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Abstract—In this paper, we propose and study a particular use case 

capable of performing radio-based traffic density estimation for 
adaptive beam allocation. The proposed scheme explores the synergy 
between communication and sensing from an Integrated sensing and 
communication (ISAC) perspective. The traffic density estimation is 
aided by communication functionality, which involves reusing 
communication waveforms and utilizing multibeam forming and 
sweeping techniques. Meanwhile, the sensing outcomes assist in 
proactively allocating radio beams. There have been accurate traffic 
monitoring methods relying on a large number of detectors. However, 
these traditional techniques have some shortcomings, and it is 
necessary to explore alternative traffic density estimation approaches. 
In this regard, we exploit orthogonal frequency division multiplexing 
(OFDM) communication signals of opportunity reflected from targets 
(vehicles) to estimate the traffic density of a road section by using 
JensenShannon (JS) divergence and weighted-centroid interpolation 
based on a few samples of density scenarios. Then, we present a 
millimeter-wave (mmWave) adaptive beam allocation protocol based 
on the traffic density estimation to enhance communication coverage 
for the vehicular users in the area of interest. The simulation results 
demonstrate that our traffic density estimation can handle a wide range 
of targets with a relatively low estimation error. In addition, the 
analysis of the adaptive beam allocation shows that it effectively 
improves the quality of service (QoS, in terms of outage probability) 
of the communication system. 

Index Terms—Integrated sensing and communication (ISAC), 

communication signals of opportunity, traffic density estimation, 
Jensen-Shannon divergence, mmWave adaptive beam allocation. 

I. INTRODUCTION 

Road traffic monitoring plays an important role in traffic 

management in the Intelligent Transportation System (ITS). 

Metrics related to road traffic monitoring include traffic 

density (defined as number of vehicles per mile), and average 

speed, etc. The traditional traffic monitoring methods mainly 

rely on a large number of detectors like cameras, ultrasonic 

detectors, induction loop detectors, and radar sensors [1]. 

Such kinds of systems are accurate but exhibit some 

shortcomings in terms of range and effectiveness as they are 

easily affected by the environment and bad weather 

conditions (e.g., fog, rain, etc.). In addition, the cost of 

deploying these detection/estimation systems is very high, 

especially with the rapid growth of the metropolis road 

networks [2]. Therefore, from both application and research 

perspectives, it is necessary to explore alternative techniques 

for traffic density estimation, and the radio-based approach is 

particularly interesting. 
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Over the past few years, ISAC has been emerging as a key 

technology in future wireless systems to support many 

important applications [3]–[5]. ISAC refers to a design 

paradigm and enabling technologies, in which sensing and 

communication systems are integrated to efficiently utilize 

congested resources [3] by sharing the signal processing 

algorithms, hardware resources, and spectrum. Thus, it 

substantially reduces the cost of the hardware and spectrum 

resources while achieving higher service quality due to the 

synergy between the communication and sensing. One aspect 

of ISAC is the reuse of communication waveforms for sensing 

purpose. Triggered by ISAC, non-collaborative OFDM signals 

generated from illuminators of opportunity (IoO) can provide 

an efficient and effective solution to localize, detect, or track 

targets, which can enable many new use cases such as radio-

based road traffic monitoring to help road traffic management 

in the ITS, and at the same time help the communication 

system to better allocate its resources proactively. Indeed, 

communicationassisted sensing and sensing-assisted 

communication can be achieved in a single ISAC setup [6]. 

Several research works have developed passive radar 

sensing techniques by utilizing the signals transmitted from 

different kinds of IoOs to localize and detect targets. In [7], the 

authors proposed a multi-target localization and speed 

estimation scheme by using an OFDM signal transmitted by an 

IoO. In [8], OFDM signals from a non-collaborative digital video 

broadcasting-terrestrial (DVB-T) transmitter were used to 

detect moving targets. Also, some researchers developed road 

traffic-flow monitoring systems by using noncollaborative 

DVB-T transmitters [9]. Although the aforementioned systems 

outperform the traditional traffic monitoring systems in terms 

of cost and effectiveness, they impose several challenges that 

need to be addressed. One major concern is that current 

localization systems either do not provide density information 

(e.g., [9]), or can only detect a few targets [7], [8], making them 

incapable of estimating the traffic density of a road section. 

Moreover, the idea of searching over the whole range-Doppler 

space to estimate the range and velocity of the targets using 

the cross ambiguity function requires both large signal 

bandwidth (for range-resolution [10]) and high power, and 

also incurs high computational complexity. Finally, pure data-

driven traffic estimation models (e.g., machine learning) 
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provides no insight into the physical mechanisms and is less 

traceable. 

In this paper, we consider an ISAC scheme for both traffic 

monitoring using OFDM signals of opportunity, and mmWave 

beam allocation based on traffic sensing. Assume the system 

is capable of multi-beam forming and sweeping in a 

cloudradio-access network (C-RAN) [11] which enables 

centralized processing for communication and sensing 

cooperatively. With such a configuration, multiple base 

stations (BSs) can perform (either communication or sensing) 

cooperatively. We propose a hybrid traffic density estimation 

technique that combines model-based and data-driven 

approaches. Then, we present a density-aware and adaptive 

beam allocation protocol that assigns mmWave beams for the 

vehicular users in the area of interest. This improves the QoS 

and enhances the communication coverage. Finally, 

simulations are conducted to evaluate the proposed scheme. 

The results indicate that our proposed schemes can efficiently 

estimate the traffic density and improve the QoS of 

communication systems using the adaptive beam allocation. 

Compared to existing radio-based traffic estimation schemes, 

our proposed method can handle a large number of targets by 

reusing communication waveforms, without complex 

processing. Note that this paper mainly reports preliminary 

work verified by simulation, providing some insight for future 

research in this line to consider more sophisticated traffic 

scenarios. Also, we focus on the basic concept and analysis, 

assuming some prerequisites, such as mmWave beamforming 

and beam sweeping, have been met. 
The rest of this paper is organized as follows. Section 

II presents related work. The system model is presented in 

Section III. The proposed schemes are described in Section IV. 

Numerical results are discussed in Section V, followed by 

conclusions in Section VI. 

Major Notations: Nv: Number of vehicles; Q(x): Probability 

density function (PDF) of a modeled template; P(x): PDF of a 

testing signal; p(Nv): Distribution of Nv; q(ϵ|Nv): Conditional 

distribution of estimation error ϵ; EAbs: Absolute mean square 

error; ERel: Relative mean square error; P¯out: Outage 

probability of fixed beam allocation; P¯out: Outage probability 

of adaptive beam allocation; L¯: Mean number of idle beams 

(fixed beam allocation); L¯: Mean number of idle beams 

(adaptive beam allocation). 

II. RELATED WORK 

For active traffic density estimation, the schemes [1], [2] use 

unmanned aerial vehicle (UAVs) or road side units (RSUs) that 

are widely deployed. One shortcoming of these approaches is 

their high implementation and maintenance costs. Also, the 

UAV-based scheme in [1] requires complicated postprocessing 

since it uses cameras installed on the UAVs for traffic 

detection. 

For passive sensing techniques, Li et al [7] proposed a 

passive sensing algorithm to estimate the positions of multiple 

targets by using OFDM communication demodulated signals. 

They estimated delay and Doppler by utilizing the sparsity of 

the demodulation errors and numbers of reflectors. Then, the 

positions of targets are estimated based on the estimated 

delayDoppler by using the neural network. The scheme 

provides accurate estimation using at least 4 receiving BSs, but 

it can estimate at most 3 targets. Singh et al [12] presented a 

multi-target detection scheme by using OFDM-Radar to 

 

Fig. 1. System architecture of the proposed schemes. 

separate the direction of arrivals (DOAs) reflected from 

targets, but it can only detect up to 2 targets. Bartoletti et al 

[13] proposed a counting targets scheme using OFDM signals 

that can count up to 5 targets. However, it requires the 

positions of the targets to be known for the receiver. Tulay et 

al [14] proposed passive traffic sensing scheme using 

dedicated shortrange communications (DSRC) signals 

transmitted from an RSU. The scheme uses radio signal 

fingerprinting and machine learning for traffic density. 

However, it suffers from outage due to environmental changes 

and requires a large dataset for accurate classification. 

III. SYSTEM MODEL 

A. System Architecture 

We consider one transmit BS (IoO), a receive BS, and a 

number of vehicles on a road section. As shown in Fig. 1, the 

BS transmits an OFDM signal to illuminate a road section, then 

the reflected signals are received by another receive BS to 

estimate the traffic density on the illuminated road section. 

Note that multiple BSs can be employed and the illuminated 

road section depends on the beamwidth of the transmit and 

receive antennas; for instance, both transmit and receive 

antennas cover one mile of the road section, and the main 

beam angle θRx is equal to 30◦. 

Based on the estimated traffic density, the receive BS 

dedicates its antenna modules to form multiple beams aimed 

to serve all vehicles within the road section. We assume that 

each vehicle is served by a single beam at most. 
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B. Signal Model 

Consider an OFDM transmitter that maps bits into a 

sequence of QAM symbols, which are converted into Ns 

parallel streams. Each one of Ns symbols from the serial-to-

parallel conversion is carried by a different subcarrier [10]. Let 

Xl[m] denotes the lth transmit symbol of the mth subcarrier, 

where l = 0,1,...,∞ and m = 0,1,...,Nc − 1. Then, the OFDM 

baseband signal can be represented as: 

Ns−1 Nc−1 x(t) = X X cm,n e−j2πm∆f(t−nTs) · g(t) (1) n=0 

m=0 

where Ns is the number of OFDM symbols, Nc is the number of 

OFDM subcarriers, cm,n is the communication information 

 

Fig. 2. Architecture of proposed traffic density estimator. 

modulated on the mth subcarrier and nth OFDM symbol, ∆f is 

the subcarrier spacing between OFDM symbols, g(t) is the 

impulse response of the raised cosine shaping filter [10]. Then, 

the transmitted passband OFDM signal can be expressed as: 

x˜(t) = x(t) ej2πfct (2) 

where fc is the carrier frequency. 

Assume the number of vehicles is Nv in the illuminated road 

section, which all can be considered as targets. Each target has 

a radar cross section (RCS) (σv dB) and an average speed sv 

km/h for v = {0,··· ,Nv − 1}. Then, the received signal at the 

receive antenna can be expressed as: 
Nv−1 Ns−1 Nc−1 

y(t)= X X X σv cm,n ej2πfc(t−τ) v=0 n=0 m=0 

·e−j2πm∆f(t−τ) g(t) + n(t) (3) where n(t) is the 

additive white Gaussian noise (AWGN). 

IV. PROPOSED SOLUTION AND ANALYSIS 

Fig. 2 shows a conceptual architecture of the proposed 

traffic density estimator that will be explained in Subsection. 

IV-A. With the knowledge of traffic density, mmWave beam 

can be allocated accordingly to optimize system performance 

proactively. 

A. Road Traffic Density Estimation 

Density estimation is performed in two phases: 1) modeling 

of probability density function (PDF) templates, and 2) 

estimation. In the first phase, M probability density function 

(PDF) templates are generated based on experiments. The 

second phase includes two steps, i.e., weight (divergence) 

calculation based on JS-divergence [15], and density 

calculation using weighted-centroid method. The JS-

divergence is a measure which describes the distance between 

two probability density distributions P(x) and Q(x) for data x, 

hence providing a way to compare the statistical 

characteristics of different received radio signals. Given 

measured datasets of the received radio signals, we calculate 

the PDF templates using Kernel density estimation (KDE) [16]. 

In the template preparation phase, experiments are 

conducted for specific values of Nv. With a dataset of received 

echo signal yj’s, the estimated PDF is computed as follows: 

  (4) 

where K is a non-negative kernel function (e.g., normal) and h 

is a smoothing factor. The same way is used to generate M PDF 

templates: Q(1)(x),...,Q(M)(x). Similarly, in the estimation phase, 

we obtain the measured PDF P(x) for the unknown number of 

vehicles. Then, the JS-divergence between P(x) and Q(i)(x) is 

calculated as follows: 

(5) 

where is the Kullback-Leibler (KL) divergence between 

distributions P(x) and M(x), and the KL-divergence is given by: 

  (6) 

Note that the JS-divergence is a smoothed version of the 

KL-divergence, and it is preferred since it is bounded 0 ≤ 

 no matter what Nv is, and symmetric 

so that the distance is independent of the order of the two 

PDFs under test. 

With M JS-divergence values obtained in the first step of 

estimation phase, the weighted-centroid-based traffic density 

estimate is given by 

  (7) 

where B(Nv) is the bias between the actual and estimated 

number of targets, 

which can be 
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estimated based on S measurements 

(8) 

B. Beam Allocation Protocols 

In this phase, we make use of our proposed traffic density 

estimation scheme to enhance the QoS of the communication 

system. Specifically, we propose an adaptive beam allocation 

protocol that enables the BS to reserve antenna modules and 

assign mmWave beams based on the estimated number of 

vehicles. Two beam allocation scenarios are considered: (i) 

fixed beam allocation and (ii) adaptive beam allocation. 

We assume that the BS assigns beams based on requests 

made by some active vehicles and these requests follow the 

Poisson arrival model [17]. Note that the beam alignment is 

out of scope of this paper and it can be done based on the 

location information of each vehicle, which can be obtained 

with the use of available positioning technologies during the 

requests process. Consider that the service requests arrival 

form a Poisson process with a mean arrival rate λ = α · τ, where 

α is the number of packets transmitted in the time interval τ, 

and λ > 0. Then, the success probability of the BS to serve the 

vehicles using NB mmWave beams can be expressed as: 

  (9) 

where r is the number of requests per vehicle. Note that to 

achieve successful communication for the active vehicles, the 

beam assignment should satisfy the constraint r ≤ NB. If the 

probability that r exceeds the number of beams NB, this is 

known the outage probability which can be represented as: 

  (10) 

Two beam allocation schemes are considered in this paper. 

Let us start with the fixed beam allocation scheme. In this 

scenario, a fixed number of beams NB is reserved to serve the 

vehicles, where NB can be chosen based on historical traffic 

data and it should not exceed the maximum number of beams 

Nmax that BS can support. The outage probability P¯
out can be 

expressed as: 

P¯out = Xv p(Nv)Pout(NB|Nv) (11) N and the 

mean number of idle (not used) beams L¯ is given by: 

 

Note that the fixed beam allocation scenario does not provide 

flexibility and imposes coverage problems when the number 

of vehicles is greater than the number of reserved beams. 

Therefore, we propose an adaptive beam allocation, which 

alleviates the problems of the fixed beam allocation. 

For the adaptive beam allocation scheme, we introduce a 

control parameter a(Nv+ϵ) that is a pre-defined offset function 

(or look-up table) for adjusting allocation level as Nv changes. 

Practically, there must be a ceiling for resource availability. 

The ceiling can be represented by min Nmax,Nv + ϵ + 

, where ϵ = N˜v − Nv is the estimation error. The 

corresponding conditional outage probability (conditioned on 

Nv) is as follows: 

 
where q(ϵ|Nv) is a conditional distribution of estimation 

errors. Note that the term Pout min(Nmax,Nv +ϵ+a(Nv + in 

(13) represents the adaptivity of our beam allocation scheme, 

which is achieved by selecting the minimum value between 

Nmax and Nv + ϵ + a(Nv + ϵ). Then, we have the outage 

probability of the adaptive scheme: 

 P¯out = Xp(Nv) Pout (14) 

Nv 

Finally, the mean number of idle beams (conditioned on Nv) 

can be expressed as: 

  (15) 

and, the mean number of idle beams is: 

 L¯ = Xp(Nv) L(Nv) (16) 

Nv 
V. QUANTITATIVE ASSESSMENT 

A. Simulation Setup 

We evaluate traffic density estimation and adaptive beam 

allocation performances through Matlab Simulation, assuming 

a geometrical-based single-bounce channel model and known 

path loss. Assume an IoO located at (-700, -50) m and a receive 

BS located at (2500, 40) m. The IoO and the receive BS 

beamwidths intersect to cover a road section of one mile 

length. For simplicity without loss of major road traffic 

behavior, assume the road section has one lane1. We consider 

the transmitted signal as an mmWave OFDM signal with Nc = 

1024 subcarriers, and fc = 28 GHz. For pulse shaping, a raised-

cosine filter with a roll-off factor of 0.25 is utilized. 

At the receiver side, assume the received signals are 

reflected from vehicles with RCSs σv following the uniform 

distribution U∼[1,11] based on the experiments reported in 

[18], the vehicles’ average speed is sv = 96.5 km/h, and the 

separation distance between vehicles is a random number 

between [10-15] m. Each reflected echo includes 41374 I/Q 

samples mixed with noise such that the signal-to-noise ratio 
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(SNR) is 2.7 dB. Four PDF templates for Nv =2, 20, 50 and 100 

are considered and they are modeled based on synthetic 

datasets generated using simulation. The major simulation 

parameters used in the system evaluation of this paper are 

summarized in Table I. 
TABLE I 

SETTING OF MAJOR SIMULATION PARAMETERS. 

 

Parameter Value Parameter Value 

# of subcarriers Nc 1024 RCS σv U∼[1,11] 

Carrier frequency fc 28 GHz Vehicles sep. dist. 10-15 m 

SNR 2.7 dB Average speed sv 96.5 km/h 

# of PDF templates M 4 # of iterations 20 

# of Fix. beams NB 15 
# of Adapt. 

beams Nmax 
17 

 

For evaluating the adaptive beam allocation, two additional 

schemes, i.e., fixed allocation and unlimited allocation, are 

considered as benchmarks. We run the traffic density 

estimation scheme 20 times and record the estimated number 

of vehicles N˜v and the estimation error ϵ in each step. This data 

will be used to evaluate the outage probability and mean 

number of idle beams as described in Subsection V-B. 

B. Simulation Results 

Fig. 3 shows the estimated PDF of the received signals for 

different numbers of vehicles, suggesting that the PDF is close 

to Gaussian and the standard deviation of the received signal 

increases as the number of vehicles increases. 

The four JS-divergence values for a ground true of 35 

vehicles are given in Table II, and the weighted centroid 

estimator leads to an estimate N˜v = 36 which is very close to 

the true number Nv = 35. The estimation performance is 

evaluated in mean square error (MSE) conditioned on the 

1More realistic conditions, such as multi-lane road section, will be 
considered in our future work. 

 

Fig. 3. Estimated PDF of the received signal at different numbers of 
targets. 

TABLE II 

JS-DIVERGENCES BETWEEN THE PDF TEMPLATES AND A TESTING SIGNAL PDF OF 35 

VEHICLES. 

Number of vehicles 2 20 50 100 

JS-divergence 0.8000 0.2482 0.1849 0.4926 

number of vehicles Nv. Specifically, the total absolute and 

relative MSEs conditioned on Nv can be calculated as follows: 

(17) 

(18) 

where error set S refers to “all” (i.e., all possible values for 

error ϵ), ϵ < 0 or ϵ > 0. If the PDF of Nv, p(Nv), is known, then 

we have unconditional MSEs: 

(19) 

(20) 

The unconditional average estimation errors are given in 

Table III, assuming Nv is uniformly distributed over [5,20]. Fig. 

4 shows the estimation errors conditioned on Nv. Note that in 

general the estimation bias B(Nv) is not zero and we may 

intentionally leave it as it is. One can see from Fig. 4 that the 

negative relative error E¯Rel(−) is smaller compared to the 

positive relative errors E¯Rel(+), which means the estimator 

most likely outputs a number N˜v greater than the true number 

Nv. This biased estimation tends to request slightly more 

mmWave beam allocation to reduce the outage probability. 

For adaptive beam allocation, we simply define the control 

parameter a(Nv + ϵ) as follows: 

 

where γ is a positive real constant (γ = 0.0001 has been chosen 

in the simulation), and round( ) is the rounding function. In Fig. 

5, the outage probabilities of strategies are calculated 

 

Fig. 4. Average relative estimation errors over Nv. 

TABLE III 
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ESTIMATION ERRORS AVERAGED OVER Nv ∈ [5,20]. 

¯ 
EAbs(all) 

¯ 
ERel(all) 

¯ 
EAbs(+) 

¯ 
ERel(+) 

¯ 
EAbs(−) 

¯ 
ERel(−) 

11.441 1.083 11.271 1.067 1.967 0.186 

for different numbers of vehicles Nv and packet arrival rates λ, 

assuming uniform distribution of Nv ∈ [5,20]. For the fixed-

allocation benchmark scheme, NB = 15 is selected. For the 

adaptive allocation with ceiling (Nmax), the number of reserved 

beams is equal to , and the 

number of reserved beams could reach up to Nmax = 17, while 

for the adaptive allocation without ceiling (another benchmark 

scheme), the number of reserved beams is equal to Nv + ϵ + 

a(Nv + ϵ). 

 

Fig. 5. Outage probability comparison based on number of vehicles. 

From the comparison results we can conclude that, 

compared to the fixed allocation, our adaptive schemes suffer 

from less outage, which improves the QoS accordingly, thanks 

to the adaptivity backed up by the real-time traffic density 

estimation. 

Finally, let us evaluate the level of resource waste using the 

mean number of idle beams (L¯ and L¯) as a metric. As shown 

in Fig. 6, the two adaptive schemes perform similarly, 

indicating that a resource ceiling does not necessarily impact 

the level of resource waste; and compared to the fixed 

strategy, they vary 

 

Fig. 6. Mean number of idle beams comparison at different numbers 
of vehicles. 

less as the number of vehicles changes. Interestingly, there is 

a turning point at Nv = 8, and the adaptive schemes 

outperform over the fixed counterpart when Nv < 8; as Nv 

increases, both of the adaptive schemes approximately exhibit 

a small constant level of idleness. Note that the overall beam 

allocation performance is measured by both outage and 

idleness, and it can be stated that as the number of vehicles 

increases, the adaptive schemes perform significantly better 

than the fixed strategy at a minor penalty of L ≈¯ 1.3. 

TABLE IV 
COMPARISON OF TRAFFIC DENSITY ESTIMATION SCHEMES. 

 

 Radiobased # of 

cars 
Bad 

Weather 
Dyn 
Env. 

Complexity 

[1] × large × √ high 
[14] √ large √ × high 
Ours √ large √ √ low 

 

VI. CONCLUSIONS 

An ISAC use case with synergy between communication and 

sensing is conceptually demonstrated. The traffic density 

estimator combines both model-based and data-driven 

approaches. It makes use of Jensen-Shannon divergence and 

weighted-centroid interpolation, requiring no huge effort on 

labeling and training, nor complex processing like deep 

learning. The traffic density estimation scheme provides 

passive sensing for a large number of targets, while the 

adaptive beam allocation enhances communication in terms of 

connectivity and QoS for the vehicular users within the 

covered road section. The simulation results suggests that the 

density estimation could deal with a large number of targets 

with a relatively low estimation error. Moreover, the 

performance comparison shows that the adaptive beam 

allocation outperforms over the fixed beam allocation by 

reducing the outage probability and guaranteeing service to 

detected vehicles. Table IV shows major difference between 

our scheme and traffic density estimation methods given in 

[1], [14], though it is not possible to make quantitative 

comparison. In addition to incorporating adaptive beam 

allocation, our scheme can adapt to bad weather conditions 

and dynamic environment, and has low complexity. For future 

work, the estimation and beam allocation performances will 

be further studied, considering more sophisticated scenarios, 

including multi-lane, realistic road traffic conditions and 

ground clutter. REFERENCES 
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