [28].

The instanton goes to zero as r — oo, and so one can

neglect the term [£ (r))* < &7 (r) in a first approxima-
tion. Combining Egs. (2) and (4), and neglecting the term
proportional to the third power of the instanton, for large r,

one obtains the relation

* i 20 3 3
— & (N - al () +E) (R0 (1)
Our ansatz
£)(r) = 2T (16)
r e r

is a nonanalytic expansion in the variable 1/r, for large r. In
fact, when expressed in terms of the variable y = 1/r, the
expansion (16) constitutes a nonanalytic (resurgent, transs-
eries) expansion in the variables y and exp(—1/y) (see
Refs. [10-12]), and y = O becomes a singular point of the
differential equation. The importance of nonanalytic expo-
nentials (resurgent expansions) in the solution of differ-
ential equations with singular points has been stressed in

Ref. [12]. The substitution (ES)(;’) = g(r)/r takes Eq. (15)
into the form

2

— o)+ gr) =0,

g(r) =Cexp(-r). (17)
for which the solution regular at infinity is just exp(—r).
Hence, the ansatz (16) collapses to a single term, with C
being an overall constant, and reads
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£0)(r) = o xp(=7) ,

cl 7

(18)

for which the approximate equality in Eq. (15) becomes
an exact equality. Here, C is a coefficient which can be
determined numerically. We have mapped the differential
equation (15) onto a linear numerical grid with a lattice
spacing that decreases as 1/A, where N is the number
of the iteration. We use computer algebra [29,30] with a

128-decimal-digit internal precision, investigate the asymp-
totic behavior of the resulting solution in the regime of
large radial argument of the instanton, where the conver-
gence toward the exact solution can be written in terms of
powers of 1/A, and employ suitable convergence accel-
eration techniques [31], in order to extrapolate to zero
lattice spacing.

With this method, we obtain a 60-figure result for C
which reads as follows:

C = 2.712 808 360 940 844 770 465 994 573 657 808 840265 350950 750 281 746 458 229(1). (19)
One can now approximate, in Eq. (14),
0? 3 P’ s 20 3 exp(=3r)
—o bl =3 el N+l =l PR el () =S el )+ &) () - O =5 =0, (20)
The structure of this equation justifies the ansatz
)y o &P(=r) | exp(=3r) b, 21
fcl (I") r + r nz:; oL ( )
Matching of the b, coefficients leads to the result,
3) :Cexp(—r) _ exp(=3r) l—i 21 45 465 2835 40005 (-7 5
() r 8 2 87 89 T3 ear Tz T OV )T (22)

Now, we enter

exp(—r exp(=3r)13 exp(—r)\2 _ exp(=3r exp(—5r
p()_|_p( )] (p()) p( ):p(rs)

This expression, cubed, generates terms proportional to |
with the ansatz that also contains a term of the form eXP —5) >, ,n again into Eq. (14), match the coefficients ¢,,, and find

Gy oOP(oT) _ aexp(=3r) (3 21 45 465 2835 40005 .
S (1) r 813 2 82 88 TR e T asers T OV
exp(=5r) /. 19 151 815 56921 1094215 2592553 )
CS 1 —-—— = — - O 7 . 23
R ( 6r T 187 367 T 864 184 T 3asep O ) (23)
Finally, with the contribution of order exp(—7r) included, we have
B oOP(=r) | pep(=3r) (3 2145 465 2835 40005 .
L (1) 7 873 8r2  8r + 32t 648 + 25670 (=)
exp(=5r) /. 19 151 815 56921 1094215 2592553 )
=L (1-—= - - o(r~7
T e ( o 187 7367 T 8647~ s18ar T 3aser TOUT)
exp(=Tr) (. 29 271 3943 614143 8322275 80215771 .
Y A A (s - - . 24
51217 or T 167 " 727 T3a567 13824 + 3eseare T OUT) (24)

For the term proportional to exp(—3r), we find the compact formula,

C3exp( 3r)< 3 21 45

! + 465
873

2 it O(r-S)) = _03%;@ (Ei(=2r) — 2exp(2r)Bi(—4r)),  (25)

where Ei(r) the exponential integral function, but we were unable to find general expressions for the terms in the series
multiplying the exponential factors exp(—5r) and exp(-7r).
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Transseries in the variable ¥ = 1/r have been encoun-
tered in the study of anharmonic oscillators [32-35]. They
have also been investigated mathematically [10-12].
We see that only “odd-transseries” orders of the form
exp[—(2n + 1)/y] contribute. The “one-transseries” con-
tribution to the instanton wave function is found to read
as Cyexp(—1/y), without correction terms. The expan-
sion (24) shows that the large-argument expansion of the

instanton wave function fg’)(r) is determined by a single
constant C, whose numerical value is given in Eq. (19).

An inspection shows that the perturbative coefficients in
the variable y = 1/r grow factorially. In order to match the
resurgent expansion for large argument with the Taylor
expansion for small argument r, we have calculated terms
up to the 13-instanton contribution and summed the series,
starting from large values of r, down to r = 3,

£V (r = 3.0) = 0.045013219071..., (26)

cl

where a more precise result for rf . at the matching point is
given in Eq. (62b). In the summation process, we have used
[40/40]-Padé approximations [36] in order to sum the
divergent perturbative series decorating the instanton con-
tributions of order exp(—nr), where n is an odd integer, and
77-order Weniger-Levin transformations [37], in order to
verify the accuracy of the result (26) in the intermediate
region near 7 = 3.0. The matching point is chosen heuris-
tically, based on the requirement that both methods for the
calculation should work in the intermediate region between
the large-r transseries representation and the small-r power
series, which will be discussed in the following.

B. Small argument

We recall the equation fulfilled by the instanton
[see Eq. (14)]

-0~

7 ¢a S (P =0. (27)

2 (3 3 3
_Eéél)(r) + é:él)(r) -
Plugging in a polynomial ansatz into Eq. (27), with

S) (0) = F = 4.337387679976... (28)

[see also Eq. (61¢)], one finds

) =F+- ( ~F)P 4 s (]-' AF3 4 3F%)r
F— 1773 +35}'5 - 19}"7
5040 4+ 0>?). (29)

Only even powers of r contribute. Using computer
algebra [29], one can easily determine all coefficients up
to order %9, and write

= Z ar, 1", (30)
n=0

A closer inspection reveals that the series of the a,, is
factorially divergent and alternating. Still, one can use
summation techniques to confirm the result (26) at the
matching point &) (r = 3.0) [see also Eq. (62b)]. In the
summation process, we have used [62/62]-Padé approx-
imations [36] in order to sum the divergent perturbative
series at r = 3, or alternatively 117-order Weniger-Levin
transformations [37]. This leads to the desired accuracy in
the intermediate region. Improvements of the numerical
accuracy are possible when one expands the instanton
about additional reference points (e.g., where r assumes the
value of a small integer) and concatenates the expansions in
regions of overlap.

IV. TWO-DIMENSIONAL INSTANTON

A. Large argument
In two dimensions, the instanton is equally radially sym-

metric (see Fig. 2), and we can write fg (X) = ( ). The

equation fulfilled by the instanton is

* 14
—p«fﬁ?()—;arf (1) + 2 - EP )P =0. (31)

Just like in the three-dimensional case (see Sec. III A), the
instanton goes exponentially to zero as ¥ — oo, and so one

can neglect the term [ég)(r)P in a first approximation.
Then, one obtains the relation [see also Eq. (15)]

10

5(2)() =

i+ ~0. (32)

FIG. 2. The two-dimensional instanton &g4(r) = ()(r) is

0)=¢=
according to Eqs. (38) and (61D).

radially symmetric. Its value at the origin is ‘fcl
2.206 200 864 650...,

036003-5



LUDOVICO T. GIORGINI et al.

PHYS. REV. D 110, 036003 (2024)

By a similar analysis as described for the three-dimensional case, one obtains

3675

59535 2401245

@) :Dexp(—r) 1 1 9 75
e (1) 72 8 12872 T 10247

2621447°
238563

+ 327681

* 419430475
5283711

O(r‘7)>

exp(=3r) 9 213 3215
-DI (- — -
8r3/2 ( 812877 10247

+ D5

32768,
23551553 544320827

273186513 0
- r
2621447

exp(=5r) 1—5—3+ 589 96193
64r3/2 24r 12872 921673

+ 88473674
55541473

4194304r°
4292517
_ 85429251785 0()
70778887
1326870785 23212812833

sexp(=7r) (79 10037 629833
5127772 24r 115272 27648¢°

884736r"

33973862475
o(r77)). (33
7077888 | 377487360 T O\ )) (33)

Just as in the three-dimensional case, we can find a compact expression for the leading term, which for D =2 is of

/T

order exp(—

3675

72 +

exp(—r) 1 9 75
pI=L T/ - —
8r 12872

Here, H! (r) is the Hankel function [38] of the first kind of
order a. However, we were unable to find general ex-
pressions for the terms in the series multiplying the
exponential factors exp(—3r), exp(—5r) and exp(-7r).

For D = 2, one finds for the D coefficient the following
60-figure result [using the same method as previously
employed for Eq. (19)]:

D =3.518062 198025031 180209 129 887 741

356933215 813390992 384 663 366 560(1). (35)

Furthermore, it is clear that the perturbative coefficients in
the variable y = 1/r grow very fast, and in fact, they grow
factorially. We have calculated terms up to the contribution
of order exp(—13r) and summed the series, starting from
large values of r, down to r = 3, with the result

£ (r =3.0) = 0.097418218653.... (36)

where the most precise result for the value of 5&2) (r=3.0)
at the matching point is given in Eq. (62a). Just as in the
three-dimensional case, in the summation process, we have
used [40/40]-Padé approximations in order to sum the
divergent perturbative series decorating the instanton con-
tributions of order exp(—nr), where n <13 is an odd
integer, or 77-order Weniger-Levin transformations [37], in
order to achieve the accuracy in the intermediate region.

B. Small argument

We now need to repeat the analysis from Sec. III B, for
the two-dimensional case. Plugging a polynomial ansatz
into Eq. (31),

o(r%) ) = iDH (ir).
10247 327687 T O )> iDHy " (ir)

(34)

(-o- o0 )E =0 @)

with
£2(0) = G = 2206200864 650..., (38)
[see also Eq. (61b)], one finds
D) =G+ 4G~ )P + 2 (G- 4G +3G°)
— 3 5 _ 7
G2 196 0 g SO, (39)

2304

Using computer algebra [29], one can easily determine all
coefficients up to order 80, say, and write the divergent,
asymptotic expansion

(40)

0
= E a2nr2
n=0

Here, too, a closer inspection reveals that the series is
divergent, because of factorial divergence of the magnitude
of the (alternating-in-sign) power series at about r = 0.
One confirms the result given in Eq. (36). In the sum-
mation process, we have used [62/62]-Padé approxima-
tions in order to sum the divergent perturbative series at
r =3, or alternatively 117-order Weniger-Levin transfor-
mations [37]. This yields the desired accuracy in the
intermediate region.
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V. INSTANTONS AND VIRIAL THEOREMS

A. Derivation of the virial theorems

One of the goals of the current investigation is to explore
possible analytic representations of integrals of powers of
the instanton, for example, on the basis of the PSLQ
algorithm [39-42]. In this endeavor, it helps to realize that
integrals of different powers of the instanton are related to
each other, and to the instanton action. Virial theorems of
the instanton are instrumental in this regard, and we here
present their derivation.

We consider the general action

1/, -
s@) = [@x |5 (Fo@) +vem)|. @)
where in the case of the action (1), one has

V($(E) = 56() + 300 (5) (42)

We assume that the field equation, obtained by variational
calculus, has a finite action solution ¢ (¥). If the action
S(¢y) is finite so is the action Sy, 4), obtained from
S(¢a) = S(¢pa, 4 = 1) by the replacement ¢(X) — ¢ (AX)
in the integrand of the action. One finds, after a suitable
backsubstitution,

Sigar =22 [ @25 (V9u(0) ]
v / d"xV(pa(3)). (43)

Because ¢ (x) satisfies the field equation, the variation of
the action vanishes for 4 = 1, i.e., we have the equation

(%S[d)cla ﬂ ‘,1:1 =0,

/ aPx’ [DZ— 2 (641;01(3/))2 + Dv(¢d(;y))] —0. (a4)

This relation allows us to express the kinetic term

[integral of (ﬁqﬁcl)z] in terms of the potential term [integral
of V(¢ )] and vice versa. The classical action S[¢] can
thus be expressed in terms of the kinetic term only:

Sl =5 [ @x(Fpa@). @)

a form that shows that S(¢) is always positive. The
second derivative of S(¢, 1) reads as

2
(;—)28[%&]

—(2-D) / 0,0(PPdPx. (46)

A=1

For D > 2, this result shows that the solution is not a local
minimum of the action and, thus, the so-called longitudinal
fluctuation operator M;, defined as

328

M, (X,¥) = W ¢:¢cl7

(47)

has at least one negative eigenvalue [4,35]. A closer
inspection [4,35] reveals one, and only one, negative eigen-
value. This fact is well known and it leads, within the path
and field integral formalisms, to an imaginary part of the
square root of the Fredholm determinant of the fluctuation
operator, which corresponds to the product of the eigen-
values of M . This imaginary part, in turn, is instrumental
in deriving the large-order estimate given in Eq. (10) for the
perturbative expansions of correlation functions [4,5,35].
In the example of potentials of special form

Vig) =34+ 709", (49)

one can derive an additional relation. If the action S[¢] is
finite, so is the following action obtained by the replace-
ment ¢C1 d A¢Cl:

li/7a, -0\2 =
Sint = & [ a3 [ (99a(®)’ +43()
1 =
+ZAMg / dPxp¥ (X). (49)
Again, if ¢ is the instanton solution, then the derivative

with respect to A must vanish for A = 1. One obtains
further relations, in addition to (45),

S == -2) [ gl
R R ST NED

This relation is consistent with the fact that the instanton
exists only for negative g. Thus, one can express the
instanton action as follows:
M-=2
S(ba) =575
2D — M(D - 2)

vt Lo (i), (s1)

dPxgp? (%)

T 4-D

We have used Eqgs. (45) and (50). In particular, Eqgs. (50)
and (51) are consistent only if the denominator in the
expression on the right-hand side of Eq. (51) is positive,
which implies

(52)
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and, therefore, the field theory must be super-renormaliz-
able or at least renormalizable. At the special dimension
D = 2M /(M — 2), where the theory is renormalizable, one
finds the paradoxical result [ dPx¢?(x) = 0. This implies
that only the massless equation (where the coefficient of ¢?
in the original action vanishes) has instanton solutions
(see also Appendix A). Finally, one verifies that the second
derivative of the scaled action (49) at A =1 is negative,
confirming the existence of a negative eigenvalue of My for
all dimensions [4,5,35].

B. Summary of the virial theorems

We summarize. From Egs. (45), (50), and (51), we have
for the ¢* theory with the action (1),

St = [ @x(Va)’ == [ x4

L [, (53)

T 4-D

With the scaling given by Eq. (4), the action of the instanton
becomes (g < 0),

¢cl(2) - \/% cl(r)» r= |)—E|*

We have three equivalent representations of the action A,

=5 [ @x(Fan) = [ s

1
dPx& (r).

8@@——%>0

(54a)

54b
" 4-D (546)
We have numerically verified these relations on lattices
with decreasing lattice spacing, using the method outlined
in the discussion preceding Eq. (19). Using the radial
symmetry of the solution, we can establish that

Q
A=-2

2 [ gy (. (55)

where Qp, = 27P/2/T'(} D) is the generalized surface of the
(D — 1)-dimensional unit sphere embedded in D-dimen-
sional space.

C. Asymptotic behavior
The asymptotic behavior of the radial instanton equation

—ld

-@) -

]@() S =0 (56)

is of interest for large r. Asymptotically, one can show that,
for r - oo,

Salr) = C\/%rl_D/zKD/Z—l(r) +0@™)  (57)

where K, is a modified Bessel function of the second kind
normalized such that K, (r) ~ \/z/(2r)e™" for large r. This

implies that
\/7 1-D/2
2r

Our formulas (24) and (33) confirm this asymptotic
behavior.

D/2 /2" (58)

VI. INSTANTON INTEGRALS

We give a collection of numerical results for integrals of
the instanton in quartic theories, with enhanced accuracy.
Our aim is to give, for 2D and 3D, results approaching the
realm of applicability of the PSLQ algorithm [39-42]
which is designed to search for analytic expressions of
integrals in terms of known constants. We remember that
the PSLQ algorithm requires as input data only high-
precision numerical values of the quantity under inves-
tigation, as well as a guess of the mathematical constants in
which the high-precision quantity could potentially be
expressed, and then attempts to find a linear combination
of mathematical constants, multiplied by rational fractions,
as a candidate representation for the quantity under inves-
tigation [43]. First, for completeness, in one dimension, we
recall that the instanton solution is [1]

Ea(r) = PV (r=0=v2, (59

2
/cosh(r) +1’

where the one-dimensional action is
sigl =2 [ arl5 @002 + 3007 + 20007 (60

The prefactor 2 reflects on the angular factor Qp =
27/ /T (D) which evaluates to 2 for D = 1. The pre-
factor matters because the instanton action is normalized to
Slpa(r)) = —A/g, according to Eq. (9). Analytically
known instantons in a four-dimensional ¢* theory and
in a six-dimensional ¢ theory are given in Appendixes A
and B, respectively.

We have mentioned that instanton solutions are deter-
mined by the value at the origin, given in Egs. (28)
and (38). It is of interest to obtain results of higher accuracy
for the instanton at the origin, described by the constants F
and G, and for the instanton at the matching point. In order
to obtain more accurate values for F and G, one maps the
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differential equation (15) onto a linear numerical grid with
a lattice spacing that decreases an 1/N, where A is the
number of the iteration, while the origin is kept as the
starting point of the lattice. One then uses computer
arithmetic [29,30] with 128-decimal-digit internal preci-
sion, and extrapolates to N/ — oco. In order to calculate the
instanton at the matching point » = 3.0, one decreases the
lattice spacing in such a way that the matching point

|

£V r=0)=v2.

cl

cl

remains a member of the numerical lattice in every iteration
as V is being increased. The convergence toward the exact
values of the instanton, in either instance, can be written in
terms of powers of 1/A. One can thus employ suitable
convergence acceleration techniques [31], in order to
extrapolate to zero lattice spacing, and obtain numerically
more accurate results. We obtain the following values,
accurate to 78 decimal figures:

The values at the matching point r = 3 are interesting for D =2 and D = 3,

cl

(p=3)

Numerical results for the instanton action A are

A(D = 1) = 4/3,

(61a)
cf(Dzz) (r=0) =G =2.206200864 650746074783 634 064 578 940 196 610
274520602192 125757 262456450 184 032518 642(1), (61b)
£P=(r = 0) = F = 4.337 387 679976994 356 522 109 173 841 761 465 745
284 082970785762 761 882558 415947 364399 341(1). (61c)
£P=2)(r = 3.0) = 0.097418 218 653642217 741 513 024 960 584 546 095
157618276680772556932915093 354 850219 044(1). (62a)
&y (r=3.0)=0.045013219071010523997989 047723 112322109
014075244 317789 103 014 970 206 885 072 459 490(1). (62b)
(63a)
A(D =2) = 5.850448262279826939 326986338 934 453 868 499
064 115959470267 545644043014 800957 116007 (1). (63b)
A(D = 3) = 18.897 251 302 546 190 505 297 247 993 763 227 763 807
178 891316289857 028 151 589245449 182127 167 (1). (63c)

These results are essential for large-order perturbation theory [see Eq. (10)]. For what follows, it is convenient to introduce

the notation

4-D

L=

1y,

1= [ @xear

1

4 .
Iy = B/de[vfcl(’”)]z» A= 114» (64)

where we recall that the (generalized) surface area of the (D — 1)-dimensional unit sphere, embedded in D dimensions, is
Qp = 22P/2/T(D/2). Results for I, and I, follow from the above results for the instanton action A. Results for I and I are

given as follows:

Ii(D=1)=+V2z,  I¢(D=1)=128/15, (65a)
I3(D =2) = 15.109 669726 889 195 199 613 754 001 702 125 888 865
874563 104 430 202 476 703 241 753 965 063 516 331(1). (65b)
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I;(D =3) = 31.691521 838323486451 591907257 120270 170457

351985790 745758 122769 708 466 866 938 412 287(1). (65c¢)
Is(D =2)= 71.080171542041917 440792 898 285323 353751 992

546589483 197 579 092 397 461 668 330495 246 091(1). (65d)
Is(D = 3) = 659.868 351 544 567 238 188 639 540 582 544 719267 515

748 898263 457303680826218470215371739493(1). (65¢)

VII. CONCLUSIONS

We have analyzed the properties of instanton solutions in
O(N)-symmetric quartic field theoriesin D =2 and D = 3
dimensions. The basic formulation for the quartic instanton
has been given in Sec. II. We concentrate on the three-
dimensional instanton (D = 3) in Sec. III, which is phe-
nomenologically the most interesting case. We derive
asymptotic expansions for large argument in the form of
a transseries [Eq. (24)] and in the form of an asymptotic
power series [Eq. (29)] for small argument. The quartic
instanton in D = 2 is discussed in Sec. IV. Virial theo-
rems are derived in Sec. V. Instanton integrals are given in
Sec. VI, with a precision approaching the realm of
applicability of the PSLQ algorithm [39-42] which is
designed to search for analytic expressions of integrals
in terms of known constants such as the Euler constant
vg = 0.57721..., various Riemann zeta functions, powers
of z, and multiplicative combinations of these constants.
We can report that we have carried out a limited set of
searches with the same constants that were used in
Eq. (A11) of Ref. [4] without success. A more detailed
search might constituent a possible direction for the future.

In a quartic theory, the instanton solution exists only for
negative g, because the tunneling can proceed only through a
barrier, and the latter exists only negative coupling g < 0.
The imaginary part of the partition function, and of corre-
lation functions, obtained by expanding about the instanton
solution, is proportional (see Ref. [4]) to exp(—(=A/g)) =
exp(A/g), where S| ] = —A/g and A is given for D =2
in Eq. (63b) for D = 3 in Eq. (63c). The instanton action A
universally enters large-order formulas for the perturbative
coefficients of Green functions [see Eq. (10)].

Our calculations suggest that instanton solutions in quartic
theories cannot be expressed in closed analytic form, except
for the case D = 1. We also note that the general properties
of the instanton in massive theories are valid only for
dimensions D < 4. The dimension 4 is singular, as is
evident, e.g., from Eq. (53). The cases of a massless quartic
theory in four dimensions, and of a cubic theory in six
dimensions, are treated in Appendixes A and B.

Our investigations indicate that, with the exception of
known singular cases (see Appendixes A and B), instanton

|

configurations cannot be calculated analytically for general
field theories, notably, for the two- and three-dimensional
¢* theories. Nevertheless, in view of the nonlinear nature of
the defining differential equations, they admit transseries
solutions and asymptotic expansions which can be used for
accurate numerical calculations. These results are useful in
expansions of partition and correlation functions about
instanton configurations [6].

Let us conclude by mentioning open problems, which
could inspire future research. The first of these concerns the
possibility of analytic expressions for the 78-figure results
reported here for particular function values and integrals of
the two- and three-dimensional instantons, notably, those
communicated in Egs. (61b)—(65). As already mentioned,
we have performed a limited search based on the PSLQ
algorithm [39-42] using various Riemann zeta functions,
logarithms, and polylogarithms, without finding suitable
analytic formulas. Our inability to find fully analytic
representations is mirrored in recent, somewhat related
investigations [18]. The second open problem concerns the
search for closed-form representations of the higher-order
terms in the transseries solution (24) and (33), generalizing
the results given in Eqs. (25) and (34) to higher orders of
the exponential factor exp(—r).
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APPENDIX A: FOUR-DIMENSIONAL MASSLESS
QUARTIC THEORY

The existence of instantons in the renormalizable (but
not super-renormalizable) quartic theory in four dimensions
has been anticipated in Sec. VA. We consider the action
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sl = [ a3 @7 43| an

The corresponding field equation is —§2¢C1(7c) +
g¢3,(X) = 0. We know that the solution of minimal action
is spherically symmetric, thus we set

¢cl('x) = \/jéfcl(r)’

where r = |X¥|. We then obtain a differential equation

(A2)

3

()2 + 34 4 £ (r)]E4(r) = 0. The solution is
2v2
écl(r) = 1+ 2 (A3)
The instanton action is
A 872
S[¢cl}:_57 A=—ro. (A4)

The instanton integrals, 1, = [ d*x&y(r)", for n = 3, 4, 6,

2
are 13_8\/_7[2 14 32” 16:_12271.

APPENDIX B: SIX-DIMENSIONAL MASSLESS
CUBIC THEORY

Another example of the existence of analytically calcu-
lable instantons is the six-dimensional massless cubic

theory [44]. We consider the action

sl = [ ax|3 @7 o] @)

The corresponding field equation for the instanton is

e $a(¥) + g2 (¥) = 0. We know that the solution of
minimal action is spherically symmetric, thus we set

P (x) (B2)

= ééel(r)v

where r = |X| and we observe that the instanton exists for
positive g We then obtain a differential equation

[(4)2 +34 4 &(r)]£4(r) = 0. The solution is

24
Sa(r) = U+ PR (B3)
The instanton action is
A 19273
S[pa] = 7’ A= 5 (B4)

The instanton integrals, I, = [ d*x&,(r)", for n =3, 4, 6,

115243 296> 1061683273
are[3:_ 55”’142553956ﬂ’16: 062237:.

[1] U.D. Jentschura, A. Surzhykov, and J. Zinn-Justin, Gen-
eralized nonanalytic expansions, P7 -symmetry and large-
order formulas for odd anharmonic oscillators, SIGMA 5,
005 (2009).

[2] E. Brézin and G. Parisi, Critical exponents and large-order
behavior of perturbation theory, J. Stat. Phys. 19, 269
(1978).

[3] E. M. Malatesta, G. Parisi, and T. Rizzo, Two-loop correc-
tions to large order behavior of ¢* theory, Nucl. Phys. B922,
293 (2017).

[4] L. T. Giorgini, U. D. Jentschura, E. M. Malatesta, G. Parisi,
T. Rizzo, and J. Zinn-Justin, Two—loop corrections to the
large—order behavior of correlation functions in the
one—dimensional N-vector model, Phys. Rev. D 101,
125001 (2020).

[5] L. T. Giorgini, U. D. Jentschura, E. M. Malatesta, G. Parisi,
T. Rizzo, and J. Zinn-Justin, Correlation functions of the
anharmonic oscillator: Numerical verification of two—loop
corrections to the large—order behavior, Phys. Rev. D 105,
105012 (2022).

[6] L. T. Giorgini, U. D. Jentschura, E. M. Malatesta, G. Parisi,
T. Rizzo, and J. Zinn-Justin, Functional and Fredholm
determinants in O(N) theories (to be published).

[7] R. Marino, Learning from survey propagation: A ncural
network for MAX-E-3-SAT, Mach. Learn. 2, 035032
(2023).

[8] R. Marino and S. Kirkpatrick, Hard optimization problems
have soft edges, Sci. Rep. 13, 3671 (2023).

[9] T. Rizzo, Path integral approach unveils role of complex
energy landscape for activated dynamics of glassy systems,
Phys. Rev. B 104, 094203 (2021).

[10] F. Pham, Fonctions résurgentes implicites, C. R. Acad. Sci.
Paris 309, 999 (1989), https://gallica.bnf.fr/ark:/12148/
bpt6k6216350r/f1011.item##.

[11] B. Candelpergher, J. C. Nosmas, and F. Pham, Approche de
la Résurgence (Hermann, Editeurs des Science et des Arts,
Paris, 1993).

[12] Méthodes Résurgentes: Analyse Algébrique des Perturba-
tions Singuliéres, edited by L. Boutet de Monvel, Collection
Travaux en Course Vol. 47 (Hermann, Paris, France, 1994);

036003-11



LUDOVICO T. GIORGINI et al.

PHYS. REV. D 110, 036003 (2024)

Proceedings of the Franco—Japanese Symposium on Alge-
braic Analysis of Singular Perturbations (Hermann, Paris,
France, 1994); See, therein, clucidating introductory re-
marks by L. Boutet de Monvel, as well as the sections T.
Kawai and Y. Takei, Secular Equations through the Exact
WKB Analysis (Hermann, Paris, France, 1994), pp. 85-102;
K. Uchiyama, On Examples of Voros Analysis in Complex
WKB Theory (Hermann, Paris, France, 1994), pp. 115-134.

[13] A. Edgar, Transseries for beginners, Real Anal. Exch. 35,
253 (2009); arXiv:0801.4877.

[14] 1. Aniceto, G. Basar, and R. Schiappa, A primer on resurgent
transseries and their asymptotics, Phys. Rep. 809, 1 (2019).

[15] D. Dorigoni, An introduction to resurgence, trans-series and
alien calculus, Ann. Phys. (N.Y.) 409, 167914 (2019).

[16] A. van Spaendonck and M. Vonk, Painlevé I and exact
WKB: Stokes phenomenon for two-parameter transseries,
J. Phys. A 55, 454003 (2022).

[17] G.V. Dunne and Z. Harris, Higher-loop Euler-Heisenberg
transseries structure, Phys. Rev. D 103, 065015 (2021).

[18] M. Borinsky and D. Broadhurst, Resonant resurgent asymp-
totics from quantum field theory, Nucl. Phys. B981, 115861
(2022).

[19] J. Zinn-Justin, Quantum Field Theory and Critical Phe-
nomena, 4th ed. (Oxford University Press, Oxford, 2002).

[20] G. Parisi, Asymptotic estimates of Feynman diagrams,
Phys. Lett. 68B, 361 (1977).

[21] M. Mézard, G. Parisi, and M. A. Virasoro, Spin Glass
Theory and Beyond: An Introduction to the Replica Method
and Its Applications, World Scientific Lecture Notes in
Physics Vol. 9 (World Scientific, Singapore, 1986).

[22] C. Itzykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1980).

[23] U.D. Jentschura and G.S. Adkins, Quantum Electrody-
namics: Atoms, Lasers and Gravity (World Scientific,
Singapore, 2022).

[24] S.H. Strogatz, Nonlinear Dynamics and Chaos: With
Applications to Physics, Biology, Chemistry, and Engineer-
ing, 2 ed. (CRC Press, Boca Raton, 2015).

[25] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci.
14, 130 (1963).

[26] D. Cline, Introduction to Nonlinear Systems and Chaos,
Chapter 4 of the Physics LibreText on Variational Principles
in Classical Mechanics (2021), available from https://phys
Jibretexts.org/.

[27] P. Glendinning, Stability, Instability and Chaos: An Intro-
duction to the Theory of Nonlinear Differential Equations
(Cambridge University Press, Cambridge, England, 1994).

[28] D. Ruelle and F. Takens, On the nature of turbulence,
Commun. Math. Phys. 20, 167 (1971).

[29] S. Wolfram, The Mathematica Book, 4th ed. (Cambridge
University Press, Cambridge, England, 1999).

[30] L Balbaert, Getting Started with Julia Programming (Packt
Publishing, Birmingham, UK, 2015).

[31] U.D. Jentschura and L.T. Giorgini, Enhanced one—step
Neville algorithm with access to the convergence rate,
Comput. Phys. Commun. 303, 109280 (2024).

[32] J. Zinn-Justin and U. D. Jentschura, Multi-instantons and
exact results I: Conjectures, WKB expansions, and instanton
interactions, Ann. Phys. (N.Y.) 313, 197 (2004).

[33] J. Zinn-Justin and U. D. Jentschura, Multi-instantons and
exact results II: Specific cases, higher-order effects, and
numerical calculations, Ann. Phys. (N.Y.) 313, 269 (2004).

[34] U.D. Jentschura, A. Surzhykov, and J. Zinn-Justin,
Multi-instantons and exact results III: Unification of even
and odd anharmonic oscillators, Ann. Phys. (N.Y.) 325,
1135 (2010).

[35] U.D. Jentschura and J. Zinn-Justin, Multi-instantons and
exact results IV: Path integral formalism, Ann. Phys. (N.Y.)
326, 2186 (2011).

[36] E. Caliceti, M. Meyer-Hermann, P. Ribeca, A. Surzhykov,
and U.D. Jentschura, From useful algorithms for slowly
convergent series to physical predictions based on divergent
perturbative expansions, Phys. Rep. 446, 1 (2007).

[37] E.J. Weniger, Nonlinear sequence transformations for the
acceleration of convergence and the summation of divergent
series, Comput. Phys. Rep. 10, 189 (1989).

[38] M. Abramowitz and 1. A. Stegun, Handbook of Mathemati-
cal Functions, 10th ed. (National Burecau of Standards,
Washington, DC, 1972).

[39] H.R.P. Ferguson and D.H. Bailey, A polynomial time,
numerically stable integer relation algorithm, RNR Techni-
cal Report RNR-91-032, 1992.

[40] D.H. Bailey and S. Plouffe, in Organic Mathematics:
Proceedings of the Workshop Held in Burnaby, BC, edited
by J. Borwein, P. Borwein, L. Jorgenson, and R. Corless
(American Mathematical Society, Philadelphia, PA, 1997),
pp. 73-88.

[41] H.R. P. Ferguson, D. H. Bailey, and S. Arno, Analysis of
PSLQ, an integer relation finding algorithm, Math. Comput.
68, 351 (1999).

[42] D. H. Bailey and D. Broadhurst, Integer relation detection,
Math. Comput. 70, 1719 (2001).

[43] In Ref. [29], the algorithm is implemented in the procedure
FindIntegerNullVector.

[44] M. Borinsky, G. V. Dunne, and M. Meynig, Semiclassical
trans—series from the perturbative Hopf-algebraic Dyson—
Schwinger equations: ¢* QFT in 6 dimensions, SIGMA 17,
087 (2021).

036003-12



