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Signals of Opportunity for Car Density Estimation 

with Limited Training Data 
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Abstract—Passive sensing leverages existing signals from 

illuminators of opportunity to perform target localization, detection, 
and tracking without the need for additional infrastructure. In this 
paper, we explore the use of WiFi signals of opportunity for estimating 
car density in parking lots. The aim is to develop an efficient and cost-
effective parking occupancy estimation system to alleviate traffic 
congestion caused by drivers searching for parking spaces. To achieve 
this, experimental measurements were conducted in a real outdoor 
environment to collect reflected WiFi signals from targets (cars). 
These collected signals were then used for car density estimation 
using a combination of semisupervised learning convolutional neural 
network (CNN) and weighted-centroid interpolation techniques, only 
requiring small size datasets and limited measurements. The 
proposed method overcomes the limitations of existing data-driven 
estimators by reducing the reliance on large labeled datasets and 
computational complexity associated with traditional supervised 
learning methods. In addition, it provides a cost-effective alternative 
to the traditional systems that rely on a large number of sensors. 
Simulations are performed to evaluate the performance of the 
estimation, and the results demonstrate that our scheme can 
effectively estimate car densities in the parking lot with reasonable 
estimation errors. 

Index Terms—WiFi signals of opportunity, passive bistatic radar 
(PBR), environment monitoring, car density estimation, semi-
supervised learning, convolutional neural network (CNN). 

I. INTRODUCTION 

Passive bistatic radar (PBR) has gained significant attention 
in recent years as an effective method for localizing, detecting, 
and tracking targets [1]. It can also make use of various 
ambient communication signals of opportunity, including 
frequency modulation (FM) signals [2], digital video 
broadcasting terrestrial (DVB-T) signals [3], global system for 
mobile communication (GSM) signals [4], orthogonal 
frequency division multiplexing (OFDM) signals [5], and WiFi 
signals [6]. PBR offers several advantages over traditional radar 
systems, including cost reduction, stealth capabilities, compact 
size, and minimal interference to existing wireless systems, as 
it does not require a dedicated radar transmitter. 

With the widespread deployment of WiFi infrastructure in 
residential, commercial, and industrial areas, WiFi signals have 
become a valuable resource for passive sensing in both indoor 
and outdoor environments through fingerprinting techniques 

W. Al Amiri, J.T. Jones and A.B. MacKenzie are with the Dept. of Electrical 
and Computer Engineering, Tennessee Technological University, Cookeville, 
TN (email: waalamiri42, jtjones49, amackenzie {@tntech.edu}). O. 
Abdelsalam is with the Dept. of Computer Science, Tennessee Technological 
University, Cookeville, TN (email: oabdelsal42@tntech.edu). T.N. Guo is with 
the Center for Manufacturing Research, Tennessee Technological University, 
Cookeville, TN (email: nguo@tntech.edu). 

979-8-3503-3559-0/23/$31.00 ©2023 IEEE 

[7], [8], [9]. WiFi fingerprinting techniques have been 
extensively used in indoor positioning and sensing systems. For 
example, in [7] WiFi fingerprints were used to detect human 

presence and classify human activity using support vector 
machine (SVM) by analyzing Doppler information. In [8] a fast 
and reliable method was proposed for collecting WiFi 
fingerprints in indoor environments to enable accurate indoor 
localization. In [9] the authors presented a WiFi 
fingerprintingbased indoor localization method using dynamic 
mode decomposition (DMD) feature selection and hidden 
Markov model (HMM). These advancements in indoor WiFi 
fingerprinting have inspired researchers to explore the 
potential of WiFi signals of opportunity for sensing in outdoor 
applications, particularly in intelligent transportation system 
(ITS). Utilizing WiFi signals of opportunity for sensing in ITS can 
greatly enhance real-time data collection, analysis, and 
decisionmaking processes for effective traffic management in 
urban areas. In particular, WiFi sensing can make a significant 
impact in managing traffic congestion caused by drivers 
searching for vacant parking spaces in crowded cities. Research 
indicates that approximately 30 percent of traffic congestion is 
attributed to parking search activities [10]. By leveraging WiFi’s 
sensing capabilities, real-time information on parking lot car 
density can be collected and analyzed. This information allows 
for the estimation of parking space availability. Subsequently, 
this data can then be used to effectively direct drivers to vacant 
parking lots, leading to improved traffic flow, reduced traffic 
congestion, and a positive environmental impact [11]. WiFi 
signals of opportunity provides a cost-effective alternative to 
existing parking occupancy detection systems that rely on 
numerous sensors for real-time occupancy monitoring. These 
systems often require substantial implementation and 
maintenance costs. Also, vision-based systems, which rely on 
cameras, often face performance limitations when operating 
in challenging environmental conditions such as low lighting, 
fog, and snow [12]. 

In an effort to overcome these challenges, some researchers 
have utilized radio-based fingerprinting techniques with deep 
supervised learning for estimating parking availability [13]. 
However, employing deep supervised learning for such 
systems often requires huge labeled datasets, which can be 
resource-intensive, time-consuming, and demanding in terms 
of effort. These requirements may not be feasible in many 
practical scenarios, limiting the adoption and application of 
various deep learning methods [14]. 

To address these issues, this paper presents a low-cost yet 
effective scheme that utilizes WiFi signals of opportunity as 
fingerprints for estimating car density in parking lots. The 
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Fig. 1: The environmental layout of Tennessee Tech University 

parking lot in which the experiment was performed and the locations 

of the transmitter and receivers used in the experiment. 

estimation process involves the use of a semi-supervised 
learning combined with weighted-centroid interpolation 
techniques to mitigate the reliance on large labeled datasets. 
First, we developed an effective measurement approach to 
collect both the direct path signal and reflected signals from 
targets within the desired area of interest using a Universal 
Software Radio Peripheral (USRP) software-defined radio 
(SDR) platform. 

In particular, we constructed two receivers employing USRP 
X300 devices, as illustrated in Figure 1. These receivers were 
strategically positioned to capture signals transmitted by the 
WiFi access point (Tx) and subsequently reflected from the 
targets located within the parking lot. The receiver (Rx1) was 
dedicated to capture the direct path signal, while the other 
receiver (Rx2) was utilized for capturing the echo signal. Data 
collection in the parking lot was conducted for a limited 
number (L) of occupancy scenarios, for instance, three 
different levels: empty, moderate, and full. Next, a deep semi-
supervised learning framework was developed to infer the 
status of a parking lot based on raw samples obtained from the 
receivers. Our focus was on using semi-supervised learning to 
classify spectrograms of the raw samples, which provide 
insights about car density. The aim of utilizing semi-supervised 
learning is to reduce the reliance on extensively annotated 
datasets, thereby improving the efficiency and effectiveness of 
the classification process [15]. Then, we employed the 
weighted-centroid method to estimate the number of cars in 
the parking lot, where the semi-supervised learning 
classification accuracy used as the weights in this estimation 
process. Finally, simulations were conducted to evaluate the 
performance of the semi-supervised learning approach and 
the weighted-centroid. The performance evaluations indicate 
that our proposed scheme can estimate the number of cars in 
a parking lot with reasonable estimation error and relatively 
small size datasets. 

The rest of this paper is organized as follows. Section II 
presents related work. The experiment and dataset 
preparation are presented in Section III. The proposed scheme 

is described in Section IV. Performance evaluations and 
numerical results are discussed in Section V, followed by 
conclusions in Section VI. 

II. RELATED WORK 

Current parking occupancy detection can be categorized 
into three main types: wireless sensor network (WSN) solution 
[16], [17], crowd monitoring solution [18], [19], and 
visionbased solution [12], [20]. 

WSN solutions typically involve deploying individual sensor 
nodes for each parking space. The commonly utilized sensor 
types include magnetic, ultrasonic, infrared, and loop sensors. 
These WSN-based detection algorithms are generally known 
for their high efficiency [16], [17]. However, they are 
susceptible to false detections in specific situations. For 
instance, magnetic sensors can be influenced by the presence 
of large nearby metallic objects, like a truck in an adjacent 
parking space. Ultrasonic and infrared sensors can be affected 
by environmental factors such as weather conditions and 
lighting variations, leading to potential inaccuracies in 
detection. Furthermore, these WSN solutions often require a 
large number of sensors to cover the parking area effectively. 

The crowd monitoring-based parking occupancy detection 
[18], [19] often involve the use of sensors integrated into 
mobile phone applications or probe vehicles. These 
approaches rely on crowdsensing strategies to gather 
information on urban parking availability. They can be seen as 
an alternative to traditional static parking sensors. However, 
their practicality is still limited to certain scenarios. Firstly, the 
cost associated with these methods can be quite high, as it 
necessitates a 

high deployment of sensors, such as probe vehicles, to 
gather sufficient parking information. Secondly, while this 
strategy is effective for detecting on-street parking in urban 
areas, it may not be suitable for large parking lots where the 
number of moving sensors inside the parking lot is limited. 

The vision-based solution utilizes cameras with artificial 
intelligence for parking occupancy detection [12], [20]. For 
instance, in [12], the authors proposed a visual detection 
system for parking space occupancy that utilizes a CNN. The 
system takes an image of a single parking spot as input and 
performs the detection task. Although the scheme achieved 
very high accuracy, its performance rapidly degrades in bad 
weather environments and poor lighting conditions. 

To address the challenges faced by existing systems, some 
researchers [13] have proposed the integration of radio-based 
fingerprinting systems as a backup solution for camerabased 
systems, particularly in scenarios where vision-based 
approaches encounter difficulties. By utilizing radio-based 
sensing and localization techniques, the proposed system aims 
to provide accurate and reliable parking lot detection, and 
occupancy monitoring. However, the paper lacks in-depth 
experimental validation or practical implementation of the 
proposed approach. 

Different from existing parking occupancy detection 
systems, we exploit the signals of opportunity transmitted 
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from WiFi access points (APs) to estimate the car density in 
campus parking lots. The proposed methodology is based on 
hardware experiments and it is unaffected by poor lighting and 
can adapt to bad weather conditions. Furthermore, unlike 
current systems that rely on supervised-learning CNN 
approaches and require huge labeled datasets, our approach 
does not necessitate exten- 

parking scenario. 

sive datasets or high computational complexity for accurately 
estimating parking availability. 

III. EXPERIMENT AND DATA SET PREPARATION 

A. Experiment Setup 

The experiment setup is shown in Fig. 1, where USRPs used 
to capture signals from the WiFi AP installed on the wall of 
Tennessee Tech Library. The heights of the WiFi AP, Rx1, and 
Rx2 are 6 meters, 2 meters, and 6 meters, respectively. The 
WiFi AP provides coverage for an area of approximately 8646 
square meters, including 282 parking spaces indicated by the 
blue line in Fig. 1. Signals were collected at different WiFi 
frequency bands, namely 2.437 GHz, 5.240 GHz, 5.580 GHz, 
and 5.785 GHz. 

Multiple rounds of experiments were conducted to generate 
datasets that contain car-density information. The desired 
signals are those reflected by the cars. There are a few 
challenges to capture stable and relevant datasets: 1) the 
opportunistic signals are not under our control, and the signal 
power is affected by the number of users and data traffic so 
that it fluctuates randomly; 2) it is practically impossible to 
capture pure reflected signals, and what we can get is a mix of 
signals coming from different directions; and 3) extracting the 
reflected signals from a composite of signals is difficult. To 
combat the randomness and reduce the impact of disturbing 
factors, we consider measuring the reflected signal power 
relative to the background signal power. Each round of 
experiment includes two measurements for a particular 
density, labeled as “Σ” and “bg” (short for “background”), 
respectively. Ideally, measurement “Σ” tries to capture the 
reflected signals by using a horn antenna pointing to the cars 
in the parking lot, while the other one tries to record all other 
signals excluding the reflected signals. Practically, each 
recording contains a mix of many signals (downlink signals 

from the AP, uplink signals from user equipment (UE), and 
signals reflected from objects (buildings and cars, etc.). 

B. Dataset Preparation 

Let  and  be the measured waveforms after 
some process (e.g., time-domain gating and frequency-domain 

filtering to cut off unrelated parts in the mixed signals), 
corresponding to the two types of experiments, respectively; 
where index n, n = 1,2,··· ,N, refers to car density levels of 
interest, with n = 0 and n = N for empty and full 

occupant scenarios, respectively. Roughly speaking, 
contains two terms and can expressed as 

 , (1) 

where  is the signal reflected from the cars, and α is an 
unknown positive number together with a delay τ representing 
a fraction of unwanted background signal mixed with the 
desired element. It is reasonable to say that the wideband 

signals  and  are mostly uncorrelated, which 
leads to the following relation of average signal powers, 

corresponding to  and : 

 . (2) 

As an effort to reduce the impact of signals that are 
uncorrelated to the car density, we decide to use the relative 
power of the two types of measured signals, i.e., generate 

datasets using . Specifically, spectrograms 
which are obtained by applying short-time Fourier transform 

to  are used as input data for our approach. 
Fig. 

2 shows the spectrogram of selected segments from collected 
signals under different parking lot occupancy scenarios, where 
full-density and moderate-density correspond to 282 and 126 
cars, respectively. Spectrograms offer a useful representation 
of the signal, showcasing the relationship between 
instantaneous frequency and time as a non-negative function. 
They are also valuable for estimating the power spectral 
density of the signal, which can be utilized to infer car density. 

 

 (a) (b) (c) 

Fig. 2: Spectrogram of segments from collected signals: (a) empty parking scenario; (b) moderate-density parking scenario; (c) full-density 
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The spectrogram generation process involves dividing the 
recorded signal into segments, with each segment containing 
100,000 samples. These segments are then transformed into 
spectrograms. The resulting spectrograms for different 
densities serve as inputs to a CNN that employs image-based 
classification techniques. This CNN is trained using the 
semisupervised learning algorithm, utilizing 1,500 
spectrograms as training inputs. Once the CNN has been 
trained using these spectrograms, it can be employed to 
classify spectrograms of signals with unknown car densities 
into the predefined classes. The CNN utilizes its learned 
features and patterns to make predictions and assign the 
unknown spectrograms to 

 

Fig. 3: The structure of the proposed CNN. 

the appropriate car density class. This classification process, 
combined with the weighted-centroid technique, enables the 
estimation of car densities. 

IV. ESTIMATION USING CNN WITH SPECTROGRAMS 

We have developed a CNN architecture that utilizes 
spectrotemporal data, i.e., spectrograms, obtained from a WiFi 
AP and USRP X310 SDR testbed. Inspired by the architecture of 
AlexNet [21], which was originally designed for image 
classification tasks, our proposed CNN architecture, depicted 
in Fig. 3, has been modified to suit our specific application. 
Unlike AlexNet, our CNN architecture comprises 3 
convolutional layers, 3 max pooling layers, and 2 fully 
connected layers. The proposed CNN is lightweight and less 
computationally expensive compared to AlexNet. The input to 
the CNN consists of multiple segmented sequences of raw IQ 
samples represented as graphical spectrograms with a size of 
224 × 224 pixels. This is then fed to the first convolution layer 
(Conv1). The convolution layer consists of spatial filters, called 
kernels, which perform a convolution operation over input 
data to extract the features. It applies 64 filters to extract 
features from the input using the Rectified Linear Unit (ReLU) 
activation function. In order to decrease the size of the feature 
maps generated by Conv1, we employ a max pooling layer 
(Pool1). Superficially, It downsamples the feature maps, 
effectively reducing the number of parameters and controlling 
overfitting. Then, this layer is connected to the second 
convolution layer (Conv2), where it performs another 
convolution operation with 128 filters to capture higher-level 
features in the spectrogram. Conv2 is connected to another 
max pooling layer (Pool2) to further reduce the spatial 
dimensions of the feature maps obtained from Conv2. Next, 

convolution layer 3 (Conv3) conducts another convolution 
operation with 256 filters to extract more complex and 
abstract features from the spectrogram. Another max pooling 
layer (Pool3) further downsamples the feature maps from 
Conv3. To prepare the features for classification, we employ a 
flatten layer that reshapes the output of the previous layer into 
a 1D vector. The flattened features are then passed to the first 
fully connected layer (FC1) consisting of 1024 units, where the 
ReLU activation function is applied to compute a nonlinear 
transformation. Similarly, the second fully connected layer 
(FC2) layer also comprises 1024 units with ReLU activation. It 
further processes the transformed features. Overall, our CNN 
architecture combines convolutional layers for feature 
extraction, max pooling layers for downsampling, and fully 
connected layers for high-level feature processing and 
classification. These architectural com- 

TABLE I: Architecture of the proposed CNN. 

 

Layer Type Layer Name # of Units 
Activation 
Function 

Input Input 224 × 224 × 3 - 

Convolutional Conv1 64 ReLU 

Max Pooling Pool1 - - 

Convolutional Conv2 128 ReLU 

Max Pooling Pool2 - - 

Convolutional Conv3 256 ReLU 

Max Pooling Pool3 - - 

Flatten Flatten - - 

Fully Connected FC1 1024 ReLU 

Fully Connected FC2 1024 ReLU 

Output Output 3 Softmax 

 

ponents are tailored to our specific application and dataset. 
Table III summarizes the architecture of our CNN model. 

To train and evaluate the proposed CNN, L (≥ 2) distinct 
datasets representing L different car density levels are 
collected. By analyzing the spectrograms using our CNN, we 
harness its robust image recognition capabilities to infer the 
density of cars in the parking lot. 

After collecting the datasets and generating spectrograms, 
we employ a semi-supervised learning approach with CNN to 
train the datasets. The idea is to utilize L labeled datasets, as 
well as an unlabeled dataset with an unknown number of cars, 
which will be classified to the pre-defined L classes. In this 
paper, the labeled datasets representing empty, moderate, 
and full densities. 

Subsequently, the unlabeled dataset can be preprocessed by 
generating spectrograms for the unknown number of cars. 
Without considering the labels, the trained CNN model is 
employed to extract features from the unlabeled 
spectrograms. These extracted features are then subjected to 
a clustering algorithm (e.g., k-means) which assigns cluster 
labels to the unlabeled data based on the clustering results. 
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Finally, the trained CNN model can be employed to classify 
and test the unknown dataset into empty, moderate, or full 
categories based on the labeled data. Then, the 
weightedcentroid can be used to estimate the number of cars 
for the unknown dataset. Specifically, we calculate the weights 
for each class based on their accuracies generated by the CNN. 
The weights can be calculated as the ratio of each class 
accuracy to the sum of all accuracies. Denote the validation 
accuracies as Ai, where i = 0,1,··· ,L refers to L predetermined 
density levels at which datasets are prepared. Given an 
unknown dataset as the input to an L-class classifier, it outputs 
L accuracy scores that can be used as weights for weight-
centroid interpolation. Then, the weighted centroidbased car 
density estimate can be calculated as follows: 

  (3) 

where N˜
v is the estimated number of cars and Nv(i) is the real 

number of cars of the ith class during dataset collection. Note 
that the adoption of a semi-supervised approach enables us to 
leverage a larger quantity of unlabeled data alongside a 
smaller set of labeled data during the training process. This 
approach reflects a more realistic scenario, considering the 
challenges 

TABLE II: Confusion matrix of the proposed classifier. 

Predicted 

Total 

86 
True 

104 

 Total 81 109 190 

involved in collecting and labeling extensive volumes of data. 
By utilizing unlabeled data effectively, we can enhance the 
training process and improve the model’s performance even 
with limited labeled data available. Moreover, the use of 
weighted-centroid reduces the need of huge datasets for 
estimating the number of cars. 

V. PERFORMANCE EVALUATION AND NUMERICAL RESULTS 

In this section, we assess the effectiveness of the proposed 
car density estimation method for parking lots. Three (L = 3) 
car density levels are considered for evaluation: empty, 
moderate and full, corresponding to 0, 126 and 282 cars. To 
evaluate its performance, we use the dataset representing the 
moderate density class as the dataset with an unknown 
number of cars, while the other datasets (empty and full) serve 
as benchmarks for estimating the number of cars. 

A. Performance Metrics 

To evaluate the performance of the proposed CNN-based 
model, we considered the following metrics. The accuracy (Ai) 

was calculated by considering the moderate data as input to a 
binary classifier (full vs empty). This metric yields two separate 
accuracy values, which can be calculated based on the 
classification of positives and negatives as follows: 

  (4) 

where TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative, respectively. 

The detection rate (DR) measures the percentage of 
scenarios that are estimated correctly and it is given as: 

  (5) 

The F1 score provides a balanced measure of both precision 
and recall. It can be given as: 

  (6) 

The false acceptance rate (FA) measures the percentage of 
scenarios that are falsely estimated and it is represented as: 

  (7) 

The highest difference (HD) is the difference between DR 
and FA. 

 HD = DR − FA (8) 

TABLE III: Proposed semi-supervised learning model performance 

evaluation results. 

 

Class Ai % DR % F1% FA % HD % 

Empty 0.93 0.90 0.91 0.06 0.84 

Full 0.78 0.62 0.76 0.34 0.28 

 

Fig. 4: The ROC curve of the semi-supervised learning model. 

The receiver operating characteristic (ROC) curve is used to 
evaluate the accuracy of the classifier, which is measured by 
the area under the curve (AUC). This area indicates how much 
the model can distinguish between the classes, where a higher 
AUC represents a better performance. 

 
Empty Full 

Empty 80 6 

Full 1 103 
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Finally, the evaluation of weighted-centroid performance is 
using the root mean square error deviation (RMSD) which can 
be represented as follows: 

  (9) 

where N˜
vt is the estimated number of cars at iteration t, Nvt is 

the real number of cars, and T is the number of iterations. 

B. Numerical Results 

To evaluate the semi-supervised learning CNN model, we 
divided each dataset into training and validation sets. 
Subsequently, we utilized the proposed CNN model on the 
spectrograms and assessed its performance using the 
evaluation metrics mentioned in Subsection V-A . We used the 
confusion matrix given in Table II to find the values of TP, TN, 
FP and FN, and then calculate the values of the performance 
metrics. The results are summarized in Table III. Note that the 
semisupervised learning approach achieved an average 
accuracy of 85.5%. In addition, Fig. 4 shows the ROC curve for 
the proposed CNN using the empty and full datasets. 

After evaluating the proposed CNN model, we applied the 
weighted-centroid based on (3) to estimate the number of cars 
of the moderate density. The weighted-centroid estimator 

leads to an estimate N˜
v = 129, which is close to the real 

number of cars 126. Then, the calculated RMSD of the car 
density estimator over several iterations is equal to 6.51. 

Finally, we compare the proposed scheme with some of the 
existing parking density estimation schemes [12], [13]. 

TABLE IV: Comparison of parking density estimation schemes. 

 

 Radio- Average Bad Size of 
Complexity 

 based accuracy weather dataset  

[12] × 
√ 

97.7% × 
√ 

huge high 

[13] √ 91% √ huge high 
Ours  85.5%  small low 

 

Scheme [12] achieves highest estimation accuracy, however it 
is based on cameras and the accuracy degrades rapidly during 
bad weather conditions. Scheme [13] is based on cameras and 
it uses radio signals in bad weather conditions. It achieves 
higher accuracy compared to our scheme. However, both 
schemes [12], [13] require huge labeled datasets and high 
computational resources, which contribute to the increased 
complexity of the estimation scheme. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, we proposed and tested a particular use case of 
performing radio-based car density estimation in parking lots. 
The proposed scheme exploits the WiFi signals of opportunity 
and fingerprinting to provide an efficient and cost-effective 
alternative to current parking occupancy detection systems. It 
makes use of the combination of semi-supervised learning 
CNN and weighted-centroid interpolation to estimate the car 
density with limited measurements and relatively small 
labeled datasets. The performance evaluation and simulation 
results demonstrate that the proposed scheme can efficiently 
estimate car densities in parking lots with reasonable 
estimation errors. The proposed approach adapts to bad 
weather conditions and eliminates the need for extensive 
labeling efforts and complex processing typically associated 
with traditional supervised learning techniques. 

While the proposed methodology aims to reduce the 
complexity of existing car density estimation schemes, there 
are certain limitations and issues that require further 
investigation. For example, the correlation between the 
presence of WiFi users and the estimation accuracy is not clear 
and needs to be investigated. Additionally, the recorded 
signals contain a mixture of various signals, including downlink 
signals, uplink signals, and reflected signals. Some signal 
separation techniques, like blind source separation, may be 
considered to extract desired signals. 

In the future, we will consider extracting strongly-relevant 
information and apply data fusion from multiple WiFi APs for 
increased performance. Additionally, we aim to conduct tests 
under a wider range of parking lot scenarios. Furthermore, 
incorporating additional labeled data and introducing more 
classes will be considered to further improve the accuracy and 
effectiveness of the results. 

Overall, the proposed method provides a possible 
mechanism to reduce the dataset size and system 
computational complexity for real-time applications utilizing 
radio-based fingerprinting. These findings have practical 
implications for different real-time applications that uses 
radio-based fingerprinting that requires low complexity and 
high processing speeds, such as traffic management of self-
driving autonomous vehicles, health applications, etc. 

ACKNOWLEDGMENT 

This work is supported by the National Science Foundation 
under grant #2135275. 

REFERENCES 

[1] Z. Wang, Q. He, and R. S. Blum, “Exploiting information about the 
structure of signals of opportunity for passive radar performance 
increase,” IEEE Transactions on Signal Processing, vol. 69, pp. 6083– 
6100, 2021. 

[2] F. Maasdorp, J. Cilliers, and C. Tong, “Propeller modulation analysis of 4-
blade, 4-engine aircraft in FM-band multistatic passive radar,” in proc. of 
IEEE International Radar Conference (RADAR), 2020. 

[3] T. Martelli, F. Colone, and R. Cardinali, “DVB-T based passive radar for 
simultaneous counter-drone operations and civil air traffic surveillance,” 
IET Radar, Sonar & Navigation, vol. 14, no. 4, pp. 505–515, 2020. 



Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 06,2024 at 17:50:46 UTC from IEEE Xplore.  Restrictions apply.  

[4] B. Knoedler, M. Broetje, and W. Koch, “A particle filter for trackbefore-
detect in GSM passive coherent location,” in proc. of IEEE Radar 
Conference (RadarConf), 2019. 

[5] Y. Li, X. Wang, and Z. Ding, “Multi-target position and velocity estimation 
using OFDM communication signals,” IEEE Transactions on 
Communications, vol. 68, no. 2, pp. 1160–1174, 2019. 

[6] W. Li, R. J. Piechocki, K. Woodbridge, C. Tang, and K. Chetty, “Passive wifi 
radar for human sensing using a stand-alone access point,” IEEE 
Transactions on Geoscience and Remote Sensing, vol. 59, no. 3, pp. 
1986–1998, 2020. 

[7] W. Li, B. Tan, and R. J. Piechocki, “WiFi-based passive sensing system for 
human presence and activity event classification,” IET Wireless Sensor 
Systems, vol. 8, no. 6, pp. 276–283, 2018. 

[8] F. Gu, M. Ramezani, K. Khoshelham, X. Zheng, R. Zhou, and J. Shang, “Fast 
and reliable wifi fingerprint collection for indoor localization,” arXiv 
preprint arXiv:2009.03743, 2020. 

[9] O. P. Babalola and V. Balyan, “WiFi fingerprinting indoor localization 
based on dynamic mode decomposition feature selection with hidden 
markov model,” Sensors, vol. 21, no. 20, p. 6778, 2021. 

[10] T. Giuffre, S. M. Siniscalchi, and G. Tesoriere, “A novel architecture of` 
parking management for smart cities,” Procedia-Social and Behavioral 
Sciences, vol. 53, pp. 16–28, 2012. 

[11] D. N. C. Loong, S. Isaak, and Y. Yusof, “Machine vision based smart 
parking system using internet of things,” Telkomnika 
(Telecommunication Computing Electronics and Control), vol. 17, no. 4, 
pp. 2098–2106, 2019. 

[12] S. Nurullayev and S.-W. Lee, “Generalized parking occupancy analysis 
based on dilated convolutional neural network,” Sensors, vol. 19, no. 2, 
p. 277, 2019. 

[13] M. Bauhofer, Y. Zhang, M. Arnold, and S. Ten Brink, “6G radio-based 
parking lot detection,” in proc. of IEEE 3rd International Symposium on 
Joint Communications & Sensing (JC&S), 2023. 

[14] Y. Ouali, C. Hudelot, and M. Tami, “An overview of deep semisupervised 
learning,” arXiv preprint arXiv:2006.05278, 2020. 

[15] Q. Zhang and W. Saad, “Semi-supervised learning for channel 
chartingaided IoT localization in millimeter wave networks,” in proc. of 
IEEE Global Communications Conference (GLOBECOM), 2021. 

[16] F. Al-Turjman and A. Malekloo, “Smart parking in IoT-enabled cities: A 
survey,” Sustainable Cities and Society, vol. 49, p. 101608, 2019. 

[17] T. Lin, H. Rivano, and F. Le Mouel, “A survey of smart parking¨ solutions,” 
IEEE Transactions on Intelligent Transportation Systems, vol. 18, no. 12, 
pp. 3229–3253, 2017. 

[18] A. Khan, J. Ali Shah, K. Kadir, W. Albattah, and F. Khan, “Crowd 
monitoring and localization using deep convolutional neural network: A 
review,” Applied Sciences, vol. 10, no. 14, p. 4781, 2020. 

[19] U. Singh, J.-F. Determe, F. Horlin, and P. De Doncker, “Crowd monitoring: 
State-of-the-art and future directions,” IETE Technical Review, vol. 38, 
no. 6, pp. 578–594, 2021. 

[20] R. Ke, Y. Zhuang, Z. Pu, and Y. Wang, “A smart, efficient, and reliable 
parking surveillance system with edge artificial intelligence on iot 
devices,” IEEE Transactions on Intelligent Transportation Systems, vol. 
22, no. 8, pp. 4962–4974, 2020. 

[21] G. E. Hinton, A. Krizhevsky, and I. Sutskever, “ImageNet classification 
with deep convolutional neural networks,” Advances in neural 
information processing systems, vol. 25, no. 1106-1114, p. 1, 2012. 


