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ABSTRACT

The coupling state between ions and neutrals in the interstellar medium plays a key role in the dynamics of magnetohydrodynamic
(MHD) turbulence, but is challenging to study numerically. In this work, we investigate the damping of MHD turbulence in a
partially ionized medium using 3D two-fluid (ions + neutrals) simulations generated with the ATHENAK code. Specifically, we
examine the velocity, density, and magnetic field statistics of the two-fluid MHD turbulence in different regimes of neutral-ion
coupling. Our results demonstrate that when ions and neutrals are strongly coupled, the velocity statistics resemble those of
single-fluid MHD turbulence. Both the velocity structures and kinetic energy spectra of ions and neutrals are similar, while their
density structures can be significantly different. With an excess of small-scale sharp density fluctuations in ions, the density
spectrum in ions is shallower than that of neutrals. When ions and neutrals are weakly coupled, the turbulence in ions is more
severely damped due to the ion-neutral collisional friction than that in neutrals, resulting in a steep kinetic energy spectrum
and density spectrum in ions compared to the Kolmogorov spectrum. We also find that the magnetic energy spectrum basically
follows the shape of the kinetic energy spectrum of ions, irrespective of the coupling regime. In addition, we find large density
fluctuations in ions and neutrals and thus spatially inhomogeneous ionization fractions. As a result, the neutral-ion decoupling

and damping of MHD turbulence take place over a range of length-scales.
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1 INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is an essential element in
the multiphase interstellar medium (ISM; Larson 1981; Armstrong,
Rickett & Spangler 1995; Elmegreen & Scalo 2004; McKee &
Ostriker 2007; Burkhart et al. 2009; Chepurnov & Lazarian 2010;
Xu et al. 2019a; Ha et al. 2022). To date, extensive numerical studies
have focused on the properties of MHD turbulence in a fully ionized
single-fluid regime (Cho, Lazarian & Vishniac 2002; Cho & Lazarian
2003; Kowal, Lazarian & Beresnyak 2007; Burkhart et al. 2013;
Federrath 2013; Kunz, Stone & Quataert 2016; Zhang et al. 2016;
McKee & Stone 2021; Hu, Xu & Lazarian 2021a; Hu et al. 2022b).
However, the multiphase ISM has a wide range of ionization fractions
(Spitzer 1978; McKee 1989; Draine 2011; Meyer et al. 2014; Pineda
et al. 2021), and thus MHD turbulence should be considered in two
fluids, i.e. ionized and neutral fluids. In a weakly ionized medium, at
large scales, the single-fluid treatment is valid when ions and neutrals
are strongly coupled via their frequent collisions. At scales smaller
than the neutral-ion decoupling scale, the collisional coupling of ions
and neutrals becomes weak and neutrals start to decouple from ions.
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The coupling state between ions and neutrals can significantly affect
the dynamics of MHD turbulence and result in damping of its energy
cascade (Braginskii 1965; Langer 1978; Zweibel & Josafatsson 1983;
Balsara 1996).

MHD turbulence in partially interstellar phases regulates many
key astrophysical processes and phenomena, such as star formation
(Mestel & Spitzer 1956; Nakano & Tademaru 1972; Mouschovias &
Spitzer 1976; Mouschovias 1979; Lizano & Shu 1989; Mac Low &
Klessen 2004; McKee & Ostriker 2007; McKee, Li & Klein 2010;
Federrath & Klessen 2012; Xu & Lazarian 2020; Hu et al. 2022b),
linewidth difference between ions and neutrals (Li & Houde 2008;
Lietal. 2010; Xu, Lazarian & Yan 2015), density filament formation
(Xu, Ji & Lazarian 2019c), cosmic ray propagation (Xu, Yan &
Lazarian 2016; Plotnikov, Ostriker & Bai 2021; Xu & Lazarian
2022; Sampson et al. 2023), turbulent dynamo (Xu & Lazarian 2016;
Brandenburg et al. 2019; Xu et al. 2019b), injection of turbulence in
very local ISM (Xu & Li 2022), and heating of solar chromosphere
(Shelyag et al. 2016). In view of this importance, there has been
significant effort in studying MHD turbulence in the presence of
neutrals. Earlier analytical studies were mainly focused on linear
MHD waves in a weakly ionized medium and their ion-neutral
collisional damping (Kulsrud & Pearce 1969; Ferriere, Zweibel &
Shull 1988; Balsara 1996; Khodachenko et al. 2004; Forteza et al.
2007; Mouschovias, Ciolek & Morton 2011; Zaqgarashvili, Kho-
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dachenko & Rucker 2011). However, unlike MHD waves, MHD
turbulence is highly non-linear and dynamical (Goldreich & Sridhar
1995; Lazarian & Vishniac 1999). In a compressible medium, it
consists of energy cascades of three fundamental modes (Alfvén,
fast, and slow), rather than a collection of linear MHD waves (Cho &
Lazarian 2003). The effects of ion-neutral collisions and the resulting
damping of the cascade of compressible MHD turbulence were
analytically investigated in Lithwick & Goldreich (2001), Lazarian,
Vishniac & Cho (2004), Xu, Lazarian & Yan (2015), Xu, Yan &
Lazarian (2016), and Xu & Lazarian (2017). In addition to the
local physical conditions, the properties of MHD turbulence and
turbulence parameters are important for determining the damping
effect. With the recent development in theories, simulations, and
observations of MHD turbulence (Beresnyak & Lazarian 2019),
our understanding of the dynamics and scaling properties of MHD
turbulence has been significantly improved. Along the energy cas-
cade of MHD turbulence, its anisotropy increases with decreasing
length-scales (Goldreich & Sridhar 1995; Lazarian & Vishniac
1999; Cho & Vishniac 2000; Cho, Lazarian & Vishniac 2002). The
ambipolar diffusion scale derived using the wave description of MHD
turbulence or isotropic turbulence scaling cannot provide a proper
estimate of the damping scale of MHD turbulence (Xu, Lazarian &
Yan 2015). The actual ambipolar diffusion scale, i.e. ion-neutral
collisional damping scale, can be smaller due to the turbulence. In
addition, unlike infinitesimal perturbations around an equilibrium
state for MHD waves, super-Aflvénic and supersonic turbulence in
neutral-dominated cold interstellar phases can induce magnetic and
density fluctuations much larger than their mean values (Federrath &
Klessen 2012; Hu & Lazarian 2022). The magnetic field and density
inhomogeneity significantly complicate the analysis of the damping
of MHD turbulence.

Simulating two-fluid MHD turbulence is more challenging than
single-fluid MHD simulations due to the high Alfvén speed of ions
at low ionization fractions, which requires a much smaller time-
step. To address this issue, the ‘heavy-ion approximation’ (HIA) has
been adopted to accelerate explicit two-fluid MHD simulations (Li,
McKee & Klein 2006; Oishi & Mac Low 2006; McKee, Li & Klein
2010). This approach increases the mass of ions and reduces the
ion-neutral drag coefficient y 4 (Draine, Roberge & Dalgarno 1983;
Shu 1992) accordingly. However, for simulating MHD turbulence
in a weakly ionized medium, the HIA approximation may raise
uncertainties (Tilley & Balsara 2010; Ballester et al. 2018). The
single-fluid treatment used in, e.g. O’Sullivan & Downes (2006,
2007) for numerical modelling of MHD turbulence in a weakly
ionized medium cannot fully capture the two-fluid effects in the
weakly coupled regime (Tilley & Balsara 2010; Xu, Yan & Lazarian
2016). Despite these challenges, numerical methods are crucial for
testing theories of two-fluid MHD turbulence and studying ion-
neutral collisional damping in an inhomogeneous medium. Three-
dimensional (3D) simulations of two-fluid MHD turbulence with the
RIEMANN code (Balsara 1998) have been carried out by Tilley & Bal-
sara (2010) and Meyer et al. (2014). These studies show differences
in the turbulent energy spectra of ions and neutrals. The persistence
of the energy cascade of Alfvén modes on scales smaller than the
amplipolar diffusion scale calculated using the wave description of
MHD turbulence (Burkhart et al. 2015) suggests that the damping of
MHD turbulence is different from the damping of MHD waves.

In this work, we use 3D two-fluid MHD simulations to test the
theoretical models developed by Xu, Lazarian & Yan (2015) and Xu,
Yan & Lazarian (2016) and study the properties of MHD turbulence
in various ion-neutral coupling regimes in the presence of turbulence-
induced density inhomogeneities. We perform the two-fluid MHD
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turbulence simulations using MHD code ATHENA+ + (Stone et al.
2020), updated using the Kokkos framework (denoted as ATHENAK).
The code utilizes IMEX integrators (Pareschi & Russo 2005) to
enable high-order (in time) implementation of ion-neutral drag
terms, which allows for higher accuracy and stability than operator-
split methods (Arzamasskiy & Stone, in preparation). To reduce
the computational cost, we consider a moderately low ionization
fraction. Different regimes of ion-neutral coupling are achieved by
varying the numerical value of y 4. To evaluate the limitations of this
approach, we also carry out simulations with the same y4p; but a
lower ionization fraction, where p; is the ion mass density.

The paper is organized as follows: in Section 2, we describe the
3D numerical simulations of two-fluid MHD turbulence used in this
study. In Section 3, we review the recent theoretical understanding on
neutral-ion decoupling and collisional damping of MHD turbulence.
In Section 4, we present the numerical results on the statistics of
the velocity, density, and magnetic field in both ions and neutrals.
The implications of the results and comparison with earlier studies
are discussed in Section 5, and our main findings are summarized in
Section 6.

2 NUMERICAL SIMULATION

2.1 Numerical setup

The 3D two-fluid simulations analysed in this work are generated
using the ATHENA+ + implemented with KOKKOS (Stone et al.
2020). We consider the two-fluid magnetofluid system, comprised
of ions (together with electrons) and neutrals. The effects of gravity,
heat conduction, ionization, and recombination are not included
in the current study. The simulations solve the ideal two-fluid
MHD equations, using periodic boundary conditions, IMEX3 time
integration algorithm, and PPM4 spatial reconstruction method. The
equations are:

00i/0t +V - (piv;) = 0,
apn/al +V. (pnvn) = 0;

B? BBT
0(piv;)/0t +V - |:PiviviT + (Cfpi + *) I-— ]

8 4
= Yapapi(Vn — vi) + fi,
A(pavn)/t + V - [pyvnd] + 2 pud | = yapnpi(wi — vy) + fi,
0B/0t — V x (v; x B) =0,
V.B =0, )

here p and v are the mass density and velocity of the ionized fluid
(with the subscript ‘i’) and neutral fluid (with the subscript ‘n’),
respectively. We adopt an isothermal equation of state, where the
sound speed c; is constant. The isothermal condition applies to a
medium with efficient cooling, such as molecular clouds (Tilley &
Balsara 2010; Meyer et al. 2014). It only breaks down when density
exceeds ~10'%cm™> (Furuya et al. 2012). The ion-neutral collisional
damping under other conditions will be studied in our future work.
To drive turbulent motions in ions and neutrals, a stochastic forcing
term f is utilized. Explicitly, f; and f, are weighted by ion and
neutral densities to achieve the same injected turbulent velocities in
the two fluids.

At the start of the simulation, the magnetic field and (ion and
neutral) density fields are set to be uniform, with the magnetic field
along the z-axis. The initial ionization fraction is &; = pi/(pi + pn),
where p; and p,, are the initial mass densities of ions and neutrals. The
simulation box is divided into 4803 cells and is uniformly staggered.
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Table 1. Setups of two-fluid simulations. Mg and M are the instantaneous
RMS values at each snapshot that is taken. § = 2MaIM;)? is plasma
compressibility. kgec || and kgec, 1 are theoretically expected parallel and
perpendicular components of the neutral-ion decoupling wavenumber,
respectively. The listed y4 is given in numerical units. To obtain a
dimensionless value, divide y g by vinj/(Linj0i), which is fixed at 10 and
100 (in numerical units) for §&; = 0.1 and 0.01, respectively.

Run M M B Yd & kdcc, I kdec, L
y5 110 107 1.9 5 0.1 0.5 0.3
y25 1.06 1.08 2.1 25 0.1 3 4
100 095 097 21 100 0.1 10 32
¥250 113 112 20 250 001 3 4
yle3 1.19  1.07 1.6 103 0.1 102 103
yled 097  0.87 1.6 104 0.1 103 3 x10*
yles 1.05 091 1.5 10° 0.1 104 100

2.2 Turbulence driving

The forcing term, f, is introduced to drive the turbulence in a
solenoidal manner. This is ensured by making the forcing term
divergence-free. The forcing term is modelled using the stochastic
Ornstein—Uhlenbeck (OU) process, which allows us to control the
autocorrelation time-scale, #., of the turbulence. The autocorrelation
time-scale is approximately equal to 7. & L;;j/(2wv,), where Liy; is
the turbulence injection scale and vy = m is the Alfvén speed
in the two fluids. The time-step is the minimum time-step allowed
by the Courant-Friedrichs—Lewy stability condition for the ion and
neutral fluids, respectively.

To vary the level of turbulence, we change the values of vjy;. The
energy injection is focused around wavenumber k = 27/l =1 — 2
(in the unit of 27/Lpex, Where Ly is the length of simulation box) in
Fourier space, where [ is the length-scale in real space. The turbulence
is numerically dissipated at wavenumber kg;s &~ 40—50. We run the
simulations for six eddy turnover times to ensure that the turbulence
has reached a statistically stable state.

The simulation of scale-free turbulence can be characterized by
the sonic Mach number, M = UL'—:”, and the Alfvén Mach number,
My = Ly‘%, where vj,; is the injection velocity. In this work, we fix
M; and M, to approximate unity, ensuring that the simulations fully
fall into the strong turbulence regime.'! Here, Iy is the turbulence
dissipation scale. The critical parameters for this study are listed in
Table 1.

3 THEORETICAL CONSIDERATION

3.1 Anisotropic MHD turbulence

Our understanding of MHD turbulence has undergone significant
changes over the past few decades. MHD turbulence was initially
considered to be isotropic despite the existence of magnetic fields
(Iroshnikov 1963; Kraichnan 1965). However, numerous numerical
studies (Kraichnan 1965; Montgomery & Turner 1981; Shebalin,
Matthaeus & Montgomery 1983; Higdon 1984; Montgomery &
Matthaeus 1995; Cho & Vishniac 2000; Maron & Goldreich 2001;
Cho, Lazarian & Vishniac 2002; Kowal & Lazarian 2010; Hu,

The strong turbulence regime has the critical balance’ condition (Goldre-
ich & Sridhar 1995) satisfied. See Section 3, where the magnetic field becomes
dynamically important and turbulence anisotropy develops (Lazarian 2006).
This is defined in the range as [l4is, Linj M/,:3 ] for super-Alfvénic (MA > 1)
and [lgis, LinjM3] for sub-Alfvénic (Ma < 1).
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Lazarian & Xu 2021b) and i n situ measurements of solar wind (Wang
et al. 2016; Matteini et al. 2020; Duan et al. 2021) have revealed that
the turbulence is anisotropic, rather than isotropic, when the effect
of magnetic fields is non-negligible.

Fundamental work on anisotropic incompressible MHD turbu-
lence theory was initiated by Goldreich & Sridhar (1995) in the
trans-Alfvénic regime with M, ~ 1. Goldreich & Sridhar (1995)
found the ‘critical balance’ condition, which equates the turbulence
cascading time (k, v;)~! with the Alfvén wave period (kjv )~ ! Here,
k, is the wavevector perpendicular to the magnetic field, and v is
the turbulent velocity at scale /. Later studies further found that the
‘critical balance’ condition can be valid in the strong turbulence
regime when M, is not unity (Lazarian & Vishniac 1999; Lazarian
2006): (i) in super-Alfvénic turbulence, where M, > 1, the magnetic
field’s role at the injection scale, Liyj, is insignificant, resulting in
isotropic turbulence. However, as the turbulence cascades to smaller
scales with decreasing turbulent velocity, the Alfvén speed becomes
comparable to the turbulent speed at the Alfvén scale, [y = Liy M;2 .
This leads to the development of strong turbulence on smaller scales.
(i1) In sub-Alfvénic turbulence (M, < 1), the strong turbulence
regime spans from the transitional scale /ians = Liy; Mi to smaller
scales. Turbulence within the range from Liy tO s is termed
weak Alfvénic turbulence, which is wave-like and does not obey
the ‘critical balance’.

As turbulence cascades preferentially along the direction perpen-
dicular to the local magnetic field (Lazarian & Vishniac 1999), where
the resistance to turbulent mixing of magnetic fields is the minimum,
we have the scaling relations of velocity fluctuation in the strong
turbulence regime

{ L) B, Ma > 1
i -
1=

3 ; @
() Pu M My <1

where [ is the length-scale perpendicular to the local magnetic field.
By using the scaling of velocity fluctuation and the ‘critical balance’
condition, one can easily obtain the anisotropy scaling

{(kLLinj)zﬁLi;leAv My >1

= 3)
I (ki L) L) MB My <1

The scale-dependent anisotropy of MHD turbulence described by the
above expression indicates that the turbulent eddy has a parallel size
much larger than its perpendicular size, and this anisotropy increases
with the decrease of length-scales. However, note that the scale-
dependent anisotropy can only be measured in the reference frame
of local magnetic fields that percolate the turbulent eddy (Lazarian &
Vishniac 1999; Cho & Vishniac 2000).

3.2 Decoupling of ions and neutrals

The interaction between ions and neutrals can be quantified by the
neutral-ion collisional frequency v, = yqp; = Y 4€i(pi + pn) and ion-
neutral collisional frequency vi, = y40n, respectively (Shu 1992).
Neutrals start to decouple from ions when the energy cascading rate
of MHD turbulence matches vy;. Given vi, >> vy in a weakly ionized
medium, ions decouple from neutrals on a much smaller scale than
the neutral-ion decoupling scale, so here we mainly consider neutral-
ion decoupling. The coupling status between ions and neutrals in
MHD turbulence can be separated into three important regimes: (i)
strongly coupled regime, in which the scales are larger than the
neutral-ion decoupling scale. Neutrals and ions act as single-fluid
in this regime. (ii) Weakly coupled regime, where the scales are
smaller than the neutral-ion decoupling scale but larger than the

MNRAS 527, 3945-3961 (2024)
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ion-neutral decoupling scale. Neutrals thus decouple from ions, but
ions still couple to neutrals. (iii) Decoupled regime, in which the
scales are smaller than the ion-neutral decoupling scale. Neutrals
and ions in this regime are fully decoupled, so if the turbulence
injection happens in this regime, neutrals develop an independent
hydrodynamic turbulent cascade and ions develop an MHD turbulent
cascade.

In earlier linear analysis (Kulsrud & Pearce 1969), it was consid-
ered that the decoupling of neutrals from Alfvén wave oscillations at
the neutral-ion decoupling wavenumber kg |. It can be determined
by equating the Alfvén wave frequency and v,,; (Shu 1992)

kdec, IVA = Vni, (4)

where the subscript ¢||” means the wavevector parallel to the magnetic
field. MHD turbulence was previously modelled as a collection
of linear waves (Giacalone & Jokipii 1999), and kgec, VA = Vni
was taken as the neutral-ion decoupling wavenumber or ambipolar
diffusion wavenumber of MHD turbulence (Kulsrud & Pearce
1969; Mouschovias & Morton 1991; Hennebelle & André 2013).
However, it is essential to note that MHD turbulence is a highly non-
linear phenomenon and the Alfvén wave-like motion in the strong
turbulence regime with the critical balance cannot survive for more
than a wave period. With the dynamically coupled turbulent mixing
motion in the perpendicular direction and the wave-like motion in
the parallel direction, scale-dependent anisotropy is one of its most
important properties (see Section 3.1).

For Alfvénic turbulence, which usually carries most of the MHD
turbulence energy (Cho, Lazarian & Vishniac 2002; Hu, Lazarian &
Xu 2021b), the anisotropy suggests that the neutral-ion decoupling
scale is not isotropic. The parallel component of the decoupling
scale can be much larger than the perpendicular component when
it is significantly smaller than L;,;. Taking into account the critical-
balance relation between turbulent motions and wave-like motions
and the anisotropy of MHD turbulence, Xu, Lazarian & Yan (2015)
derived the parallel decoupling wavenumber kg, | and perpendicular
decoupling wavenumber kq., ; by using the anisotropic scaling
(equation 3) in strong MHD turbulence regimes (i.e. kgec. | > l;l

or kdec 1 > l[ram

kdec,H = vnivgls
1/2. 32
VL Ma > 1
kaee, 1 = w32 112, =3/2 30172 : ®)
LmJ inj My, Ma<1

Here, we only consider Alfvén turbulence as it carries most of the
turbulent energy (Cho & Lazarian 2003; Hu, Lazarian & Xu 2022a).
For a more in-depth discussion on neutral-ion decoupling scales of
the three MHD modes (Alfvén, fast, and slow), see Xu, Lazarian &
Yan (2015) and Xu, Yan & Lazarian (2016).

3.3 Neutral-ion collisional damping of MHD turbulence in a
partially ionized medium

At length-scales larger than kd_c::,H’ ions and neutrals are perfectly
coupled, and together carry the MHD turbulence. However, at length-
scales smaller than kd;z;, |, heutrals begin to decouple from ions,
resulting in the development of their own hydrodynamic turbulent
cascade, while ions continue to undergo frequent collisions with
surrounding neutrals (down to the ion-neutral decoupling scale). As
a result, the remaining MHD turbulence in ions is strongly affected
and damped by the collisional friction exerted by neutrals, which is
denoted as neutral-ion (collisional) damping.

MNRAS 527, 3945-3961 (2024)

When neutral-ion damping dominates over the damping caused by
the kinematic viscosity of neutrals, the paralle]l damping wavenumber
kdam, | for Alfvénic turbulence, as derived in Xu, Lazarian & Yan
(2015) by equating the turbulent cascading rate tm = v;/l, and the

ion-neutral collisional damping rate |w;| = 2A i in the strong MHD
turbulence regime, is given by (Xu, Lazarian & Yan 2015; Xu, Yan &
Lazarian 2016)

Q)

where &, = pn/(p; + pn) is the fraction of neutrals. It holds for
both sub-Alfvénic and super-Alfvénic turbulence. The perpendicular
damping wavenumber kq,m 1 can be derived from the anisotropy
scaling in the strong turbulence regime

1/2 73 2
. (21},11)3/2[“1/J / . My > 1
dam, L — (7)
’ 1/2. -2 1/2
(2;:‘ )3/21.1“/J mjsz/ , Ma<1

Itis important to note that the kg, 1 is the most crucial in determining
the damping of the MHD turbulent cascade because the cascade
mainly happens in the direction perpendicular to the local magnetic
field. In addition, kgqum, 1 is larger than kg | (see equation 5), as
damping of MHD turbulence takes place after neutrals decouple
from ions.

4 NUMERICAL RESULTS

4.1 Velocity statistics

4.1.1 Neutral-ion collisional damping of MHD turbulence

Strongly coupled regime: We present 2D slices of velocity fields
for ions and neutrals in Figs 1 and 2, taken perpendicular to the
mean magnetic field at x = 240 cell. In Fig. 1, we show the cases
of yg =1 x 10°,1 x 10* and 1 x 103, where kdee, | and kgec, 1
are expected to be larger than the numerical dissipation wavenumber
kais ~ 40—50, indicating that ions and neutrals are well-coupled
over all length-scales resolved in our simulations. Note, y4 values
are given in numerical units. To obtain a dimensionless value, one
can divide yq by vin/(Linjoi), Which is approximately 10 for the
simulations with & = 0.1. To calculate the theoretically expected
kdec, | and Kgec, 1, as well as kgom, | and Kgam, 1, We adopt the mean
values of density, magnetic field, and v, atk = 1. We denote the kg, |
and kgec, 1 as averaged decoupling wavenumbers. If the averaged
decoupling wavenumbers are larger than the numerical dissipation
wavenumbers, then neutrals and ions are on average well-coupled.

We find that the ion and neutral velocity structures are highly
similar and exhibit anisotropy along the local magnetic field, with
a stronger anisotropy toward a larger k (see Fig. Al), similar to the
anisotropy of MHD turbulence seen in a single fluid (Cho & Vishniac
2000; Cho, Lazarian & Vishniac 2002; Xu, Ji & Lazarian 2019c¢).
The ion and neutral velocity spectra for the cases of y4 = 1 x 10°
and 1 x 10* follow approximately the Kolmogorov scaling with a
spectral slope of —5/3, while for y4 = 1 x 103, the spectra become
a bit steeper, with a slope of ~—1.9. Fig. Al further decomposes
the velocity fields within different k ranges and demonstrates the
similarity in the velocity structures of ions and neutrals, irrespective
of the length range.

Transition from strongly to weakly coupled regime: Fig. 2
presents the velocity distribution slices and turbulent kinetic energy
spectra for three other setups with 4 = 100 and 25. We find that the
spectra of ions and neutrals are different, and the spectrum of ions
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Figure 1. Top and middle panels: 2D slices (taken at x = 240 cell) of ions’ (top) and neutrals’ (middle) velocity field. The velocity maps are normalized by
the mean value. The view direction is perpendicular to the mean magnetic field, which is along the vertical z-direction. Bottom panels: Turbulent kinetic energy
spectra of ions and neutrals. The spectra are averaged over several snapshots after turbulence reaches a statistically steady state, with the time interval equal to the
largest eddy turnover time. The shadowed areas represent the variations. Dotted dash lines represent the theoretically expected neutral-ion parallel decoupling
(equation 5) and damping wavenumbers (equation 6) for Alfvén modes of MHD turbulence. The perpendicular decoupling and damping wavenumbers are not

shown because they are larger than 103,

with a slope of approximately —3.2 is steeper than that of neutrals,
indicative of more severe damping of the turbulent cascade in ions.
The spectrum of neutrals is also steeper than the Kolmogorov one. It
suggests that the neutral-ion decoupling does not happen sharply at
a particular scale, but gradually over a range of scales. Compared to
the strongly coupled case, the velocity distributions of both neutrals
and ions show a clear deficiency of small-scale structures, and the
anisotropy is less apparent. We can also see that the neutral-ion
decoupling does not happen at the ambipolar diffusion wavenumber
kdec, ||- Instead, only at kg, |, the spectra of ions and neutrals start to
diverge. In Fig. A2, we decompose the ion and neutral velocity fields
within different ranges of k for the case with y4 = 25 and find that
differences in velocity structures appear starting from large k values.

We note that previous studies with a low ionization fraction of
1 x 107* suggest a Kolmogorov spectrum of neutrals no matter
whether they are coupled or decoupled from ions (Meyer et al.
2014). In our case, we have a higher ionization fraction of 0.1
and lower y4. Our result suggests that the reduced y4 may cause

enhanced frictional damping and thus steepening of the spectra of
neutrals and ions when they are coupled at k < kgec, 1 - Atk > ke, 1,
with relatively higher ion inertia neutrals are not fully decoupled
from ions. Consequently, neutrals cannot develop a completely
independent hydrodynamic cascade and their spectrum remains
steep. This is, however, constrained by the limited internal range in
our current numerical simulations. We expect the neutrals spectrum
would become shallower at a sufficiently large wavenumber, in
which neutrals are fully decoupled from ions. We note that our
theoretically calculated decoupling and damping wavenumbers are
based on the Kolmogorov scaling and scale-dependent anisotropy of
Alfvénic turbulence. For strongly damped MHD turbulence with a
steep spectrum and insignificant anisotropy, the theoretical estimates
have a large uncertainty. Additional uncertainty comes from the
fluctuations in the local ionization fraction in compressible MHD
turbulence, and thus the decoupling of neutrals from ions does not
happen on a single-length-scale. We further discuss this point in
Section 4.1.2.
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Figure 2. Same as Fig. 1, but for y4 = 100, 25, and 5.

Transition from weakly coupled to decoupled regime: At y4
= 5, neutrals are decoupled from ions on the turbulence injection
scale, while ions are still globally coupled to neutrals up to k
~ 5—10. The velocity distributions of ions and neutrals exhibit
differences, with neutrals displaying more isotropic velocity struc-
tures. In this regime, neutrals develop independent hydrodynamic
turbulent cascades with a Kolmogorov slope, while ions undergo
frequent collisions with neutrals, effectively damping the turbulence
in ions. Therefore, ions exhibit a steep spectrum with a slope of
approximately —2.6. The slope is related to the fraction of energy
transferred to neutrals. Here, we also see the ion spectrum exhibits a
higher amplitude, most likely due to the artefact of driving turbulence.
Our initial correlation time-scale of the driving force is set to be equal
to the crossing time of the Alfvén speed in the neutral and ion well-
coupled cases, i.e. using the Alfvén speed calculated from the total
density p, + p;. When neutrals decouple from ions, neutrals do not
develop the Alfvén wave. The Alfvén speed then becomes larger due
to smaller ion density. The correlation time fixed in the simulation is
therefore too large for ions, so ions’ turbulence cascades slower and
gets higher velocity power.

On the other hand, in Fig. D1, we calculated the kinetic energy of
ions and neutrals, the magnetic fluctuation energy, and the energy
exchanged by their drag interaction. We found that the energy
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exchange in ions and neutrals are minimum in both y 4 = 10° and five
cases. The velocity spectra are identical for the former, but the ion
velocity spectrum has a higher amplitude for the latter. It suggests
that the higher ion velocity power is not supplied by energy exchange
with neutrals, but caused by the unequal correlation time of driving
discussed above.

4.1.2 Fluctuations in local ionization fraction, Alfvén speed, and
decoupling scales

The neutral-ion decoupling scale, as discussed in Section 3, depends
on the vy = yapi = ya€i(pi + pn) (also v for the parallel
decoupling scale). Due to variations in density and magnetic fields
in compressible MHD turbulence, these two quantities can exhibit
significant fluctuations, resulting in local variations of the decoupling
scales instead of a value.

To further investigate the variation of the local decoupling scale,
we present histograms of the local ionization fraction in Fig. 3 with
corresponding 2D slices shown in Fig. C1. The histogram of the
ya = 1 x 10° case is very narrow, with the ionization fraction
concentrated around 0.1. However, as y4 decreases, the ionization
fraction starts to spread to both higher and lower values, indicating
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Figure 3. Normalized histogram of ionization fraction &; = pi/(pi + pn). The fraction is calculated over the full simulation cube.

more significant local variations. For the other five cases with smaller
¥ 4, We observe that the ionization fraction varies from approximately
0 to 0.3, while the global mean value of approximately 0.1 remains
the same. These variations are due to fluctuations in ion and neutral
densities. We expect that in supersonic turbulence with M much
larger than unity, where density fluctuations are more significant, the
variation of ionization fraction may further increase.

In addition to the ionization fraction, we also investigate the
local Alfvén speed fluctuations, shown in Fig. 4 with corresponding
2D slices in Fig. C2. The Alfvén speed fluctuations come from
the variation of magnetic field strength and total density p; + pn.
Unlike the ionization fraction, the case of y4 = 1 x 10° exhibits the
widest histogram indicating significant variation of Alfvén speed.
The histograms, however, become narrower for the other five cases
with smaller y4. Typically, we see the maximum value of va/(va)
reaches ~2 and minimum values are either ~0 (for y4 = 1 x 10*
and 1 x 10%) or ~0.5 (for y4 = 100, 25, and 5).

The Alfvén speed and ionization fraction fluctuations result in
local variations in the values of kgec, | and kqec, 1 . The distributions of
their theoretically expected values calculated by using the local &; and
v are shown in Fig. 5, which highlights the significant fluctuations
that can occur. In the case of ¢ = 1 x 10° and 1 x 10*, the minimum
values of kgec, || and kgec, | are larger than the numerical dissipation
wavenumber, suggesting that neutrals and ions remain locally well-
coupled. Otherwise, if the local decoupling wavenumbers are smaller
than the numerical dissipation wavenumber, neutrals are locally
decoupled from ions. As seen in the case of y4 = 1 x 103, the local
kgee, | can vary from ~1 to ~1 x 10, indicating the existence of
local decoupling. The local k4, | can even reach a larger value of &~
8 x 103. Neutrals can fully decouple from ions only at wavenumbers
larger than the maximum Kgec, | .

For y4 = 100, although the expected global mean decoupling
scales are kgec, || ~ 10 and kgee, 1 =~ 32, the local values of kg, ||
and kgec, 1 are also widely distributed from ~1 to ~50. When y4 =
25, the range of kgec, | and kgec, 1 is &1 to 210, and the damping of
MHD turbulent cascade in neutrals due to local coupling with ions
is more noticeable than the y4 = 100 case. In this case, the neutral

spectrum follows the steep spectrum of ions up to k ~ 10, which
is also the maximum value seen in the histogram of kg, | . Finally,
in the case of y4 = 5, kgec, | and kgec, 1 do not exceed 1.5 at their
maximum, indicating that neutrals are fully decoupled from ions
basically at all scales and develop a hydrodynamic turbulent cascade
independently.

These results suggest that neutral-ion decoupling does not occur
on a single-length-scale, but rather over an extended range of scales.

4.2 Density statistics

The local variation of the ionization fraction &; is important to under-
stand the neutral-ion decoupling and damping of MHD turbulence.
&, is directly related to the density fluctuations in ions and neutrals. In
this section, we investigate the density statistics of ions and neutrals.

4.2.1 2D density distribution and density spectrum

Figs 6 and 7 present 2D density slices (taken at x = 240 cell,
perpendicular to the mean magnetic field) and density spectra for
ions and neutrals. When y4 = 1 x 10°, we observe that the density
distributions of ions and neutrals are nearly identical, with the
structure regulated by turbulence anisotropy. Similar filamentary
density structures are also seen in single-fluid MHD simulations
(Xu, Ji & Lazarian 2019c). The spectra are a bit shallow, but they
generally follow the Kolmogorov scaling, similar to their velocity
spectra. However, when y4 = 1 x 10%, the ion density distribution
becomes different from that of neutrals. Ion density structures exhibit
more apparent striations, while such small-scale structures are not
seen in neutral density distribution. Correspondingly, the spectrum of
the ion density becomes shallower (slope ~—1.1), while that of the
neutral density starts to become steeper at large k. These phenomena
are more pronounced in the case of 4 = 1 x 103, where the slope
of the ion density spectrum is ~—1.3.

We see that despite the similar velocity structures seen in neutrals
and ions in the strongly coupled regime, their density structures
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can differ significantly. The velocity field is likely to be dominated
by incompressible Alfvénic turbulence, while density fluctuations
are mainly induced by compressible turbulent motions. This can be
seen from the difference in the velocity and density spectra of ions.
Although neutrals are strongly coupled to the Alfvénic turbulent
motions, they may be poorly coupled to the compressible MHD
turbulent motions and thus do not exhibit the small-scale density
structures created by the compressible MHD turbulent motions.
Furthermore, when y4 = 100 and 25, the damping of MHD
turbulence occurs (see Fig. 2). The decoupling of neutrals from the
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Alfvénic turbulent motions also contributes to the difference in the
density structures of neutrals and ions. The density distribution in
neutrals appears isotropic. We observe that the anisotropic filamen-
tary structures in ions become less apparent, which is due to the severe
damping, while sharp-density jumps gradually appear on large scales.
These sharp jumps are most significant in the neutral density. The
spectra of both ions and neutrals are steep for yq = 100. Together
with yq = 1 x 103, these three cases are complicated because of the
large variation of the local decoupling scale (see Fig. 5). However,
for y4 = 5, the full decoupling of neutrals from ions is achieved,
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Figure 6. Top and middle panels: 2D slices (taken at x = 240 cell) of ion (top) and neutral’s (middle) density field. The density maps are normalized by the
mean value. The view direction is perpendicular to the mean magnetic field, which is along the vertical direction. Bottom panels: Spectra of ion and neutral’s
density. The spectra are averaged over several snapshots with one latest eddy turnover time. The shadowed areas represent the variations.

and only turbulence in ions is damped (see Fig. 2). In this case, we
clearly see that small-scale density structures arise in neutrals and
the anisotropic filamentary structures in ions vanish, and the spectra
are shallower (slope ~—2.6 for ions and ~—2.1 for neutrals) than
those at 4 = 100 (slope ~—3.4 for ions and ~—2.7 for neutrals),
and y4 = 25 (slope ~—3.9 for ions and ~—2.3 for neutrals).

4.2.2 The probability distribution function of the logarithmic mass
density

We present the probability distribution function (n-PDF) of the
logarithmic mass densities of ions and neutrals, normalized by
their respective mean values, as shown in Fig. 8. The n-PDF is a
widely used tool for studying density statistics in single-fluid MHD
turbulence (Price, Federrath & Brunt 2011; Burkhart 2018), as it
directly reveals the significance of density fluctuations. In general,
the minimum and maximum values of the neutrals’ n-PDF are
approximately —1 and 1, respectively. These values vary a bit at
large yq = 1 x 10° and 1 x 10*. As in the case of single-fluid
turbulence, we expect the width of the n-PDF to be correlated with M,
(Padoan & Nordlund 2002). A high sonic Mach number, especially

greater than unity, is typically associated with shocks, which lead to
high-density contrasts and a more dispersed n-PDF. This behaviour
is commonly observed in studies of single-fluid MHD turbulence
(Price, Federrath & Brunt 2011; Burkhart 2018).

When y4 = 1 x 10°, the ions’ n-PDF closely resembles that
of neutrals. However, the ions’ n-PDFs become more dispersed
with smaller y4. While the maximum value of the ions’ n-PDFs
remains stable at log(p/(p)) ~ 1.25—2.0, the minimum value reaches
log(p/(p)) ~ —3.0 for yq = 1 x 10* and 100. This suggests that the
ion density exhibits significant local fluctuations. The ions’ n-PDFs
narrow again for y4 = 25 and 5, with log(p/(p)) ~ —1.25 at the
minimum.

4.3 Magnetic field statistics

Fig. 9 displays 2D slices of total magnetic field strength taken at x =
240 cell perpendicular to the mean magnetic field direction, as well
as magnetic energy spectra calculated for the full cube. In the neutral-
ion locally well-coupled state, where yq = 1 x 10° and 1 x 10%,
the magnetic field fluctuations elongate anisotropically along the
magnetic field direction, akin to the velocity and density structures

MNRAS 527, 3945-3961 (2024)

20z 1snBNy 90 U0 150NB Aq 91,5021 2/SY6E/2/L2S/P10IHE/SEIUW /W00 dNO"OILSPEDE//:SAY WOl PAPEOjUMOQ



3954 Y Huetal.

Y4 = 100 (ion)

Y4 = 25 (ion)
-y '

Y4 =25 (neutral)

108 108 108 Ya=5
105N 10 108 e
_10* T 10 104 e
X Tl
&
102 102 102
—— density: ion —— density: ion —— density: ion
10°f —— density: neutral 10°r —— density: neutral 10°r —— density: neutral
------ slope: -5/3 ------ slope: -5/3 ------ slope: -5/3
-2 -2 -2
10760 10! 102 107go 0! 102 10760 10! 102
wavenumber wavenumber wavenumber
Figure 7. Same as Fig. 6, but for y4 = 100, 25, and 5.
Yo=1x105 Yo=1x10% Yo=1x103
100 [ ion 109 [ ion 100 [ ion
15 7 neutral 1 neutral 1 neutral
©
§ 1071 107! 107!
c
o
51072 102 1072
Qo
G102 1073 1073
_4 -4 -4
0755 -1 % i 2 W03 -1 i 2 Wiz -1 e i 2
Yd =100 Ya=25 Va=5
100 [ ion 109 [ ion 100 [ ion
§ 1 neutral 5 1 neutral S 1 neutral
© © s}
§ 1071 § 107! §_, 107!
s s s
£10-2 102 5107
2 E=] =]
B 10-3 B 10-3 @ 10-3
a 10 a 10 a 10
-4 -4 -4
0755 -1 % i 2 Wi = -1 % i 2 Wiz -1 % i 2
log(p/(p)) log(p/(p)) log(p/(p))

Figure 8. n-PDFs of ion and neutral’s logarithmic mass densities normalized by their mean densities.

MNRAS 527, 3945-3961 (2024)

20z 1snBNy 90 U0 150NB Aq 91,5021 2/SY6E/2/L2S/P10IHE/SEIUW /W00 dNO"OILSPEDE//:SAY WOl PAPEOjUMOQ



The damping of MHD turbulence 3955

va=1x103

— 4 - 3
108 108\ Ya=1x10 108 Ye=1x10
10° 108 108 e
4 ol T T s T
< 10 w04 T T 0% SN (T
W 102 102 102
100 magnetic field 1000 magnetic field 1000 magnetic field
—————— slope: -5/3 ------ slope: -5/3 ------ slope: -5/3
-2 -2 -2
107560 10T 107~ 107qo 10T 107~ 1070 10T 102
wavenumber wavenumber wavenumber
Yg=1x100 Yo =25 Y=5
1.2
1.1
1.03
Q
0.9
0.8
108 108 108 Ya=>
10° 10° 106 s
4 4 4l T
< 10 10 !
W 102 102 102
1000 T magnetic field 1000 magnetic field 1000 T magnetic field
—————— slope: -5/3 ------ slope: -5/3 ------ slope: -5/3
-2 -2 -2
1075 g0 10T 107~ 107qo 10T 107~ 1070 10T 102
wavenumber wavenumber wavenumber

Figure 9. First and third rows: 2D slices (taken at x = 240 cell) of magnetic field strength. The magnetic field maps are normalized by the mean value. The view
direction is perpendicular to the mean magnetic field, which is along the vertical direction. Second and fourth rows: Magnetic energy spectrum. The spectra are
averaged over several snapshots within one eddy turnover time. The shadowed areas represent the variations.

shown in Figs 1 and 6. The spectra exhibit Kolmogorov scaling
overall. However, when y4 = 1 x 10?, the magnetic field structures
are less filamentary, and the spectrum becomes steeper with a slope
of ~—2.8 than that of the velocity spectra. This steepening of the
magnetic energy spectrum when the velocity spectra of neutrals and
ions are similar has been observed also in Meyer et al. (2014).
It may be attributed to the effect of local neutral-ion decoupling.
Alternatively, the fast modes in MHD turbulence may get damped at
k smaller than the damping scale of Aflvén modes (Xu, Lazarian &
Yan 2015; Xu, Yan & Lazarian 2016; Xu & Lazarian 2017). The
damping of the magnetic fluctuations generated by fast modes may

result in a steeper magnetic energy spectrum than the kinetic energy
spectrum that is dominated by the Alfvén modes.

In the weakly coupled regime with y4 = 100 and 25, small-scale
magnetic field structures are less prominent, and the spectra become
even steeper, indicating that the magnetic field energy becomes
concentrated on larger scales. This is naturally expected due to the
severe neutral-ion collisional damping. However, when the neutral-
ion decoupling occurs at the injection scale (i.e. y 4 = 5), the situation
changes. The spectrum becomes shallower compared to the cases
of yg =1 x 103, 100, and 25 (slope ~—2.8, —3.6, and —4.0,
respectively). The slope is close to —2.23. It suggests a weak damping
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effect, as seen in Fig. 2. Overall, we see that the magnetic energy
spectrum has a similar shape as the turbulent kinetic energy spectrum
in ions.

5 DISCUSSION

5.1 Comparison with earlier studies

The two-fluid (neutral and ion) simulation requires a very short time-
step to stably accommodate the fastest wave speed in the problem
(Meyer et al. 2014). This is computationally expensive since the
low ionization fraction in the ISM (typically 10~ — 10~ for cold
molecular clouds, see Tielens 2005; Draine 2011) results in an
extremely large Alfvén speed. The practical time-step is even smaller
because the Alfvén speed in a simulation has its own variations (see
Fig. C2). The stable time-step is therefore determined by the largest
Alfvén speed. Consequently, this computational challenge limits the
numerical study of two-fluid MHD turbulence. In the study of two-
fluid MHD turbulence, some earlier research has focused on the
damping of MHD turbulence using simulations generated by the
RIEMANN code (Tilley & Balsara 2010; Meyer et al. 2014; Burkhart
etal. 2015). These studies have primarily concentrated on supersonic
M > 1)

In our study, we used the ATHENAK code to conduct trans-sonic
(Mg ~ 1) two-fluid simulations with a moderately low ionization
fraction of 0.1. To further examine the effect of ionization fraction, a
comparison with a lower ionization fraction of 0.01 is presented
in Fig. B1. Compared to earlier studies using a fixed yq4, this
approach of using reduced and varying y 4 enables us to study MHD
turbulence in different coupling regimes with far fewer computational
resources. Compared to earlier studies, we report newly discovered
properties of two-fluid MHD turbulence. We quantitatively compared
our numerical measurements with previous theoretical predictions
on neutral-ion decoupling and damping scales (Xu, Lazarian & Yan
2015; Xu, Yan & Lazarian 2016), and found their large variations
due to the large density fluctuations of ions and neutrals. The
computational tools’ application to other physical environments, like
the very local ISM, will be explored in our future work.

5.2 Implications for related studies

5.2.1 Cosmic ray transport

The damping of MHD turbulence is crucial for understanding the
transport of cosmic rays (CRs) in the multiphase ISM. The damping
of MHD turbulence should be taken into account for both resonant
scattering (Xu & Yan 2013; Hu, Lazarian & Xu 2021b) and non-
resonant mirroring (Lazarian & Xu 2021). The severe damping of
MHD turbulence in a weakly ionized medium can significantly affect
the efficiency of scattering and the spatial confinement of CRs (Xu,
Yan & Lazarian 2016).

5.2.2 Velocity gradient

Determining the scale at which neutrals and ions become decoupled
is a challenging task in observations. In particular, it is non-trivial
to obtain the velocity spectra of ions and neutral. However, this can
be achieved by the velocity gradient technique (VGT; Hu, Yuen &
Lazarian 2018; Lazarian & Yuen 2018), which is a new approach
to tracking magnetic fields using spectroscopic data. VGT is based
on the anisotropy of MHD turbulence, where turbulent eddies align
themselves along the magnetic fields. Velocity gradient serves as a
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detector of the anisotropy and, therefore, can reveal the magnetic
field direction.

The study shows that this anisotropy is absent when neutrals and
ions become decoupled. We can expect that at a length-scale larger
than the decoupling scale, neutral turbulence and ion turbulence act
as a single fluid and exhibit anisotropy, with velocity gradients of
both species oriented in the same direction. At smaller length-scales
where neutrals decouple from ions, their velocity fields change (see
Fig. 2) so that the relative orientation of their velocity gradients
changes. Therefore, comparing the directions of the (ions and neu-
trals) velocity gradients at different length-scales can independently
reveal the neutral-ion decoupling scale (i.e. perpendicular ambipolar
diffusion scale). This approach could provide unique constraints on
the important perpendicular ambipolar diffusion scale in observation
for a better understanding of star formation (Mestel & Spitzer 1956;
Nakano & Tademaru 1972).

6 SUMMARY

Magnetized turbulence is ubiquitous in the partially ionized ISM.
The interaction between neutral and ionized species can modify
the properties of MHD turbulence and cause neutral-ion collisional
damping. On the basis of the two-fluid MHD turbulence simulations
generated from the ATHENAK code, we numerically studied the
statistical properties of velocity, density, and magnetic field in
different regimes of ion-neutral coupling. Our main findings are:

(i) Our results demonstrate that in the (neutral-ion) strongly
coupled regime, velocity statistics in the two-fluid simulations can
resemble those in single-fluid MHD turbulence.

(ii) In the weakly coupled regime, we observe that damping of
turbulence can occur in both, resulting in their steep kinetic energy
spectra compared to the Kolmogorov spectrum, while the damping
of turbulence in ions is more severe. We find that due to the large
density fluctuations in ions and neutrals, the ionization fraction has
a large spatial variation, which causes a significant local variation
of the neutral-ion decoupling scale. As a result, both neutral-ion
decoupling and damping of MHD turbulence happen over a range of
length-scales.

(iii) In the transition regime from weakly coupled to decoupled
regime (y4 = 5), the damping of MHD turbulence takes place in
ions showing a steep kinetic energy spectrum. Neutrals develop an
independent hydrodynamic turbulent cascade and the corresponding
kinetic energy follows the Kolmogorov scaling.

(iv) We find that in the strongly coupled regime with similar
velocity structures in ions and neutrals, their density structures can
exhibit significant differences. The small-scale enhanced density
fluctuations seen in ions are absent in neutrals, and the density
spectrum of ions is also much shallower than that of neutrals. This
may be caused by the poor coupling of neutrals to the compressive
MHD turbulent motions.

(v) We show that the probability distribution function of neutral
mass density is insensitive to the coupling status between ions and
neutrals. The n-PDF of the ions is broader than that of the neutrals,
and its width varies in different coupling regimes.

(vi) Finally, we find that the magnetic energy spectrum in general
has a similar shape as the kinetic energy spectrum of ions.
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APPENDIX A: VELOCITY MAPS AT
DIFFERENT K RANGES

Figs Al and A2 offer insights into the velocity structure of ions and
neutrals for different k ranges at yq = 1 x 10* and 25, respectively.

0<k<10 (ion) 10 < k < 20 (ion)

To produce these results, we applied a Fourier transformation to
the velocity cube and excluded velocity values outside the k ranges
of interest before retransforming the processed cubes back to real
space.

For yq = 1 x 10, the velocity slices of the ions and neutrals are
nearly identical across all ranges k. Anisotropic velocity structures
become more prominent at higher k values. While ions and neutrals
may exhibit local decoupling, they are globally well-coupled. On the
contrary, at y4 = 25, a distinct difference is observed between ions
and neutrals, starting from small 0 < k < 10. At this value of 4, ions
and neutrals are globally decoupled from each other.
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Figure Al. 2D slices (taken at x = 240 cell) of ion velocity (top) and neutral velocity (bottom) for the simulation of y4 = 1 x 103. The velocity fields are
decomposed into different k ranges in Fourier space and then transformed back to real space.
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Figure A2. Same as Fig. A2, but for yq4 = 25.
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APPENDIX B: COMPARISON WITH LOWER
IONIZATION FRACTION

Fig. B1 presents the comparison of two y4 and &; combinations. The
values of y4 = 25,250 and &; = 0.1, 0.01 are meticulously selected so
that the neutral-ion collisional frequency remains consistent. For the
2D velocity slices, the ion and neutral maps exhibit morphological

The damping of MHD turbulence 3959

differences. Furthermore, we calculate the velocity spectra, as shown
in Fig. B1. The kinetic energy spectrum of the ions (for y4 =250 and
£;=0.01) becomes slightly shallower when the wavenumber is larger
than kg,m, 1. However, we do not observe any noticeable differences
in the kinetic energy spectrum of neutrals at wavenumbers smaller
than the dissipation.

Y4 =25,& =0.1 (ion) . Y4 =250,& =0.01 (ion) 108~ . Iion
106 N e
PN T
() R
104 Kdec, | : Ifdec IR -
i i
102 kdan ||: i Ekdam €L
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- 10750 ot 102
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Figure B1. Left and middle panels: 2D slices (taken at x = 240 cell) of ion (top) and neutral’s (middle) velocity field with different drag coefficient 4 and
ionization fraction &;. Velocity maps are normalized by the mean value. The view direction is perpendicular to the magnetic field, which is along the vertical
direction. Right panels: Kinetic energy spectra of ion (top) and neutral (bottom). The shadowed areas represent the variations. Dotted dash lines represent the

expected neutral-ion decoupling and damping scales.
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APPENDIX C: FLUCTUATIONS OF
IONIZATION FRACTION AND ALFVEN SPEED

The ionization fraction &; = pi/(p; + p,) and Alfvén speed v, are
essential physical quantities for understanding neutral-ion decou-
pling. In Figs C1 and C2, we present 2D distributions of these two
parameters.

0.00

For &;, we observe that its fluctuation is the smallest when y4 =
1 x 10°. However, as y4 decreases, the ionization fraction varies
significantly from 0 to 0.3. On the contrary, v has strong fluctuations
foryq =1 x 10°, but the fluctuations become weaker as y 4 decreases.
‘We notice very apparent sharp v,-jump edges in the cases of y4 =
100, 25, and 5. These edges are contributed by the jumps in density
(see Fig. 7).
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Figure C1. 2D slices (taken at x = 240 cell) of ionization fraction &; = pi/(pi + pn)-
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Figure C2. 2D slices (taken at x = 240 cell) of local Alfvén speed va = B/+/47(pi + pn) normalized by its mean value.

APPENDIX D: ENERGY VARIATION WITH
DIFFERENT pp

Fig. D1 presents the ions’ and neutrals’ kinetic energy, magnetic
field fluctuation energy, and the energy exchanged by their drag
interaction, averaged over the simulation box. It shows neutrals
always have higher kinetic energy due to their large density. The
kinetic energy of the ions increases at small yq4, but the kinetic
energy of the neutrals decreases. This is caused by the imbalance
of the driving force’s correlation time and Aflvén speed in the
neutral-ion decoupled regime, see Section 4. On the other hand,
the energy of magnetic field fluctuations cannot exceed the ions;
kinetic energy, because the magnetic field fluctuation is induced by
turbulent velocity.

We noticed that the energy change between ions and neutrals is
minimal in the fully coupled (i.e. yq = 10°) and fully decoupled (i.e.
ya4 = 5) cases. It, however, achieves maximum when y4 = 10°, in
which neutrals and ions start to decouple locally in terms of velocity.

© The Author(s) 2023.
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Figure D1. The variation of ions’ and neutrals’ kinetic energy, magnetic
field fluctuation energy, and the energy exchanged by their drag interaction,
as a function of y4.
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