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We discuss numerical aspects of instantons in two- and three-dimensional ¢* theories with an internal 

O(N) symmetry group, the so-called N-vector model. By combining asymptotic transseries expansions for 

large arguments with convergence acceleration techniques, we obtain high-precision values for certain 

integrals of the instanton that naturally occur in loop corrections around instanton configurations. 

Knowledge of these numerical properties is necessary in order to evaluate corrections to the large-order 

factorial growth of perturbation theory in ¢* theories. The results contribute to the understanding of the 

mathematical structures underlying the instanton configurations. 
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I. ORIENTATION 

The N-vector model (the self-interacting ¢* field 
theory in D=2 and D=23 dimensions) gives rise to 
instanton configurations, whose structure 1s more compli- 

cated than the corresponding configurations in quantum 
mechanics (in one space dimension), which is equivalent 
to a D = |-dimensional field theory (see Figs. 2 and 3 of 

Ref. [1]). The instantons provide nontrivial saddle points of 

the Euclidean action, about which we expand partition 

functions, and generating functions [2—6]. Instantons also 

constitute fundamental objects in statistical and optimiza- 
tion problems possessing hard phases (see Refs. [7—9]). 

Here, we derive a semianalytic representation which can be 

used to describe the instanton uniformly over the radial 

variable, to a relative accuracy of 10~*? or better. 
In one dimension (1D), one canonically identifies the 

argument of the instanton as the Euclidean “time” ¢t, with 
the notion that —co < t < o (see Ref. [1]). In 2D and 3D, 

this is not so easy, because the angular symmetry dictates 

that one should choose a radial variable. The radial variable 
r, in turn, can only take values in the range 0 < r < ov. 

The connection to the 1D case [4] is found if we consider 
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that in 1D, we can interpret the “radial” variable with the Z, 

symmetry (positive and negative real numbers). The surface 

area of the zero-dimensional unit sphere embedded in 

one-dimensional space is 2a'?=))/?/T((D = 1)/2) = 2; 
the result confirms the Z, symmetry of the (analytically 
known) instantons in one-dimensional theories [1,4]. 

In two-dimensional and three-dimensional ¢* theories, 

the instanton is not known analytically. Here, we aim to 

demonstrate that the analytic structure of the instanton 

is linked to the concept of transseries and resurgent 
expansions (see Refs. [10—18]). Specifically, we derive 

an asymptotic representation of the instanton, for large 

argument, in the form of a transseries (resurgent expansion) 
in the variables y = 1/r and exp(—1/yv) = exp(—r), where 
r is the distance from the origin. The transseries repre- 
sentation for large r is complemented by a power-series 

representation for small 7, which is augmented by Padé 

approximants and nonlinear sequence transformations to 

enhance its applicability for intermediate values of the 
radial variable. The goal is to match the large-r and small-r 
representations at a suitable intermediate transition value of 

the radial variable, to obtain a uniform, high-precision 
representation of the instanton in 2D and 3D. 

We organize the paper as follows. Fundamentals of 

instantons in ¢* theories are discussed in Sec. II. The 

three-dimensional instanton in a three-dimensional ¢4 

theory is analyzed in Sec. II. Our analysis of the instanton 

configuration in a two-dimensional field theory follows in 
Sec. IV. Virial theorems and the asymptotic behavior of the 
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instanton are discussed in Sec. V. The high-precision 
evaluation of instanton integrals and of instanton actions 
is discussed in Sec. VI. Conclusions are drawn in Sec. VII. 

I. FUNDAMENTALS OF INSTANTONS 
IN ¢*4 THEORIES 

A. Instanton equations 

For the consideration of the instanton configuration, it is 
sufficient to consider the D-dimensional scalar theory, with 
the action 

sip = f arx|> (Vom) +50G) +40"). (1) 
where x is a D-dimensional vector. Consideration of the 

variation 6S[P] leads to the defining equation of the 
instanton, 

<V" hei (%) + bei(®) + ghal%)? = 0. (2) 

Differentiation with respect to a coordinate leads to the 
equation of the zero mode 0,,,;(), 

(-VP +1 + 3ab alt) )Obal®)=0, (3) 

where p = 1,...,D. The zero mode constitutes an eigen- 

state (with zero eigenvalue) of the longitudinal fluctuation 

operator given in Eq. (47); the zero mode is included here 
in the discussion in order to illustrate that the instanton 
configuration is crucial in the exploration of several 
fundamental properties of the fluctuation operator of 
quartic theories [4,5]. 

In a quartic theory, the instanton solution exists only for 
negative g, because the tunneling can proceed only through 
a barrier. Therefore, with the scaling 

| leis 
Pa(X) —_ [os ), (4) 

the equations for the instanton and the zero mode are, 
respectively, 

(-VP +1 -Ea(#?) Ea@) = 0. (5) 

(-V" + 1 - 3é(8)?) jpEa() = 0. (6) 

The presence of the prefactor ,/—1/g in Eq. (4) illustrates 

the fact that the instanton solution exists only for negative 
values of the coupling parameter g, i.e., in the unstable 

sector of the theory where the self-interaction term 46(x)* 

becomes negative [4,5]. 

In a theory with an internal O(N) symmetry group, one 
has the following instanton: 

where vectors in the internal space are designated by 
underlining, and we can choose 

u = {1,0,...,0}7. (8) 

Hence, up to multiplication by a (constant) unit vector u 
in the internal O(N) space of the theory, the instanton 
configuration, whose radial part is governed by Eq. (2), 
does not depend on the dimension N of the internal 
symmetry group. 

The instanton equation (2) is invariant under the replace- 

ment P(x) > —@y(X). Hence, there is a sign ambiguity in 
the choice of the instanton, and the degeneracy under the 

operation €, — —&, needs to be taken into account when 

using dispersion relations. Indeed, via dispersion relations, 
one can establish that the instanton action A, defined via 

Sida] — —A/g, (9) 

governs the large-order behavior of the perturbative coef- 
ficients Gx in the Kth order of the expansion in g of the 
n-point correlation functions in a D-dimensional O(N) 
theory [4]. In the notation adopted in Eq. (1.9) of Ref. [4], 

we have 

G, _ cP) (=) (n+N+D-1)/2 Gil (10) 

xT (K EN EO NY [ FOU/ay. (11 

Here, c(N, D) is a constant coefficient to be determined 
separately for each N and D. 

B. Instantons and large-order behavior 

The connection between instantons and _ large-order 
behavior is usually obtained by saddle-point evaluations 
of contour integrals [19]. In the following, we will mention 

a less known derivation [20] that has the advantage of 

being simpler and more intuitive. The basic idea is that 

Feynman diagrams of the ¢* theory at large orders K >> 1 
are essentially random regular graphs with connectivity 4 
and size K. For a large number of vertices, it is known that 

random regular graphs have a locally tree-like structure 
(with the size of the loops growing as log K). This allows us 
to write an iterative equation that turns out to be equivalent 
to the instanton equation (2). The Feynman rules imply that 

there is a factor 1/ (kK + m7’) for each line i in the graph and 
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g(k) 

FIG. 1. Tree diagram illustrating the emergence of the instanton. 

a Dirac-6 function on each vertex ensuring the conservation 
of momentum. Invoking the tree-like structure, one can 
then write the following equation (see also Fig. 1): 

®) =a | cae | cae | a 
x gk )g(ky)g(k3)5) (ky + ky + kg —k). (12) 

So, multiplying everything by + m’, the previous 
equation in real space is equivalent to 

(-V? + m?)9(Z) = 93 (2), (13) 

which is the instanton equation for the ¢* theory for 

G(X) = Eci(x). 
Using a standard procedure (similar in spirit to the cavity 

method from spin-glass theory [21]), one can identify the 
action in Eq. (1) as the Bethe free energy of the problem. 
This allows us to derive in a simple way the instanton 
equation and the action; the 1/K correction about the 

instanton [4,5] corresponds to the 1/K finite size correction 

to the Bethe lattice random graphs. 

Il. THREE-DIMENSIONAL INSTANTON 

A. Large argument 

We use the fact that €4(x) = €4 (|x|) = E4(r) is radially 
symmetric and this constitutes am “S state” in the formal- 
ism adopted in atomic physics [22,23]. The equation 

fulfilled by the instanton €y(r) = EO) (p) (including the 

dimension D in the superscript) in three dimensions is 
[see Eq. (5)], 

F299) 22 HPN [UN] =0.. (14) 

We are attempting to find a systematic expansion of the 
solution of Eq. (14), and do so for large argument r > co in 
the current section. A remark might be in order. Namely, 
linear second-order differential equations typically have 
solutions regular and irregular at infinite argument. The 
equations defining the instanton, by contrast, are highly 
nonlinear, and hence this consideration does not apply. In 
fact, the asymptotics for large argument uniquely determine 
the instanton solution. In this context, it is instructive to 

recall [24] that the uniqueness of the solution for a non- 

linear differential equation, determined by a given initial 
condition or asymptotic behavior, constitutes a pivotal 
factor in the emergence of a range of complex phenomena, 
including chaos. This uniqueness leads to behaviors which 
are sensitive to the small variations in the initial condi- 
tions [25-27]. Furthermore, this intrinsic uniqueness in 

nonlinear differential equations is analogous to the sensitive 
dependence on initial conditions observed in fluid dynam- 
ics, particularly in the transition from laminar to turbulent 
flow, where even minor perturbations can drastically alter 
the flow patterns, echoing the underlying chaotic dynamics 
described in fluid mechanics research [28]. 

The instanton goes to zero as r > oo, and so one can 

neglect the term e?? s(n) « EO (r) in a first approxima- 
tion. Combining Eqs. (2) and (4), and neglecting the term 

proportional to the third power of the instanton, for large r, 
one obtains the relation 

rag 3 20 12 3 

53 a (7) S80 (r) + (7) 80. (15) 

Our ansatz 

3 exp(—r) Sad, A) (r) = PD ya (16) 

is anonanalytic expansion in the variable 1/7, for large r. In 
fact, when expressed in terms of the variable y = 1/r, the 
expansion (16) constitutes a nonanalytic (resurgent, transs- 

eries) expansion in the variables y and exp(—I/y) (see 
Refs. [10-12]), and vy = 0 becomes a singular point of the 
differential equation. The importance of nonanalytic expo- 
nentials (resurgent expansions) in the solution of differ- 
ential equations with singular points has been stressed in 

Ref, [12]. The substitution £9) (r) = g(r)/r takes Eq. (15) 
into the form 

oe 

-<a(r) + g(r) = 0, g(r) =C exp(—-r), (17) 

for which the solution regular at infinity is just exp(—r). 
Hence, the ansatz (16) collapses to a single term, with C 

being an overall constant, and reads 
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20)(y) = cP) r 
, (18) 

for which the approximate equality in Eq. (15) becomes 
an exact equality. Here, C is a coefficient which can be 
determined numerically. We have mapped the differential 
equation (15) onto a linear numerical grid with a lattice 

spacing that decreases as 1/\’, where NV’ is the number 
of the iteration. We use computer algebra [29,30] with a 

128-decimal-digit internal precision, investigate the asymp- 
totic behavior of the resulting solution in the regime of 
large radial argument of the instanton, where the conver- 
gence toward the exact solution can be written in terms of 
powers of 1/V, and employ suitable convergence accel- 
eration techniques [31], in order to extrapolate to zero 

lattice spacing. 
With this method, we obtain a 60-figure result for C 

which reads as follows: 

C = 2.712 808 360 940 844 770 465 994 573 657 808 840 265 350 950 750 281 746 458 229(1). (19) 

One can now approximate, in Eq. (14), 

Cane 20 4B 3 3 13 20 46 3 exp(—3r) — Sy al (7) = (7) +E (r) = EP & — Ea (0) — Ea (r) + 6G (7) = 0. (20) 

The structure of this equation justifies the ansatz 

3)/.) — ooxpl-r) exp(—3r) — bn 71 Br) = Ce 1) 

Matching of the b,, coefficients leads to the result, 

(3) _ 0 &Xp(=7) 3 exp(—3r) 1,2 21 45 465 2835 40005 On? 39 

gai (7) r 8 a! BP 8 32r4 64” + 256r° FO) Hoe (22) 

This expression, cubed, generates terms proportional to expt + oxo 37)? > (apt)? x oe) = sxe ”) Now, we enter 

exp(-57) S00 en with the ansatz that also contains a term of the form again into Eq. (14), match the coefficients c,, and find 
r n=0 7" 

37) — c&XP(=F) _ pp exp(-3r) (,_ 3, 21 45, 465 2835 40005, 
ea (7) r 873 mt BB 3a bas * D565 TOV) 

exp(—5r) 19 151 815 56921 1094215 2592553 _ 
Cc? —— (1-— — — O(r-7) }. 23 FO ap ( 6r | 18. 36r3 8647 SI845 + 34560 1 Ol”) (23) 

Finally, with the contribution of order exp(—7r) included, we have 

Bj — c&XP(=F) _ pn exP(-3r) (,_ 3, 21 45, 465 _ 2835 40005, 
gai (7) r 8r 2r 8r? 8r 327+ =64r° 256r® ) 

exp(—5r) 19 151 815 56921 1094215 2592553 _ 
Cc? ——__— (1-— — — 7 

re 6ar8 ( or 1836? * B64? S184” 34568 TO) 
exp(—7r) 29, 271 3943 614143 8322275 80215771 _ 

~(@E - - - 7) \, 24 51277 ( 6r | 16 Tart 3486r" 13824) 3e86ars 1 OW") (24) 

For the term proportional to exp(—3r), we find the compact formula, 

3 exp(—3r) 3 21 45 465 -5\\ 43 XP(-1) 1. 
—C 33 1- + g2 -gatp,a +O(r°)} =-C —— (Ei(—2r) — 2 exp(2r)Ei(—4r)), (25) 

where Ei(r) the exponential integral function, but we were unable to find general expressions for the terms in the series 
multiplying the exponential factors exp(—5r) and exp(—77r). 
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Transseries in the variable y = 1/r have been encoun- 

tered in the study of anharmonic oscillators [32-35]. They 

have also been investigated mathematically [10-12]. 

We see that only “odd-transseries” orders of the form 
exp(—(2n + 1)/y| contribute. The “‘one-transseries” con- 
tribution to the instanton wave function is found to read 
as Cyexp(—1/y), without correction terms. The expan- 
sion (24) shows that the large-argument expansion of the 

instanton wave function EO (p) is determined by a single 
constant C, whose numerical value is given in Eq. (19). 

An inspection shows that the perturbative coefficients in 
the variable y = 1/r grow factorially. In order to match the 

resurgent expansion for large argument with the Taylor 
expansion for small argument r, we have calculated terms 

up to the 13-instanton contribution and summed the series, 

starting from large values of r, down to r = 3, 

EO) (r = 3.0) = 0.045013219071..... (26) cl 

where a more precise result for ES) at the matching point is 
given in Eq. (62b). In the summation process, we have used 
[40/40]-Padé approximations [36] in order to sum the 
divergent perturbative series decorating the instanton con- 
tributions of order exp(—nr), where n is an odd integer, and 
77-order Weniger-Levin transformations [37], in order to 

verify the accuracy of the result (26) in the intermediate 
region near r © 3.0. The matching point is chosen heuris- 
tically, based on the requirement that both methods for the 
calculation should work in the intermediate region between 
the large-r transseries representation and the small-r power 
series, which will be discussed in the following. 

B. Small argument 

We recall the equation fulfilled by the instanton 
[see Eq. (14)] 

5b (I) + a (r) ~ Ea’) = 0. (27) 

Plugging in a polynomial ansatz into Eq. (27), with 

EO (0) = F = 4.337387 679 976... (28) cl 

[see also Eq. (61c)], one finds 

1 1 
EO) (r) =F + g(F-F)P + oF AF + 3F Yr 

cl 

Fe 17F? + 35F° - 19F' 6 8 _ +. O(r8), (29) 

Only even powers of r contribute. Using computer 
algebra [29], one can easily determine all coefficients up 

to order r®°, and write 

EM (r) = Se any?” (30) 
n=0 

A closer inspection reveals that the series of the a, 1s 

factorially divergent and alternating. Still, one can use 
summation techniques to confirm the result (26) at the 

matching point EN (r = 3.0) [see also Eq. (62b)]. In the 
summation process, we have used [62/62]-Padé approx- 
imations [36] in order to sum the divergent perturbative 
series at r = 3, or alternatively 117-order Weniger-Levin 

transformations [37]. This leads to the desired accuracy in 

the intermediate region. Improvements of the numerical 
accuracy are possible when one expands the instanton 
about additional reference points (e.g., where r assumes the 
value of a small integer) and concatenates the expansions in 
regions of overlap. 

IV. TWO-DIMENSIONAL INSTANTON 

A. Large argument 

In two dimensions, the instanton is equally radially sym- 

metric (see Fig. 2), and we can write e0) (x) = e0) (r). The 
equation fulfilled by the instanton is 

a 2 lo 2 2 2 — 588 (1) SE (r) + £57) — ED (I = 0. (31) 

Just like in the three-dimensional case (see Sec. III A), the 

instanton goes exponentially to zero as r > oo, and so one 

can neglect the term (EO (np in a first approximation. 

Then, one obtains the relation [see also Eq. (15)] 

FIG. 2. The two-dimensional instanton &,(r) = EO (r) is cl 

radially symmetric. Its value at the origin is é) (0) =G= 

2.206 200 864 650..., according to Eqs. (38) and (61b). 
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By a similar analysis as described for the three-dimensional case, one obtains 

2p) — pexPl=r) (;_ 1, 9 75 3675 59535_ 2401245 
Sai (7) Ap 3, + Toa loza t 32768 ~ 2621448 + a194304/6 tO") 

3215 238563 5283711 273186513 exp(—3r) 9 213 
—~ Ps — A 1 - S _ 

( 8 128 1024 + 39768 262144 
or7)) 

4194304r° 

n aps exp(=57) ( , 33 n 589 96193 | 23551553 544320827 | 85429251785 O ~)) 

6419/2 24r 128r? 9216r? = 88473674 = 7077888r° =: 3339738624r° 

_ pr &xp(=7r) ( _ 79 n 10037 _ 629833 55541473 _ 1326870785 | 23212812833 or) (33) 

512r7/? 24r 11527? 27648r? ~—-8884736r4 = 7077888r° =: 337748736r° 

Just as in the three-dimensional case, we can find a compact expression for the leading term, which for D = 2 1s of 

order exp(—r)/,/7, 

-—+ 
3675 poxpl=n) (1 1 9 75 

Here, H\) (r) is the Hankel function [38] of the first kind of 
order a. However, we were unable to find general ex- 

pressions for the terms in the series multiplying the 
exponential factors exp(—3r), exp(—5r) and exp(—77r). 

For D = 2, one finds for the D coefficient the following 

60-figure result [using the same method as previously 
employed for Eq. (19)]: 

D = 3.518 062 198 025 031 180 209 129 887 741 

356 933 215 813 390 992 384 663 366 560(1). (35) 

Furthermore, it is clear that the perturbative coefficients in 
the variable y = 1/r grow very fast, and in fact, they grow 
factorially. We have calculated terms up to the contribution 
of order exp(—13r) and summed the series, starting from 
large values of r, down to r = 3, with the result 

Ep = 3.0) = 0.097 418 218 653..., (36) 

where the most precise result for the value of e0) (r = 3.0) 
at the matching point is given in Eq. (62a). Just as in the 
three-dimensional case, in the summation process, we have 

used [40/40|-Padé approximations in order to sum the 
divergent perturbative series decorating the instanton con- 
tributions of order exp(—nr), where n < 13 is an odd 
integer, or 77-order Weniger-Levin transformations [37], in 
order to achieve the accuracy in the intermediate region. 

B. Small argument 

We now need to repeat the analysis from Sec. IIT B, for 
the two-dimensional case. Plugging a polynomial ansatz 
into Eq. (31), 

8r | 128r2 1024r3 
307684 + or)) — iDH\ (ir). (34) 

with 

E70) = G = 2.206 200 864 650..., (38) 

[see also Eq. (61b)], one finds 

1 1 
ED (r) =G+4(G- PrP + (GAG + 39°) 

G — 19G? + 39G —21G" . ; 
+ 5304 r+ O(r°), (39) 

Using computer algebra [29], one can easily determine all 

coefficients up to order r°°, say, and write the divergent, 
asymptotic expansion 

EP (r) = Se aan?” (40) 
n=0 

Here, too, a closer inspection reveals that the series is 

divergent, because of factorial divergence of the magnitude 
of the (alternating-in-sign) power series at about r= 0. 
One confirms the result given in Eq. (36). In the sum- 
mation process, we have used [62/62]-Padé approxima- 
tions in order to sum the divergent perturbative series at 
r = 3, or alternatively 117-order Weniger-Levin transfor- 
mations [37]. This yields the desired accuracy in the 
intermediate region. 
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V. INSTANTONS AND VIRIAL THEOREMS 

A. Derivation of the virial theorems 

One of the goals of the current investigation 1s to explore 
possible analytic representations of integrals of powers of 
the instanton, for example, on the basis of the PSLQ 

algorithm [39-42]. In this endeavor, it helps to realize that 

integrals of different powers of the instanton are related to 
each other, and to the instanton action. Virial theorems of 

the instanton are instrumental in this regard, and we here 
present their derivation. 

We consider the general action 

1/3,/s 5 sie) = [ es]3(Fo@)* + va@)). a1 

where in the case of the action (1), one has 

VP) = 5 (2) +4043). (42) 
We assume that the field equation, obtained by variational 

calculus, has a finite action solution ¢,(x). If the action 
S(@q) is finite so is the action S(@4,4), obtained from 
S(dq) = S(hy,4 = 1) by the replacement A(x) > by (AX) 
in the integrand of the action. One finds, after a suitable 

backsubstitution, 

Sitana) <2 J ax} (out) 
4 4c / I xV(ha(%)). (43) 

Because @,;(x) satisfies the field equation, the variation of 
the action vanishes for 1 = 1, 1.e., we have the equation 

Sle: A het = 0, 

are PS 2 (Veal) +4 Dvida(®) —0. (44) 

This relation allows us to express the kinetic term 

[integral of (Va)? in terms of the potential term [integral 
of V(@q4)] and vice versa. The classical action S{@.] can 
thus be expressed in terms of the kinetic term only: 

Sibal=5 | ax(Ftal®)) 3) 

a form that shows that S(@.) is always positive. The 
second derivative of S(@y, 4) reads as 

d2 

(aan fe jl 
A=1 7 -p) | [O,P-(x)]-d°x. 

(46) 

For D > 2, this result shows that the solution is not a local 

minimum of the action and, thus, the so-called longitudinal 

fluctuation operator M,, defined as 

— OS 

PRP n OD 
has at least one negative eigenvalue [4,35]. A closer 
inspection [4,35] reveals one, and only one, negative eigen- 

value. This fact is well known and it leads, within the path 
and field integral formalisms, to an imaginary part of the 
square root of the Fredholm determinant of the fluctuation 
operator, which corresponds to the product of the eigen- 
values of M;,.. This imaginary part, in turn, 1s instrumental 
in deriving the large-order estimate given in Eq. (10) for the 
perturbative expansions of correlation functions [4,5,35]. 

In the example of potentials of special form 

1 1 V(b) =50 +790", (48) 
one can derive an additional relation. If the action S[@,)] is 
finite, so is the following action obtained by the replace- 

ment Pet > Ada: 

Stdda) =A? | ax |(Wda(d))* + 28) 
+5A"g / a xpM (2), (49) 

Again, if @, is the instanton solution, then the derivative 
with respect to A must vanish for A = 1. One obtains 
further relations, in addition to (45), 

Sta) =-$(M = 2) [ aPxk@ 
M=4 9g DAA (2 _ = -2 fa xpi(x) (M = 4). (50) 

This relation is consistent with the fact that the instanton 

exists only for negative g. Thus, one can express the 
instanton action as follows: 

M-2 
S(oa) ID — M(D _ 2) / d? x, (x) 

re, d? x(x) (S1) 

We have used Eqs. (45) and (50). In particular, Eqs. (50) 

and (51) are consistent only if the denominator in the 

expression on the right-hand side of Eq. (51) is positive, 
which implies 

(52) 
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and, therefore, the field theory must be super-renormaliz- 

able or at least renormalizable. At the special dimension 
D = 2M/(M — 2), where the theory is renormalizable, one 

finds the paradoxical result [ d?x2,(x) = 0. This implies 

that only the massless equation (where the coefficient of 7 
in the original action vanishes) has instanton solutions 
(see also Appendix A). Finally, one verifies that the second 
derivative of the scaled action (49) at A = 1 is negative, 

confirming the existence of a negative eigenvalue of M, for 
all dimensions [4,5,35]. 

B. Summary of the virial theorems 

We summarize. From Eqs. (45), (50), and (51), we have 

for the ¢* theory with the action (1), 

5 | x(a)’ = ~£ [ aPapi(a) 

d? x2, (X). (53) 

S(ha) — 

~ 4—D 

With the scaling given by Eq. (4), the action of the instanton 
becomes (g < 0), 

Pe (X) — | 0. r— [x], 

We have three equivalent representations of the action A, 

A = 5, | a?x(Weatr))’ =; [ex ail) 

dP? x&2(r). 

S(s) =~ > 0. 

(54a) 

54b 
~ 4—D (546) 

We have numerically verified these relations on lattices 
with decreasing lattice spacing, using the method outlined 
in the discussion preceding Eq. (19). Using the radial 
symmetry of the solution, we can establish that 

Q 
A=—2 By fe area (P. (55) 

where Qn = 2x”/? /T(5 D) is the generalized surface of the 
(D — 1)-dimensional unit sphere embedded in D-dimen- 

sional space. 

C. Asymptotic behavior 

The asymptotic behavior of the radial instanton equation 

cid 

-(G) a + 1] a(r)- 3(r)=0 (56) 

is of interest for large r. Asymptotically, one can show that, 
for r—> ow, 

Ealr) = Cy 2r PPK ya lr + O(e%") (57) 

where K, is a modified Bessel function of the second kind 

normalized such that K,(r) ~ ,/z/(2r)e~ for large r. This 

implies that 

in) « > 1-D/2 ie 

Our formulas (24) and (33) confirm this asymptotic 

behavior. 

pip: (58) 

VI. INSTANTON INTEGRALS 

We give a collection of numerical results for integrals of 
the instanton in quartic theories, with enhanced accuracy. 

Our aim is to give, for 2D and 3D, results approaching the 
realm of applicability of the PSLQ algorithm [39-42] 

which is designed to search for analytic expressions of 
integrals in terms of known constants. We remember that 
the PSLQ algorithm requires as input data only high- 
precision numerical values of the quantity under inves- 
tigation, as well as a guess of the mathematical constants in 
which the high-precision quantity could potentially be 
expressed, and then attempts to find a linear combination 
of mathematical constants, multiplied by rational fractions, 
as a candidate representation for the quantity under inves- 
tigation [43]. First, for completeness, in one dimension, we 

recall that the instanton solution is [1] 

_ 2 (D=1)._ 9) — Ex(r) = Sa Ey /(r=0)= v2, (59) 

where the one-dimensional action is 

_ ot 2! 2,9 4 Sid] =2 f° ar|5(a,0(r))? +5 0(r? +40r)"|. (60) 

The prefactor 2 reflects on the angular factor Qp = 

2n”/? /T(4D) which evaluates to 2 for D = 1. The pre- 
factor matters because the instanton action is normalized to 
Slda(r)] = -A/g, according to Eq. (9). Analytically 

known instantons in a four-dimensional ¢* theory and 

in a six-dimensional ¢° theory are given in Appendixes A 

and B, respectively. 
We have mentioned that instanton solutions are deter- 

mined by the value at the origin, given in Eqs. (28) 
and (38). It is of interest to obtain results of higher accuracy 
for the instanton at the origin, described by the constants F 
and G, and for the instanton at the matching point. In order 
to obtain more accurate values for F and G, one maps the 
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differential equation (15) onto a linear numerical grid with 

a lattice spacing that decreases an 1/N’, where A is the 
number of the iteration, while the origin is kept as the 
starting point of the lattice. One then uses computer 
arithmetic [29,30] with 128-decimal-digit internal preci- 
sion, and extrapolates to VV > oo. In order to calculate the 
instanton at the matching point r = 3.0, one decreases the 
lattice spacing in such a way that the matching point 

| 

remains a member of the numerical lattice in every iteration 
as NV’ is being increased. The convergence toward the exact 
values of the instanton, in either instance, can be written in 

terms of powers of 1/\’. One can thus employ suitable 
convergence acceleration techniques [31], in order to 

extrapolate to zero lattice spacing, and obtain numerically 
more accurate results. We obtain the following values, 
accurate to 78 decimal figures: 

EO=N(r = 0) = v2, (61a) 

gip=) (r = 0) = G = 2.206 200 864 650 746 074 783 634 064 578 940 196 610 

274 520 602 192 125 757 262 456 450 184 032 518 642(1), (61b) 

g=9) (r = 0) = F = 4.337 387 679 976 994 356 522 109 173 841 761 465 745 

284 082 970 785 762 761 882 558 415 947 364 399 341(1). (61c) 

The values at the matching point r = 3 are interesting for D = 2 and D = 3, 

gip=) (r = 3.0) = 0.097 418 218 653 642 217 741 513 024 960 584 546 095 

157 618 276 680 772 556 932 915 093 354 850 219 044(1). (62a) 

g0=9) (r = 3.0) = 0.045 013 219071 010523 997 989 047 723 112 322 109 

014.075 244 317 789 103 014 970 206 885 072 459 490(1). (62b) 

Numerical results for the instanton action A are 

A(D = 1) = 4/73, (63a) 

A(D = 2) = 5.850448 262 279 826 939 326 986 338 934 453 868 499 

064 115 959 470 267 545 644 043 014 800 957 116007 (1). (63b) 

A(D = 3) = 18.897 251 302 546 190 505 297 247 993 763 227 763 807 

178 891 316 289 857 028 151 589 245 449 182 127 167 (1). (63c) 

These results are essential for large-order perturbation theory [see Eq. (10)]. For what follows, it is convenient to introduce 
the notation 

4—D 
b= 

4 
T4, In = f aPalEa(r) 

1 4 - 
I= / WPxfVeaP, — A=Tls (64) 

where we recall that the (generalized) surface area of the (D — 1)-dimensional unit sphere, embedded in D dimensions, 1s 

Qp = 22?/? /T(D/2). Results for J, and J, follow from the above results for the instanton action A. Results for /, and J, are 
given as follows: 

1,(D=1)=V2a, — I6(D = 1) = 128/15, (65a) 

1;(D = 2) = 15.109 669 726 889 195 199 613 754.001 702 125 888 865 

874 563 104 430 202 476 703 241 753 965 063 516 331(1). (65b) 
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I;(D = 3) = 31.691 521 838 323 486 451 591 907 257 120 270 170.457 

351 985 790 745 758 122 769 708 466 866 938 412 287(1). (65c) 

I6(D = 2) = 71.080 171 542 041 917 440 792 898 285 323 353 751 992 

546 589 483 197 579 092 397 461 668 330 495 246 091(1). (65d) 

I5(D = 3) = 659.868 351 544 567 238 188 639 540 582 544 719 267 515 

748 898 263 457 303 680 826 218 470 215 371 739 493(1). (65e) 

VI. CONCLUSIONS 

We have analyzed the properties of instanton solutions in 
O(N )-symmetric quartic field theories in D = 2 and D = 3 
dimensions. The basic formulation for the quartic instanton 
has been given in Sec. II. We concentrate on the three- 
dimensional instanton (D = 3) in Sec. III, which is phe- 
nomenologically the most interesting case. We derive 
asymptotic expansions for large argument in the form of 
a transseries [Eq. (24)] and in the form of an asymptotic 
power series [Eq. (29)] for small argument. The quartic 
instanton in D = 2 is discussed in Sec. IV. Virial theo- 
rems are derived in Sec. V. Instanton integrals are given in 
Sec. VI, with a precision approaching the realm of 
applicability of the PSLQ algorithm [39-42] which is 
designed to search for analytic expressions of integrals 
in terms of known constants such as the Euler constant 
Ye = 0.57721..., various Riemann zeta functions, powers 

of z, and multiplicative combinations of these constants. 
We can report that we have carried out a limited set of 
searches with the same constants that were used in 
Eq. (A11) of Ref. [4] without success. A more detailed 

search might constituent a possible direction for the future. 
In a quartic theory, the instanton solution exists only for 

negative g, because the tunneling can proceed only through a 
barrier, and the latter exists only negative coupling g < 0. 
The imaginary part of the partition function, and of corre- 
lation functions, obtained by expanding about the instanton 
solution, is proportional (see Ref. [4]) to exp(—(—A/g)) = 
exp(A/g), where S[@.] = —A/g and A is given for D = 2 
in Eq. (63b) for D = 3 in Eq. (63c). The instanton action A 

universally enters large-order formulas for the perturbative 
coefficients of Green functions [see Eq. (10)]. 

Our calculations suggest that instanton solutions in quartic 
theories cannot be expressed in closed analytic form, except 
for the case D = 1. We also note that the general properties 
of the instanton in massive theories are valid only for 
dimensions D <4. The dimension 4 is singular, as is 

evident, e.g., from Eq. (53). The cases of a massless quartic 
theory in four dimensions, and of a cubic theory in six 

dimensions, are treated in Appendixes A and B. 
Our investigations indicate that, with the exception of 

known singular cases (see Appendixes A and B), instanton 

configurations cannot be calculated analytically for general 
field theories, notably, for the two- and three-dimensional 

* theories. Nevertheless, in view of the nonlinear nature of 

the defining differential equations, they admit transseries 
solutions and asymptotic expansions which can be used for 
accurate numerical calculations. These results are useful in 
expansions of partition and correlation functions about 
instanton configurations [6]. 

Let us conclude by mentioning open problems, which 
could inspire future research. The first of these concerns the 
possibility of analytic expressions for the 78-figure results 
reported here for particular function values and integrals of 
the two- and three-dimensional instantons, notably, those 

communicated in Eqs. (61b)}-(65). As already mentioned, 

we have performed a limited search based on the PSLQ 
algorithm [39-42] using various Riemann zeta functions, 

logarithms, and polylogarithms, without finding suitable 
analytic formulas. Our inability to find fully analytic 
representations 1s mirrored in recent, somewhat related 

investigations [18]. The second open problem concerns the 
search for closed-form representations of the higher-order 
terms in the transseries solution (24) and (33), generalizing 

the results given in Eqs. (25) and (34) to higher orders of 
the exponential factor exp(—r). 
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APPENDIX A: FOUR-DIMENSIONAL MASSLESS 
QUARTIC THEORY 

The existence of instantons in the renormalizable (but 

not super-renormalizable) quartic theory in four dimensions 
has been anticipated in Sec. VA. We consider the action 
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(Al) 

The corresponding field equation is -V' ba (x) + 
g(x) = 0. We know that the solution of minimal action 
is spherically symmetric, thus we set 

1 
Pa(x) — at 

where r= = |x|. We then obtain a differential equation 

(A2) 

[(f)? +224 &(r)Jéq(r) = 0. The solution is 

2/2 
= . A3 Ea(r) 1+ 7) ( ) 

The instanton action is 

A 822 
Sloal Gg’ A=—. (A4) 

The instanton integrals, J, = [ d*x€4(r)", for n = 3, 4, 6, 
2 

are 1, = 8V2n’, I= 32a a 

APPENDIX B: SIX-DIMENSIONAL MASSLESS 
CUBIC THEORY 

Another example of the existence of analytically calcu- 
lable instantons is the six-dimensional massless cubic 

theory [44]. We consider the action 

sa\= [os|5(er +500]. 1) 

The corresponding field equation for the instanton is 

-Vv" hea(X) + 92,(X) = 0. We know that the solution of 
minimal action is spherically symmetric, thus we set 

ei(x) (B2) 
1 

= go) 

where r = |x| and we observe that the instanton exists for 
positive | g We then obtain a differential equation 

(4)? + > Sd d+ é,(r))é,(r) = 0. The solution is 

24 
— B3 Ea(r) (1 4 r2)2 ( ) 

The instanton action is 

A 1922 
S =—, A B4 

The instanton integrals, 7, = f d*xé4(r)", for n = 3, 4, 6, 
_ 115227 I _ 5529627 L= 1061683277 
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