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Abstract—In this paper, we propose and study a particular use case
capable of performing radio-based traffic density estimation for
adaptive beam allocation. The proposed scheme explores the synergy
between communication and sensing from an Integrated sensing and
communication (ISAC) perspective. The traffic density estimation is
aided by communication functionality, which involves reusing
communication waveforms and utilizing multibeam forming and
sweeping techniques. Meanwhile, the sensing outcomes assist in
proactively allocating radio beams. There have been accurate traffic
monitoring methods relying on a large number of detectors. However,
these traditional techniques have some shortcomings, and it is
necessary to explore alternative traffic density estimation approaches.
In this regard, we exploit orthogonal frequency division multiplexing
(OFDM) communication signals of opportunity reflected from targets
(vehicles) to estimate the traffic density of a road section by using
JensenShannon (JS) divergence and weighted-centroid interpolation
based on a few samples of density scenarios. Then, we present a
millimeter-wave (mmWave) adaptive beam allocation protocol based
on the traffic density estimation to enhance communication coverage
for the vehicular users in the area of interest. The simulation results
demonstrate that our traffic density estimation can handle a wide range
of targets with a relatively low estimation error. In addition, the
analysis of the adaptive beam allocation shows that it effectively
improves the quality of service (QoS, in terms of outage probability)

communication system.
%’EErEr%J—D?rlltegrated sensing and communication (ISAC),
communication signals of opportunity, traffic density estimation,
Jensen-Shannon divergence, mmWave adaptive beam allocation.

|. INTRODUCTION

Road traffic monitoring plays an important role in traffic
management in the Intelligent Transportation System (ITS).
Metrics related to road traffic monitoring include traffic
density (defined as number of vehicles per mile), and average
speed, etc. The traditional traffic monitoring methods mainly
rely on a large number of detectors like cameras, ultrasonic
detectors, induction loop detectors, and radar sensors [1].
Such kinds of systems are accurate but exhibit some
shortcomings in terms of range and effectiveness as they are
easily affected by the environment and bad weather
conditions (e.g., fog, rain, etc.). In addition, the cost of
deploying these detection/estimation systems is very high,
especially with the rapid growth of the metropolis road
networks [2]. Therefore, from both application and research
perspectives, it is necessary to explore alternative techniques
for traffic density estimation, and the radio-based approach is
particularly interesting.
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Over the past few years, ISAC has been emerging as a key
technology in future wireless systems to support many
important applications [3]—[5]. ISAC refers to a design
paradigm and enabling technologies, in which sensing and
communication systems are integrated to efficiently utilize
congested resources [3] by sharing the signal processing
algorithms, hardware resources, and spectrum. Thus, it
substantially reduces the cost of the hardware and spectrum
resources while achieving higher service quality due to the
synergy between the communication and sensing. One aspect
of ISAC is the reuse of communication waveforms for sensing
purpose. Triggered by ISAC, non-collaborative OFDM signals
generated from illuminators of opportunity (loO) can provide
an efficient and effective solution to localize, detect, or track
targets, which can enable many new use cases such as radio-
based road traffic monitoring to help road traffic management
in the ITS, and at the same time help the communication
system to better allocate its resources proactively. Indeed,
communicationassisted  sensing and  sensing-assisted
communication can be achieved in a single ISAC setup [6].

Several research works have developed passive radar
sensing techniques by utilizing the signals transmitted from
different kinds of 100s to localize and detect targets. In [7], the
authors proposed a multi-target localization and speed
estimation scheme by using an OFDM signal transmitted by an
100. In [8], OFDM signals from a non-collaborative digital video
broadcasting-terrestrial (DVB-T) transmitter were used to
detect moving targets. Also, some researchers developed road
traffic-flow monitoring systems by using noncollaborative
DVB-T transmitters [9]. Although the aforementioned systems
outperform the traditional traffic monitoring systems in terms
of cost and effectiveness, they impose several challenges that
need to be addressed. One major concern is that current
localization systems either do not provide density information
(e.g., [9]), or can only detect a few targets [7], [8], making them
incapable of estimating the traffic density of a road section.
Moreover, the idea of searching over the whole range-Doppler
space to estimate the range and velocity of the targets using
the cross ambiguity function requires both large signal
bandwidth (for range-resolution [10]) and high power, and
also incurs high computational complexity. Finally, pure data-
driven traffic estimation models (e.g., machine learning)
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provides no insight into the physical mechanisms and is less
traceable.

In this paper, we consider an ISAC scheme for both traffic
monitoring using OFDM signals of opportunity, and mmWave
beam allocation based on traffic sensing. Assume the system
is capable of multi-beam forming and sweeping in a
cloudradio-access network (C-RAN) [11] which enables
centralized processing for communication and sensing
cooperatively. With such a configuration, multiple base
stations (BSs) can perform (either communication or sensing)
cooperatively. We propose a hybrid traffic density estimation
technique that combines model-based and data-driven
approaches. Then, we present a density-aware and adaptive
beam allocation protocol that assighs mmWave beams for the
vehicular users in the area of interest. This improves the QoS
and enhances the communication coverage. Finally,
simulations are conducted to evaluate the proposed scheme.
The results indicate that our proposed schemes can efficiently
estimate the traffic density and improve the QoS of
communication systems using the adaptive beam allocation.
Compared to existing radio-based traffic estimation schemes,
our proposed method can handle a large number of targets by
reusing communication waveforms, without complex
processing. Note that this paper mainly reports preliminary
work verified by simulation, providing some insight for future
research in this line to consider more sophisticated traffic
scenarios. Also, we focus on the basic concept and analysis,
assuming some prerequisites, such as mmWave beamforming
and beam sweeping, have been met.

The rest of this paper is organized as follows. Section
Il presents related work. The system model is presented in
Section Ill. The proposed schemes are described in Section IV.
Numerical results are discussed in Section V, followed by
conclusions in Section VI.

Major Notations: Nv: Number of vehicles; Q(x): Probability
density function (PDF) of a modeled template; P(x): PDF of a
testing signal; p(Ny): Distribution of Ny; q(€|Ny): Conditional
distribution of estimation error €; Eaps: Absolute mean square
error; Ere: Relative mean square error; Pou: Outage
probability of fixed beam allocation; P ous: Outage probability
of adaptive beam allocation; L™: Mean number of idle beams
(fixed beam allocation); L™: Mean number of idle beams
(adaptive beam allocation).

Il. RELATED WORK

For active traffic density estimation, the schemes [1], [2] use
unmanned aerial vehicle (UAVs) or road side units (RSUs) that
are widely deployed. One shortcoming of these approaches is
their high implementation and maintenance costs. Also, the
UAV-based scheme in [1] requires complicated postprocessing
since it uses cameras installed on the UAVs for traffic
detection.
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For passive sensing techniques, Li et al [7] proposed a
passive sensing algorithm to estimate the positions of multiple
targets by using OFDM communication demodulated signals.
They estimated delay and Doppler by utilizing the sparsity of
the demodulation errors and numbers of reflectors. Then, the
positions of targets are estimated based on the estimated
delayDoppler by using the neural network. The scheme
provides accurate estimation using at least 4 receiving BSs, but
it can estimate at most 3 targets. Singh et al [12] presented a
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Fig. 1. System architecture of the proposed schemes.

separate the direction of arrivals (DOAs) reflected from
targets, but it can only detect up to 2 targets. Bartoletti et al
[13] proposed a counting targets scheme using OFDM signals
that can count up to 5 targets. However, it requires the
positions of the targets to be known for the receiver. Tulay et
al [14] proposed passive traffic sensing scheme using
dedicated shortrange communications (DSRC) signals
transmitted from an RSU. The scheme uses radio signal
fingerprinting and machine learning for traffic density.
However, it suffers from outage due to environmental changes
and requires a large dataset for accurate classification.

I11. SYSTEM MODEL

A. System Architecture

We consider one transmit BS (1o0O), a receive BS, and a
number of vehicles on a road section. As shown in Fig. 1, the
BS transmits an OFDM signal to illuminate a road section, then
the reflected signals are received by another receive BS to
estimate the traffic density on the illuminated road section.
Note that multiple BSs can be employed and the illuminated
road section depends on the beamwidth of the transmit and
receive antennas; for instance, both transmit and receive
antennas cover one mile of the road section, and the main
beam angle Orxis equal to 30°.

Based on the estimated traffic density, the receive BS
dedicates its antenna modules to form multiple beams aimed
to serve all vehicles within the road section. We assume that
each vehicle is served by a single beam at most.



B. Signal Model

Consider an OFDM transmitter that maps bits into a
sequence of QAM symbols, which are converted into Ns
parallel streams. Each one of Nssymbols from the serial-to-
parallel conversion is carried by a different subcarrier [10]. Let
Xi[m] denotes the Ith transmit symbol of the mth subcarrier,
where I = 0,1,..,00 and m = 0,1,..,Nc — 1. Then, the OFDM
baseband signal can be represented as:

Ne-1 N1 X(t) = X X cmyn e-j2emafie-nTs) + g(t) (1) n=0

where Nsis the number of OFDM symbols, N¢is the number of
OFDM subcarriers, cmnis the communication information
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Fig. 2. Architecture of proposed traffic density estimator.

modulated on the mth subcarrier and nth OFDM symbol, Afis
the subcarrier spacing between OFDM symbols, g(t) is the
impulse response of the raised cosine shaping filter [10]. Then,
the transmitted passband OFDM signal can be expressed as:
X(£) = x(¢t) e2nfet (2)

where fcis the carrier frequency.

Assume the number of vehicles is Nvin the illuminated road
section, which all can be considered as targets. Each target has
a radar cross section (RCS) (ov dB) and an average speed sy
km/h for v = {0,--- ,Ny - 1}. Then, the received signal at the

receive antenna can be expressed as:
Ne=1 Ne=1 Ne-1

y(t)= X X X ov cmn ej2nfe(t-1) v=0 n=0 m=0

-e-j2mmafie-1) g(t) + n(t) (3) where n(t) is the
additive white Gaussian noise (AWGN).

IV. PROPOSED SOLUTION AND ANALYSIS

Fig. 2 shows a conceptual architecture of the proposed
traffic density estimator that will be explained in Subsection.
IV-A. With the knowledge of traffic density, mmWave beam
can be allocated accordingly to optimize system performance
proactively.
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A. Road Traffic Density Estimation

Density estimation is performed in two phases: 1) modeling
of probability density function (PDF) templates, and 2)
estimation. In the first phase, M probability density function
(PDF) templates are generated based on experiments. The
second phase includes two steps, i.e., weight (divergence)
calculation based on JS-divergence [15], and density
calculation using weighted-centroid method. The JS-
divergence is a measure which describes the distance between
two probability density distributions P(x) and Q(x) for data x,
hence providing a way to compare the statistical
characteristics of different received radio signals. Given
measured datasets of the received radio signals, we calculate
the PDF templates using Kernel density estimation (KDE) [16].

In the template preparation phase, experiments are
conducted for specific values of Ny. With a dataset of received
echo signal y/'s, the estimated PDF is computed as follows:

N 1 K T =y
Q(J-)fﬂ;ﬂ A 2) “

where K is a non-negative kernel function (e.g., normal) and h
is a smoothing factor. The same way is used to generate M PDF
templates: QU)(x),...,Q™(x). Similarly, in the estimation phase,
we obtain the measured PDF P(x) for the unknown number of
vehicles. Then, the JS-divergence between P(x) and QU(x) is
calculated as follows:

JS(P(2)||Q" (x)) = —f\L(P(J)IIM )

1
+3KLQY (@) IM())
M(z) = (1/2)(P(2)+Q(2)) and KL(P(2)||M(x))
(5)
where is the Kullback-Leibler (KL) divergence between

distributions P(x) and M(x), and the KL-divergence is given by:

Z’D P(a;)
Q(z;)

Note that the JS-divergence is a smoothed version of the

KL divergence, and it is preferred since it is bounded 0 <

JS(P(x)|[M(x)) < )no matter what Nvis, and symmetric
so that the distance is independent of the order of the two
PDFs under test.

With M JS-divergence values obtained in the first step of
estimation phase, the weighted-centroid-based traffic density
estimate is given by

KL(P(x) ) logo

)IM(z
(6)

§, = Zim N 2 IS (PIQW) _

Sy IS (PlQW) (7)
where B(Ny) is the bias between the actual and estimated
number N_L,_; of targets,
which can be

i.;'
§Z ws — N



estimated based on S measurements
(8)

B. Beam Allocation Protocols

In this phase, we make use of our proposed traffic density
estimation scheme to enhance the QoS of the communication
system. Specifically, we propose an adaptive beam allocation
protocol that enables the BS to reserve antenna modules and
assigh mmWave beams based on the estimated number of
vehicles. Two beam allocation scenarios are considered: (i)
fixed beam allocation and (ii) adaptive beam allocation.

We assume that the BS assigns beams based on requests
made by some active vehicles and these requests follow the
Poisson arrival model [17]. Note that the beam alignment is
out of scope of this paper and it can be done based on the
location information of each vehicle, which can be obtained
with the use of available positioning technologies during the
requests process. Consider that the service requests arrival
form a Poisson process with a mean arrival rate A = a - T, where
a is the number of packets transmitted in the time interval t,
and A > 0. Then, the success probability of the BS to serve the
vehicles using NemmWave beams can be expressed as:

o N, e NoA
Rur.'(j\"}_i 1\"1') = Z %

r<Np

(9)
where r is the number of requests per vehicle. Note that to
achieve successful communication for the active vehicles, the
beam assignment should satisfy the constraint r < Np. If the
probability that r exceeds the number of beams N, this is
known the outage probability which can be represented as:

N, A e~ N
H):t.l(-’l\rf? *fvu) - Z %

r>Np

(10)

Two beam allocation schemes are considered in this paper.
Let us start with the fixed beam allocation scheme. In this
scenario, a fixed number of beams N3is reserved to serve the
vehicles, where Ng can be chosen based on historical traffic
data and it should not exceed the maximum number of beams

Nmax that BS can support. The outage probability P_out can be
expressed as:

Pout= va(Nv)Pout(NBle) (11) ~and the

mean number of idle (not used) beams L™ is given by:

(_/V.,.)\)r ef.‘\"v/\
Z r!

r<Np

“(Ng—7) (12)

L=> p(N,)
N,
Note that the fixed beam allocation scenario does not provide
flexibility and imposes coverage problems when the number
of vehicles is greater than the number of reserved beams.
Therefore, we propose an adaptive beam allocation, which
alleviates the problems of the fixed beam allocation.
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For the adaptive beam allocation scheme, we introduce a
control parameter a(Nv+€) that is a pre-defined offset function
(or look-up table) for adjusting allocation level as Nvchanges.
Practically, there must be a ceiling for resource availability.
The ceiling can be represented by min Nmax,Nv+ € +

a(N, + F-)), where € = Ny — Ny is the estimation error. The
corresponding conditional outage probability (conditioned on
Ny) is as follows:

Pout(-'rvt') -
Z qe|Ny) Pous (?n‘in(ﬂ-",,m‘,.._ Ny + e+ a(N, + E))U\;’.,‘.) (13)

€

where q(€|Nv) is a conditional distribution of estimation

errors. Note that the term Pour min(Nmax, Nv+e+a(Ny + €)M )in
(13) represents the adaptivity of our beam allocation scheme,
which is achieved by selecting the minimum value between
Nmax and Ny + € + a(Nv + €). Then, we have the outage
probability of the adaptive scheme:

P out= Xp(Nv) Pout (14)

Ny

Finally, the mean number of idle beams (conditioned on Ny)
can be expressed as:

Ty — 7 (‘N'u/\)r CiN“l\
.C(j\‘u) - Z(](Elj\() Z T
€ r<Np
. [Trﬁj?.l(i‘?\‘rﬂlﬂ:lff AN"U + €+ (J(‘F\r*' + F)) - ?‘:| (15)
and, the mean number of idle beams is:
L™ =Xp(Nv) L(Nv) (16)

Ny
V. QUANTITATIVE ASSESSMENT

A. Simulation Setup

We evaluate traffic density estimation and adaptive beam
allocation performances through Matlab Simulation, assuming
a geometrical-based single-bounce channel model and known
path loss. Assume an 100 located at (-700, -50) m and a receive
BS located at (2500, 40) m. The IoO and the receive BS
beamwidths intersect to cover a road section of one mile
length. For simplicity without loss of major road traffic
behavior, assume the road section has one lane®. We consider
the transmitted signal as an mmWave OFDM signal with N =
1024 subcarriers, and f.= 28 GHz. For pulse shaping, a raised-
cosine filter with a roll-off factor of 0.25 is utilized.

At the receiver side, assume the received signals are
reflected from vehicles with RCSs ov following the uniform
distribution U~[1,11] based on the experiments reported in
[18], the vehicles’ average speed is sy = 96.5 km/h, and the
separation distance between vehicles is a random number
between [10-15] m. Each reflected echo includes 41374 1/Q
samples mixed with noise such that the signal-to-noise ratio



(SNR) is 2.7 dB. Four PDF templates for Nv=2, 20, 50 and 100
are considered and they are modeled based on synthetic
datasets generated using simulation. The major simulation
parameters used in the system evaluation of this paper are
summarized in Table I.
TABLE |
SETTING OF MAJOR SIMULATION PARAMETERS.

Parameter Value Parameter Value
# of subcarriers Nc 1024 RCS ov U~[1,11]
Carrier frequency fe 28 GHz Vehicles sep. dist. 10-15m
SNR 2.7dB Average speed sy 96.5 km/h
# of PDF templates M 4 # of iterations 20
# of Fix. beams N 15 :ezfnid;,i; 17

For evaluating the adaptive beam allocation, two additional
schemes, i.e., fixed allocation and unlimited allocation, are
considered as benchmarks. We run the traffic density
estimation scheme 20 times and record the estimated number
of vehicles N"vand the estimation error € in each step. This data
will be used to evaluate the outage probability and mean
number of idle beams as described in Subsection V-B.

B. Simulation Results

Fig. 3 shows the estimated PDF of the received signals for
different numbers of vehicles, suggesting that the PDF is close
to Gaussian and the standard deviation of the received signal
increases as the number of vehicles increases.

The four JS-divergence values for a ground true of 35
vehicles are given in Table I, and the weighted centroid
estimator leads to an estimate N"v= 36 which is very close to
the true number N, = 35. The estimation performance is
evaluated in mean square error (MSE) conditioned on the

IMore realistic conditions, such as multi-lane road section, will be
considered in our future work.
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Fig. 3. Estimated PDF of the received signal at different numbers of
targets.

TABLE Il
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JS-DIVERGENCES BETWEEN THE PDF TEMPLATES AND A TESTING SIGNAL PDF OF 35

VEHICLES.
Number of vehicles 2 20 50 100
JS-divergence 0.8000 | 0.2482 0.1849 0.4926

number of vehicles Ny. Specifically, the total absolute and
relative MSEs conditioned on Nycan be calculated as follows:

Z €2 q(e|Ny)

cES

Eavs(s|N,) =

(17)

8.4 bs(S|N,)
ERel(SIN,) = N,
v

(18)
where error set S refers to “all” (i.e., all possible values for
error €), € < 0 or € > 0. If the PDF of Ny, p(Nv), is known, then
we have unconditional MSEs:

g,-‘qb.s-(S) = ZP(N,’-)SMHMN;) (19)
!\[J’
g _ Eans(s)
Rel(S8) — N, (20)

The unconditional average estimation errors are given in
Table Ill, assuming Nvis uniformly distributed over [5,20]. Fig.
4 shows the estimation errors conditioned on Ny. Note that in
general the estimation bias B(Ny) is not zero and we may
intentionally leave it as it is. One can see from Fig. 4 that the
negative relative error Ere-) is smaller compared to the
positive relative errors Erei+), which means the estimator
most likely outputs a number N'vgreater than the true number
Ny. This biased estimation tends to request slightly more
mmWave beam allocation to reduce the outage probability.

For adaptive beam allocation, we simply define the control
parameter a(Nv + €) as follows:

a(N, + €) = max (U, 7'0und(“f * (N, + ())) 2D
where yis a positive real constant (y = 0.0001 has been chosen
in the simulation), and round() is the rounding function. In Fig.
5, the outage probabilities of strategies are calculated

1.2 T
—w—ERel{all|N,) !
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i
c 08}
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©
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Fig. 4. Average relative estimation errors over N,.

TABLE Il



ESTIMATION ERRORS AVERAGED OVER Nv € [5,20].

Eabs(al ERel(all) Eabs(+) ERel(+) Eabs(-) ERel(-)

11.441 1.083 11.271 1.067 1.967 0.186

for different numbers of vehicles Nvand packet arrival rates 4,
assuming uniform distribution of Ny € [5,20]. For the fixed-
allocation benchmark scheme, Nz = 15 is selected. For the
adaptive allocation with ceiling (Nmax), the number of reserved
beams is equal to min(Nmaz. N‘i-"*‘“"‘”'(N‘f“"C), and the
number of reserved beams could reach up to Nmax= 17, while
for the adaptive allocation without ceiling (another benchmark
scheme), the number of reserved beams is equal to Ny + € +
a(Nv+e).
0.8

—w— Fixed Beam Allocation A = 1
—8— Adaptive without C 2

0.7H Adaptive with Ceili
— # — Fixed Beam Allocat .
— & — Adaptive without Ceiling A = 0.3
Adaptive with Ceiling A = 0.3

=
)

o
o
T

Outage Probability
o
B

5 10 15 20
Number of Vehicles

Fig. 5. Outage probability comparison based on number of vehicles.

From the comparison results we can conclude that,
compared to the fixed allocation, our adaptive schemes suffer
from less outage, which improves the QoS accordingly, thanks
to the adaptivity backed up by the real-time traffic density
estimation.

Finally, let us evaluate the level of resource waste using the
mean number of idle beams (L™ and L") as a metric. As shown
in Fig. 6, the two adaptive schemes perform similarly,
indicating that a resource ceiling does not necessarily impact
the level of resource waste; and compared to the fixed
strategy, they vary

10 T T
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— Adaptive without Ceiling
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47 T
\
\
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Fig. 6. Mean number of idle beams comparison at different numbers
of vehicles.

less as the number of vehicles changes. Interestingly, there is
a turning point at Ny = 8, and the adaptive schemes
outperform over the fixed counterpart when Ny < 8; as Ny
increases, both of the adaptive schemes approximately exhibit
a small constant level of idleness. Note that the overall beam
allocation performance is measured by both outage and
idleness, and it can be stated that as the number of vehicles
increases, the adaptive schemes perform significantly better
than the fixed strategy at a minor penalty of L =™ 1.3.

TABLE IV
COMPARISON OF TRAFFIC DENSITY ESTIMATION SCHEMES.

Radiobased # of Bad Dyn Complexity
cars | Weather | Env.
[1] x large x N high
[14] v large v x high
Ours N large N N low

V1. CONCLUSIONS

An ISAC use case with synergy between communication and
sensing is conceptually demonstrated. The traffic density
estimator combines both model-based and data-driven
approaches. It makes use of Jensen-Shannon divergence and
weighted-centroid interpolation, requiring no huge effort on
labeling and training, nor complex processing like deep
learning. The traffic density estimation scheme provides
passive sensing for a large number of targets, while the
adaptive beam allocation enhances communication in terms of
connectivity and QoS for the vehicular users within the
covered road section. The simulation results suggests that the
density estimation could deal with a large number of targets
with a relatively low estimation error. Moreover, the
performance comparison shows that the adaptive beam
allocation outperforms over the fixed beam allocation by
reducing the outage probability and guaranteeing service to
detected vehicles. Table IV shows major difference between
our scheme and traffic density estimation methods given in
[1], [14], though it is not possible to make quantitative
comparison. In addition to incorporating adaptive beam
allocation, our scheme can adapt to bad weather conditions
and dynamic environment, and has low complexity. For future
work, the estimation and beam allocation performances will
be further studied, considering more sophisticated scenarios,
including multi-lane, realistic road traffic conditions and
ground clutter. REFERENCES
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