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Abstract—Passive sensing leverages existing signals from
illuminators of opportunity to perform target localization, detection,
and tracking without the need for additional infrastructure. In this
paper, we explore the use of WiFi signals of opportunity for estimating
car density in parking lots. The aim is to develop an efficient and cost-
effective parking occupancy estimation system to alleviate traffic
congestion caused by drivers searching for parking spaces. To achieve
this, experimental measurements were conducted in a real outdoor
environment to collect reflected WiFi signals from targets (cars).
These collected signals were then used for car density estimation
using a combination of semisupervised learning convolutional neural
network (CNN) and weighted-centroid interpolation techniques, only
requiring small size datasets and limited measurements. The
proposed method overcomes the limitations of existing data-driven
estimators by reducing the reliance on large labeled datasets and
computational complexity associated with traditional supervised
learning methods. In addition, it provides a cost-effective alternative
to the traditional systems that rely on a large number of sensors.
Simulations are performed to evaluate the performance of the
estimation, and the results demonstrate that our scheme can
effectively estimate car densities in the parking lot with reasonable
estimation errors.

Index Terms—WiFi signals of opportunity, passive bistatic radar
(PBR), environment monitoring, car density estimation, semi-
supervised learning, convolutional neural network (CNN).
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I. INTRODUCTION

Passive bistatic radar (PBR) has gained significant attention
in recent years as an effective method for localizing, detecting,
and tracking targets [1]. It can also make use of various
ambient communication signals of opportunity, including
frequency modulation (FM) signals [2], digital video
broadcasting terrestrial (DVB-T) signals [3], global system for
mobile communication (GSM) signals [4], orthogonal
frequency division multiplexing (OFDM) signals [5], and WiFi
signals [6]. PBR offers several advantages over traditional radar
systems, including cost reduction, stealth capabilities, compact
size, and minimal interference to existing wireless systems, as
it does not require a dedicated radar transmitter.

With the widespread deployment of WiFi infrastructure in
residential, commercial, and industrial areas, WiFi signals have
become a valuable resource for passive sensing in both indoor

and outdoor environments through fingerprinting techniques
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[71, [8], [9]. WiFi fingerprinting techniques have been
extensively used in indoor positioning and sensing systems. For
example, in [7] WiFi fingerprints were used to detect human

presence and classify human activity using support vector
machine (SVM) by analyzing Doppler information. In [8] a fast
and reliable method was proposed for collecting WiFi
fingerprints in indoor environments to enable accurate indoor
localization. In [9] the authors presented a WiFi
fingerprintingbased indoor localization method using dynamic
mode decomposition (DMD) feature selection and hidden
Markov model (HMM). These advancements in indoor WiFi
fingerprinting have inspired researchers to explore the
potential of WiFi signals of opportunity for sensing in outdoor
applications, particularly in intelligent transportation system
(ITS). Utilizing WiFi signals of opportunity for sensing in ITS can
greatly enhance real-time data collection, analysis, and
decisionmaking processes for effective traffic management in
urban areas. In particular, WiFi sensing can make a significant
impact in managing traffic congestion caused by drivers
searching for vacant parking spaces in crowded cities. Research
indicates that approximately 30 percent of traffic congestion is
attributed to parking search activities [10]. By leveraging WiFi’s
sensing capabilities, real-time information on parking lot car
density can be collected and analyzed. This information allows
for the estimation of parking space availability. Subsequently,
this data can then be used to effectively direct drivers to vacant
parking lots, leading to improved traffic flow, reduced traffic
congestion, and a positive environmental impact [11]. WiFi
signals of opportunity provides a cost-effective alternative to
existing parking occupancy detection systems that rely on
numerous sensors for real-time occupancy monitoring. These
systems often require substantial implementation and
maintenance costs. Also, vision-based systems, which rely on
cameras, often face performance limitations when operating
in challenging environmental conditions such as low lighting,
fog, and snow [12].

In an effort to overcome these challenges, some researchers
have utilized radio-based fingerprinting techniques with deep
supervised learning for estimating parking availability [13].
However, employing deep supervised learning for such
systems often requires huge labeled datasets, which can be
resource-intensive, time-consuming, and demanding in terms
of effort. These requirements may not be feasible in many
practical scenarios, limiting the adoption and application of
various deep learning methods [14].

To address these issues, this paper presents a low-cost yet
effective scheme that utilizes WiFi signals of opportunity as
fingerprints for estimating car density in parking lots. The
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Fig. 1: The environmental layout of Tennessee Tech University
parking lot in which the experiment was performed and the locations
of the transmitter and receivers used in the experiment.

estimation process involves the use of a semi-supervised
learning combined with weighted-centroid interpolation
techniques to mitigate the reliance on large labeled datasets.
First, we developed an effective measurement approach to
collect both the direct path signal and reflected signals from
targets within the desired area of interest using a Universal
Software Radio Peripheral (USRP) software-defined radio
(SDR) platform.

In particular, we constructed two receivers employing USRP
X300 devices, as illustrated in Figure 1. These receivers were
strategically positioned to capture signals transmitted by the
WiFi access point (Tx) and subsequently reflected from the
targets located within the parking lot. The receiver (Rx1) was
dedicated to capture the direct path signal, while the other
receiver (Rx2) was utilized for capturing the echo signal. Data
collection in the parking lot was conducted for a limited
number (L) of occupancy scenarios, for instance, three
different levels: empty, moderate, and full. Next, a deep semi-
supervised learning framework was developed to infer the
status of a parking lot based on raw samples obtained from the
receivers. Our focus was on using semi-supervised learning to
classify spectrograms of the raw samples, which provide
insights about car density. The aim of utilizing semi-supervised
learning is to reduce the reliance on extensively annotated
datasets, thereby improving the efficiency and effectiveness of
the classification process [15]. Then, we employed the
weighted-centroid method to estimate the number of cars in
the parking lot, where the semi-supervised learning
classification accuracy used as the weights in this estimation
process. Finally, simulations were conducted to evaluate the
performance of the semi-supervised learning approach and
the weighted-centroid. The performance evaluations indicate
that our proposed scheme can estimate the number of cars in
a parking lot with reasonable estimation error and relatively
small size datasets.

The rest of this paper is organized as follows. Section II
presents related work. The experiment and dataset
preparation are presented in Section Ill. The proposed scheme

is described in Section IV. Performance evaluations and
numerical results are discussed in Section V, followed by
conclusions in Section VI.

Il.  RELATED WORK

Current parking occupancy detection can be categorized
into three main types: wireless sensor network (WSN) solution
[16], [17], crowd monitoring solution [18], [19], and
visionbased solution [12], [20].

WSN solutions typically involve deploying individual sensor
nodes for each parking space. The commonly utilized sensor
types include magnetic, ultrasonic, infrared, and loop sensors.
These WSN-based detection algorithms are generally known
for their high efficiency [16], [17]. However, they are
susceptible to false detections in specific situations. For
instance, magnetic sensors can be influenced by the presence
of large nearby metallic objects, like a truck in an adjacent
parking space. Ultrasonic and infrared sensors can be affected
by environmental factors such as weather conditions and
lighting variations, leading to potential inaccuracies in
detection. Furthermore, these WSN solutions often require a
large number of sensors to cover the parking area effectively.

The crowd monitoring-based parking occupancy detection
[18], [19] often involve the use of sensors integrated into
mobile phone applications or probe vehicles. These
approaches rely on crowdsensing strategies to gather
information on urban parking availability. They can be seen as
an alternative to traditional static parking sensors. However,
their practicality is still limited to certain scenarios. Firstly, the
cost associated with these methods can be quite high, as it
necessitates a

high deployment of sensors, such as probe vehicles, to
gather sufficient parking information. Secondly, while this
strategy is effective for detecting on-street parking in urban
areas, it may not be suitable for large parking lots where the
number of moving sensors inside the parking lot is limited.

The vision-based solution utilizes cameras with artificial
intelligence for parking occupancy detection [12], [20]. For
instance, in [12], the authors proposed a visual detection
system for parking space occupancy that utilizes a CNN. The
system takes an image of a single parking spot as input and
performs the detection task. Although the scheme achieved
very high accuracy, its performance rapidly degrades in bad
weather environments and poor lighting conditions.

To address the challenges faced by existing systems, some
researchers [13] have proposed the integration of radio-based
fingerprinting systems as a backup solution for camerabased
systems, particularly in scenarios where vision-based
approaches encounter difficulties. By utilizing radio-based
sensing and localization techniques, the proposed system aims
to provide accurate and reliable parking lot detection, and
occupancy monitoring. However, the paper lacks in-depth
experimental validation or practical implementation of the
proposed approach.

Different from existing parking occupancy detection
systems, we exploit the signals of opportunity transmitted
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from WiFi access points (APs) to estimate the car density in
campus parking lots. The proposed methodology is based on
hardware experiments and it is unaffected by poor lighting and
can adapt to bad weather conditions. Furthermore, unlike
current systems that rely on supervised-learning CNN

approaches and require huge labeled datasets, our approach
does not necessitate exten-

from the AP, uplink signals from user equipment (UE), and
signals reflected from objects (buildings and cars, etc.).

B. Dataset Preparation

,(n) (n)
Let *SEn (t) and Sby (t) be the measured waveforms after
some process (e.g., time-domain gating and frequency-domain
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Fig. 2: Spectrogram of segments from collected signals: (a) empty parking scenario; (b) moderate-density parking scenario; (c) full-density

parking scenario.

sive datasets or high computational complexity for accurately
estimating parking availability.

IIl.  EXPERIMENT AND DATA SET PREPARATION
A. Experiment Setup

The experiment setup is shown in Fig. 1, where USRPs used
to capture signals from the WiFi AP installed on the wall of
Tennessee Tech Library. The heights of the WiFi AP, Rx1, and
Rx2 are 6 meters, 2 meters, and 6 meters, respectively. The
WiFi AP provides coverage for an area of approximately 8646
square meters, including 282 parking spaces indicated by the
blue line in Fig. 1. Signals were collected at different WiFi
frequency bands, namely 2.437 GHz, 5.240 GHz, 5.580 GHz,
and 5.785 GHz.

Multiple rounds of experiments were conducted to generate
datasets that contain car-density information. The desired
signals are those reflected by the cars. There are a few
challenges to capture stable and relevant datasets: 1) the
opportunistic signals are not under our control, and the signal
power is affected by the number of users and data traffic so
that it fluctuates randomly; 2) it is practically impossible to
capture pure reflected signals, and what we can get is a mix of
signals coming from different directions; and 3) extracting the
reflected signals from a composite of signals is difficult. To
combat the randomness and reduce the impact of disturbing
factors, we consider measuring the reflected signal power
relative to the background signal power. Each round of
experiment includes two measurements for a particular
density, labeled as “Z” and “bg” (short for “background”),
respectively. Ideally, measurement “X” tries to capture the
reflected signals by using a horn antenna pointing to the cars
in the parking lot, while the other one tries to record all other
signals excluding the reflected signals. Practically, each
recording contains a mix of many signals (downlink signals

filtering to cut off unrelated parts in the mixed signals),
corresponding to the two types of experiments, respectively;
where index n, n = 1,2,--- ,N, refers to car density levels of
interest, with n = 0 and n = N for empty and full

occupant scenarios, respectively. Roughly speaking, S(Zﬂ)(t)
contains two terms and can expressed as
ST (W)~ ST +asiy (- 7) M
ST : :
where“ref\"/is the signal reflected from the cars, and a is an
unknown positive number together with a delay T representing
a fraction of unwanted background signal mixed with the
desired element. It is reasonable to say that the wideband
SEHE) angShy (=)

signals by are mostly uncorrelated, which

leads to the following relation of average signal powers,
S8 (t) STI(H) gngSin (t = 7)

corresponding to g

pn) . pln) 2 p(n)

PE NPref+a l‘1:::')_.(;_ (2)

As an effort to reduce the impact of signals that are
uncorrelated to the car density, we decide to use the relative
power of the two types of measured signals, i.e., generate

o)A
datasets using . Specifically, spectrograms

which are obtained by applying short-time Fourier transform

o | By
to

Fig.

2 shows the spectrogram of selected segments from collected
signals under different parking lot occupancy scenarios, where
full-density and moderate-density correspond to 282 and 126
cars, respectively. Spectrograms offer a useful representation
of the signal, showcasing the relationship between
instantaneous frequency and time as a non-negative function.
They are also valuable for estimating the power spectral
density of the signal, which can be utilized to infer car density.

are used as input data for our approach.
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The spectrogram generation process involves dividing the
recorded signal into segments, with each segment containing
100,000 samples. These segments are then transformed into
spectrograms. The resulting spectrograms for different
densities serve as inputs to a CNN that employs image-based
classification techniques. This CNN is trained using the
semisupervised learning  algorithm,  utilizing 1,500
spectrograms as training inputs. Once the CNN has been
trained using these spectrograms, it can be employed to
classify spectrograms of signals with unknown car densities
into the predefined classes. The CNN utilizes its learned
features and patterns to make predictions and assign the
unknown spectrograms to

Input
(spectrograms)

Convolutional Neural Network

QOutput

, | @——Empty
@— Mod.
@— Full

Fig. 3: The structure of the proposed CNN.

the appropriate car density class. This classification process,
combined with the weighted-centroid technique, enables the
estimation of car densities.

IV. ESTIMATION USING CNN WITH SPECTROGRAMS

We have developed a CNN architecture that utilizes
spectrotemporal data, i.e., spectrograms, obtained from a WiFi
AP and USRP X310 SDR testbed. Inspired by the architecture of
AlexNet [21], which was originally designed for image
classification tasks, our proposed CNN architecture, depicted
in Fig. 3, has been modified to suit our specific application.
Unlike AlexNet, our CNN architecture comprises 3
convolutional layers, 3 max pooling layers, and 2 fully
connected layers. The proposed CNN is lightweight and less
computationally expensive compared to AlexNet. The input to
the CNN consists of multiple segmented sequences of raw IQ
samples represented as graphical spectrograms with a size of
224 x 224 pixels. This is then fed to the first convolution layer
(Conv1). The convolution layer consists of spatial filters, called
kernels, which perform a convolution operation over input
data to extract the features. It applies 64 filters to extract
features from the input using the Rectified Linear Unit (ReLU)
activation function. In order to decrease the size of the feature
maps generated by Convl, we employ a max pooling layer
(Pooll). Superficially, It downsamples the feature maps,
effectively reducing the number of parameters and controlling
overfitting. Then, this layer is connected to the second
convolution layer (Conv2), where it performs another
convolution operation with 128 filters to capture higher-level
features in the spectrogram. Conv2 is connected to another
max pooling layer (Pool2) to further reduce the spatial
dimensions of the feature maps obtained from Conv2. Next,

convolution layer 3 (Conv3) conducts another convolution
operation with 256 filters to extract more complex and
abstract features from the spectrogram. Another max pooling
layer (Pool3) further downsamples the feature maps from
Conv3. To prepare the features for classification, we employ a
flatten layer that reshapes the output of the previous layer into
a 1D vector. The flattened features are then passed to the first
fully connected layer (FC1) consisting of 1024 units, where the
RelLU activation function is applied to compute a nonlinear
transformation. Similarly, the second fully connected layer
(FC2) layer also comprises 1024 units with ReLU activation. It
further processes the transformed features. Overall, our CNN
architecture combines convolutional layers for feature
extraction, max pooling layers for downsampling, and fully
connected layers for high-level feature processing and
classification. These architectural com-
TABLE I: Architecture of the proposed CNN.

. Activation
Layer Type Layer Name # of Units Function
Input Input 224 x 224 x 3 -
Convolutional Convl 64 ReLU
Max Pooling Pooll - -
Convolutional Conv2 128 ReLU
Max Pooling Pool2 - -
Convolutional Conv3 256 RelLU
Max Pooling Pool3 - -
Flatten Flatten - -
Fully Connected FC1 1024 ReLU
Fully Connected FC2 1024 ReLU
Output Output 3 Softmax

ponents are tailored to our specific application and dataset.
Table Ill summarizes the architecture of our CNN model.

To train and evaluate the proposed CNN, L (= 2) distinct
datasets representing L different car density levels are
collected. By analyzing the spectrograms using our CNN, we
harness its robust image recognition capabilities to infer the
density of cars in the parking lot.

After collecting the datasets and generating spectrograms,
we employ a semi-supervised learning approach with CNN to
train the datasets. The idea is to utilize L labeled datasets, as
well as an unlabeled dataset with an unknown number of cars,
which will be classified to the pre-defined L classes. In this
paper, the labeled datasets representing empty, moderate,
and full densities.

Subsequently, the unlabeled dataset can be preprocessed by
generating spectrograms for the unknown number of cars.
Without considering the labels, the trained CNN model is
employed to extract features from the unlabeled
spectrograms. These extracted features are then subjected to
a clustering algorithm (e.g., k-means) which assigns cluster
labels to the unlabeled data based on the clustering results.
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Finally, the trained CNN model can be employed to classify
and test the unknown dataset into empty, moderate, or full
categories based on the labeled data. Then, the
weightedcentroid can be used to estimate the number of cars
for the unknown dataset. Specifically, we calculate the weights
for each class based on their accuracies generated by the CNN.
The weights can be calculated as the ratio of each class
accuracy to the sum of all accuracies. Denote the validation
accuracies as A;, where i = 0,1,-+,L refers to L predetermined
density levels at which datasets are prepared. Given an
unknown dataset as the input to an L-class classifier, it outputs
L accuracy scores that can be used as weights for weight-
centroid interpolation. Then, the weighted centroidbased car
density estimate can be calculated as follows:

N — Zf:a Ai x Ny
vE T
> im0 A (3)

where N vis the estimated number of cars and Ny is the real
number of cars of the ith class during dataset collection. Note
that the adoption of a semi-supervised approach enables us to
leverage a larger quantity of unlabeled data alongside a
smaller set of labeled data during the training process. This
approach reflects a more realistic scenario, considering the
challenges
TABLE Il: Confusion matrix of the proposed classifier.

Predicted
Empty | Full Total
Empty 80 6 86
True
Full 1 103 104
Total 81 109 190

involved in collecting and labeling extensive volumes of data.
By utilizing unlabeled data effectively, we can enhance the
training process and improve the model’s performance even
with limited labeled data available. Moreover, the use of
weighted-centroid reduces the need of huge datasets for
estimating the number of cars.

V. PERFORMANCE EVALUATION AND NUMERICAL RESULTS

In this section, we assess the effectiveness of the proposed
car density estimation method for parking lots. Three (L = 3)
car density levels are considered for evaluation: empty,
moderate and full, corresponding to 0, 126 and 282 cars. To
evaluate its performance, we use the dataset representing the
moderate density class as the dataset with an unknown
number of cars, while the other datasets (empty and full) serve
as benchmarks for estimating the number of cars.

A. Performance Metrics

To evaluate the performance of the proposed CNN-based
model, we considered the following metrics. The accuracy (4i)

was calculated by considering the moderate data as input to a
binary classifier (full vs empty). This metric yields two separate
accuracy values, which can be calculated based on the
classification of positives and negatives as follows:

A TP +TN
" TP+TN+FP+FN (4)

where TP, TN, FP, and FN represent true positive, true
negative, false positive, and false negative, respectively.

The detection rate (DR) measures the percentage of
scenarios that are estimated correctly and it is given as:

TP
DR= ———

TP+ FP (5)

The F1score provides a balanced measure of both precision
and recall. It can be given as:

_ TP
TP+ §(FP+ FN) (6)

Fy

The false acceptance rate (FA) measures the percentage of

scenarios that are falsely estimated and it is represented as:
Fpr
FA= —«——

TN+ FP (7)

The highest difference (HD) is the difference between DR
and FA.

HD =DR-FA (8)

TABLE Ill: Proposed semi-supervised learning model performance
evaluation results.

Class Ai% DR % F1% FA % HD %
Empty 0.93 0.90 0.91 0.06 0.84

Full 0.78 0.62 0.76 0.34 0.28
1.0 _,-"“‘;: R W

|"'I
0.8 4

o
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o
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0.2 <% Micro-average ROC curve (area = 0.96)
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ROC curve of Empty class (area = 0.96)

0.0

Fig. 4: The ROC curve of the semi-supervised learning model.

The receiver operating characteristic (ROC) curve is used to
evaluate the accuracy of the classifier, which is measured by
the area under the curve (AUC). This area indicates how much
the model can distinguish between the classes, where a higher
AUC represents a better performance.
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Finally, the evaluation of weighted-centroid performance is
using the root mean square error deviation (RMSD) which can
be represented as follows:

i!‘ \7 -
N, — N, )2
RJ"I[SD—\/E[—I(]\% i L_’)

)

where N v:is the estimated number of cars at iteration t, Nwis
the real number of cars, and T is the number of iterations.

B. Numerical Results

To evaluate the semi-supervised learning CNN model, we
divided each dataset into training and validation sets.
Subsequently, we utilized the proposed CNN model on the
spectrograms and assessed its performance using the
evaluation metrics mentioned in Subsection V-A . We used the
confusion matrix given in Table Il to find the values of TP, TN,
FP and FN, and then calculate the values of the performance
metrics. The results are summarized in Table Ill. Note that the
semisupervised learning approach achieved an average
accuracy of 85.5%. In addition, Fig. 4 shows the ROC curve for
the proposed CNN using the empty and full datasets.

After evaluating the proposed CNN model, we applied the
weighted-centroid based on (3) to estimate the number of cars
of the moderate density. The weighted-centroid estimator

leads to an estimate N, = 129, which is close to the real
number of cars 126. Then, the calculated RMSD of the car
density estimator over several iterations is equal to 6.51.
Finally, we compare the proposed scheme with some of the
existing parking density estimation schemes [12], [13].
TABLE IV: Comparison of parking density estimation schemes.

Radio- Average Bad Size of
Complexity
based accuracy | weather | dataset
[12] x 97.7% x huge high
v v
[13] v 91% N huge high
Ours 85.5% small low

Scheme [12] achieves highest estimation accuracy, however it
is based on cameras and the accuracy degrades rapidly during
bad weather conditions. Scheme [13] is based on cameras and
it uses radio signals in bad weather conditions. It achieves
higher accuracy compared to our scheme. However, both
schemes [12], [13] require huge labeled datasets and high
computational resources, which contribute to the increased
complexity of the estimation scheme.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed and tested a particular use case of
performing radio-based car density estimation in parking lots.
The proposed scheme exploits the WiFi signals of opportunity
and fingerprinting to provide an efficient and cost-effective
alternative to current parking occupancy detection systems. It
makes use of the combination of semi-supervised learning
CNN and weighted-centroid interpolation to estimate the car
density with limited measurements and relatively small
labeled datasets. The performance evaluation and simulation
results demonstrate that the proposed scheme can efficiently
estimate car densities in parking lots with reasonable
estimation errors. The proposed approach adapts to bad
weather conditions and eliminates the need for extensive
labeling efforts and complex processing typically associated
with traditional supervised learning techniques.

While the proposed methodology aims to reduce the
complexity of existing car density estimation schemes, there
are certain limitations and issues that require further
investigation. For example, the correlation between the
presence of WiFi users and the estimation accuracy is not clear
and needs to be investigated. Additionally, the recorded
signals contain a mixture of various signals, including downlink
signals, uplink signals, and reflected signals. Some signal
separation techniques, like blind source separation, may be
considered to extract desired signals.

In the future, we will consider extracting strongly-relevant
information and apply data fusion from multiple WiFi APs for
increased performance. Additionally, we aim to conduct tests
under a wider range of parking lot scenarios. Furthermore,
incorporating additional labeled data and introducing more
classes will be considered to further improve the accuracy and
effectiveness of the results.

Overall, the proposed method provides a possible
mechanism to reduce the dataset size and system
computational complexity for real-time applications utilizing
radio-based fingerprinting. These findings have practical
implications for different real-time applications that uses
radio-based fingerprinting that requires low complexity and
high processing speeds, such as traffic management of self-
driving autonomous vehicles, health applications, etc.
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